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Abstract In this paper we study the dynamical behavior of the (α, c)-family
of iterative methods for solving nonlinear equations, when we apply the fixed
point operator associated to this family on quadratic polynomials. This is a
family of third-order iterative root-finding methods depending on two param-
eters; so, as we show throughout this paper, its dynamics is really interesting,
but complicated.

In fact, we have found in the real (α, c)-plane a line in which the corre-
sponding elements of the family have a lower number of free critical points.
As this number is directly related with the quantity of basins of attraction, it
is probable to find more stable behavior between the elements of the family in
this region.

Keywords Non linear equations · iterative methods · dynamics of rational
functions · parameter planes.

1 Introduction

Many problems from Engineering or Science lead to nonlinear equations that
may have analytical roots although we are not capable of finding them. In
this case, the numerical methods are needed. For the case of problems coming
from Chemistry, nonlinear equations regularly appear; for example, iterative
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methods can be applied in the reaction-diffusion equations that arise in auto-
catalytic chemical reactions (see [10]) or in the analysis of electronic structure
of the hydrogen atom in strong magnetic fields (see [9]). Moreover, numerical
treatments of some chemical problems allow to check the models of observable
phenomena [8]. Even more, many problems from Chemistry consist in finding
chemical potentials that are basic for studying other thermodynamic proper-
ties; the modeling of such potentials leads to nonlinear integral equations that
can be reduced to a set of nonlinear algebraic equations (see [11] for exam-
ple). This encourages the mathematicians to study and improve the numerical
methods implied.

A dynamical study of the operators defined by the iterative methods help
us to know more widely the regions where these methods have a good behavior
[1].

In some previous papers, we have considered the dynamical study of Chebyshev-
Halley family [7], the King’s class [6], the c-family [4] and, finally, the (α, c)-
class which includes Chebyshev-Halley and c−families. In the study that we
are conducting about (α, c)-family (see [2], [3]), we note that the dynamical
behavior of this family is much more complicated because it includes two pa-
rameters .

As we have said, iterative methods are used for finding roots of a nonlinear
equation and, from a dynamical point of view, these roots are fixed points of
the operator R associated to the method.

The dynamic studies the asymptotic behavior of the orbits depending on
the initial condition z0:

{z0, R (z0) , R2 (z0) , ..., Rn (z0) , ...}

and classifies the starting points from the asymptotic behavior of their orbits
(see [12] for example).

A point z0 ∈ Ĉ is called a fixed point if it satisfies: R (z0) = z0. A periodic
point z0 of period p > 1 is a point such that Rp (z0) = z0 and Rk (z0) 6= z0,
k < p. A pre-periodic point is a point z0 that is not periodic but there exists
a k > 0 such that Rk (z0) is periodic.

Moreover, a fixed point z0 is called attractor if |R′(z0)| < 1, superattractor
if |R′(z0)| = 0, repulsor if |R′(z0)| > 1 and parabolic if |R′(z0)| = 1.

The basin of attraction of an attractor z∗ is defined as the set of pre-images
of any order:

A (z∗) = {z0 ∈ Ĉ : Rn (z0)→z∗, n→∞}.

It is known that each basin of attraction needs at least one critical point
inside [1]. A point z0 is a critical point of a map R if R fails to be injective in
any neighborhood of z0.

From the results stated in Section 2 we present in Section 3 a complete
study of the critical points of the (α, c)-family. From this analysis we found
some interesting values of the parameters, whose dynamical planes are ana-
lyzed in Section 4, that provide stable elements of the class.
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2 Previous results

The (α, c)-family is a two-parametric class of third-order iterative root-finding
methods defined by:

zn+1 = zn −
(

1 +
1

2

Lf (zn)

1− αLf (zn)
+ cLf (zn)

2

)
f (zn)

f ′ (zn)
, (1)

where

Lf (z) =
f (z) f ′′ (z)

f ′ (z)
2

and α and c are complex parameters. As we have pointed before, this class
includes Chebyshev-Halley family for c = 0 and c−family when α = 0.

We apply (1) on quadratic polynomials p (z) = z2 +a. For this polynomial,
the operator Mp (z, a, α, c) associated to (1) is a rational function depending
on three complex parameters: a, α and c. Due to the Scaling theorem, the
parameter a can be obviated and the roots of the polynomial p(z) became
0 and ∞; so, the operator associated to the iterative method has only two
parameters when the Möbius transformation is applied.

For this operator we obtain the following fixed points: 0,∞ (that corre-
spond to the roots of p(z)), z = 1 and six fixed points that are the roots of
a 6-degree polynomial. These last seven points are called strange fixed points,
as they do not correspond to any root of p(z).

In this section we present the explicit expressions of the strange fixed points
and the critical points. An exhaustive proof can be found in [2], and here we
only show an sketch of it.

The associated operator of (1), after the Möbius transformation h(z) =
z+i
√
a

z−i
√
a
, is:

Op(z, α, c) = z3
(1 + z)

4
(−2 + 2α− z) + 4c (1 + z (2− 2α+ z))

(1 + z)
4

(2αz − 1− 2z) + 4cz3 (1 + z)
2 − 8αcz4

(2)

and the relation Op (z, α, c)− z can be written as:

Op (z, α, c)− z = −z(z − 1)
P (z, α, c)

(1 + z)4(2αz − 1− 2z) + 4cz3(1 + z)2 − 8αcz4

where P (z, α, c) is the 6-degree polynomial:

P (z, α, c) = z6 + (7− 2α) z5 + (19− 8α+ 4c) z4 + (26− 12α+ 8c− 8αc) z3(3)

+ (19− 8α+ 4c) z2 + (7− 2α) z + 1.

So, the fixed points of Op(z, α, c) are 0, ∞, 1 and the six roots of the
6-degree symmetric polynomial P (z, α, c). The fixed points are given in the
following result (see [2]).
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Theorem 1 The fixed points of the operator (2), associated to the bi-parametric
family of iterative methods (1) on quadratic polynomials are:

– z = 0 and z =∞, corresponding to the roots of the polynomial p(z).
– Seven strange fixed points: z = 1 and the following six points:

z1 (α, c) =
x1 (α, c) +

√
x1 (α, c)2 − 4

2
, z2 (α, c) =

x1 (α, c)−
√
x1 (α, c)2 − 4

2
,

z3 (α, c) =
x2 (α, c) +

√
x2 (α, c)2 − 4

2
, z4 (α, c) =

x2 (α, c)−
√
x2 (α, c)2 − 4

2
,(4)

z5 (α, c) =
x3 (α, c) +

√
x3 (α, c)2 − 4

2
, z6 (α, c) =

x3 (α, c)−
√
x3 (α, c)2 − 4

2
,

where

x1 (α, c) =
1

3
(2α− 7) +

1

3

(
3
√
f (α, c) + 3

√
g (α, c)

)
,

x2 (α, c) =
1

3
(2α− 7)−

1

6

(
3
√
f (α, c) + 3

√
g (α, c)

)
− i
√

3

6

(
3
√
f (α, c)− 3

√
g (α, c)

)
,

x3 (α, c) =
1

3
(2α− 7)−

1

6

(
3
√
f (α, c) + 3

√
g (α, c)

)
+ i

√
3

6

(
3
√
f (α, c)− 3

√
g (α, c)

)
and

f (α, c) = (−1 + 2α)3 + 18 (1 + 4α) c+ 6
√

3

√
c
(

2α (−1 + 2α)3 + c (−1 + 40α+ 32α2 + 16c)
)
,

g (α, c) = (−1 + 2α)3 + 18 (1 + 4α) c− 6
√

3

√
c
(

2α (−1 + 2α)3 + c (−1 + 40α+ 32α2 + 16c)
)
.

Now, we present the expressions of the critical points. The critical points
are the solutions of O′p (z, α, c) = 0, where the prime means the derivative
of Op (z, α, c) with respect to z. A critical point is called free if it does no
correspond to any root of p(z). The expression of O′p (z, α, c) can be written
as

O′p(z, α, c) =
−2z2 (1 + z)

4
Q (z, α, c)(

(1 + z)
4

(2αz − 1− 2z) +4cz3 (1 + z)
2−8αcz4

)2 , (5)

where
Q (z, α, c) = b0 + b1z + b2z

2 + b3z
3 + b2z

4 + b1z
5 + b0z

6 (6)

and

b0 = −3 + 3α+ 6c,

b1 = −18 + 20α− 4α2 + 16c− 24αc,

b2 = −45 + 53α− 16α2 + 10c− 16αc+ 24α2c,

b3 = −60 + 72α− 24α2 + 16αc− 32α2c.

Then, the critical points are z = 0, z = ∞, z = −1 and the roots of the
6-degree symmetric polynomial Q (z, α, c) . The critical points are given in the
following result (see [3]).
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Theorem 2 The critical points of the operator (2), associated to the bi-parametric
family of iterative methods (1) are z = 0 and z = ∞, that are associated to
the non strange fixed points, and the following free critical points:

– For α 6= 1− 2c, the points z = −1 and

z1 (α, c) =
x1 (α, c) +

√
x1 (α, c)2 − 4

2
, z2 (α, c) =

x1 (α, c)−
√
x1 (α, c)2 − 4

2
,

z3 (α, c) =
x2 (α, c) +

√
x2 (α, c)2 − 4

2
, z4 (α, c) =

x2 (α, c)−
√
x2 (α, c)2 − 4

2
,(7)

z5 (α, c) =
x3 (α, c) +

√
x3 (α, c)2 − 4

2
, z6 (α, c) =

x3 (α, c)−
√
x3 (α, c)2 − 4

2
,

where

x1 (α, c) = − b1
3b0

+ s1 + s2,

x2 (α, c) = − b1
3b0
− 1

2
(s1 + s2) + i

√
3

2
(s1 − s2) ,

x3 (α, c) = − b1
3b0
− 1

2
(s1 + s2)− i

√
3

2
(s1 − s2)

and

s1 =
3

√
−q +

√
D

2
, p = −3 +

b2
b0
− b21

3b20
,

s2 =
3

√
−q −

√
D

2
, q =

b3 − b1
b0

− b1b2
3b20

+ 2
b31

27b30
,

D =
4

27
p3 + q2.

– For α = 1− 2c and c 6= ±
√
5
2 , the points z = −1 and

z1 (α, c) =
x1 (α, c) +

√
x1 (α, c)2 − 4

2
, z2 (α, c) =

x1 (α, c)−
√
x1 (α, c)2 − 4

2
,

z3 (α, c) =
x2 (α, c) +

√
x2 (α, c)2 − 4

2
, z4 (α, c) =

x2 (α, c)−
√
x2 (α, c)2 − 4

2
,(8)

where

x1,2 (α, c) = − c1
2c0
± α

c0

√
α(α− 1)(40− 29α+ 9α2).

– For α = 1−2c and c =
√
5
2 , the point z = −1 and the two complex points:

z1,2 (α, c) =
1

71

(
−86 + 20

√
5± i

√
5
(
−871 + 688

√
5
))

.
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– For α = 1− 2c and c = −
√
5
2 , the point z = −1 and the two real points:

z1,2 (α, c) =
1

71

(
−86− 20

√
5±

√
5
(

871 + 688
√

5
))

.

Let us notice that the polynomials (3) and (6) that provide the strange
fixed points and the free critical points, respectively, are 6-degree symmetric
polynomials. This symmetry allows us to obtain the exact analytical solutions.
In the following we give a brief sketch of the proof of Theorem 2; the same
sketch is valid for Theorem 1 considering b0 = 1.

For b0 6= 0, the roots of Q (z, α, c) are the solutions of the equation

1 + a1z + a2z
2 + a3z

3 + a2z
4 + a1z

5 + z6 = 0,

where ai =
bi
b0
, i = 1, 2, 3 and α 6= 1− 2c. The change of variable z +

1

z
= x

leads to the cubic equation

x3 + ax2 + bx+ c = 0,

where
a = a1, b = −3 + a2 and c = a3 − 2a1.

The quadratic term is eliminated by means of the change

x = y − a

3

and the final equation is
y3 + py + q = 0, (9)

where

p = b− a2

3
= −3 +

b2
b0
− b21

3b20
,

q =
2a3

27
− ab

3
+ c =

b3 − b1
b0

− b1b2
3b20

+
2b31
27b30

.

By using the change y = s1 + s2, then y3 = s31 + s32 + 3s1s2y is obtained.
By identifying the coefficients of this equation with the coefficients of equation
(9) we obtain

s31 + s32 = −q, (10)

s31s
3
2 = −p

3

27
. (11)

So, s31 and s32 are solutions of the quadratic equation W 2 + qW − p3

27 = 0, that
is,

s31, s
3
2 =
−q ±

√
q2 + 4p3

27

2
.
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Therefore, the three solutions of (9) are

x1 =
a

3
+ s1 + s2,

x2 =
a

3
− 1

2
(s1 + s2) + i

√
3

2
(s1 − s2) ,

x3 =
a

3
− 1

2
(s1 + s2)− i

√
3

2
(s1 − s2) ,

Undoing all the changes, the six roots of the symmetric polynomial are
obtained from

z =
x±
√
x2 − 4

2
, (12)

for the different values of variable x.
The independent term is 1 for the polynomial (3) associated to the fixed

points, but we must divide by b0 for the polynomial (6) associated to the
critical points. So, we must study what happens with the critical points when
b0 = 0, that is, on the line c = 1−α

2 .
Let us obtain the roots of the polynomial Q (z, α, c) in this case. If we make

the substitution c = 1−α
2 in Q (z, α, c) , as b0 = 0 we have the polynomial

Q

(
z, α,

1− α
2

)
= c0z+c1z

2+c2z
3+c1z

4+c0z
5 = z (c0+c1z+c2z

2+c1z
3+c0z

4),

where

c0 = −10 + 8α2,

c1 = 4(−10 + 10α+ α2 − 3α3),

c2 = −60 + 80α− 48α2 + 16α3.

Then, the critical points are z = 0, z = ∞ and the four roots of the
four-degree symmetric polynomial:

q4 (z, α) = c0 + c1z + c2z
2 + c1z

3 + c0z
4.

If c0 6= 0, we can divide q4 (z, α) by c0 and consider the polynomial

1 +
c1
c0
z +

c2
c0
z2 +

c1
c0
z3 + z4.

As we know that z = 0 is not a root of this polynomial, we make the change

x =
1

z
+ z.

Then, it is transformed in

x2 +
c1
c0
x+

c2
c0

= 0,
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whose roots are

x1,2(α) = − c1
2c0
± α

c0

√
α(α− 1)(40− 29α+ 9α2).

Then, the roots of Q
(
z, α, 1−α2

)
are z = 0 and the four values given by

z =
x1,2 ±

√
x21,2 − 4

2

Taking into account the range of α where x21 and x22 are lower than 4, we
obtain the number of real and complex roots of q4 (z, α) on the line c = 1−α

2 .

– If α < 1
2 (−5 −

√
65), the polynomial q4 (z, α) has 2 real and 2 complex

roots.
– For 1

2 (−5−
√

65) ≤ α ≤ 0, the polynomial q4 (z, α) has 4 real roots.
– For 0 < α < 1, the polynomial q4 (z, α) has 4 complex roots.
– For α = 1, the polynomial q4 (z, α) has 1 real root −1 with multiplicity 4.
– For 1 < α ≤ 1

2 (−5+
√

65), the polynomial q4 (z, α) has 2 real and 2 complex
roots.

– For 1
2 (−5 +

√
65) < α < 2, the polynomial q4 (z, α) has 4 complex roots.

– For α ≥ 2, the polynomial q4 (z, α) has 2 real and 2 complex roots.

Finally, we must to analyze the case c0 = 0, that is when α = ±
√
5
2 . The

polynomial q4 (z, α) becomes

c1z + c2z
2 + c1z

3 = z(c1 + c2z + c1z
2),

so, the critical points are z = 0 and the two roots of the symmetric 2-degree
polynomial

q2 (z, α) = c1 + c2z + c1z
2.

Then,

– If α = −
√
5
2 , the polynomial q2 (z, α) has 2 real roots.

– If α =
√
5
2 , the polynomial q2 (z, α) has 2 complex roots.

The (α, c)-plane is divided into different regions where the number and
nature of the critical points change, as was stated in [2] (see Figure 1). But
the number of critical points different from 0 and ∞ reduces to 4 on the line
c = 1−α

2 ; and on this line, the number of critical points different from 0 and

∞ reduces to 2 on the points (−
√
5
2 ,

2+
√
5

4 ) and (
√
5
2 ,

2−
√
5

4 ).
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Fig. 1: Bifurcation regions of critical points

3 Study of the critical points

From the stated in Section 2 we can determine the number of complex and
real and critical points depending on the values of parameters α and c.

For −1 + α + 2c 6= 0 the values x1, x2 and x3 are real if D ≤ 0 and
one of these values is real and the other two are conjugated complex values if
D > 0. So, the expression D = 0 give us a bifurcation curve formed by the
two functions:

C± =

−α
((
−3575 + 5360α− 2696α2 + 384α3 + 36α4

)
± α

√
3 (5− 6α+ 2α2) (95− 58α+ 6α2)3

)
16 (−2 + α) (−5 + 3α)3

Moreover, as we have to evaluate

√
xi (α, c)

2 − 4 in 12, from xi = 2, we

obtain the bifurcations curves α = 2, c = 0 and c = 2(2α−3)
α−2 (the detail of

these calculations can be seen in [2]).
The bifurcation curves separate the (α, c)−plane into different regions. In

order to visualize the regions properly they must be shown in different figures
(see [2]). In this paper we show two of them including the line c = 1−α

2 (see
Figure 1).

Now, let us analyze the bifurcations of the 6 critical points zi in the
(α, c)−plane when crossing these curves. As we made with the fixed points, we
consider different fixed values for the parameter α and we move the value of
the parameter c in order to cover all regions. In the bifurcation diagrams the
critical points z1, z2, z3, z4, z5 and z6 defined in (7) are depicted in different
colors.

On the line c = 1−α
2 the number of critical points different from 0 and∞ is

reduced to four; and it is reduced to two for α = ±
√
5
2 . Moreover, these points

are bifurcation points because the line c = 1−α
2 is tangent to the bifurcation

curves C+ and C−, respectively.
The bifurcation of critical points give us information about the number

of attractive basins, because each attractive basin needs at least one critical
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point inside. So, a change of the critical points can produce a change in the
dynamical behavior of the system.

In the following we analyze the bifurcation diagrams for α = ±
√
5
2 .

3.1 Bifurcation diagram for α = −
√
5
2

The bifurcation diagram of critical points for α = −
√
5
2 is shown in Figure 2.

We describe the bifurcations by increasing the value of c.

1 2 3 4
c

-10

-7.5

-5

-2.5

2.5

5

7.5

z

(a) α = −
√

5
2

-0.02 0.02 0.04 0.06
c

-3

-2.5

-2

-1.5

-1

-0.5

z

(b) A detail

Fig. 2: Bifurcation diagram of critical points for α = −
√
5
2 .

For c < C+
(
−
√
5
2

)
≈ −0.0275036 the six critical points are complex. A

first bifurcation occurs when crossing the curve C+, two pairs of complex roots
of Q(z, α, c) become two double real roots while z1 and z2 remain complex. For
c = 0 two of the real roots reach the value −1 and afterwards become a pair
of complex conjugated; moreover, the two complex z1 and z2 take the value
−1 but they continue being complex. So, at the bifurcation point there are six
real roots, one is −1 with multiplicity four. After this bifurcation there are two
real and four complex roots. We can see the detail of these two bifurcations in
Figure 2b.

For c = 2+
√
5

4 ≈ 1.059016994 a new bifurcation occurs. At this point the
line c = 1−α

2 is tangent to curve C− so both curves are simultaneously crossed.
We show that a pair of complex conjugated roots goes to zero and the other
one goes to infinity. This is a remarkable case because the number of critical
points has been reduced: there are only two critical points different from zero
and infinity and they are inverse; so, there is only one free independent critical
point. After the bifurcation point there are six different real critical points.

The last bifurcation occurs when crossing the hyperbola c = 2(2α−3)
α−2 for c =

4
11

(
7 +
√

5
)
≈ 3.3585701736. In this case, the two real roots reach the value

1 and became a pair of complex conjugated roots. Then, for c > 4
11

(
7 +
√

5
)

there are four real roots.
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3.2 Bifurcation diagram for α =
√
5
2

We show the bifurcation diagram of critical points for α =
√
5
2 in Figure 3. As

above, we describe the bifurcations by increasing the value of c.

0.25 0.5 0.75 1 1.25 1.5

-10

-7.5

-5

-2.5

2.5

5

7.5

10

z

Fig. 3: Bifurcation diagram of critical points for α =
√
5
2 .

For c < C−
(√

5
2

)
≈ −12.7148 there are six complex critical points, after

crossing the curve C− there are also six complex critical points and two of
them have reached multiplicity two on the curve C−.

For c = 2−
√
5

4 ≈ −0.05 9017 both C+ and the line c = 1−α
2 are crossed.

At this bifurcation point, two critical points become zero and other two are
infinity while the other two remain complex (see Figure 3). In this case the
reduction of the number of critical points is interesting from a numerical point
of view because there are no real critical points different from zero and infinity.
After this bifurcation, there are four real and two complex critical point.

At c = 0 two real roots reach the value −1 and became complex. For
positive values of c we have two real and four complex critical points up to the

value c = 4(7−
√
5)

11 corresponding to the crossing of the hyperbola c = 2(2α−3)
α−2 ;

at this point the two real roots reach the value 1 and there are six complex
critical points for bigger values of c.

On the other hand, a change in the stability of the fixed points produces
bifurcations in the dynamics. In the next section, we study this stability for
given values of the parameter α.
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4 Dynamical planes

In this section, we analyze the dynamical behavior of some particular methods
lying on the line c = 1−α

2 , along the intervals described in Section 2. The
interest of these regions is that, for these elements of the (α, c)-family, there
exist a lower number of free critical points. Therefore, a more stable behavior
can be expected.

In the following we analyze the behavior of the iterative methods by using
analytical tools as well as the dynamical planes associated with the scheme on
quadratic polynomials. These planes has been generated by slightly modifying
the routines described in [5]. In them, a mesh of 400 × 400 points has been
used, 40 has been the maximum number of iterations involved and 10−3 the
tolerance used as a stopping criterium. Then, if an starting point of this mesh
converges to one of the fixed points of the operator, that is, it is at a distance
to the fixed point (in norm) lower than 10−3, it is painted in the color assigned
to the point which has converged to (marked as a white star in the figures).
The color used is brighter when the number of iterations is lower. If it reaches
the maximum number of iterations without converging to any of the roots, it
is painted in black.

4.1 α < −5−
√
65

2

Let us study the case α = −9; then, the fixed point operator is

Op(z,−9, 5) = −
z4
(
−319 + 104z + 86z2 + 24z3 + z4

)
−1− 24z − 86z2 − 104z3 + 319z4

and the set of fixed points is
{ −20.8994,−1.94675+4.54476i,−1.94675−4.54476i, 1,−0.079639+0.18592i,
−0.079639− 0.18592,−0.0478483, 0,∞ },
whose stability is respectively given by the derivative of the operator as

{26.4403, 3.66872, 3.66872, 6.76923, 3.66872, 3.66872, 26.4403, 0, 0}.

Then, only 0 and ∞ are superattracting and the rest of fixed points are re-
pulsive. Nevertheless, there exist in this case two periodic orbits of period
2,

{0.2670−0.9637i, 0.8007 + 0.5992i} and {0.2670 + 0.9637i, 0.8007−0.5992i}.

On the other hand, the list of critical points is

{−15.3209,−1, 0.896866 + 0.442302i, 0.896866− 0.442302i,−0.0652702, 0,∞}.

Then, it is clear that two free critical points yield near the elements of the
periodic orbit, so it will be attractive, as it is seen in Figure 4 and can be
checked by calculating the multiplier of the elements of the orbit.

|Op′(0.2670 + 0.9637i,−9, 5) ·Op′(0.8007− 0.59927i,−9, 5)| = 0.71399 < 1.

Similar performance can be found for other values of α in this interval.
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z=0.26704+i−0.96375
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(a) Periodic orbit for α =
−9

z=0.26705+i0.96368
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(b) Periodic orbit for α =
−9

Fig. 4: Dynamical planes for α < −5±
√
65

2

4.2 −5−
√
65

2 ≤ α ≤ −
√
5
2

In this range of values of α, on c = 1−α
2 , different kinds of behavior can be

found but with a common fact: the absence of attracting strange fixed points.
This does not imply directly stable behavior, although it appears in a wide
range of this interval. However, chaos and attracting periodic orbits can be
found for specific values of parameter α.

As it can be observed in Figure 5a, for α = −5−
√
65

2 there exist only two
attracting fixed points, 0 and ∞. This fact is easily checked by analyzing the
fixed point operator

Op(z,
−5−

√
65

2
,

7 +
√

65

4
) = −

z4
(
−319 + 104z + 86z2 + 24z3 + z4

)
−1− 24z − 86z2 − 104z3 + 319z4

.

The set of strange fixed points is

{ −15.928,−1.93584+3.95386i,−1.93584−3.95386i,−0.0998862+0.204013i,

−0.0998862− 0.204013i,−0.0627824 }.
Let us notice that, in this case, z = 1 is not a fixed point. In fact, it can

be checked that {−1, 1} is a neutral periodic orbit, that acts as a repulsive
one (chaotic area around the points of the orbit). It is a big region of unstable
points that belong to the Julia set.

It can be also seen in Figure 5b and 5c, obtained for α = −6, that small
black regions appear, besides the basins of 0 and ∞. In this case, the set of
fixed points is

{ −14.8553,−1.93295+3.81401i,−1.93295−3.81401i, 1,−0.105724+0.20861i,
−0.105724− 0.20861,−0.0673159, 0,∞ }

and the value of derivative of Op(z) at these fixed points gives us their
stability:

{20.6594, 3.97736, 3.97736, 32, 3.97736, 3.97736, 20.6594, 0, 0}.
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Then, it is clear that all the strange fixed points are repulsive. So, what is the
origin of the black regions? If we solve the equation

Op(Op(z,−6,
7

2
),−6,

7

2
)) = z,

a great amount of 2-periodic orbits appear, but only nine of them are attrac-
tive, specifically

{−3.412851, 1.599830}, {−2.872085, 1.256418},
{−1.202891 + 1.248838i, 1.050520 + 0.105422i}, {−1.202891− 1.248838i, 1.050520− 0.105422i},
{0.795914,−0.348179}, {0.625066,−0.293010},
{−0.400091 + 0.415373i, 0.942418 + 0.094574i}, {−0.400091− 0.415373i, 0.942418− 0.094574i},
{0.305437,−0.072694},

being the value of the stability function at each of them, respectively,

{0.812332, 0.469646, 0.343289, 0.343289, 0.348759, 0.671555, 0.925905, 0.925905, 0.53973}.

Only two of these orbits are drawn in Figures 5b and 5c.

The situation is different for α = −4, α = −2, even α = −
√
5
2 (Figures

5d to 5f, respectively); the observed stable behavior comes from the absence
of attractive strange fixed or periodic points. In fact, the set of strange fixed

points for α = −
√
5
2 is

{ −4.68798,−1.92501 + 2.05826i,−1.92501− 2.05826i,
1,−0.24238 + 0.259159i,−0.24238− 0.259159i,−0.213311 }
and the associate multipliers are

{14.201, 6.67849, 6.67849, 3.47894, 6.67849, 6.67849, 14.201}.

Moreover, there are no periodic orbits and the free critical points are:

{−3.38705,−1,−0.295242}.

Let us remark that this value of parameter α reduces the number of free
critical points to three. This provides the stable behavior in its neighborhood.
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(a) α = −5−
√

65
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z=−0.34785+i9.7949e−06
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(b) Periodic orbit for α =
−6

z=−2.8674+i0.00026848
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(c) Periodic orbit for α =
−6
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(d) α = −4
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(e) α = −2
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(f) α = −
√
5

2

Fig. 5: Dynamical planes for −5−
√
65

2 ≤ α ≤ −
√
5
2

4.3 −
√
5

2 < α ≤ 0

A very stable behavior is also observed for this range of α-values on the line
c = 1−α

2 , see Figure 6. The case α = 0 corresponds to a stable element of
the Chebyshev-Halley family, meanwhile α = −1 (and c = 1), corresponds
to a good element of the (α, c)-family. In this case, the associate fixed point
operator is

Op(z,−1, 1) = z4
1 + 24z + 22z2 + 8z3 + z4

1 + 8z + 22z2 + 24z3 + z4
.
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All the strange fixed points are repulsive and the free critical points lie on the
two basins of 0 and∞. The free critical points are {−28.4549,−3.19723,−1,−0.31277,−0.0351434}.
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(a) α = −1
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(b) α = 0

Fig. 6: Dynamical planes for −
√
5

2 < α ≤ 0

4.4 0 < α ≤ 1

The same stable behavior is obtained for values of the parameter α in the
interval (0, 1]. In Figure 7a we show the dynamical plane corresponding to a
stable element of the (α, c)-family, for α = 1

2 . There are only two basins of
attraction, associated to the solutions of the problem.

In case α = 1, the behavior observed in Figure 7b corresponds to operator

Op(z, 1, 0) = z4,

that is, as stable as Newton’s method but with fourth-order of convergence.
This scheme is known as super-Halley’s method.

Unlike Newton’s scheme, this one has strange fixed points:

{−0.5− 0.866025i,−0.5 + 0.866025i, 1},

but they are repulsive as it is stated by the value of the stability function on
them, {4, 4, 4}.

4.5 1 < α ≤ −5+
√
65

2

In this interval, we can found another value of the parameter, α =
√
5
2 , such

that the number of free critical points is reduced to three (see Figure 8a),

{−1,−0.581389 + 0.813626i,−0.581389− 0.813626i}.

The strange fixed points are
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(a) α = 1
2
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(b) α = 1

Fig. 7: Dynamical planes for 0 < α ≤ 1

{ −2.13533,−0.593699 + 0.931668i,−0.593699− 0.931668i,
1,−0.486445 + 0.76336i,−0.486445− 0.76336i,−0.468311 }
that are repulsive, as it can be stated at the sight of their values at the

stability function

{11.4525, 1.83595, 1.83595, 4.46589, 1.83595, 1.83595, 11.4525}.

Moreover, there are no periodic orbits and the general behavior is very stable.
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(a) α =
√
5
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(b) α = −5+
√
65

2

Fig. 8: Dynamical planes for 1 < α ≤ −5+
√
65

2

As in case α = −5−
√
65

2 , the strange fixed points are repulsive and there
exists one neutral periodic orbit at {−1, 1}. This causes the chaotic region
around these points (see Figure 8b).

4.6 −5+
√
65

2 < α < 2

For α = 9
5 , the fixed point operator is

Op

(
z,

9

5
,−2

5

)
= z4

199 + 100z + 10z2 − 60z3 − 25z4)

−25− 60z + 10z2 + 100z3 + 199z4
,
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the only attracting fixed points are 0 and ∞, as the strange fixed points

{−3.0901, 0.0038+1.1140i, 0.0038−1.1140i, 1, 0.0030+0.8976i, 0.0030−0.8976i,−0.3236}

are all repulsive. The free critical points are, in this case

{−1,−0.165793+0.986161i,−0.165793−0.986161i, 0.951723+0.306959i, 0.951723−0.306959i}.

The two last free critical points are close to the 2-periodic orbit {0.96484 +
0.26285i, 0.96484 − 0.26285i} that is then attractive. It can be observed in
Figure 9a.

z=0.96484+i−0.26285
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(a) Periodic orbit for α = 9
5
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(b) α = 1.9

Fig. 9: Dynamical planes for −5+
√
65

2 < α < 2

When α = 1.9 is considered, there exist three attracting strange fixed
points, as the value of the stability function at
{ −3.17486, 0.121291 + 0.992617i, 0.121291− 0.992617i,
1, 0.0236248 + 0.999721i, 0.0236248− 0.999721i,−0.314975 }
is

{7.17274, 1.16358, 1.16358, 0.514469, 0.816345, 0.816345, 7.17274}.

This yields to a dynamical plane, Figure 9b, with five different basins of at-
traction.

4.7 α ≥ 2

The case α = 2 is specially interesting; the operator associated to the method
is

Op

(
z, 2,−1

2

)
= −z4 −11− 6z − 2z2 + 2z3 + z4

−1− 2z + 2z2 + 6z3 + 11z4

and, by solving the equation Op(z, 2,− 1
2 ) = z, the following fixed points are

found:

{−3.25426, 1, i,−i, 0.280776+0.959773i, 0.280776−0.959773i,−0.307289, 0,∞}.
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By evaluating them at the stability function, the following values are obtained:

{7.02214, 0, 0.5, 0.5, 1.35286, 1.35286, 7.02214, 0, 0}.

We observe that three superattracting points appear, 0, ∞ and 1. Moreover,
z = i and z = −i are also attracting and they will have also their own basin of
attraction (see Figure 10a), as there exist two free critical points near them,
as can be observed in the list:

{1,−0.0909091 + 0.995859i,−0.0909091− 0.995859i}.
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(a) α = 2
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(b) α = 3

Fig. 10: Dynamical planes for α ≥ 2

The existence of several basins of attraction corresponding to strange fixed
points is a common behavior in this interval, as can be seen in Figure 10b, for
α = 3.

5 Conclusions

In a search of the most stable elements of (α, c)-family, we have found a region
of the real (α, c)-plane such that the number of free critical points is reduced.
As any basin of attraction must include a critical point, the existence of values
of the parameters with a lower number of critical points gives us a hint about
the existence of stable behavior. Iterative methods corresponding to values of

(α, c) in the line c = 1−α
2 , α ∈

[
−5.9,

−5+
√

(54)

2

)
present a stable behavior.

This performance is due to the absence of basins of attraction of strange fixed
points or attracting periodic orbits.

The study of the stability of these methods when they are applied to more
complicated nonlinear equations is a subject that is still starting.
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6. A. Cordero, J. Garćıa-Maimó, J.R. Torregrosa, M.P. Vassileva and P. Vindel, Chaos in
King’s iterative family. Applied Mathematics Letters 26 (2013), pp. 842-848.

7. A. Cordero, J.R. Torregrosa and P. Vindel. Dynamics of a family of Chebyshev—Halley
type method. Applied Mathematics and Computation 219 (2013), 8568-8583.

8. C.G. Jesudason. I. Numerical nonlinear analysis: differential methods and optimization
applied to chemical reaction rate determination. J. Math. Chem. 49 no. 7 (2011), 1384-
1415.

9. P.G. Logrado, J.D.M. Vianna. Partitioning technique procedure revisited: Formalism
and first applications to atomic problems. J. Math. Chem. 22 (1997), 107-116.

10. M. Mahalakshmi, G. Hariharan, K. Kannan. The wavelet methods to linear and non-
linear reaction-diffusion model arising in mathematical chemistry.

11. K. Maleknejad, M. Alizadeh. An efficient numerical sheme for solving Hammerstein
integral equation arisen in chemical phenomenon. Procedia Computer Science 3(2011)
361-364. J. Math. Chem. 51 no. 9 (2013) 2361-2385.

12. J. Milnor, Dynamics in one complex variable. Princeton University Press, 2006.


