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i	  

Abstract 

1 

This study evaluates the performance of the most common Portfolio Insurance 

Strategies based on a block-moving bootstrap simulation. We consider not only the 

traditional mean-variance approach, but also some measures of downside risk and 

stochastic dominance. We find that CPPI 1 should be preferred in terms of stochastic 

dominance. We also find that SLPI is constantly dominated by all the other strategies 

and a floor of 100% should be preferred to lower ones. Consistently, and purely in terms 

of performance analysis, CPPI 3 tends to outperform other strategies. 

During this analysis, we try to provide another insight into the controversy over 

Portfolio Insurance strategies, turning the decision-making process for future investors 

more efficient. 
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Resumo 

 

Este estudo avalia a performance das mais comuns estratégias de Portfolio Insurance, 

baseando essa análise em simulações de blocos móveis de Bootstrap. 

Nesta análise consideramos não apenas as tradicionais medidas associadas à Teoria 

Média-variância, mas também outras medidas associadas ao Downside Risk, bem como 

classificações de dominância estocástica. Foram identificadas evidências que suportam 

que a estratégia CPPI 1 deve ser preferida em termos da sua dominância face às 

restantes. Contrariamente, a estratégia SLPI deverá ser preterida face a outras 

estratégias de Portfolio Insurance. Encontrámos igualmente evidências de que deverão 

ser escolhidas barreiras mínimas mais elevadas, com o objectivo de maximizar a 

utilidade da generalidade dos investidores. Consistentemente, e meramente em termos 

de performance, a estratégia CPPI 3 é aquela que apresenta resultados mais satisfatórios. 

Ao longo desta análise, tentamos proporcionar uma nova visão sobre as controversas 

estratégias de Portfolio Insurance, tentando tornar mais eficiente a decisão de futuros 

investidores. 
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1 Introduction 

In the years before the 2008 crisis, private arrangements have become more and more 

important in financial markets. During this period, many investors put their money in 

financial assets that should provide protection against market falls and guarantee the 

upside potential. However, after the recovery of the markets in 2009, many of these 

investors started to ask why their assets didn´t grow with the market – they had the same 

investment, Portfolio Insurance instruments (PI). 

Traditionally, costumers demand a guaranteed minimum performance for their invested 

money. In order to guarantee this goal, offering-banks and insurance companies designed 

instruments that could fulfil this purpose, providing the ability to limit downside risk in 

bearish markets. Portfolio Insurance instruments could be divided into three categories: 

Constant Proportion Portfolio Insurance, Option Based Portfolio Insurance and Stop-loss 

Portfolio Insurance.  

In this study, we will try to analyse if these types of instruments really do what they 

should do – protection – and if they can outperform the payoff provided by traditional 

investment strategies such as the buy-and-hold strategy. To perform this analysis we used 

both performance measures and stochastic dominance criteria.  

This thesis is organised as described ahead. In Chapter 2, we discuss the different PI 

strategies and the main advances in this area. Chapter 3 describes some data analysis. 

Chapter 4 presents the methodology. Chapter 5 describes the empirical setup and the 

simulation results and Chapter 6 presents the main conclusions and some clues for further 

research. 
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2 Overview of the Literature 

2.1 Portfolio Insurance 

The main goal of a risk-averse economic agent is to reduce future uncertainty. Portfolio 

Insurance Strategies are investment schemes where the total amount (or, at least, the 

major part) of the initial investment is guaranteed in the future. 

The first approach to portfolio insurance strategies was developed in the early eighties by 

Leland and Rubinstein (1988), who analysed the portfolio insurance techniques based on 

the options pricing formula of Black and Scholes (1973). The underlying idea of these 

strategies is to provide protection against potential market losses, while preserving the 

upward potential (see e.g. Grossman and Villa (1989) and Basak (2002)), allowing 

participation in market rallies. Thanks to a dynamic allocation strategy, the portfolio is 

protected against market falls by a guaranteed floor, which preserves a guarantee of a 

minimum level of wealth at a specific time horizon.  

The most preeminent strategies of portfolio insurance are the Constant Proportion 

Portfolio Insurance (CPPI), the Option-based Portfolio Insurance (OBPI), and the Stop-

loss Portfolio Insurance (SLPI). From a micro-economic perspective, such strategies 

using insurance properties that are thus rationally preferred by individuals that are 

specially concerned with the potential losses represented on the left side of the returns 

distribution function.  

2.1.1 Constant Proportion Portfolio Insurance (CPPI) 

Among the most popular strategies of portfolio insurance, the Constant Proportion 

Portfolio Insurance (CPPI) allocation strategy is one of the most used in financial 
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markets. The CPPI method was first introduced by Perold (1986) (see also Perold and 

Sharpe (1988)) for fixed income instruments and Black and Jones (1987) for equity 

markets. CPPI strategies are very popular, commonly used by hedge funds, and are held 

essentially for portfolio protection.  

This strategy is based on a specific simplified method of dynamic allocation on the risky 

asset, denoted S, and a risk-free asset2, denoted B, over time, in order to guarantee a 

predetermined floor, which should be equal to the lowest acceptable value of the portfolio 

at maturity. The properties of the strategy are extensively studied in the literature (see, 

e.g. Black and Rouhani (1989), Black and Perold (1992) and Bookstabber and Langsam 

(2000)).  

As explained before, the underlying idea of the CPPI strategy consists of managing a 

dynamic portfolio, to guarantee at maturity that the portfolio terminal value, denoted by 

VT
CPPI , lies above the guaranteed level defined at t0 , denoted K, function of the initial 

investment, denoted V0
CPPI , as shown below: 

CPPICPPI
T VKV 0×≥  

Let Ft;0≤t≤T  denote the present value of the guarantee, the so-called floor. This value 

should be discounted at a risk-free rate, as shown by: 

)(
00

tTrCPPI
t

CPPI
T eVKFVKF −−××=⇒×=  

The surplus of the current portfolio value Vt
CPPI , denoted Ct , over the floor Ft  is called 

cushion, and its value at time t (t Є [0,T]) is given by: 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 This instrument is usually a liquid instrument with residual risk, such as Treasury bills or other liquid 
money market instruments; 

(1)	  

(2)	  
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[ ]0max ,t
CPPI
tt FVC −=  

This cushion is the total amount that the investor can use to expose himself to risky 

assets. This value can be leveraged over the introduction of a multiplier, denoted m, 

which is a constant function of the cushion [Ct ]. The portfolio volatility is crucially 

dependent upon this parameter, which influenced the payoff function, turning it convex 

(only if m satisfies the condition m ≥1). As the multiple is higher, larger is the portfolio 

value in a bullish market tendency. Nevertheless, the higher the multiple, the faster the 

portfolio will approach the floor when there is a decrease in the value of the risky asset. 

Usually, this multiple tends to be unconditional (see, e.g. Bertrand and Prigent (2005) and 

Prigent and Tahar (2005)), which means that the multiple must not depend on market 

conditions but on investor´s risk tolerance function3. Others (see, e.g. Ameur and Prigent 

(2006)) defend that in a time-varying framework, the multiple must be conditionally 

determined in order to guarantee that the risk exposure remains constant, but path 

dependent from market conditions. This exposure ( , which is the total amount 

invested in the risky asset, can be determined by: 

Et =m×Ct 	   m ≥1[ ]  

The remaining part is invested in the risk-free asset: 

VRf =V0
CPPI −Et  

As the value of the portfolio approaches the floor, the cushion approaches zero, and the 

exposure presented in (4) tends to approach zero as well. In theory, the value of exposure 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
3 This relation is also true for the floor and the initial cushion, that is also a function of the investor´s risk 
tolerance; 

(5)	  

(3)	  

(4)	  (4)	  
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should never be negative. However, this relation is only true if we consider a market with 

no jumps, keeping the portfolio value away from falling below the floor. This contingent 

question is well known and far presented in the literature (see e.g. Grossman and Villa 

(1989)), observed especially during financial crisis, when a very sharp drop in the market 

may occur before the investor has the chance to re-balance his position.  

The behaviour of these type of strategies is shown on Figure 1. 

	  

Figure 1: Simulated behaviour for a standard CPPIn strategy 

However, it is important to notice that in this strategy the transaction costs are high, due 

to the frequent rebalance of the portfolio´s positions, which can be done daily, weekly or 

monthly.  

Note that the portfolio value [Vt
CPPI ] is always above (or at least equals) the floor [Ft ] 

and the cushion [Ct ] is always higher (or at least equal) than 0. 
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2.1.2   Option-based Portfolio Insurance (OBPI) 

The Option-based Portfolio Insurance strategy, commonly designated by OBPI, is a 

dynamic portfolio strategy that guarantees a percentage of the initial investment, denoted 

by V0
OBPI . Dated from the seventies, this strategy was first developed by Leland and 

Rubinstein (1976), and consists in maintaining a static position either in options and in 

the risk-free asset (1) or in the underlying asset (2). 

The first option (1) consists in investing the discounted value of the minimum wealth 

required at maturity T in a risk-free asset and with the remaining part purchasing a call 

option written on the underlying portfolio, denoted Ct;0≤t≤T , with the strike equal to 

αV0
OBPI , where α is designated by the minimum percentage of the initial amount that the 

agent requires to invest in this strategy.  At maturity, the final value of the payoff would 

be: 

V0
OBPI +C

T ;Strike=αV0
OBPI =V0

OBPI +max VT
OBPI −V0

OBPI , 0( )  

=max VT
OBPI ;V0

OBPI( )  

Option (2) consists in investing in the underlying portfolio itself in the risky asset and 

buying a European put option, denoted by Pt , with the strike settled equal to the desired 

floor at T (i.e. long positions in the put option and in the underlying risky asset). At 

maturity, the final payoff is given by (assuming put-call parity): 

V0
OBPI +P

T ;Strike=αV0
OBPI =V0

OBPI +max VT
OBPI −V0

OBPI , 0( )  

=max VT
OBPI ;V0

OBPI( ) . 

(7)	  

(8)	  
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The final value at maturity becomes: 

VT
OBPI = K +max 0,ST −K( ) , with K =αV0

OBPI , 

where the minimal level required by the investor can be expressed by: 

VT
OBPI ≥ KT ⇒VT

OBPI ≥αV0
OBPI . 

The main difference between CPPI and OBPI strategies resides on the mechanism of 

rebalancing. While CPPI strategy is a investment strategy that requires a continuous 

reallocation of the corresponding portfolio in order to keep the linear relation between the 

cushion and the floor, the OBPI perform this rebalancing using the delta of the protecting 

put option (for analysis of the differences between the two strategies see, e.g. Black and 

Rouhani (1989) and Bookstaber and Langsam (2000)). 

2.1.3    Stop-loss Portfolio Insurance (SL) 

Stop-loss portfolio insurance strategy (SL) is a semi-static method of managing insured 

portfolios, where the total initial capital, denoted V0
SL , is fully invested in the risky asset 

as long as the value lies above the present value, at t, of the floor [Kt ]. Once the 

portfolio value drops below the discounted floor, the total amount that was previously 

invested at risky asset is reallocated entirely to the risk-free asset, thereby ensuring that 

the floor at T [KT ] is reached. This guarantees that, at maturity, if the floor is reached 

during the time-frame of t 0 < t < T( ) , the final payoff will be: 

VT
SL = K ×V0

SL , 

 

(9)	  

(10)	  

(11)	  
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as presented below: 

	  

Figure 2: Simulated behaviour for a standard CPPIn strategy 

Otherwise, if the floor was never reached during the investment time horizon, the 

portfolio’s terminal value becomes: 

VT
SL > K ×V0

SL . 

This suggests that this type of strategies is most appropriate to implement if the investor 

expects a bullish market tendency. 

2.2  Stochastic Dominance 

The common mean-variance approach (Markowit (1987)) is used in finance as a 

traditional performance analysis that simplifies the decision between investments. 

However, this approach uses only two criteria: the mean that represents expected 

outcomes, and the risk, measured as the standard deviations of returns. This allows a 

simple trade-off analysis but for more complex decisions, the mean-risk approach may 

(12)	  
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lead to inefficient conclusions. To address this problem, a good alternative to improve the 

investment decision is introduced by stochastic dominance (SD) relations. 

The stochastic dominance approach was first developed by Whitmore and Findlay (1978) 

based on the majorization theory (Hardly et al. (1934)) for discrete distributions, and was 

later extended to the main generic distributions by Hanoch and Levy (1969) and 

Royhschild and Stiglitz (1970). Since then, it has been widely used in finance. 

The basic approach that tries to rank two or more variables according to special classes of 

utility functions using an axiomatic model of risk-averse preferences (Fishburn (1964)). 

To rank them, investors should follow von-Neumann-Morgenstern utility functions 

assuming that they want to maximise their expected utility. 

In the stochastic dominance approach random variables are evaluated by point-wise 

comparison of some performance functions, which are constructed from their distribution 

functions. The stochastic dominance criteria can be found by comparing the orders of 

stochastic dominance. 

5.2.1    First order stochastic dominance 

The first order stochastic dominance rule was first developed by Quirk and Saposnik 

(1962), who established the relationship between returns and investor´s preferences. To 

ensure that one or more investments dominate others in terms of stochastic dominance, 

the cumulative distribution function of an investment A, denoted FA X( ) , is always below 

the cumulative distribution function of a certain distribution function, denoted as FB (X) .  
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The first performance function, denoted by Fx
(1)(X)  is defined as the right-continuous 

cumulative distribution (also known as first order stochastic dominance). This function 

can be defined as: 

Fx
(1)(X) = Fx (X) = P x ≤ X[ ] , for x Є IR 

And ranked by: 

x
FSDy⇔ Fx

(1)(X) ≤ Fy
(1)(X) , for x Є IR 

First-order SD implies that investors prefer higher returns to lower ones, which results in 

a utility function with a non-negative first derivative.  

5.2.2    Second-Order stochastic Dominance 

The Second-order stochastic dominance is the best way to rank the different investments 

in terms of risk aversion. The second order dominance is given by the following equation: 

Fx
(2)(X) = Fx (X)dx−∞

x
∫ , for X Є IR 

The weak relation of the second order Stochastic Dominance is defined as: 

x
SSDy⇔ Fx

(2)(X) ≤ Fy
(2)(X) , for X Є IR 

For decision making process under risk, when X is preferred to Y under SSD rules, all 

risk-averse preference scents prefer the investment X instead of the investment Y, 

assuring larger outcomes for the same amount of risk. 

(13)	  

(14)	  

(15)	  

(16)	  
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5.2.3    Third-order Stochastic Dominance 

The third order SD was introduced by Whitmore (1970), and consists of adding the 

condition that utility functions have a positive (or null) third derivative. 

The third order dominance also follows the previous relation and can be defined as: 

Fx
(3)(X) = Fx (X)dx−∞

x
∫∫ , for X Є IR 

And the third order relation is represented by: 

x
TSDy⇔ Fx

(3)(X) ≤ Fy
(3)(X) , for X Є IR 

This relation implies a decreased risk aversion function with the increasing of the level of 

wealth. 

Thus, if X dominates Y under FSD rules, we can assure that X also dominates Y on the 

following orders. If X dominates Y under SSD rules, we also can guarantee that this 

relation can be maintained on the following order. On the contrary, if an investment 

dominates the other under SSD or TSD, we cannot assure any relationship between the 

previous orders.  

 

 

 

 

 

(17)	  

(18)	  
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3 Data Analysis 
	  

The possible benefits of Portfolio Insurance strategies have been recently studied in 

academia (see, e.g. Bouyé (2009), for a global overview). Unfortunately, the major part 

of these studies dealt with stochastic distributions based on normally distributed functions 

(see, e.g. Brooks and Levy (1993) and Costa and Gaspar (2011)). However, it is well 

presented in the literature that financial returns are not normally distributed. This tends to 

bias the approach influenced by the non-consideration of relative factors i.e. variance 

clusters, path-dependency between returns, and fatter tails in the empirical distributions. 

In order to overcome these constraints, we focused our study on empirical distributions. 

To set these distributions, we performed a statistical analysis to observe their real 

distribution shape. For our empirical distributions we used data on historical returns from 

July 1 of 2002 and June 30 of 2012. Figures 1 to 3 show the obtained empirical 

distributions. 
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Figure 3: Returns distribution for NIKKEI225. 
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Figure 4: Returns distribution for S&P500. 
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Figure 5: Returns distribution for EuroStoxx 50. 

 

As shown in the previous distributions, and as suggested in the literature, none of the 

financial series associated with our indices of reference follows a normal distribution. 

The normal distributions are characterized by the absence of bias (i.e. skewness equals 

zero) and the stability of kurtosis (i.e. Kurtosis equals three). However, all these financial 

series exhibit excess kurtosis and a residual probability of normality (Jarque-Bera´s Test). 

These results support our analysis and are consistent with the findings presented in the 

literature, refusing the hypothesis of using a normal distribution to study Portfolio 

Insurance Strategies. 
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4 Methodology 

4.1  Moving Block Bootstrap 

The bootstrap method is a computer intensive method for estimation of parameters and 

future distributions by re-sampling the original time series. It consists of randomly re-

sampling series into a so-called bootstrap sample. The classical bootstrap method was 

introduced by Efron (1979), who developed a technique for application in independent 

data samples. This approach had a great contribution to academic research since it can 

overcome the two main strands commonly indicated for prevision with financial series: 

lack of sufficient data and uncertainty in the nature of the data generating process.  

However, as believed by most of the academic community, stock returns tend to be 

dependent. Hence, the standard bootstrap as some limitations that may destroy the 

existent dependence across data. Other approaches suggested in the literature (see, e.g. 

Summers (1986), Fama and French (1988) and Campbell and Shiller (2001)) support this 

theory, suggesting problems such as: particular excess volatility presented in clusters, 

short-term momentum, long term reversal in stock prices, and long-run predictability of 

stock returns. In order to preserve this inter-dependency while performing a bootstrap 

method, many methods of re-sampling data were suggested during the last few years, 

such as Block Bootstrap (see e.g. Hall (1995), Carlstein (1986), Künsch (1989)) and 

Moving Block Bootstrap (see e.g. Graflund (2001), Sanfilippo (2003) and Beach (2007)). 

The main differences between basic bootstrap and block bootstrap reside in the 

preservation of the dependence structure of the original data and not corrupting it by 

supposing that the data is independent. Blocks of data are randomly re-sampled on 
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consecutive values, with replacement, and then we simulate consecutive versions of the 

original data, aligning those blocks into a bootstrap sample. Data is processed by joining 

the blocks together in random order, using overlapping blocks of data instead of 

individual observations to estimate parameters and distributions. This is important 

attending that in the traditional bootstrapping method, random observations tend to be 

independent between themselves, contrarily to block bootstrap where blocks of data are 

dependent such as in the original time series. The assumption of independence between 

observations tends to create bias in the bootstrap variance, which can be large if we have 

a strong dependence between data observations. 

4.2  Simulation setup 

The simulation of the Moving Bootstrap Methodology presented in Section 3.1 was 

implemented using R software. The estimation of further information such as the 

probability distribution functions and the evolution of portfolio insurance strategies were 

implemented in MATLAB software. 

In order to compare the different performances between the portfolio insurance strategies, 

we used three indexes that are traded continuously during the investment time horizon 

[0,T] – Eurostoxx50, Nikkei225 and S&P500. 

To define the portfolio insurance strategies in terms of performance, we first recovered 

the daily data of the three major stock indexes, denoted by St;0≤t≤T . We applied logarithms 

to these returns, assuming that the changes in asset prices are supposed to occur at 

continuous time along the investment period [0,T]. 
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x̂k = log
st
st−1
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&
' , 1≤ t ≤ T  with T equals 10 years 

To analyse the performance of the three strategies, we conducted a bootstrap simulation 

based on these continuous daily returns for the three markets4 on a set of 10.000 paths for 

each market and each strategy, assuming each year contains 252 observations. These 

simulations were done creating a Moving Block Bootstrapping sample that offers an 

effective way of generating return series without making any assumption regarding the 

real distribution, maintaining the real skewness, fat tails, autocorrelation and 

heteroscedasticity from the original data sets (see e.g. Sanfilippo (2003)). However, by 

performing different bootstrapping procedures for each market, dependence between 

these markets was not considered.  

As Portfolio Insurance strategies necessarily need a floor, we used a risk-free asset5, 

denoted by Bt , to set it. We assume that lending is possible on a rate that is equal to the 

risk-free rate of return. As we assumed a risk-free asset, default risk is excluded.  

To set the daily floor, and as it could vary according to the risk profile of the investor, we 

assumed an interval between 80% and 100%, that is the same used by many authors (see, 

e.g. Annaert et al. (2009) and Bertrand and Prigent (2005)). 

After defining these parameters, we applied the Portfolio Insurance properties explained 

in the previous chapter at the following strategies: CPPI 1, CPPI 3, CPPI 5, OBPI and 

SLPI. After this, we compared these different strategies among themselves and with a 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4  Data was downloaded from DataStream, and set a time period between 2002 and 2012; 
5 We used the average interest rate that was observed in the last 10 years for German Bunds, Japanese 
bonds and Treasury bonds;	  

(19)	  
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standard buy-and-hold strategy in terms of performance, risk, stochastic dominance 

criteria up to third order, and probability functions.  

To perform the study, we assumed that borrowing and lending are equally possible, as 

well as short selling and division of shares are allowed without any restriction. 

To compute the options associated with the underlying asset´s performance, we assumed 

that markets do not provide any arbitrage opportunities, that are nor transactions costs, 

nor taxes or any margins requirements. The same assumptions were used to determine the 

floor, referring to the risk-free asset. We also assumed that the strategy is constructed 

with European options that only can be exercised in the final of the investment time 

horizon [T], and that the stocks included on the underlying indexes do not pay dividends 

during the investment time horizon.  
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5 Results 

5.1  Performance Analysis 

In this chapter, we analyse the first four moments based upon the mean-variance theory 

introduced by Markowitz (1952). This is a common procedure to the study of Portfolio 

Insurance Strategies. However, as we will observe, its analysis is not completely linear 

when we are studying such different strategies.  

The use of risk models is quite straightforward. Usually, performance analysis is based on 

specific moments of the distribution. Facing the difficulty of preventing the future 

empirical distributions, investors tend to simulate these distributions based on the past 

and concentrate their focus on the specific moments such as the expected return or the 

Sharpe Ratio. This allows a simple trade-off analysis, comparing two scalar 

characteristics of the distribution – the expected return, which represents the expected 

outcome and the volatility (risk). To complete this analysis, we also use downside risk 

metrics. 

5.1.1. Mean-Variance 

In this first analysis, we try to compare the different strategies, only using traditional 

ways to measure the return and risk associated with the different strategies. The most 

common factor, the expected return, is the simplest way to achieve comparisons between 

different outcomes derived from different distributions. To determine the final 

profitability of each strategy, we looked at the terminal values of each payoff functions 

computing it using the discrete return of each path during the 10 years time horizon, 

using Equation 20.  
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where PT  is the value of the portfolio at maturity, P0  is the initial investment, n the 

number of simulations and T the time horizon.  

To complete this analysis and take into account the well known fact that bigger payoffs 

require higher risk, we compared the five standard portfolio strategies using the common 

risk factor, volatility (𝜎). This scalar is given by Equation 21. 

σ =
1
n−1

xi − x( )2
t=1

n
∑  

Table 1 compares the latter of the five proposed strategies – CPPI 1, CPPI 3, CPPI 5, 

OBPI and SLPI – with both 80% and 100% floor value.	  

Table A: Annualized Expected Returns (A) and Volatilities (B) 

  EuroStoxx50 NIKKEI 225 S&P500 

  K=80 K=100 Equity K=80 K=100 Equity K=80 K=100 Equity 

A 

CPPI 1 3,17% 3,50% -0,5% 1,38% 1,59% -1,5% 5,88% 5,36% 3,4% 
CPPI 3 2,72% 3,69% -0,5% 2,33% 2,59% -1,5% 7,83% 7,53% 3,4% 
CPPI 5 2,63% 3,22% -0,5% 2,11% 2,43% -1,5% 7,78% 7,48% 3,4% 
OBPI 2,96% 3,03% -0,5% 2,44% 2,61% -1,5% 7,69% 6,98% 3,4% 
SLPI 2,96% 3,09% -0,5% 1,15% 1,42% -1,5% 6,68% 6,32% 3,4% 

B 

CPPI 1 8,64% 5,89% 21,73% 7,26% 3,23% 24,82% 9,65% 6,71% 21,82% 

CPPI 3 15,74% 12,25% 21,73% 14,54% 8,44% 24,82% 17,47% 14,34% 21,82% 

CPPI 5 16,37% 13,14% 21,73% 15,34% 9,73% 24,82% 18,01% 15,03% 21,82% 

OBPI 15,16% 13,12% 21,73% 15,09% 10,01% 24,82% 15,67% 13,19% 21,82% 

SLPI 17,26% 13,30% 21,73% 18,13% 15,04% 24,82% 19,67% 17,10% 21,82% 

(20)	  

(21)	  
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As presented above,	   all the strategies can overcome the return associated with the 

respective benchmark. For markets that exhibit high negative trend (i.e. NIKKEI 225), 

the SLPI strategy is clearly the worst one. This relationship is even more pressing 

considering its volatility, which in 83% of cases (on average) makes the strategy reaches 

the floor, giving returns equal to 0% and -20% to floors of 100%, and 80%, respectively.	  

This relationship tends to dissipate when the market returns are less negative (i.e. 

EuroStoxx 50), where the CPPI 5 strategy already shows some tendency for returns 

below their	   peers.	  This is not at all extraneous to their high volatility, making them the 

most risky strategy.	  	  

Concerning the existent relation between the floor and return, when the markets have a 

negative performance and the floor	  is higher,	  the	  strategy	  also has a	  higher	  average return,	  

demonstrating that in this kind of	  scenarios,	  and purely	  in terms of	  mean-variance	  theory,	  

investors who are focused	  exclusively in	  the	  highest payoffs, must choose	  higher floors	  in 

order	   to maximize	   their profitability.	  Attending the fact that with lower floors we have 

higher exposure to the underlying asset, when the corresponding index has negative 

performance ceteris paribus, obviously the strategy with lower floor will have a more 

negative expected return. For the U.S. market (i.e. S&P500), with higher positive returns, 

all strategies which have lower floors show higher profitability. In these cases, when the 

market rises, the lower floors enhance gains in the stock market, since they allow higher 

exposure to market bullish tendency. However, and contrary to the expectations, the most 

profitable strategy is the CPPI 3, in favour of CPPI 5. From our analysis, this is due to the 

high probability of a 5x leverage exposure to the market, which potentiates higher 

probabilities of reaching the floor when the market goes down in the beginning of the 

investment time horizon. This prevents its recovery during the market rising, since in 
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these cases the cushion is residual, getting the strategy closer to the barrier along the 

investment horizon. However, this evidence lacks scientific confirmation.	  

5.1.2. Ratio Analysis 

As mentioned above, the performance analysis is traditionally based on the mean-

variance analysis. We complete this analysis with some performance measures, such as 

the traditional Sharpe Ratio and other measures consistent with Downside Risk: the 

Sortino Ratio and the Omega Ratio. 

The first one (1), Sharpe Ratio (Sharpe (1994)) can be described as the cost of each unit 

of risk, and on the other hand, how much return costs one additional unit of risk. Its value 

is given by: 

Sharpe Ratio =
Rp − Rf

σ p

 

where, Rp  is the portfolio return, Rf  is the risk-free asset and σ p  the total risk of each PI 

strategy. Despite some disadvantages in terms of consistency with PI strategies (see e.g. 

Annaert et al. (2009)) this is a commonly used ratio in finance to rank common 

investments between themselves.  

The Sortino Ratio measures the excess return over a Minimum Acceptable Return (MAR) 

defined by each investor (for theoretical explanation, see e.g. Sortino and Price (1994)). 

Although derived from the Sharpe, the Sortino Ratio uses other type of volatility – the 

one below MAR – giving us the cost of each unit of “negative” volatility. Its value can be 

reached using the following expression.  

(22)	  
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Sortino Ratio =
rp −MAR( )

σ d

; σ d =
min ri −MAR( ), 0"# $%

2

nt=1
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The Omega Ratio was developed by Shadwick and Keating (2002), and is a measure of 

risk that involves both the likelihood of having a gain associated with an investment in 

risky assets, such as the probability of having a loss. The higher the ratio, the better is the 

result since the probability of having a loss rather than a gain will be smaller.  

	  

All the results for our strategies are presented in Table 2. 

Table B: Average Sharpe Ratio (A), Sortino Ratios (B) and Omega Ratios (C). 

 
EuroStoxx50 NIKKEI 225 S&P500 

 
K=80 K=100 Equity K=80 K=100 Equity K=80 K=100 Equity 

A 

CPPI 1 -0,043 -0,007 -0,19 0,004 0,074 -0,12 0,216 0,232 -0,02 
CPPI 3 -0,052 0,012 -0,19 0,067 0,147 -0,12 0,231 0,260 -0,02 
CPPI 5 -0,056 -0,024 -0,19 0,050 0,111 -0,12 0,221 0,245 -0,02 
OBPI -0,038 -0,039 -0,19 0,072 0,126 -0,12 0,248 0,241 -0,02 
SLPI -0,034 -0,034 -0,19 -0,011 0,005 -0,12 0,146 0,147 -0,02 

B 

CPPI 1 -0,302 -0,048 -1,95 0,413 0,508 -4,67 1,524 1,651 -1,26 
CPPI 3 -0,365 0,079 -1,95 0,730 1,000 -4,67 1,603 1,810 -1,26 
CPPI 5 -0,381 -0,175 -1,95 0,635 0,952 -4,67 1,524 1,683 -1,26 
OBPI -0,373 0,063 -1,95 0,608 0,179 -4,67 1,592 1,768 -1,26 
SLPI -0,338 -0,238 -1,95 -1,21 0,023 -4,67 0,324 0,237 -1,26 

C 

CPPI 1 0,82 0,88 - 0,71 0,77 - 2,01 1,90 - 

CPPI 3 0,77 0,79 - 0,66 0,69 - 2,60 2,38 - 

CPPI 5 0,67 0,71 - 0,59 0,61 - 2,62 2,35 - 
OBPI 0,80 0,86 - 0,66 0,68 - 2,42 2,25 - 

SLPI 0,96 0,97 - 0,88 0,91 - 1,93 1,82 - 

 

(23)	  

(24)	  
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In terms of ratio analysis, and considering the basic Sharpe Ratio, the best strategies are 

clearly OBPI and CPPI, for the two floor levels. In practice, this means that these are the 

strategies that pay better the assumed levels of risk. On the other hand, if we take into 

account only the negative returns, the scenario is quite similar. In this case, despite the 

relative proximity of the OBPI strategy, CPPI 3 is the one which transversely presents 

best positive results. In terms of negative results, SLPI presents the worst ones. This is 

due to the high volatility of these instruments, which is not paid for their return. 

5.3 Statistical Analysis 
	  

Relative Kurtosis and Relative Skewness are two particular ways to define the probability 

distribution functions expressed by portfolio insurance terminal values. The Skewness 

coefficient is a measure of asymmetry which studies the probability concentrated in the 

distribution tails. This allows determining if our probability distribution function has 

higher probabilities concentrated far from the mean, consistent with the existence of 

outliers – normal distributions have skewness closer to 0.  On the other hand, many 

researchers suggests that larger skewness makes a protection strategy more appealing (see 

Harvey and Siddique (2000) and Port et al. (2008)). 

The Kurtosis has the same properties of skewness, but it can tell us more particular things 

about the real distribution. A leading example originated from finance can be seen when 

performing a distribution function of an index where distribution tends to be leptokurtic – 

really peaked with fat tails, which concentrates higher probabilities around the mean but 

also presents a higher number of outliers. For normal distributions, its value should be 

close to 3. For the studied strategies, the results are presented in Tables C and D. 
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Table C: Relative Skewness  

 

 

 

 

 

 

Table D: Relative Kurtosis 

 
EuroStoxx50 NIKKEI 225 S&P500 

 
K=80 K=100 Equity K=80 K=100 Equity K=80 K=100 Equity 

CPPI 1 8,723 9,399 7,43 10,341 11,695 7,95 9,222 10,028 8,46 
CPPI 3 16,847 22,926 7,43 28,452 38,147 7,95 15,588 21,615 8,46 
CPPI 5 19,103 30,835 7,43 40,602 73,648 7,95 17,906 29,684 8,46 
OBPI 89,674 96,130 7,43 81,282 74,590 7,95 49,476 34,672 8,46 
SLPI 130,507 97,480 7,43 89,154 78,798 7,95 12,262 24,561 8,46 

 

Concerning relative skewness, it is possible to observe that all strategies present a 

behaviour worse that the market. However, the SLPI strategy presents results clearly far 

from the market behaviour, for both Kurtosis and Skewness. These results, while 

unexpected, are easily explained by the tendency to reach the barrier too soon. From the 

moment the portfolio value reaches the lowest barrier strategy, all returns will be positive, 

skewing the distribution to the right. On the other hand, if the portfolio´s value reaches 

the barrier, all the remaining results will be close to the free-risk interest rate, creating 

large fat tails on the distribution, thereby explaining the results for kurtosis. 

5.4 Other Measures 
	  

To describe the outcomes for each strategy, we performed a descriptive analysis based on 

the comparison between equity performance and the portfolio insurance strategies 

outcomes. These results are presented in Figures 4 through 6. 

 
EuroStoxx50 NIKKEI 225 S&P500 

 
K=80 K=100 Equity K=80 K=100 Equity K=80 K=100 Equity 

CPPI 1 0,135 0,137 0,13 -0,557 -0,575 -0,52 -0,218 -0,215 -0,20 
CPPI 3 -0,169 -0,331 0,13 -1,340 -1,595 -0,52 -0,506 -0,673 -0,20 
CPPI 5 -0,230 -0,605 0,13 -1,737 -2,613 -0,52 -0,592 -0,946 -0,20 
OBPI -0,174 -0,352 0,13 -1,193 -1,023 -0,52 -0,513 -0,692 -0,20 
SLPI 2,966 0,264 0,13 3,062 2,123 -0,52 -0,303 -0,292 -0,20 
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Figure 6: Payoff function for CPPI 3 (A), CPPI 5 (B) and SLPI (C) with floor equals to (1) 80% and (2) 

100% (DJ EuroStoxx50). 
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Figure 7: Payoff function for CPPI 3 (A), CPPI 5 (B) and SLPI (C) with floor equals to (1) 80% and (2) 

100% (NIKKEI 225). 
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Figure 8: Payoff function for CPPI 3 (A), CPPI 5 (B) and SLPI (C) with floor equals to (1) 80% and (2) 

100% (NIKKEI 225).	  

Opposed to many investors opinion, these strategies cannot be described as linear. This 

means that it is not only the entry point and the terminal value that matter for the portfolio 

performance, but also the portfolio’s movements during the time horizon. This relation is 

particularly explicit if we look to the previous diagrams. Other important aspect is the 

larger dispersion that tends to exist for CPPI 3 and CPPI 5 (Subfigure A and B of each 

Figure) comparing to SLPI (Subfigure C). These results support our previous analysis in 

terms of volatility, skewness and kurtosis.   
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5.5  Stochastic Dominance Analysis 

5.5.1    Testing stochastic dominance 

For the proposed analysis, we studied the three orders of stochastic dominance (SD) for 

all the indexes followed in the previous chapter – EuroStoxx50, NIKKEI225 and 

S&P500. To find the stochastic relation between portfolio insurance strategies, we also 

define also the two floors suggested before – 80% and 100% - which are commonly used 

to study these investments. The set of strategies considered are presented in Tables 9 

through 116. 

 

Table E: Stochastic Dominance Test for EuroStoxx50 with a floor at maturity of 80% (FSD: 
First Order SD; SSD: Second Order SD; TSD: Third Order SD; NSD: No SD) 

 
K=80 K=100  

 
CPPI 1 CPPI 3 CPPI 5 OBPI SLPI CPPI 1 CPPI 3 CPPI 5 OBPI SLPI  

CPPI 1 - SSD SSD SSD SSD - SSD SSD NSD SSD CPPI 1 

CPPI 3 NSD - SSD NSD SSD NSD - SSD NSD SSD CPPI 3 

CPPI 5 NSD NSD - NSD NSD NSD NSD - NSD SSD CPPI 5 

OBPI NSD NSD NSD - SSD NSD NSD NSD - SSD OBPI 

SLPI NSD NSD NSD NSD - NSD NSD NSD NSD - SLPI 
	  

 
 

Table F: Stochastic Dominance Test for NIKKEI225 with a floor at maturity of 80% (FSD: First 
Order SD; SSD: Second Order SD; TSD: Third Order SD; NSD: No SD) 

 
K=80 K=100  

 
CPPI 1 CPPI 3 CPPI 5 OBPI SLPI CPPI 1 CPPI 3 CPPI 5 OBPI SLPI  

CPPI 1 - TSD TSD TSD TSD - NSD NSD TSD SSD CPPI 1 

CPPI 3 NSD - SSD NSD SSD NSD - SSD NSD SSD CPPI 3 

CPPI 5 NSD NSD - NSD SSD NSD NSD - NSD SSD CPPI 5 

OBPI NSD NSD NSD - FSD NSD NSD SSD - FSD OBPI 

SLPI NSD NSD NSD NSD - NSD NSD NSD NSD - SLPI 
	  

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6	  Stochastic	  dominance	  is	  also	  presented	  in	  the	  appendix	  in	  Figures	  A1	  through	  A6;	  
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Table G: Stochastic Dominance Test for S&P500 with a floor at maturity of 80% (FSD: First 

Order SD; SSD: Second Order SD; TSD: Third Order SD; NSD: No SD) 

	  

Concerning the first SD order, we found six cases where the pattern of dominance exists. 

In such cases, where investors prefer more to less (condition of dominance), the strategy 

SLPI is clearly the most penalized. However, this strategy is possibly the one that most 

suffers from the absence of transaction costs considered in this analysis. Nevertheless, 

high levels of volatility tend to make many of the simulations quickly approach the floor 

of the strategy continuing on the risk-free rate throughout the time horizon. This 

relationship is particularly strong in cases where the floor was set at 100% because the 

floor tends to be on a much higher value than for 80%. 

On the second and third order of dominance we found similar results. Taking into account 

that investors with second order relations of dominance are risk-averse, we concluded 

that investors who position themselves in European markets (i.e. EuroStoxx 50) should 

choose less aggressive strategies, such as Buy-and-hold strategies (e.g. CPPI 1), which 

have higher levels of dominance over the other ones (in this case). The relationship 

between dominance and multiple associated with CPPI strategies is also present in the 

dominance relationship between the CPPI 3 and 5 for both floors. In these cases, CPPI 3 

dominates CPPI 5 in both markets where distributions are clearly skewed to the left (i.e. 

EuroStoxx50 and Nikkei 225). This relationship is also true for S&P500, despite its a 

clearly upward trend, the CPPI 3 continues with second and third order levels of 

stochastic dominance for a floor of 100% and 80% respectively over CPPI 5. 

 
K=80 K=100  

 
CPPI 1 CPPI 3 CPPI 5 OBPI SLPI CPPI 1 CPPI 3 CPPI 5 OBPI SLPI  

CPPI 1 - NSD NSD NSD NSD - NSD NSD NSD TSD CPPI 1 

CPPI 3 NSD - TSD NSD SSD NSD - SSD NSD FSD CPPI 3 

CPPI 5 NSD NSD - NSD FSD NSD NSD - NSD FSD CPPI 5 

OBPI NSD NSD  - SSD NSD NSD NSD - FSD OBPI 
SLPI NSD NSD NSD NSD - NSD NSD NSD NSD - SLPI 
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6 Conclusions and further research 

The goal of the present study was to provide another insight into the controversy over 

Portfolio Insurance strategies and intends to contribute to the decision-making process for 

future investors in this type of strategies. The main novelty resides in the use of empirical 

distributions and singular methodologies, and the extensive comparison between such 

different types of instruments. 

First, we found that CPPI 1 outperforms other CPPI strategies with higher multiplier  in 

terms of stochastic dominance. On the other hand, for all the studied indexes with 

negative performance (i.e. NIKKEI 225 and EUROSTOXX 50) CPPI 5 cannot dominate 

any of the other strategies (except SLPI). In terms of floor analysis, we found that the 

highest floor value implies best downside protection. 

These results contradicted some other findings such as those presented by Annaert et al. 

(2009) and Zagst and Klaus (2011) that reject any stochastic dominance between 

strategies. In our analysis, we found some first order stochastic dominance for all the 

strategies over SLPI in a market with bullish tendency. This relation also holds for CPPI 

1 and 3 over OBPI (with K=100%). In these cases, ambitious investors will choose CPPI 

and OBPI strategies over SLPI (for K=80%) and CPPI 3 and 5 over SLPI (for K=100%). 

Our results for CPPI 1 are mainly supported by the research done by Costa and Gaspar 

(2012). 

However, our analysis has some limitations. For future research we suggest that a better 

way to analyze these strategies in a more realistic scenario is to introduce transaction 

costs into the analysis and study the inflection point of the multiplier. Some recent studies 

also suggest that a conditional multiplier could improve the results of this analysis, and 

this could be a good way to continue this research. We also suggest that in order to make 

a comparison between strategies, their rebalancing frequency should be studied.  
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I - Stochastic Dominance 

 

 

 

Figure A1: Cumulative distribution function for Eurostoxx 50 with K=80. (A) First order 

stochastic dominance; (B) Second order stochastic dominance and (C) Third order stochastic 

dominance. 
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Figure A2: Cumulative distribution function for Eurostoxx 50 with K=100. (A) First order 

stochastic dominance; (B) Second order stochastic dominance and (C) Third order stochastic 

dominance. 
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Figure A3: Cumulative distribution function for NIKKEI225 with K=80. (A) First order 

stochastic dominance; (B) Second order stochastic dominance and (C) Third order stochastic 

dominance. 
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Figure A4: Cumulative distribution function for NIKKEI225 with K=100. (A) First order 

stochastic dominance; (B) Second order stochastic dominance and (C) Third order stochastic 

dominance. 
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Figure A5: Cumulative distribution function for S&P500 with K=80. (A) First order stochastic 

dominance; (B) Second order stochastic dominance and (C) Third order stochastic dominance. 
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Figure A6: Cumulative distribution function for S&P500 with K=100. (A) First order stochastic 

dominance; (B) Second order stochastic dominance and (C) Third order stochastic dominance. 
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III - Other Statistics 

Table A1:	  Probabilities associated with the returns provided by Portfolio Insurance Strategies 
(EUROSTOXX 50) 

 

Table A2:	  Probabilities associated with the returns provided by Portfolio Insurance Strategies (NIKKEI 225) 

	  
	  

P[ ]>0	   P[ ]> 	  
	  

P{ }>0	   P{ }> 	  

CPPI 1 (K=80) 3,17% 78,47% 31,58% 2,38% 81,63% 29,53% 

CPPI 1 (K=100) 3,50% 100% 34,24% 2,95% 100% 32,49% 

CPPI 3 (K=80) 2,72% 34,39% 23,38% 1,01% 32,66% 20,42% 

CPPI 3 (K=100) 3,69% 100% 19,02% 1,86% 100% 15,58% 

CPPI 5 (K=80) 2,63% 32,29% 24,05% 0,88% 30,32% 21,17% 

CPPI 5 (K=100) 3,22% 100% 20,07% 1,52% 100% 16,74% 

OBPI (K=80) 2,96% 43,31% 28,46% 2,12% 42,57% 26,07% 

OBPI (K=100) 3,03% 100% 34,83% 2,51% 100% 33,14% 

SLPI (K=80) 2,96% 33,47% 25,67% 1,12% 31,63% 22,97% 

SLPI (K=100) 3,09% 100% 16,82% 1,33% 100% 13,13% 

	   	  

P[ ]>0	   P[ ]> 	  
	  

P{ }>0	   P{ }> 	  

CPPI 1 (K=80) 1,38% 57,97% 36,33% 1,05% 58,86% 34,81% 

CPPI	  1	  (K=100)	   1,59%	   100%	   37,93%	   1,11%	   100%	   36,59%	  

CPPI	  3	  (K=80)	   2,33%	   35,52%	   23,22%	   0,79%	   33,91%	   20,24%	  

CPPI	  3	  (K=100)	   2,59%	   100%	   18,93%	   0,99%	   100%	   15,48%	  

CPPI	  5	  (K=80)	   2,11%	   25,30%	   23,27%	   0,56%	   22,56%	   20,30%	  

CPPI	  5	  (K=100)	   2,43%	   100%	   14,17%	   0,86%	   100%	   10,19%	  

OBPI	  (K=80)	   2,44%	   41,25%	   36,03%	   0,54%	   40,28%	   34,48%	  

OBPI	  (K=100)	   2,61%	   100%	   38,59%	   0,96%	   100%	   37,32%	  

SLPI	  (K=80)	   1,15%	   22,31%	   20,81%	   0,18%	   19,23%	   17,57%	  

SLPI	  (K=100)	   1,42%	   100%	   8,98%	   0,23%	   100%	   4,42%	  
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Table A3: Probabilities associated with the returns provided by Portfolio Insurance Strategies (S&P500) 

	  
	  

P[ ]>0	   P[ ]> 	  
	  

P{ }>0	   P{ }> 	  

CPPI 1 (K=80) 5,88% 89,75% 53,42% 5,02% 94,17% 53,80% 

CPPI 1 (K=100) 5,36% 100% 56,25% 4,77% 100% 56,94% 

CPPI 3 (K=80) 7,83% 55,44% 42,92% 5,57% 56,04% 42,13% 

CPPI 3 (K=100) 7,53% 100% 36,81% 5,28% 100% 35,34% 

CPPI 5 (K=80) 7,78% 52,54% 43,54% 5,50% 52,82% 42,82% 

CPPI 5 (K=100) 7,48% 100% 35,59% 5,14% 100% 33,99% 

OBPI (K=80) 7,69% 63,52% 48,55% 5,77% 65,02% 48,39% 

OBPI (K=100) 6,98% 100% 55,53% 5,54% 100% 56,14% 

SLPI (K=80) 6,68% 50,52% 42,36% 4,67% 50,58% 41,51% 

SLPI (K=100) 6,32% 100% 31,88% 4,20% 100% 29,87% 

	  

	  

	  

	  

	  

	  

	  

	  

	  

	  


