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Abstract

Some of the statistical properties of the financial data are common to a wide variety
of markets: long-range dependence properties, heavy tails, skewness (gain/loss asym-
metry), jumps, volatility clustering, etc. The need to seek new models for financial
products has increased in recent decades due to the inability of current models to ex-
plain some of these facts. One of these models is fractional Brownian motion.

This work aims to give an overview of some studies that were done on the financial
applications of fractional Brownian motion, in particular the work of Paolo Guasoni and
Patrick Cheridito which shows that if we assume certain restrictions, we can eliminate
arbitrage opportunities. Moreover, we also present empirical studies with market data,
in order to show how to obtain an estimator for the Hurst index (the fractional Brownian
motion parameter). To this end, we used two methods, the Rescaled Range Analysis
and the modified Rescaled Range Analysis. This study allows us to discuss the effect
of memory on the time series of some market indices.

Keywords: Mathematical Finance, Fractional Brownian motion, Arbitrage, Tran-
saction Costs, Long Memory.
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Resumo

Algumas das propriedades estatísticas dos dados financeiros são comuns a uma ampla
variedade de mercados: a propriedade de memória longa, as caudas pesadas, assimetria
(ganho / perda de assimetria), saltos, agrupamento de volatilidade, etc. A necessidade
de procurar novos modelos de produtos financeiros tem aumentado nas últimas décadas
devido à incapacidade dos actuais modelos explicarem algumas dessas propriedades
estatísticas.

Este trabalho tem como objetivo dar uma visão geral de alguns estudos que foram
feitos relativamente à aplicação às finanças do movimento Browniano fracionário, em
particular o trabalho de Paolo Guasoni e Cheridito Patrick, que mostram que, se as-
sumirmos certas restrições, podemos eliminar oportunidades de arbitragem. Além disso,
também são apresentados estudos empíricos com dados de mercado, com o objectivo de
mostrar como se pode obter um estimador para o índice Hurst (o parâmetro do movi-
mento Browniano fracionário). Para este fim, foram utilizados dois métodos, o método
Rescaled Range e o método modificado do Rescaled Range. Este estudo permite-nos
discutir o efeito de memória nas séries temporais de alguns índices de mercado.

Palavras Chave: Matemática Financeira, movimento Browniano Fraccionário, Ar-
bitragem, Custos de transacção, Memória Longa.
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Chapter 1

Introduction

Time series with long memory appear in many contexts, for example in financial eco-
nomics, networks traffic, hydrology, cardiac dynamics, meteorology, etc. The statistical
properties of the financial assets return have led many scientists to rethink existing
models. One of the alternatives to standard Brownian motion is the fractional Brow-
nian motion. This stochastic process is a generalization of the standard Brownian
motion with some of the desired properties for a model that explains well the evolution
of financial assets data.

The aim of this work is to study the possible effect of long memory in financial
time series using the Hurst parameter of the fractional Brownian motion as a long
memory signature. This parameter was initially used to calculate correlations and long
memory of natural phenomena (see Hurst [13]) and then reached the financial context
(see Mandelbrot and Van Ness [21]). Despite some evidence of long-term dependence
in financial data, the using of the fractional Brownian motion in finance began to be
questioned, because it could lead to the possibility of making a profit with no risk and
no capital investment (arbitrage), as we can see in Rogers [26]. Within the framework
of Cheridito [4] and Guasoni [10] work, we discuss how such arbitrage opportunities
can be eliminated.

If the Hurst parameter is greater than 1
2 we have a time series where the increments

are positively correlated and exhibits the long memory effect. If the Hurst parame-
ter is equal to 1

2 , the increments are independent and therefore we face the standard
Brownian motion. If the Hurst parameter is less than 1

2 and the series presents the
effects of intermittency, the increments are negatively correlated. Intuitively, positively
correlated increments means that if the value of the assets tends to increase, then this
trend will be maintained. In the case that the increments are negatively correlated, if
the tendency of a particular segment is to increase, then the tendency of the follow-
ing segment will be to decrease and so on (intermittency). This intuition leads us to
understand why we can have arbitrage opportunities, because if we can “predict”what
will happen then we can explore an arbitrage opportunity.

The fractional Brownian motion has been used to describe the behavior of asset
prices and volatilities in stock markets (see Nualart [22]). In [6], Renault and Comte
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studied a classical extension of the Black and Scholes model for option pricing known
as the Hull and White model. The authors specification is that the volatility process is
assumed not only to be stochastic, but also to have long-memory features and proper-
ties. However, in this text we will only discuss the fractional Brownian motion applied
to the asset pricing models.

In order to estimate the Hurst parameter of the fractional Brownian motion, we
used two popular methods: the Rescaled Range method and the modified Rescaled
Range method. The Rescaled Range method is the classical method of estimation
of the Hurst parameter developed by the hidrologist Harold Edwin Hurst (see Hurst
[13]). The modified Rescaled Range method was proposed by Lo [19] in order to deal
with both heteroskedasticity and short-term memory which are the problems of the
Rescaled Range method. However, Willinger, Taqqu and Teverovsky [29] proved that
the modified Rescaled Range statistic shows a strong preference for accepting the null
hypothesis of no long-range dependence, irrespective of whether long-range dependence
is present in data or not.

The structure of this dissertation is as follows: Chapter 2 presents an introduction to
fractional Brownian motion, focusing on its definition and its main properties. Chapter
3 presents a brief description of financial concepts which will be used on the next
chapters such as trading strategies and arbitrage. Because of the non-semimartingale-
property, fractional Brownian motion pricing models admit arbitrage possibilities with
continuous trading, so in chapter 4 we make a connection between fractional Brownian
motion and arbitrage. We present the main results obtained by Cheridito. This author
proves that the arbitrage opportunities will disappear by introducing a minimal period
of time between transactions. Moreover, Guasoni proves that they also disappear under
proportional transaction costs assumptions. The Hurst parameter has an important role
in the theory presented in this text, in Chapter 5 we present two methods for estimating
the Hurst parameter, the Rescaled Range method and the modified Rescaled Range
method. At the end of the work, in chapter 6, we present conclusions, discuss the
controversy about the use of fractional Brownian motion for pricing, and present some
topics that deserve further research.
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Chapter 2

Fractional Brownian motion:
Definition and Basic Properties

The fractional Brownian motion (abbreviated by fBm in the text) is a generalization of
Brownian motion which allows the possibility of dependent increments and the presence
of long memory. This process has dependent increments, it is not a Markov process
and, except for one particular case where the process is reduced to standard Brownian
process, is not a semimartingale. The fractional Brownian motion was originally in-
troduced by Kolmogorov in 1940 (see [14]) and the first authors who used the name
fractional Brownian motion were Mandelbrot and Van Ness [21]. Let us present the
formal definition of fBm.

Definition 2.0.1 The fractional Brownian motion (fBm) with Hurst index H ∈ (0, 1)
is a Gaussian process BH = {BH

t , t ∈ R} on (Ω,F ,P), having the properties

1. BH
0 = 0,

2. E[BH
t ] = 0, t ∈ R,

3. E[BH
t B

H
s ] = 1

2

(
|t|2H + |s|2H − |t− s|2H

)
, s, t ∈ R.

Properties 1 The fBm has the following properties:

1. If H = 1
2 , B

1
2 is a standard Brownian motion.

2. Mean: E[BH
t ] = 0. Variance: E[(BH

t )2] = t2H .

3. Self-similarity: ∀a > 0, a−HBH
at

d= BH
t , where

d= means that a−HBH
at and BH

t

have the same probability distribution.

4. Stationary increments: ∀s, t ≥ 0 BH
t −BH

s
d= BH

t−s.

The proof of these properties can be found in Nualart [22]. We can interpret the
property of self-similarity as the fact that changes in the time scale have the same effect
as appropriate changes in the space scale.
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2.1 Long-range dependence
We now discuss the long-range dependence property.

Definition 2.1.1 A stationary random sequence {Xn}n∈N exhibits

• long-range dependence if the autocovariance function ρ(n) satisfies
∞∑
n=1

ρ(n) =∞.

• short-range dependence if the autocovariance function ρ(n) satisfies
∞∑
n=1

ρ(n) <∞.

where ρ(n) = E[X0Xn].

Properties 2 1. If H > 1
2 then disjoint increments are positively correlated:

E[(BH
t −BH

s )(BH
s −BH

r )] > 0

and Xn := BH
n −BH

n−1, n ≥ 1 has long-range dependence.

2. If H < 1
2 then disjoint increments are negatively correlated:

E[(BH
t −BH

s )(BH
s −BH

r )] < 0

and Xn := BH
n − BH

n−1, n ≥ 1 exhibits intermittency (or has short-range depen-
dence).

2.2 Regularity
In this subsection, we discuss the path properties of fBm.

Definition 2.2.1 Let X, Y : T × Ω → R be stochastic processes on (Ω,F,P). We say
that X is a version of Y if for all t ∈ T

P[Xt = Yt] = 1, a.s.

Kolmogorov’s Criterion 1 Suppose the process X : [0,∞) × Ω → R satisfies the
following condition: For all T > 0 there exist α, β, C > 0 such that

∀0 ≤ t, s ≤ T E[|Xt −Xs|α] ≤ C|t− s|1+β

Then there exists a version of X which is Hölder continuos of order γ ∈ [0, β
α

) a.s.
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For a proof see Protter [23].

Properties 3 1. The fBm admits a version with almost all sample paths Hölder
continuous of order strictly less than H: for each such trajectory, there exists a
constant c such that

|BH
t −BH

s | ≤ c|t− s|H−ε, ∀ε > 0.

2. The sample paths of the fBm are nowhere differentiable a.s.

The proof of these properties can be found in Biagini, Hu, Øksendal and Zhang [30]
or Krzywda [17].

2.3 p-variation and quadratic variation
Consider partitions π = {0 = t0 < t1 < ... < tn = T} of the interval [0, T ]. For p ≥ 1
and f : [0, T ]→ R we denote:

vp(f ; π) =
n∑
k=1
|f(tk)− f(tk−1)|p

Definition 2.3.1 We say that f has finite p-variation if the limit

v0
p(f) = lim

|π|→0
vp(f ; π) exists and is finite.

We say that f has bounded p-variation if

vp(f) = sup
π
vp(f ; π) <∞.

Remark 2.3.2 The notation |π| → 0 means that the mesh size of the partition |π| =
max
i
|ti − ti−1| tends to zero.

Properties 4 1. For pH > 1, v0
p(BH) = 0 a.s.

2. For pH < 1, vp(BH) = +∞ and v0
p(BH) does not exists.

The proof of these properties can be found in Krzywda [17].

Definition 2.3.3 Let {πn} be a sequence of partitions of [0, T ] such that |πn| → 0. For
a stochastic process Xt by the quadratic variation along the sequence {πn} we mean

[X,X]T = lim
n→∞

n∑
k=1

(Xtk −Xtk−1)2

if the limit exists (in probability).

Properties 5 1. if H > 1
2 , [BH , BH ]T = 0

2. if H < 1
2 , [BH , BH ]T does not exists.

5



2.4 fBm is not a semimartingale
We now discuss the important semimartingale property.

Definition 2.4.1 By a martingale with respect to the filtration {Ft} we mean a stochas-
tic process X such that:

1. X is adapted to {Ft}

2. E[|Xt|] <∞

3. ∀s ≤ t E[Xt|Fs] = Xs

Definition 2.4.2 By a local martingale with respect to the filtration {Ft} we mean
an {Ft}-adapted stochastic process X for which there exists an increasing sequence of
{Ft}-stopping times τk such that

1. τk →∞ a.s. as k →∞

2. Xt∧τk
is an {Ft}-martingale for all k.

Definition 2.4.3 f : R+ → R is a càdlàg function if it is ”continue à droite et limitè
à gauche”- right continuous with left limits.

Definition 2.4.4 By a semimartingale with respect to the filtration {Ft} we mean a
stochastic process X : Ω× [0,∞)→ R that can be decomposed as

Xt = X0 +Mt + At

where M is a local martingale and A is a càdlàg adapted process of locally bounded vari-
ation. For the case of a continuous semimartingale processes M and A are continuous.
Moreover the representation is unique.

Proposition 2.4.5 The quadratic variation exists for every semimartingales.

The proof of this property can be found in Revuz and Yor [25].
One can prove that the fBm cannot be a semimartingale, except in the case H = 1

2 ,
because if

1. H < 1
2 , the quadratic variation is infinite.

2. H > 1
2 , the quadratic variation is zero and the 1-variation (total variation) is

infinite.

and a proof can be found in Sottinen [27].
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Chapter 3

Concepts of Finance

In this chapter we introduce some basic concepts of finance that will be useful in later
chapters.

3.1 Trading Strategies
In this section the time interval is an arbitrary compact interval [a, b]. A trading
strategy is just a pair Θ = (θ0, θ1) of stochastic processes (θ0

t )t∈[a,b] and (θ1
t )t∈[a,b] taking

real values. θ0
tXt describes the money in the money market account at time t and θ1

t

the number of stock shares held at time t. Hence, the evolution of the portfolio value
of a strategy Θ is given by

V θ
t := θ0

tXt + θ1
tYt, t ∈ [a, b].

Since we want to use X as numeraire, we require it to be positive. We set

Ỹt := Yt
Xt

and Ṽ θ
t := V θ

t

Xt

, t ∈ [a, b].

Obviously we need to make some restrictions on a strategy to have some financial
sense:

1. Trading strategies should only be based on available information;

2. We assume that at any time t ∈ [a, b], Xt and Yt can be observed and no infor-
mation is lost over time;

3. X and Y have to be progressively measurable with respect to F, where F =
(Ft)t∈[a,b] is a filtration.

Definition 3.1.1 Let F = (Ft)t∈[a,b].

7



1. The set of simple predictable integrands is given by

S(F) :=

g01{a} +
n−1∑
j=1

gj1(τj ,τj+1] : a = τ1 ≤ ... ≤ τn = b; all τj’s are

F-stopping times; g0 is a real, Fa-measurable random variable;
and the other gj’s are real, Fτj

-measurable random variables}.

The class of simple predictable trading strategies is given by

ΘS(F) := {θ = (θ0, θ1) : θ0, θ1 ∈ S(F)}.

2. The set of almost simple predictable integrands is given by

aS(F) :=

g01{a} +
∞∑
j=1

gj1(τj ,τj+1] : a = τ1 ≤ ... ≤ τn ≤ b; all τj’s are

F-stopping times; g0 is a real, Fa-measurable random variable;
and the other gj’s are real, Fτj

-measurable random variables
P[∃j such that τj = b] = 1}.

The class of almost simple predictable trading strategies is given by

ΘaS(F) := {θ = (θ0, θ1) : θ0, θ1 ∈ aS(F)}.

Note that in the above definition S(F) ⊂ aS(F) and therefore ΘS(F) ⊂ ΘaS(F).
Moreover, the dates of transaction could have been fixed in advance, but as in reality
the investor does not know beforehand the decision to buy or sell by the date τj is
taken based on information available at time τj. Therefore we require the τj’s to be
F -stopping times. As the new composition of the portfolio gj is chosen based on the
information available to τj makes sense doing the requirement that the variables gj are
Fτj

-measurable.

Definition 3.1.2 For θ1 = g01a +∑∞
j=1 gj1(τj ,τj+1] ∈ aS(F) we define

(θ1.Y )t :=
∞∑
j=1

gj(Yτj+1∧t − Yτj∧t), t ∈ [a, b].

Note that this is almost surely a sum of finitely many terms and the process ((θ1.Y )t)t∈[a,b]
is progressively measurable because (Yt)t∈[a,b] is.

We are interested in working with strategies that do not receive capital contributions
over time and all gains are reinvested. These will be called self-financing strategies,
concept formalized in the following definition.

8



Definition 3.1.3 (Auto-financing strategy) Let θ = (θ0, θ1) ∈ ΘaS(F). There exist
stopping times a = τ1 ≤ τ2 ≤ ... ≤ b such that θ0 and θ1 can be written as

θ0 = f01{a} +
∞∑
j=1

fj1(τj ,τj+1], θ1 = g01{a} +
∞∑
j=1

gj1(τj ,τj+1].

We set τ0 = a− 1 and call Θ self-financing for (X, Y ) if for all j ≥ 1, k = 1, ..., j and
l ≥ 0,

1{τj−k<τj−k+1=τj+l<τj+l+1}{(fj+l − fj−k)Xτj
+ (gj+l − gj−k)Yτj

} a.s= 0. (3.1)

Furthermore, we set

ΘS
sf (F) := {θ ∈ ΘS(F) : θ is self-financing to (X, Y )}

ΘaS
sf (F) := {θ ∈ ΘaS(F) : θ is self-financing to (X, Y )}

Note: The set used in the definition of self-financing strategy can be rewritten as

{τj−k < τj−k+1 = τj−k+2 = ... = τj = τj+1 = ... = τj+l < τj+l+1}

and then the property described by Eq. 3.1 is independent of the representation of θ.
The proof of the following proposition can be found in Cheridito [4].

Proposition 3.1.4 Let θ = (θ0, θ1) ∈ ΘaS(F). Then the following properties are equi-
valent:

1. θ is self-financing for (X, Y )

2. V θ
t = V θ

a + (θ0.X)t + (θ1.Y )t a.s. for all t ∈ [a, b]

3. θ is self-financing for (1, Ỹ )t

4. Ṽ θ
t = Ṽ θ

a + (θ1.Ỹ )t a.s. for all t ∈ [a, b].

The above proposition assures us that if we are working with a self-financing strategy
θ = (θ0, θ1) we only need to observe the process θ1 to fully characterize the dynamics
of the process of the portfolio value. For θ self-financing we note that

θ0
t = Ṽ θ

a + (θ1.Ỹ )t − θ1
t Ỹt, t ∈ [a, b].

9



3.2 Arbitrage
One of the most important concepts in the construction of mathematical models for
the financial market is arbitrage. Informally, the concept of arbitrage is the possibility
of making a profit with no risk and no capital investment in a financial market. Let
us present the formal definition of ‘arbitrage’, ‘strong arbitrage’and ‘free lunch with
vanishing risk’.

Definition 3.2.1 Let ξ be a random variable that takes values in [0,+∞] such that
P[ξ > 0] > 0.

1. A strategy θ is an ξ-arbitrage if P[Ṽ θ
b − Ṽ θ

a = ξ] = 1.
We say that θ is an arbitrage if it is a ξ′-arbitrage for some random variable ξ′
taking values in [0,+∞], with P[ξ′ > 0] > 0.

2. A strategy θ is strong arbitrage if there is c > 0 such that P[Ṽ θ
b − Ṽ θ

a ≥ c] = 1.

3. A sequence of strategies (θn)+∞
n=1 is ξ-FLVR (Free Lunch with Vanishing Risk) if

lim
n→+∞

(
Ṽ θn
b − Ṽ θn

a

)
= ξ in probability and, lim

n→+∞
ess sup

(
Ṽ θn
b − Ṽ θn

a

)−
= 0,

where the essentials supremum of a random variable is defined as

ess sup = inf{a ∈ R : P[{ω ∈ Ω : X(ω) > a}] = 0}.

We say that (θn)+∞
n=1 is a FLVR if is a ξ′-FLVR for some random variable ξ′ taking

values in [0,+∞] with P[ξ′ > 0] > 0.

While we work on the set of possible strategies of definition 3.1.3, we may have
arbitrage possibilities even in the standard Black-Scholes (or Samuelson) model (with
H = 1

2). One of these arbitrage possibilities was designated by doubling strategy by
Harrison and Pliska [11] and can be ruled out by putting an admissibility condition on
the trading strategies.

Definition 3.2.2 (Admissible strategy) For c ≥ 0, we call θ ∈ ΘaS
sf (F) c-admissible

if
inf
t∈[a,b]

(
Ṽ θ
b − Ṽ θ

a

)
= inf

t∈[a,b]

(
θ1.Ỹ

)
t
≥ −c.

We call θ admissible if it is c-admissible for some c ≥ 0. Furthermore, we set

ΘS
sf,adm(F) := {θ ∈ ΘS(F) : θ is admissible}

ΘaS
sf,adm(F) := {θ ∈ ΘaS(F) : θ is admissible}.
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Chapter 4

Fractional Brownian Motion and
Arbitrage

Fractional Brownian motion has been used to describe the behaviour of asset prices
and volatilies in stock markets. In 1997, Rogers [26] showed that fractional Brownian
motion could not be used as a price process for a risky security without introducing
arbitrage opportunities.

In the next section we present an example of application to financial mathematics
where fBm admits arbitrage opportunities. So we will present the Fractional Black and
Scholes model that consists in replacing the standard Brownian motion in the classical
Black and Scholes model, which has no memory and is based on the geometric Brownian
motion, by the fBm.

4.1 Example of arbitrage using fBm: Fractional Black
and Scholes model

In this section we present the example described in [22]. In this model the market stock
price of the risky asset is given by

St = S0 exp
(
µt+ σBH

t −
σ2

2 t
2H
)

(4.1)

where BH is an fBm with Hurst parameter H, µ is the mean rate of return and σ > 0
is the volatility. The price of the non-risky assets at time t is given by ert, where r is
the interest rate.

Consider an investor who starts with some initial amount V0 ≥ 0 and invests in
the assets described above. Let αt be the number of non-risky assets and let βt the
number of stocks owned by the investor at time t. The pair (αt, βt), t ∈ [0, T ] is called
a portfolio and we assume that αt and βt are stochastic processes. Then the investor’s
wealth or value of the portfolio at time t is

Vt = αte
rt + βtSt.

11



We say that the portfolio is self-financing if

Vt = V0 + r
∫ t

0
αse

rsds+
∫ t

0
βsdSs. (4.2)

The self-financing condition requires the definition of a stochastic integral with res-
pect to the fBm. There are two possibilities: path-wise integrals and Wick-type inte-
grals.

The use of path-wise integrals leads to the existence of arbitrage opportunities, which
is one of the main drawbacks of the model (4.1). Let us now present the definition of
path-wise integral to the case of H > 1

2 .

Path-Wise Integrals in the case H > 1
2

Suppose that f, g are Hölder continous functions of orders α and β, with α + β > 1.
Then the Riemann-Stieltjes integral

∫
fdg exists. If H > 1

2 and F is regular enough,∫
F (BH

s )dBH
s exists (in the Riemann-Stieltjes sense). Moreover

F (t, BH
t ) = F (0, 0) +

∫ t

0

∂F

∂t
(s, BH

s )ds+
∫ t

0

∂F

∂x
(s, BH

s )dBH
s .

Returning to our example consider the case H > 1
2 . Suppose, to simplify, that

µ = r = 0. Consider the self-financing portfolio defined by

βt = St − S0

αt =
∫ t

0
βsdSs − βtSt.

This portfolio satisfies V0 = 0 and Vt =
∫ t

0(Ss − S0)dSs = (St−S0)2

2 > 0, ∀t > 0. It is an
arbitrage!

If H = 1
2 we can not conclude the existence of arbitrage opportunities. Because if

we apply the Itô formula of the standard Brownian motion to F (t, St) = (St − S0)2 we
get

Vt =
∫ t

0
(Sr − S0)dSr = (St − S0)2

2 − 1
2

∫ t

0
σ2S2

rdr.

This can be positive or negative, hence we can not conclude existence of arbitrage.
The existence of arbitrage can be avoided using forward Wick integrals to define the

self-financing property 4.2 (see Nualart [22]). But there is much controversy surrounding
this type of integral. In [2], Björk and Hult argue that the definition of a self-financing
portfolio using the Wick product is quite restrictive and has no economic meaning.

In the three following sections, we present models for application to financial ma-
thematics that do not involve arbitrage possibilities.

12



4.2 Exclusion of arbitrage in fractional models
In this section we present two different approaches to the exclusion of arbitrage pos-
sibilities: the first is based on the inclusion of a minimum time delay between two
consecutive transactions and the other is based on the inclusion of transaction costs
proportional to the value of the asset.

By the end of this section, we will always consider a market consisting of two assets:
a bank account that represents a risk-free asset, and a stock (asset with risk) that
does not pay dividends. In our context, all economic activity occurs in a defined time
interval [0, T ] with T ∈ (0,+∞). Short selling is allowed, in other words, a trader who
borrowed a particular financial asset may sell it. We suppose further that the interest
rates for borrowing and lending are equal and it is possible to buy or sell any fraction
of the asset. Finally, we assume also that there is no difference between the purchase
price and sale price of assets (the bid-ask spread is zero).

Note that there are two hypotheses that are normally present and are not men-
tioned in our market definition: the absence of transaction costs and the possibility of
transactions at any time t ∈ [0, T ].

Formally we assume that there is a probability space (Ω,F ,P) where two stochastic
processes are defined, X = (Xt)t∈[0,T ] and Y = (Yt)t∈[0,T ], which represent, respectively,
risk-free assets and risk assets.

Let us study the behavior of the following models:
Fractional Bachelier model:

Xt = 1, Yt = Y0 + ϑ(t)BH
t , t ∈ [0, T ]. (4.3)

Fractional Samuelson model (or Fractional Black-Scholes model):

Xt = ert ; Yt = Y0e
rt+ϑ(t)+σBH

t , t ∈ [0, T ]. (4.4)
where ϑ ∈ C1[0, T ], Y0, σ ∈ R and BH = (BH

t )t∈[0,T ] is a fBm.
The first approach, based on the work of Patrick Cheridito [4], presents that there

is a restriction on the class of possible strategies, requiring a minimum time (pre-
determined and as small as you like) between two transactions. The second approach,
based on the work of Paolo Guasoni [10], establishes transaction costs proportional to
the value of the asset that can be set so low as the real market admits.

4.2.1 Approach by Cheridito
In this section we present the approach by Cheridito [4] to the exclusion of arbitrage in
fractional Bachelier model and fractional Black-Scholes model, with H ∈

(
0, 1

2

)
∪
(

1
2 , 1

)
.

Exclusion of Arbitrage

As stated above, one possibility of exclusion of arbitrage strategies involves demanding
a minimum time delay between two consecutive transactions. This restriction can be
formalized by the construction of the following class of strategies:

13



Definition 4.2.1 Let F = (Ft)t∈[0,T ] be a filtration and h > 0. We define

Sh(F) :=

g0I{0} +
n−1∑
j=0

gjI(τj ,τj+1) ∈ S(F) such that ∀j, τj+1 > τj + h


and

Θh
af (F) :=

{
θ = (θ0, θ1) ∈ ΘS

af (F) : θ0, θ1 ∈ Sh(F)
}
.

The class of strategies
ΠC(F) = ∪h>0Θh

af (F) (4.5)

is called class of Cheridito.

Theorem 4.2.2 presents the main result of this section: the absence of arbitrage opportu-
nities in the fractional Bachelier model and fractional Black-Scholes model for strategies
in the class of Cheridito (when there is need for a minimum time delay between two
transactions).

Theorem 4.2.2 Let T > 0, BH = (BH
t )t∈[0,T ] a fBm with H ∈

(
0, 1

2

)
∪
(

1
2 , 1

)
, σ > 0

and ϑ : [0, T ] → R a measurable function such that supt∈[0,T ] |ϑ(t)| < +∞. Consider
two cases:

(i) Ỹt = ϑ(t) + σBH
t , t ∈ [0, T ]

(ii) Ỹt = eϑ(t)+σBH
t , t ∈ [0, T ].

If θ1 = g0I{0} +
n−1∑
j=0

gjI(τj ,τj+1] ∈ ΠC(FỸ ) and there is any j ∈ 1, ..., n− 1 with P[gj 6=

0] > 0, then in case (i),

P[(θ1.Ỹ )T ≤ −c] > 0, ∀c ≥ 0

and in case (ii),
P[(θ1.Ỹ )T < 0] > 0.

An example of a proof of this theorem can be found in Cheridito [4].

4.2.2 Approach by Guasoni
In the approach proposed by Paolo Guasoni in [10] it is assumed that the market
has transaction costs proportional k ∈ (0, 1), in other words, for every transaction of
monetary value Ỹt|∆θ1

t | there is a fee of kỸt|∆θ1
t | to pay.

Assumption 4.2.3 We assume that the process Ỹt = (Ỹt)t∈[0,T ] has càdlàg sample
paths, is strictly positive almost surely, adapted to the filtration Ft and continuous.
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In this section we use strategies that are more general than the simple strategies in
definition 3.1.3. We will use strategies that are locally of bounded variation. The
reason for this is that, as strategy θ1 of infinite variation in some interval would lead
to immediate ruin of the agent, is sufficient to consider only strategies that are locally
of bounded variation.

Definition 4.2.4 (Variation) For a given function f : [0, T ] → R the variation of f
in [0, t] is defined as

V (f)t = sup
P∈P

nP−1∑
i=0
|f(Si+1)− f(Si)|

where the supreme is taken on the set of all partitions of the interval [0, t].
We say that f is locally of bounded variation if V (f)t < +∞ for all t ≤ T .

Analyzing strategies with bounded variation is quite reasonable from an economic stand-
point, since they include strategies of definition 3.1.3. These strategies has the economic
meaning of buy-and-hold.

Based on the concept of self-financing strategies in markets without transaction
costs (Proposition 3.1.4) we propose a definition for the process of evolution of the
value of a portfolio with strategy θ1 of bounded variation, which is approximated by
almost simple strategies.

Definition 4.2.5 The process governing the value of the portfolio strategy with θ1 =
g0I{0} +

n−1∑
j=1

gjI(τj ,τj−1] ∈ S(F) is defined as

Ṽ θ
t =

∑
τj<t

gj(Ỹτj+1 − Ỹτj
)− k

∑
τj<t

Ỹτj
|gj+1 − gj| − kỸt|gt|.

As we can approximate a strategy θ1 of bounded variation by almost simple strategies,
the value of the portfolio becomes

Ṽ θ
t = (θ1.Ỹt)− k

∫
[0,t]

Ỹsd|Dθ1|s − kỸt|θ1
t |,

where Dθ1 is the derivative in the sense of distributions of θ1 and |Dθ1| the total vari-
ation of this measure. We denote by |Dθ1|t the measure |Dθ1| applied to the set [0, t],
i.e |Dθ1|t = |Dθ1|([0, t]).

The above definition should be interpreted as follows: the first term takes into ac-
count capital gains, the second term accounts for the costs indicated in the various
transactions and the third represents the potential costs of liquidation of the portfolio.

Lemma 4.2.6 Let Ỹ , Ỹ ∗ : [0,+∞) → (0,+∞) be processes with càdlàg trajectories
such that

|Ỹt − Ỹ ∗t | < kỸt, ∀t ∈ [0,+∞).
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If θ1 : [0,+∞)→ R is a left-continuous function of bounded variation, then

V θ
t ≤ (θ1.Ỹ ∗)t =

∫
[0,t]

θ1
sdỸ

∗
s , ∀t ∈ [0,+∞)

and equality holds if and only if θ1
s = 0,∀s ≤ t.

Note: Under the assumptions of the lemma above, a strategy θ generates a lower
payoff when applied to the process Ỹ in a market with transaction costs than when
connected to Ỹ ∗ without transaction costs. Thus, the no-arbitrage condition applied
to Ỹ ∗ can be immediately extended to Ỹ .

Proposition 4.2.7 Let Ỹ = (Ỹt)t∈[0,T ] be a stochastic process that satisfies assumption
4.2.3 and k, T > 0. If for any stopping time τ such that P[τ < T ] > 0 we have

P
[

sup
t∈[τ,T ]

∣∣∣∣∣ ỸτỸt − 1
∣∣∣∣∣ < k, τ < t

]
> 0,

then Ỹ is free of arbitrage with transaction costs k in the interval [0, T ].

Making an analysis of the previous proposition, we can make a brief discussion of
the assumptions. Obviously, to get an arbitrage at time τ we need to start trading. As
we are dealing with markets with transaction costs, the cost incurred in this transaction
must be recovered at some future time. If the asset does not vary enough, the agent
would not be able to recover the initial costs. Therefore, if there is a possibility of
arbitrary small variations in the price of the asset in every moment, then the risk
associated with a drop in the price of the asset can not be eliminated and it becomes
impossible to carry out an arbitrage strategy.

The proposition 4.2.7 leads us to believe that for certain processes, there are no
arbitrage opportunities even with transaction costs k arbitrarily small and under a
time horizon T arbitrarily large. We will see that this is the case when we are working
with processes defined by Guasoni (2006) in [10] as ‘sticky’.

Definition 4.2.8 (Sticky Process) A stochastic process progressively measurable Ỹ =
(Ỹt)t∈[0,+∞) is called sticky on the filtration {Ft}t∈[0,+∞) if, for every ε, T > 0 and all
stopping times τ such that P[τ < T ] > 0 we have

P
[

sup
t∈[τ,T ]

|Ỹτ − Ỹt| < ε, τ < t

]
> 0.

Proposition 4.2.9 Let Ỹ = (Ỹt)t∈[0,T ] be a process that satisfies hypothesis 4.2.3. If
Z = (log Ỹt)t∈[0,T ] is sticky, then Ỹ is free of arbitrage with transaction costs k on the
interval [0, T ], ∀k, T > 0.
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Finally, we present a theorem of exclusion of arbitrage for the fractional Black-
Scholes model when we introduce proportional transaction costs arbitrarily small. The
proof can be found in [10].

Theorem 4.2.10 Let Z = (Zt)t∈[0,T ] be a stochastic process such that Zt = ϑt + σBH
t

with σ > 0 and ϑ : R+ → R is a continuous function. Then Z is sticky and therefore for
all k, T > 0, the process Ỹ = (Ỹt)t∈[0,T ] with Ỹt = eZt is free of arbitrage with transaction
costs k in the interval [0, T ].
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Chapter 5

Estimation of the Hurst Parameter

In this chapter we present two methods of estimation of the parameter H of the fBm,
in order to provide methods for evaluating the long memory of time series. The main
motivation for the study of fractional Brownian motion is to use their flexible covariance
structure to capture the covariance structure of the data. This can only be done through
the estimation of the Hurst parameter H. We present two of the most used ones in the
following text, the Rescaled Range analysis and the modified Rescaled Range analysis.

5.1 The Rescaled Range Analysis
The Rescaled Range method is the oldest one of the Hurst parameter estimation me-
thods and was developed by hydrologist Harold Edwin Hurst [13] while working as an
engineer in Egypt. Hurst spent his life studying the Nile River and the problems asso-
ciated with storage of water. The Nile River is known to have characteristics of long
memory, i.e. long periods of drought are followed by long periods of flooding. Hurst
invented a new statistical method - The Rescaled Range Analysis (R/S). The method
was later applied to financial time series by Mandelbrot [20]. We provide a detailed
description of the method together with discussion of its weaknesses in the following
sections. Let us introduce the procedure of the R/S method (see for example [8] or
[15]).

5.1.1 Procedure
1. Transform the original price series (P0, P1, ..., PT ) into a series of returns (r0, r1, ..., rT ),

where ri = Pi−Pi−1
Pi−1

, for i = 1, 2, .., T .

2. Divide the time period T into N adjacent sub-periods of length k while N ∗k = T .
Each sub-period is to be labeled as In with n = 1, 2, ..., N . Moreover, each element
in In is labeled rv,n with v = 1, 2, ..., k.

3. For each sub-period, calculate the average value as r̄n = 1
k

k∑
i=1

ri,n.
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4. Create new series of accumulated deviations from the arithmetic mean values for
each sub-period as Xv,n =

v∑
i=1

ri,n − r̄n, v = 1, ..., k.

5. Calculate the range defined as a difference between maximum and minimum value
of Xv,n for each sub-period as RIn = max(X1,n, ..., Xk,n)−min(X1,n, ..., Xk,n).

6. Calculate the sample standard deviation series SIn =
√

1
k

k∑
i=1

(Xi,n − X̄i,n)2.

7. Calculate the rescaled range series (R/S)In = RIn

SIn

8. We repeat the process for each sub-period of length k and get the average rescaled
range as (R/S)k = 1

N

N∑
n=1

(R/S)In as shown in the figure 5.1.

9. The length k is increased and the whole process is repeated.

10. The Hurst parameter is estimated by fitting the power law(
R

S

)
k

= CkH (5.1)

to the data. We may use linar regression to find the slope H for the log plot of
R/S against the log plot of k, i.e.

log(R/S)k ≈ H log(k) +R,

where R is independent of H.

Figure 5.1: Sample Blocks
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5.1.2 Notes
We use the length k equal to the power of a set integer value b and a maximum power
pmax so that we get sub-periods of length k = b, b2, ..., bpmax and bpmax ≤ T . As
assumption we use a minimum scale of at least 10 observations and a maximum scale
of a half of the time series length, as proposed by several authors (see [15] for further
details). In the step 10 we may use logarithm with basis equal to b, i.e.

logb(R/S)k ≈ H logb(k) +R.

5.2 Modified Rescaled Range Analysis
As the R/S analysis is known for a long time, it has been a subject to a lot of testing and
criticism. The method is mostly criticized for its problematic use for heteroskedastic
time series (due to use of sample standard deviation together with a filtration of a
constant trend makes R/S analysis sensitive to non-stationarities) and for the series
with short-term memory (see Lo [19]). To deal with short-term dependence in the time
series, modified rescaled range (M-R/S) is a popular technique proposed by Lo.

5.2.1 Procedure
The procedure of this method differs of the R/S method only in the definition of the
standard deviation (SIn) which deals with both the heteroskedasticity and the short-
range dependence. The new equation is defined with a use of auto-covariance function
γ of the selected sub-interval In up to the lag q as follows

SMq (In) =
√√√√S2

In
+ 2

q∑
j=1

γj

(
1− j

1 + q

)
.

Thus, R/S turns into a special case of M-R/S with q = 0. There are two estimators of
optimal lag suggested in the literature. The first one proposed by Lo [19] is the more
complicated and still the most used one. The optimal lag is based on the first-order
autocorrelation coefficient ρ̂(1):

q∗ =
(

3k
2

) 1
3
(

2ρ̂(1)
1− (ρ̂(1))2

) 2
3

.

The second one by Chin [5] is based on the length of the sub-interval only and sets the
optimal lag as

q∗ = 4
(
k

100

) 2
9

.

Note that the optimal lag q∗ is recalculated for each length of specific sub-period k. We
will use these two estimators and compare them.
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Following Lo [19], in order to calculate the modified Rescaled Range statistic, Vq(T ),
instead of considering multiple lags, we only focus on lag k = T , the length of the series.
Then, the definition of the modified R/S - statistic is the following:

Vq(T ) = T−1/2 R(T )
SMq (T ) .

Lo uses the interval [0.809, 1.862] as the 95% acceptance region for testing the null
hypothesis

H0 = {no long-range dependence, i.e., H = 0.5}

against
H1 = {there is long-range dependence, i.e., 0.5 < H < 1}.

Therefore, at a level of significance of 5%, the null hypothesis is rejected if Vq(T )
does not belong to the interval [0.809, 1.862].

5.3 Data
We will analyze the behavior of the stock market returns using daily data of four
indices: a Japanese index, the Nikkei; a German index, the DAX; a US index, the
Dow Jones; and a UK index, the FTSE. These data were extracted from the internet
site finance.yahoo.com. The data contains open, high, low, close and volume daily
indices. The range of each index is: from 4 January 1984 to 18 December 2009 for
Nikkei index, from 26 November 1990 to 18 December 2009 for DAX index, from 1
October 1928 to 18 December 2009 for Dow Jones index and from 2 April 1984 to 18
December 2009 for FTSE index. The daily records are described in business time in
the sense that the time units correspond to business days. Returns were computed as
rt = Pt−Pt−1

Pt−1
, with Pt being the close index at time t, as shown in figure 5.2.

Figure 5.2: Returns of the indices.
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To see how the indices vary during the day, we import the data from finance.yahoo.com.
We consider data (returns) in periods of one minute.

5.4 Empirical Results
In this section we will present the results of each analysis. First we estimate the Hurst
parameter of each series. After that, we estimate the Hurst parameter of the daily series
with intervals of one minute. Finally, we present a brief study of the Hurst parameter,
e.g. we calculate the Hurst parameter variations for different values of the sliding and
the window sizes. The Hurst parameters are obtained by the two methods described
above.

5.4.1 Results of Historical Data
Before we show the results of R/S and M-R/S methods of returns for the complete
period, we will discuss what basis we consider in order to choose the length k in each
method. The Hurst parameter is estimated by calculating the average rescaled range
over multiple regions of the data. The figure 5.3 shows the evolution of the Hurst
parameter considering different values for the basis, assuming the R/S method. The
powers of the basis will be the size k.

Figure 5.3: Evolution of the Hurst parameter considering different basis.

We can observe that the Hurst parameter does not remain constant for the various
basis. However, we cannot detect a trend in the variation of H with the basis size. So,
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we can calculate the Hurst parameter considering the basis 2 and considering powers of
2 for the values of k. This is the procedure we follow in order to estimate H. The table
5.1 gives the results of R/S and M-R/S methods of returns for the complete period.

R/S M-R/S
Indices Lo Vq Chin Vq
Nikkei 0.5548 0.5516 1.5311 0.5296 1.5420
DAX 0.6006 0.5931 1.4999 0.5693 1.527
DJ 0.5469 0.5416 1.512 0.5262 1.5081

FTSE 0.5381 0.5334 1.3615 0.5008 1.3991

Table 5.1: Results of Hurst parameter for each method and the M-R/S statistic.

In this table we can see that all indices have Hurst parameter greater than 0.5
with both methods. For the Nikkei, DJ and FTSE the Hurst parameter is close to 0.5
and therefore we can not conclude that the series of returns of these indices exhibit
long-range dependence (or it is present but in a very weak form). However, for the
DAX index, the Hurst parameter estimated is close to 0.6 which seems to indicate the
presence of long memory. The highest values of the Hurst parameter are observed by
the R/S method. The M-R/S has values closer to the values of R/S when we use the Lo
estimator. The M-R/S statistic is always within the range [0.809, 1.862] which means
that we do not reject the null hypothesis, i.e., at a level of significance of 5%, these
series do not exhibit long-range dependence. However, in [29], the authors discuss
the consistency of Lo’s statistic and argue that the M-R/S statistic shows a strong
preference for accepting the null hypothesis of no long-range dependence even if long-
range dependence is present in data. In [28], the authors show that as the truncation lag
q increases, the test statistic Vq has a strong trend toward accepting the null hypothesis,
even in situations of purely long-range dependent data.

5.4.2 Results of Recent Data
In this section we will observe the evolution of the Hurst parameter throughout the
day in intervals of 1 minute. We have considered five stock market indices as DAX,
FTSE, Nikkei, NASDAQ and Treasury Yield 30 Years, extracted from the internet site
yahoo.finance.com. The days considered to calculate the Hurst parameter were from
April 17 until May 15 2012. We considered powers of two for size the sample in each
method.
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Figure 5.4: Evolution of the Hurst parameter throughout the day in intervals of 1
minute.

We can observe that the two methods (R/S and M-R/S) show the same trend but the
values of H estimated by the R/S method are almost always higher. We also observed
that using the approach proposed by Chin for computing M-R/S, the H values are
always lower than when using the method proposed by Lo. The evolution of H seems
to be very erratic and a possible explanation can be found in the effects of the market
microstructure which can be more important at short time scales (see Cont [7]).

5.4.3 Time variation of the Hurst parameter
The variations of the Hurst parameter suggest us to estimate the time evolution for
subsample of the returns time series, and this task was executed by applying R/S for
subsamples corresponding to overlapped sliding windows. In this section we will study
the Hurst parameter as a function of time. To this end, we use the historical data
described above and calculate the Hurst parameter considering a window and stepping
through the data until the end. We now present the results for each time series.
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Figure 5.5: Evolution of the Hurst parameter as a function of time.

The Hurst parameter displays an erratic dynamics and exhibits some periods of
persistent and anti-persistent behavior. The DAX index shows various periods of high
Hurst parameter (H > 0.6) denoting periods of persistence effects (eg, between 1990
and 1992, 1999 and 2001, 2007 and 2008, etc.) and also some periods of anti-persistent
effects (H < 0.5) (eg, 1992, 1995, 1997, etc.). The same effects are observed in the
other indices, having periods of persistent and anti-persistent effects.

Looking at the graphs, the one which seems to have a change of trend over time is
the FTSE index. It is possible to observe a change in trend around the year 1994. To
confirm this observation, we adjusted a linear regression before 1994 and after 1994 as
shown in figure 5.6.
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Figure 5.6: Trend of FTSE index before 1994 and after 1994.

Before 1994 the trend is negative, which could mean that the market were becoming
more efficient with time (H tends to decline with time, approaching to H = 0.5) but
after 1994 the trend is positive, the market is becoming more persistent (greater long-
memory effects).
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Chapter 6

Conclusions

From the data obtained in the previous section we can say that the evidence of long
memory effects on the financial returns time series is not clear, since the Hurst pa-
rameter is usually greater than 0.5 but in many cases is very close to 0.5. The long
memory effects, if they exist, are not strong, since H is between 0.5 and 0.6. However,
in the DAX index case, by the R/S analysis, H = 0.6006, which is a value compatible
with the presence of long-range dependence. Recently, R/S analysis has been shown
to overestimate H when compared to other methods (see Krištoufek [15]), as we also
saw. Note that the estimates can also be influenced by the choice of minimum and
maximum scale. Looking at the modified R/S statistic proposed by Lo in chapter 5,
leads us to conclude that the time series used have no long-range dependence effect,
because the calculated statistics belongs to the interval [0809, 1862] which means that
we do not reject the null hypothesis (no long-range dependence). However, in the ar-
ticle by Willinger, Taqqu and Teverovsky [29], the authors study the Lo’s statistical
reliability and conclude that there is a strong preference for accepting the null hypothe-
sis of no long-range dependence even if long-range dependence is present in date. The
authors conclude that an acceptance of the null hypothesis of no long-range dependence
based on the modified R/S statistic should never be viewed as the “final word”, mainly
because of the serious difficulties that the Vq has in identifying “genuine”long-range
dependence. Instead, an acceptance of the null hypothesis based on the test-statistic
Vq should always be accompanied and supported by further analysis of the data.

The fact that we can not reject, at least for some time series, that there is long
memory in these series implies that the fBm may be useful in such cases as a model for
the derivative product pricing, provided that we use models and/or restrictions ade-
quate to exclude arbitrage opportunities, e.g. the model of Cheridito (with restriction
of introducing a minimal amount of time between transactions) and the model with
proportional transaction costs of Guasoni, which were discussed in chapter 4 of this
thesis.

Other way to exclude arbitrage opportunities has been studied by several authors.
In [30], the authors proposed a fractional integral called Wick integral and in [22], the
author shows that using this integral, there is no arbitrage opportunities. However,
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there is much controversy around this integral. In [2], Björk and Hult argue that this
type of integral has no economic meaning, because the definition of the self-financing
trading strategies and/or the definition of the value of a portfolio used in for example
[12], does not have a reasonable economic interpretation, and thus that the results in
these papers are not economically meaningful. So, we can use this integral mathemat-
ically but we don’t know what this means economically.

Proposals for future research:

• Analysis of the stochastic behavior of H(t).

• The study of possible applications to finance and the discussion of arbitrage pro-
blems for the mixed fractional Brownian motion W (t) + BH(t) (see Cheridito
[3]), where W is the standard Brownian motion. The fractional Brownian motion
implies arbitrage opportunities in finance. Does the mixed fractional Brownian
motion also implies arbitrage opportunities?

• Stochastic volatility models where we model the volatility process by fractional
Brownian motion (see Comte and Renault [6]).

• Study the various types of fractional integrals and their applicability to financial
markets, for example the Wick integral and the Path-wise integral. In order to
study the Wick integral it is essential to consider the criticisms made by Björk
and Hult [2].
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Appendix A

C++ code

In this appendix we present the code developed for the practical part of this work.

A.1 Rescaled Range method
#include 〈cstdlib〉
#include 〈iostream〉
#include 〈fstream〉
#include 〈cstdio〉
#include 〈vector〉
#include 〈list〉
#include 〈math.h〉

using namespace std;

double calc_media( vector 〈double〉 ∗v, size_t N)
{

double sum = 0.0;
for (size_t i = 0; i < N; i++) {
sum = sum + v->at(i);
}
double mean = sum / N;
return mean;

}

void le_ficheiro(vector 〈double〉 ∗data_final, vector〈string〉 ∗ano){
std::ifstream ifile;
long size = pathconf(".", _PC_PATH_MAX);
char∗ direc;
direc=(char∗) malloc((size_t)size);
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getcwd(direc,(size_t)size);
char file[size];
vector〈string〉 date;
vector〈double〉 Open, max, min, final, volume;
string fich;
cout « "Nome do ficheiro de input: ";getline(cin,fich);
sprintf(file,"%s/%s",direc,fich.c_str());
cout « fich« endl;
cout « file « endl;
ifile.open(file,ifstream::in);
if(ifile.fail()) {

cout « "Falhou abertura do ficheiro " « fich « endl;
system("PAUSE");return ;

}
else

cout « "Ficheiro "« fich « " aberto!"« endl;
for(int i=0; ifile.good(); i++){

char data[10];
double pmax=0., open=0., pmin=0., pfinal=0., vol=0.;
ifile » data » open » pmax » pmin » pfinal » vol;
final.push_back(pfinal);
date.push_back(data);

}
for(size_t i=0; i<final.size()-2;i++)

double f1,f0;
f0=final[i];
f1=final[i+1];
data_final->push_back(log(f1)-log(f0));
ano->push_back(date[i]);

}
ifile.close();
return ;

}

/∗
Calculate the rescaled range for a single region of data.

∗/

double calc_RS_( vector 〈double〉 ∗v, const size_t boxSize )
{

double RS = 0.0;
if (boxSize > 0) {

double min;
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double max;
double runningSum;
double runningSumSqr;
double mean = calc_media( v, boxSize );
min = 0.0;
max = 0.0;
runningSum = 0.0;
runningSumSqr = 0.0;
for (size_t i = 0; i < boxSize; i++) {

double devFromMean = v->at(i) - mean;
runningSum = runningSum + devFromMean;
runningSumSqr = runningSumSqr + (devFromMean ∗ devFromMean);
if (runningSum < min)

min = runningSum;
if (runningSum > max)

max = runningSum;
}
double variance = runningSumSqr / static_cast〈double〉(boxSize);
double stdDev = sqrt( variance );
double range = max - min;
RS = range / stdDev;

}
return RS;

}

/∗
Calculate the R/S Average for the R/S values calculated on a set of "boxes" (regions)

of size boxSize.
v the data set used to estimate the Hurst exponent
N the size of the data set
boxSize is the k size mentioned on chapter 5. ∗/

double calc_RS_ave( vector〈double〉 ∗v, const size_t N, size_t boxSize )
{

double RSAve=0.0;
size_t i;
size_t numBoxes = N / boxSize;
if (numBoxes > 0) {

double RS, RSSum=0.0;
for (i = 0; i+boxSize <= N; i = i + boxSize)

vector 〈double〉 ∗boxStart= new vector〈double〉;
for (size_t j=i; j < i + boxSize; j++)

boxStart->push_back(v->at(j));
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RS = calc_RS_( boxStart, boxSize );
RSSum = RSSum + RS;
delete boxStart;

}
RSAve = RSSum / static_cast〈double〉( numBoxes );

}
return RSAve;

}

double Hurst (vector ∠double〉 ∗xx, vector ∠double〉 ∗yy){
double meanX=0.0, meanY=0.0;
meanX= calc_media(xx, xx->size()-1);
meanY=calc_media(yy, yy->size()-1);
double difXX=0.0, difXY=0.0;
for(size_t i=0; i<= xx->size()-1;i++){

difXY = difXY + (xx->at(i)-meanX)∗(yy->at(i)-meanY);
difXX = difXX + (xx->at(i)-meanX)∗(xx->at(i)-meanX);

}
double H = difXY / difXX;
return H;

}

int main() {
vector 〈double〉 data_final;
vector〈string〉 ano;
double RS_Ave, H, base = 2;
le_ficheiro(&data_final, &ano);
size_t j=0;
vector 〈double〉 ∗x= new vector〈double〉;
vector 〈double〉 ∗y= new vector〈double〉;
vector 〈double〉 ∗RSAve= new vector〈double〉;
while(pow(base,j)<=10){

j++;
}
for(size_t i=j; pow(base,i) < data_final.size()/2 ;i++ ){

RS_Ave=calc_RS_ave(&data_final, data_final.size(), pow(base,i));
RSAve->push_back(RS_Ave);
x->push_back(i);
y->push_back(log(RSAve->at(i-j))/log(base));

}
H = Hurst(x, y);
cout « H « " " « x->size() « endl;
delete x;
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delete y;
return 0;

}

A.2 Modified Rescaled Range method
In this section we only present the functions code that are different from the previous
section, because this methods only differs in the definition of standard deviation.
double covariance(vector〈double〉 ∗v, size_t N, int k) {

double sum=0;
double cov=0;
for(size_t i=0; i<N-k;i++){

sum=sum+(v->at(i)-calc_media(v,N))*(v->at(i+k)-calc_media(v,N));
}
cov=(double)sum/(N-k);
return cov;

}

double q (vector〈double〉 ∗v, size_t N) {
double corr=covariance(v,N,1)/covariance(v,N,0);
//cout « corr « endl;
//double q= (double) pow((double)(3*N)/2,1.0/3.0)*pow(pow((2*corr/(1-(corr*corr))),2),1.0/3.0);

//Lo(1991)
double q=4*pow(N/100,2/9); // Chin (2008)
//cout « q « endl;
return q;

}

double calc_RS_( vector 〈double〉 ∗v, const size_t boxSize )
{

double RS = 0.0;
if (boxSize > 0) {

double min;
double max;
double runningSum;
double runningSumSqr;
double mean = calc_media( v, boxSize );
min = 0.0;
max = 0.0;
runningSum = 0.0;
runningSumSqr = 0.0;
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for (size_t i = 0; i < boxSize; i++) {
double devFromMean = v->at(i) - mean;
runningSum = runningSum + devFromMean;
runningSumSqr = runningSumSqr + (devFromMean ∗ devFromMean);
if (runningSum < min)

min = runningSum;
if (runningSum > max)

max = runningSum;
}
double variance = runningSumSqr / static_cast〈double〉(boxSize);
double est = q(v,boxSize);
double range = max - min;
double S = 0.0, sum=0.0;
for(int i=1; i<=est;i++)

sum = sum + (1-(i/(est+1)))*covariance(v,boxSize,i);
S=sqrt( variance + 2*sum);
RS = range / S;

}
return RS;

}

/∗
Calculate the M-R/S statistic.

∗/

double Estatistica (vector〈double〉 ∗v, size_t N)
{

double Vq;
if (N > 0) {

double min;
double max;
double runningSum;
double runningSumSqr;
double mean = calc_media( v, N );
min = 0.0;
max = 0.0;
runningSum = 0.0;
runningSumSqr = 0.0;
for (size_t i = 0; i < N; i++) {

double devFromMean = v->at(i) - mean;
runningSum = runningSum + devFromMean;
runningSumSqr = runningSumSqr + (devFromMean * devFromMean);
if (runningSum < min)
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min = runningSum;
if (runningSum > max)

max = runningSum;
}
double variance = runningSumSqr / static_cast〈double〉(N);
double est = q(v,N);
double range = max - min;
double S = 0.0, sum=0.0;
for(int i=1; i<=est;i++)

sum = sum + (1-(i/(est+1)))*covariance(v,N,i);
S=sqrt( variance + 2*sum);
Vq = (1/sqrt(N))*(range/S);

}
return Vq;

}
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