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Abstract 
 

In recent years, forecasting Loss Given Default (LGD) has been a major challenge in the 

field of credit risk management.  Practitioners and academic researchers have focused on 

the study of this particular risk dimension. Despite all different approaches that have been 

developed and published so far, it remains an area of intense academic study and with lack 

of consensual solutions in the banking industry. This paper presents an LGD forecasting 

approach based on a simple and intuitive Machine Learning algorithm:  the nearest neighbor 

algorithm. In order to evaluate the performance of this non parametric technique, some 

proper evaluation metrics are used to compare it to a more “classical” parametric model and 

to the use of historical recovery rates to predict LGD. 
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1. Introduction 
 
With the advanced internal ratings-based approach (A-IRB), the Basel II 

Framework encourages banks to use their own internal models estimates to 

calculate regulatory (and economic) capital for credit risk. Three key parameters 

should be properly estimated by financial institutions in order to be compliant 

with A-IRB approach: probability of default (PD) over a one-year horizon, loss 

given default (LGD) and exposure at default (EAD).  

 
LGD represents the percentage of a credit instrument exposure the financial 

institution might lose in case the borrower defaults. LGD is a bounded variable 

in the unit interval. Its complement represents the recovery rate. 

 
Even before the advent of Basel II regulation, the focus of academic research 

and banking practice was mainly on PD modelling. PD has been the subject of 

many studies during past decades, since many banks already had rating 

models for credit origination and monitoring. Additionally, for academics, 

publicly default data were easily available. On the other hand, until the advent of 

the new Basel Capital Accord (Basel II Accord) loss data was to scarce, 

especially for private instruments (e.g. bank loans). This is the reason why most 

of the published work focuses on corporate bond losses. LGD for these 

instruments is typically determined by market values (resulting in market LGD or 

implied market LGD), whereas bank loan LGD is based on the discounted cash 

flows of a workout process: workout LGD. But even inside financial institutions, 

one of the major challenges for those interested in A-IRB certification has been 

the collection of reliable historical loss/recovery data. In many financial 

institutions, difficulties were increased by the way that the workout recovery 
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processes had been carried out. Outsourcing of workout activities, process data 

recorded only in physical support (paper), and the absence of linkage between 

the original loans and the proceeds from their collateral sales are examples of 

identified limitations. Whilst PD can be modeled at the counterparty level, LGD 

needs to be modeled at the facility level, which increases data collection 

complexity. Despite some limitations, Basel II requirements have triggered the 

publication of a vast LGD literature in recent years. 

2. Literature review 
 
Accurate LGD forecasts are important for risk-based decision making, can lead 

to better capital allocation and more appropriate loan pricing, and hence result 

in a competitive advantage for financial institutions. However, LGD/recovery 

forecast is not an easy task and has been poorly done historically. Many 

institutions still use historical empirical losses or look-up tables (combining 

seniority, sector, rating class and/or collateral) as their LGD forecasts. That’s 

why some banking supervisors have imposed initial LGD floors, to be gradually 

relieved.  

 
Gürtler & Hibbeln (2011) have focused their work on the identification of major 

pitfalls in modelling LGD of bank loans: bias due to difference in the length of 

the workout processes, and neglecting different characteristics of recovered 

loans and write-offs are two of the pitfalls mentioned in their work.  

 
Several common characteristics have been identified in LGD literature:  

• Recovery (or) loss distribution is said to be bimodal (two humped), with 

LGD being either relatively high or low (Asarnow & Edwards, 1995; 



 

 
Page 8 

 

Dermine & Neto de Carvalho, 2006). Hence, thinking about an average 

LGD can be very misleading; 

• Economic cycle affects LGD: losses are (much) higher in recessions 

(Carey, 1998; Frye, 2000). Other authors, like Altman et al. (2005), 

Acharya et al. (2007) and Bruche & González-Aguado (2010) which 

focused on the relation between PD, LGD and the credit cycle also 

observed the impact of business cycle in recovery rates; 

• Credit seniority and collateral seems to have effect on losses (Asarnow & 

Edwards, 1995; Carey, 1998; Gupton et al., 2000; Araten et al., 2004);  

• Counterparty industry is an important determinant of LGD (Altman & 

Kishore, 1996; Grossman et al, 2001; Acharya et al, 2007); 

• Exposure / loan size has little effect on losses. In fact this is maybe the 

most ambiguous key driver of losses. Based on datasets from U.S. 

market, Asarnow & Edwards (1995) and Carty & Lieberman (1996) find 

no relationship between this variable and LGD. On the other side, 

Felsovalyi and Hurt (1998), posted a positive correlation between both 

variables. Comparing these studies one has to consider that different 

datasets have been used; 

• Country-specific bankruptcy regime also explains significant different 

losses (Franks et al., 2004). 

 
Initial approaches to LGD forecast were deterministic in nature, treating 

recoveries as fixed values: i.e. by the use of historical losses or look-up tables 

of average losses by classes of relevant LGD determinants. This has the 

drawback that the marginal effect on recoveries of each characteristic cannot be 

determined. Besides simplicity, an additional argument for using this approach 
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is that Expected Loss volatility is mainly driven by PD dynamics rather than 

LGD. However, some studies (Hu & Perraudin, 2002; Altman et al., 2005; 

Bruche & González-Aguado, 2010 and Acharya et al., 2007) showed empirical 

evidence of positive correlation between PD and LGD. This fact suggests the 

existence of systematic risk in LGD, just like in PD. Ignoring that fact can result 

in substantial underestimation of economic capital (Hu & Perraudin, 2002). In 

Basel II Accord this issue is addressed by the use of a “downturn LGD”. At the 

very beginning of this century it was generally accepted by researchers that 

more sophisticated models were needed to properly deal with the high variance 

of LGD within the classes of the different drivers, and with the relationship 

between LGD and macroeconomic context. 

 
In more recent studies, the recovery rate is modeled as a random variable and 

the factors influencing LGD are analysed by estimating regressions. Due to the 

bounded nature of the dependent variable, the use of linear regression models 

estimated by ordinary least squares - OLS (Caselli et al., 2008; Davydenko & 

Franks, 2008; Bellotti & Crook, 2012) can present questionable results: first 

because it does not ensure that predictions lie in the unit interval, and second 

because it ignores the non-constant partial effect of explanatory variables.  

Gupton & Stein (2005) developed Moody’s KMV LossCalcTM V2 for dynamic 

prediction of LGD. Their work was based on a dataset with 3026 facility 

observations (loans, bonds and preferred stock) of 1424 default firms from 

1981-2004. LGD of defaulted firms is assumed to be a beta random variable 

independent for each obligor. Normalized recovery rates via a beta distribution 

were modeled using a linear regression of independent variables. This type of 

transformation enables the model to overcome the abovementioned limitations 
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of the linear regression. It was one the first studies presenting out-of-sample 

and out-of-time validation measures. Results were compared to the use of 

historical losses and look-up table of averages. Beta distribution has been 

widely used to model variables constrained in the unit interval. With appropriate 

choice of parameters it can easily represent U-shaped, J-shaped or uniform 

probability density functions (p.d.f.).  Giese (2006) and Bruche & González-

Aguado (2010), followed this technique often used by rating agencies 

(CreditMetricsTM and KMV Portfolio ManagerTM) and took advantage of the well-

known flexibility to model LGD by a mixture of beta distributions. Also using 

multivariate analysis, Dermine & Neto de Carvalho (2006) identified some 

significant determinants of bank loan recovery rates: size of loan, collateral, 

industry sector and age of the firm. Working with a dataset from a private 

portuguese bank, consisting of 374 SME defaulted loans, they used an 

econometric technique for modeling proportions, the (nonlinear) fractional 

regression estimated using quasi-maximum likelihood methods (Papke & 

Wooldridge,1996). Their work was, to the best of the author’s knowledge, the 

first one to use workout recoveries at facility level. Bellotti & Crook (2012) built 

several regression models (Tobit, decision tree, standard OLS, OLS with beta 

distribution, probit and fractional logit transformation of dependent variable) for 

LGD prediction based on a large sample of defaulted credit cards. The 

evaluation of the different models was performed out-of-sample using k-fold 

cross validation. They find that the standard OLS regression model produced 

the best results in many alternatives experiments. Bastos (2010a, 2010b) 

proposed a non-parametric approach of LGD modeling. Unlike parametric 

regressions, functional form for the conditional mean of dependent variable is 
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data-driven, i.e., it is derived from information provided by the dataset.  As a 

way to resemble look-up tables, Bastos (2010a) first suggested the use of 

regression trees for LGD forecasting. Whilst look-up table partitions and 

dimensions are subjectively defined by an analyst or a committee, the cells in a 

regression tree are defined by the data itself. Thus, LGD estimates correspond 

to the cell historical average, which enables forecasts to rely on the unit interval. 

Estimation results were compared to the fractional response regression 

proposed by Dermine & Neto de Carvalho (2006) (dataset was also the same 

used by these authors). Shortly afterwards, with the same dataset, Bastos 

(2010b) proposed another non-parametric mathematical model for LGD 

estimation:  artificial neural networks. It consists of a group of interconnected 

processing units called “neurons”. This learning technique has been 

successfully employed in several scientific domains and also in PD modeling. 

Bastos (2010b) has considered a logistic activation function in the output 

neuron, in order to restrain forecasts to the unit interval. Results were again 

benchmarked against the fractional response regression of Papke & Wooldridge 

(1996).  

 
In the wake of Bastos (2010a, 2010b) works, this study proposes another non-

parametric technique for LGD forecasting: the nearest neighbor algorithm. 

Results are benchmarked against the more “conventional” fractional response 

model. The next section describes the theoretical framework behind the nearest 

neighbor algorithm.   
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3. Theoretical Framework 
 
This section presents the theoretical framework behind the tested algorithm for 

LGD forecasting. The remainder of this section focuses particularly on the 

description of the nearest neighbor (NN) algorithm characteristics such as 

distance/(dis)similarity metrics for neighbor identification, feature transformation 

and selection, and local models. It is also presented a brief description of the 

fractional response regression, the parametric model to which NN regression 

results will be compared to.  

 
Prior LGD case studies show that the probability density functions of LGD (or its 

complement, the recovery rate) differ between countries, portfolios, type of 

credit facility and counterparty segment. Nonparametric techniques are useful 

when there is little a priori knowledge about the shape of the distribution of the 

dependent variable. In these methods there is no formal structure for the 

density function. On the other way, parametric models often assume density 

functions that are not suitable for many real-life problems because they rarely fit 

the densities actually encountered in practice. 

 
The nearest neighbor (NN) algorithm is perhaps, at least conceptually, one of 

the simplest nonparametric techniques. The NN algorithm was originally 

developed for classification problems, i.e., problems with discrete-valued 

functions. Then, its use was spread to continuous-valued functions: NN 

regression. NN regression estimators can be used either as a stand-alone 

technique or as an add-on to parametric techniques.  

 
NN belongs to the family of Machine Learning (ML) algorithms. ML is dedicated 

to the study of (computer) programs that improve with experience, i.e. that are 
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data-driven. In recent years there have been incredible advances in the theory 

and algorithms that form the foundations of this field. In the area of financial 

services, many ML applications have been developed, for example, to detect 

fraudulent credit card transactions or to estimate counterparties ability to pay 

(i.e., PD). However, ML algorithms have also been applied to several distinct 

problems like character recognition, language processing, robotics, image 

processing, terrorist threat detection, computer security, etc. Additionally, ML 

draws on concepts and results of others fields of study such as statistics, 

biology, cognitive science, control theory and even philosophy. 

 
Within ML algorithms, NN regression belongs to the classes of Supervised 

Learning (rather than Unsupervised Learning), and Lazy Learning (instead of 

Eager Learning). As in other ML algorithms, learning in NN regression always 

involves training and testing. It is “supervised” because there is a “teacher” that 

provides a category or real-valued label for instances (being an instance every 

training or test example, i.e., every defaulted credit instrument presented in the 

dataset). NN is also a Lazy Learning technique, since we wait for query before 

generalizing, i.e. induction is delayed. A training sample is needed at run-time. 

On the other hand, on Eager Learning, we first generalize before the query. 

Lazy learner techniques can create many local approximations and represent 

more complex functions. This kind of approach can create different 

approximations to the target function for each query instance (i.e. the credit 

instrument which we want to forecast LGD). As referred above, LGD p.d.f. is 

often not known ex-ante. NN is a procedure that bypasses probability estimation 

and go directly to decision/target functions. 



 

 
But after all, what is the 

is quite straightforward: 

instances and �′ � �� be the nearest instance to a query instance 

rule for classifying �� is to 

variable we want to forecast is 

it is categorical, the label is a category.

feature (i.e. variable) space into Voronoi

regression) or the category (NN classification) of the 

contains. This is called the Voronoi tessellation of the space

 

 
The concept of NN is very easy to understand: similar patterns in the feature 

space probably belong to the same category or have an approximate value (for 

continuous-valued problems). 
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3.1  Nearest Neighbor 

the nearest neighbor? The idea behind the concept of 

is quite straightforward: let �� � ��	, … , ��� denote a dataset of 

be the nearest instance to a query instance 

is to assign it to the label 
�� associated with 

variable we want to forecast is continuous (like LGD), the label is a real value, if 

it is categorical, the label is a category. This rule leads to a partitioning of the 

space into Voronoi cells, each labelled by the value (NN 

regression) or the category (NN classification) of the instance (training point

contains. This is called the Voronoi tessellation of the space (see F

Figure 1 – Voronoi tessellation 

The concept of NN is very easy to understand: similar patterns in the feature 

space probably belong to the same category or have an approximate value (for 

valued problems).  

The idea behind the concept of NN 

denote a dataset of � labelled 

be the nearest instance to a query instance �� . The NN 

associated with � ′. If the 

continuous (like LGD), the label is a real value, if 

This rule leads to a partitioning of the 

by the value (NN 

training point) it 

see Figure 1). 

 

The concept of NN is very easy to understand: similar patterns in the feature 

space probably belong to the same category or have an approximate value (for 



 

 
For many reasons (accuracy, 

account more than one neighbor

neighbor (k-NN) regression. 

NN if we center a cell about 

neighbors. If the density is high near

other hand, if density is low, the cell will grow large until it enters regions of 

higher density (see Figure 2)

whether training examples or query

dimensional metric space 

(dimensions). 

Figure 2 

 
 
Let us assume that we have a training dataset 

instances. Each instance is 

instance is labelled with

estimate the query instance (
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3.2  k-NN regression 

For many reasons (accuracy, variance reduction, etc) it is common

neighbor so the technique is usually known as k n

NN) regression.  The NN rule (1-NN) can be easily extended to k

NN if we center a cell about �� ad let it grow until it captures k nearest 

s. If the density is high near ��, the cell will be relatively small.

other hand, if density is low, the cell will grow large until it enters regions of 

igure 2). This algorithm assumes that all instances

whether training examples or query instances, could be mapped in a s

dimensional metric space ��, where � represents the number of data features 

 
Figure 2 – Distance to the second nearest neighbor 

we have a training dataset � with �� (� �  1
instances. Each instance is described by a set of features �. Each training 

instance is labelled with �
��� �  ��. The objective of k-NN regression is to 

instance (��� target value: ����� � ��. Given a query 

t is common to take into 

echnique is usually known as k nearest 

NN) can be easily extended to k-

d let it grow until it captures k nearest 

, the cell will be relatively small. On the 

other hand, if density is low, the cell will grow large until it enters regions of 

m assumes that all instances, 

nstances, could be mapped in a s-

represents the number of data features 

 

1, . . . , �) training 

. Each training 

NN regression is to 

Given a query 
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instance �� � 
��	, ���, … , ����, k-NN first locates the k nearest training 

examples (the neighbors) based on some distance / dissimilarity measure 

�
�� , ��� and then estimates ������ as a function of the neighbors: 

 ∑ ��!�"	 
�, #���$� % �
���  � � 1, … , &  (1) 

That is equivalent to say that, in k-NN regression, �'� estimates result from local 

models. In this study, � is the observed LGD and �' is the predicted LGD for 

each credit instrument.  

 

3.3 Feature transformation 
 
Before computing any distance measure we need to assure that all features are 

comparable, since it is common to have features expressed in different scales. 

For continuous features, two methods are often used to provide the desired 

“common scale”:  

• Z-score standardization:  replace original value (� with 

 
)*+),---./01
)*� (2) 

• Min-Max normalization: replace original value (� with 

 
)*+2��
)*�203 
)*�+ 456 
)*� (3) 

where 7��
(�� and 78�
(�� are the minimum and maximum values of (� 
appearing in the training sample data. In Min-Max Normalization, every 

normalized value will lie in the unit interval. 

3.4  Distance metrics and dissimilarity measures 
 
Like almost all clustering methods k-NN requires the use of a dissimilarity 

measure or distance metric �
�, #� between any pair � � 
�	, ��, . . . , ���, 
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# � 
#	, #�, . . . , #�� of instances. A metric has a formal meaning in mathematics. 

Let ( be any set. If the function �: ( : ( → � is a metric on ( (and 
(, �� is 

called a metric space) must obey to the following criteria: 

• Non-negativity: �
�, #�  ;  0 

• Identity: �
�, #�  � 0 only if � �  # 
• Symmetry: �
�, #�  �  �
#, �� 
• Triangle inequality: �
�, =� ;  �
�, #� >  �
#, =� 

 
For continuous features the most common distance metrics are (input space 

with � features): 

• Euclidean distance (?�  distance) 

 ��
�, #� �  .∑ 
����"	 @ #���  (4) 

It has the property of giving greater weight to larger differences on 

features values.  

• Manhattan or City Block distance (?	 distance) 

 �	
�, #� �  ∑ |�� @ #�| ��"	  (5) 

?	 distance is also known as taxicab distance because is thought of as 

the path a taxicab would take in a city (e.g. in Manhattan) between two 

points. 

• Chebyshev distance (?∞ distance) 

 �∞
�, #� � 78��|�� @ #�||� � 1, . . , �� (6) 

Chebyshev distance evaluates the maximum absolute magnitude of the 

feature differences in the pair of vectors.  

 
In Figure 3 we can see the difference between the contours of equal distance 

for the three distances. All these distances are particular cases of a more 
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general distance: the Minkowski distance. The Minkowski distance of order m 

is: 

 �B
�, #� �  
∑ |�� @ #�| 2��"	 � 	 2C   (7) 

 
Figure 3 – Contours of equal distance for the ?	(diamond), ?� (circle) and ?∞ (square) distance. 

 

For categorical (ordinal or nominal) features, the computation of dissimilarity 

measures (not always metrics) is not straightforward, since that for nominal 

attributes we do not have an ordering between values. Several data-driven 

(dis)similarity measures have been proposed to address this problem.  

 
Consider a categorical data set of size N, with s categorical features/attributes, 

where DE denotes the &FG feature. Each attribute DE take �Evalues in the given 

data set.  

Some common (dis)similarity measures for categorical data are: 

• Hamming or edit distance 

 �
�, #� � �H7IJK L� �DE|�� M #� , � � 1, . . , ��  (8) 

This distance does not take into account differences between the distinct 

values taken by an attribute or feature.  Dissimilarity between two 
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instances will be proportional to the number of attributes in which they 

(do not) match, giving the same importance to all matches and 

mismatches. The per-attribute dissimilarity is {0,1} with a value of 1 

occurring when there is not match, and 0 otherwise.  

• Goodall measure 

Goodall (1966) proposed a similarity measure for biological taxonomy 

that gives greater weight to uncommon feature value matches. This 

measure “normalize” the similarity between two instances by the 

probability that the similarity value observed could be observed in a 

random sample of two points. The behaviour of such kind of measure 

directly depends on the data. Since Goodall’s original measure was 

computational expensive (e.g. it accounts for dependencies between 

attributes) Boriah et al. (2007) proposed a much simpler version of 

Goodall similarity measure: 

  N
�, #� � ∑ 	� NE
�E, #E��E"	  (9) 

with 

 NE
�E, #E� � O1 @ P QE�
$�   �� �E � #E  � � R0 LSTJKU��J V 
and  

QE � 
$� � �E
$�
�E
$� @ 1�W
W @ 1�  

where  �E
$� represents the number of times attribute DE takes the value 

$ in the dataset and X is the set of different $ values for each attribute 

DE. 
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This similarity measure can be easily transformed into a dissimilarity 

measure using the formula: 

 �
�, �� � 1 @ N
�, ��   (10) 

• Inverse Occurrence Frequency (IOF) 

This measure gives a lower weight to mismatches on more frequent 

values. 

  NE
�E, #E� � Y 1                         , �E � #E		Z[\]^_
3_�:[\]^_
`_� , LSTJKU��JV  (11) 

The range of  NE
�E, #E� is a 	
	Zb[\]cded , 1f where the minimum value is 

obtained when �E and #E each occur 
g� times and the maximum is 

attained when �E and #E occur only once in the data set. 

• Occurrence Frequency (OF) 

This measure is the opposite of the IOF, i.e., it gives lower similarity 

weight to mismatches on less frequent values and higher weight to 

mismatches on more frequent values. 

  NE
�E, #E� � O 1                         , �E � #E		Z[\] ch_
i_�:[\] ch_
j_�
, LSTJKU��JV  (12) 

The range of  NE
�E, #E� is k 		Z
[\]l�d , 		Z
[\]��d m, where the minimum value 

is obtained when �E and #E occur only once in the data set, and the 

maximum is attained when �E and #E each occur  
g� times.  

Like the Goodall measure, IOF and OF similarity measures can be 

transformed to dissimilarity measures using the same formula. 
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An additional (dis)similarity measure is proposed by Gower (1971), which 

permits the combination of continous and categorically valued attributes. 

Mahalanobis distance (Mahalanobis, 1936) and Kullback-Leibler divergence 

(Kullback & Leibler, 1951) are other popular distance measures used in 

instance-base learning algorithms. Mahalanobis distance is also known as the 

fully weighted Euclidean distance since it takes into account correlation 

between features (through the use of a covariance matrix). 

  
Scott (1992) and Atkeson et al. (1997) refers that the same distance metric 

could be used for all feature space (global distance functions) or it can vary by 

query (query-based local distance functions) or even by instance (point-based 

local distance function). The scope of this work is limited to global distance 

functions. 

3.5  Feature selection 
 
Feature selection is itself one of the two methods of dimension reduction. The 

other method is the deletion of redundant or noisy instances in the training data, 

which is designated by Instance Selection or Noise Reduction. Sometimes 

instances are described by so many features and just a small subset of them is 

relevant to target function. Often, the identification of nearest neighbors is easily 

misled in high-dimensional metric spaces. This is known as the curse of 

dimensionality and is caused by the sparseness of data scattered in space. 

Identifying nearest neighbors in terms of simultaneous closeness on all features 

is often not desirable. It is not probable that natural groupings will exist based 

on a large set of features. Feature selection is all about selecting subset of 

features that are useful to build a good estimator. The relative importance of 
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each selected feature could be regulated by some weighting parameter to 

include in the distance measure.  In addition to accuracy (see Section 3.7) 

improvement, feature selection has a big impact on computational performance.  

 
In order to avoid the problem of high dimensionality, there are several 

approaches to select or weight more heavily the most relevant features. 

Cunningham & Delany (2007) divided those approaches into two broad 

categories: filter approaches and wrapper methods.  

 
Filter approaches select irrelevant features for deletion from the dataset prior to 

the learning algorithm. Under this approach, feature selection is a result of 

dataset analysis. Filter approaches could simply result from an expert 

judgemental analysis or from the usage of a criterion to score the predictive 

power of the features.  

 
Wrapper methods make use of the k-NN algorithm itself to choose from the 

initial set of features a subset of relevant ones. This methods use regression 

performance to guide search in feature selection. However, if we try to test the 

performance of all possible subsets of features (all combinations), wrapper 

strategy becomes computationally expensive. When the number of features is 

high, the two most popular techniques are: 

• Forward Selection: this technique is used to evaluate features for 

inclusion. Starting from an empty set, each feature is tested individually 

and recorded the corresponding objective function value. The best 

feature is added to the distance metric. This procedure is repeated until 

some stopping criterion is met. The stopping criterion for feature 

inclusion in the distance metric can be to stop when a pre-specified 
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number of features have been selected or when the gain in the objective 

function is less than a pre-specified minimum change.  

• Backward Selection: this technique is used to evaluate features for 

exclusion. The concept is nearly the same of Forward Selection, but here 

we start with the full set of features and then, at each step, exclude one 

feature based on the objective function gain/loss, until the selected 

stopping criterion is met. 

Both wrapper techniques described above can coexist with Forced Entry, 

i.e., one can force the entry of some features in the algorithm (e.g. as a 

result of filter approach) and use Backward/Forward selection for the 

remaining features. Feature selection is a very important step in k-NN 

regression. Only relevant variables should be selected for inclusion in the 

dissimilarity measure. This step also restrains variables available for local 

models (e.g. Locally Weighted Regression).  

3.6  Local models 
 
In NN classification problems (instances with discrete class label), query 

instance is usually labelled with the class label that occurs more frequently 

among k neighbors. This procedure is known as majority voting. In this kind of 

problems k should be an odd number, in order to avoid ties.  In k-NN classifiers 

voting could be distance weighted or not. However, in regression problems, 

prediction is far more complex. Fortunately, k-NN can approximate complex 

functions using local models. Atkeson & Schaal (1995) gave some examples of 

possible local models: nearest neighbor (1-NN), (un)weighted average or locally 

weighted regression (LWR). Nearest neighbor simply identify the closest 

instance and use its value for query instance prediction. 1-NN is a very simple 
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model but has serious disadvantages: it is very sensitive to noisy data (e.g. 

outliers) and its estimates have higher variance when compared to weighted 

local models. In k-NN regression we usually want to weight nearer neighbors 

more heavily than others. Weighted average local model uses all k 

neighborhood instances and compute a sum of values weighted by their 

distance to the query instance: 

   �'� �  ∑ n*o*_*pq∑ n*_*pq    (13) 

where the fraction is a weighting term with sum 1. This approach was proposed 

by Nadaraya (1964) and Watson (1964) and is often referred as the Nadaraya-

Watson estimator. Each neighbor weight (U�) is a kernel function of its distance 

to query instance: 

    U� � r b���� , ���e  with i �  1, . . . , k (14) 

The maximum value of the weighting function should be at zero distance, and 

the function should decay smoothly as the distance increases. One of the most 

common weighting functions is the distance raised to a negative power 

(Shepard 1968): 

   U� � r
�� �  ���� , ���+x (15) 

In this function, Q determines the rate of drop-off of neighbor weights with 

distance. If Q � 1 we have “pure” inverse distance weighting. When Q increases 

the weighting function goes to infinity for neighbors closer to query instance. In 

the limit, we achieve exact interpolation (i.e. we achieve 1-NN), which is not 

desirable for noisy data, as stated before. Among many possible weighting 

functions, there is also the possibility of using un-weighted (not kernelized) 

averages as local model. Sometimes it is the best solution for low density 
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neighborhoods, when we want to prevent distant neighbors to have very low 

weights.  

   �'� � 	E  ∑ ��E�"	  (16) 

In LWR, for each query, a new local model is formed to approximate �. In this 

statistical approach, the model is usually a weighted regression in which the 

closest points (neighbors) are weighted heavier than the distant points 

(neighbors). Regression is weighted because, as seen above, distance is a 

measure of similarity between instances. Possible locally regressions are Linear 

Function, Quadratic Function, Piecewise approximation, etc.  

 
Remember that the predictive accuracy of local models and the overall 

performance of k-NN regression depends on the neighborhood dimension (k).  k 

selection is a compromise between an higher value (reduces variance but can 

result in the joining of neighbors with significantly different patterns/probabilities)  

and a lower value (attempt to increase accuracy can be easily lead to  non-

reliable estimates). In weighted local models, local outliers will be noticed if they 

are close enough to the query point. Their influence will be greater in models 

with weighting functions that give higher importance to closer neighbors. One 

possible way for preventing their influence is eliminating them previously from 

training data (in the dimension reduction stage known as Instance Selection or 

Noise Reduction).  

3.7 Evaluating predictive accuracy 
 
The predictive accuracy of the models is assessed using two standard metrics, 

traditionally considered: the root mean squared error and (RMSE) and the mean 

absolute error (MAE). In RMSE and MAE, the error is the amount by which the 
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estimate differs from actual value to be estimated. Both criterions are only 

applied to test sample, in order to evaluate models out-of-sample predictive 

accuracy, i.e. to measure its generalization capacity. The RMSE is defined as  

 yzN{ �  k	�∑ 
�� @ �'�����"	 m	/� (17) 

where �� and �}~  are the actual and predicted loss given default on loan � and � 

is the number of loans in the test sample. The MAE is defined as 

 zD{ � 	�∑ |�� @ �'�|��"	   (18) 

The main objective is to minimize both criteria, since models with lower RMSE 

and MAE can predict actual LGD more accurately.  Both criteria are measures 

of how well they explain a given set of observations. The major difference 

between the two criteria is that RMSE, by the squaring process, gives higher 

weights to larger errors. As both metrics take their values in the same range as 

the error being estimated, they can be easily understood by analysts. k-NN 

algorithm forecasting performance is also measured by the root relative squared 

error (RRSE) and the relative absolute error (RAE), which are obtained by 

measuring accuracy with respect to a simple model that always forecasts LGD 

as the historical average: 

 yyN{ � 100 �∑ 
o*+o'*�d�*pq∑ 
o*+o-*�d�*pq �+	/� , yD{ � 100 �∑ |o*+o'*|�*pq∑ |o*+o-*|�*pq � (19) 

Models with RRSE and RAE lower than 100% have better predictive accuracy 

than the simple predictor. However, since IRB risk-weighted assets formulas 

are very sensitive to LGD values and also because banks prefer to have 

increased forecasting performance on larger risks it may be worth to consider 

the use of a weighting factor in the average error. In LGD forecasting we can 
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consider instrument default amount as the weighting factor that indicates the 

importance we wish to place on each prediction. The weighted mean absolute 

error (wMAE) and the weighted root mean squared error (wRMSE) can be 

computed as: 

 UzD{ �  ∑ n*|o*+o'*|�*pq∑ n*�*pq ,   UyzN{ � �∑ n*
o*+o'*�d�*pq∑ n*�*pq �	/� (20) 

As seen before, any of these metrics can also be used to evaluate the inclusion 

or exclusion of features in the model (for forward or backward selection). 

Exactly the same training and test samples will be used to fit and evaluate the 

accuracy of the simple one factor (historical average), nonparametric (k-NN 

regression) and parametric model (fractional response regression). 

 

4. Benchmark parametric model 
 
In order to evaluate the relative performance of k-NN regression, a parametric 

model was also fitted to data. The chosen model was the fractional response 

regression (Dermine & Neto de Carvalho, 2006). Since LGD is a bounded 

variable in the unit interval it is necessary an alternative nonlinear specification 

to the ordinary least squares regression (OLS): 

 {
�|�� �  �
�� > �	�	 >�> �E�E� � �
��� (21) 

where �
. � satisfies 0 � �
#� � 1 for all # � �. The logistic function was 

selected as the functional form of �
. �:  
 �
��� � 1/
1 > exp 
@����  (22) 

Estimation was performed through the maximization of Bernoulli log likelihood 

(Papke & Wooldridge, 1996) with the individual contribution given by: 

 ������ � ���L���������� > 
1 @ ����L��1 @ �������� (23) 
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The consistency of the quasi-maximum likelihood estimator (QMLE) follows 

from Gourieroux et al. (1984) since the density upon which the likelihood 

function is based on is a member of the linear exponential family, and because 

of the assumption that the conditional expectation of �� is correctly specified. In 

fact, the QMLE is asymptotically normal regardless of the distribution of 

��conditional on ��. 
5. Database description 

 
The database used in this study is Moody’s Ultimate Recovery Database 

(URD), which has information on US non-financial corporations. Each of the 

defaulted corporations had over $50 million debt at the time of default. Moody’s 

URD covers the period between 1987 and 2010 and gathers detailed 

information of 4630 defaulted credit instruments (bonds and loans) from 957 

different obligors. The expression “ultimate recoveries” refer to the recovery 

amounts that creditors actually receive at the resolution to default, usually at the 

time of emergence from bankruptcy proceedings. In the URD, Moody’s provides 

three different approaches to calculating recovery, including the settlement 

method, the trading price method and the liquidity event method. For each 

defaulted instrument, Moody’s indicates in the URD the preferred valuation 

method. This study is carried using the discounted recovery rate associated 

with the recommended valuation method. For the purpose of this study, the 

complement of this rate will be considered the LGD.  Bonds account for almost 

60 percent of defaulted instruments, while loans represent the remaining 40 

percent. The average LGD on instruments included in the database is 41 

percent, with 55.2 percent for bonds and 19.6 percent for loans.  This finding 
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reflects the loans higher position in the obligors’ liability structure. Figure 4 

shows that loan LGD distribution is strongly skewed to the left, with 

approximately 65 per cent of the defaulted loans with less than 10 percent loss. 

On the other side, the distribution of bond LGD appears to be bimodal and 

slightly skewed to the right.  

 
Figure 4 – LGD distribution of bonds and loans 

 

Breaking down the database by year of default we can observe that the number 

of defaulted corporations increased in the early 1990s, early 2000s and again in 

2008 and 2009 (Table 1). Highest LGD values are observed in 1989, 1990, 

1998 and 2002.  
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Table 1 – Number of instruments, obligors and average LGD by year of default 

 

Table 2 reports the number of default instruments and average LGD by 

industry, instrument type and collateral type. Industry representation across 

default events included in the URD shows that the highest historical LGD is 

found on Environment industry while the lowest is observed in the Natural 

Products industry. Distribution, Energy, Telecommunications and Manufacturing 

are the industries that provide more cases to the database, jointly representing 

more than 40 percent of total defaulted instruments. Looking at the instrument 

type breakdown we can see the importance of the priority-position of an 

instrument within the obligor’s liability structure, since LGD vary significantly by 

this factor. Average LGD ranges from 82 percent (Junior Subordinated Bonds) 

to 15 percent (revolver loans). 

Year Instruments Obligors
Average 

LGD 
Year Instruments Obligors

Average 
LGD 

1987 23 4 24% 1999 184 54 43%
1988 64 9 45% 2000 271 67 49%
1989 98 21 54% 2001 572 98 48%
1990 150 28 52% 2002 783 112 51%
1991 226 51 42% 2003 399 77 30%
1992 190 38 39% 2004 206 47 27%
1993 138 32 38% 2005 203 29 24%
1994 66 23 31% 2006 75 18 28%
1995 96 28 34% 2007 47 12 25%
1996 83 24 36% 2008 197 43 34%
1997 64 18 35% 2009 370 82 37%
1998 68 23 53% 2010 57 19 37%



 

 
Page 31 

 

 
Table 2 – Number of instruments and average LGD by industry, instrument type and collateral type. For 

recoveries rates greater than 100% it was considered a 0% LGD. 

 
The breakdown by collateral type shows that debt secured by inventory, 

accounts receivable and cash exhibit the lowest LGD. On the other side, 

unsecured debt instruments have the highest historical LGD. 

6. k-NN algorithm for LGD forecasting 
 
Obtaining good results from k-NN algorithm depends crucially on the 

appropriate feature and instance selection, distance / dissimilarity metrics, 

neighborhood dimension (k) and local models. It is also important to conduct 

model evaluation with proper performance metrics. Although all this tasks can 

be embedded in the algorithm, that does not exempt model results from expert 

critical analysis. The following sections show the several steps for developing a 

k-NN algorithm for LGD forecasting, and testing its predictive accuracy against 

historical averages and a more conventional parametric model. 

Instruments
Average 

LGD 
Instruments

Average 
LGD 

By industry By instrument type

Automotive 204 38% Junior Subordinated Bonds 69 82%
Chemicals 74 36% Senior Subordinated Bonds 493 71%

Construction 68 52% Subordinated Bonds 372 71%
Consumer products 385 35% Senior Unsecured Bonds 1263 51%

Distribution 519 48% Senior Secured Bonds 587 36%
Energy 493 26% Term Loan 883 25%

Environment 51 71% Revolver 963 15%
Healthcare 157 45%
Industrials 69 33% By collateral type

Leisure & entertainment 258 38% All or most assets 1348 18%
Manufacturing 427 36% Capital Stock 183 31%

Media 358 36% Inventory, accounts receivable, cash 218 4%
Metals & mining 141 43% Other 62 17%
Natural products 93 18% PP&E 342 41%

Other 67 43% Second and third lien 204 45%
Services 337 42% Unsecured 2273 59%

Technology 146 39%
Telecommunications 469 58%

Transportation 314 50%
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6.1 Training and test data 

 
Best practices in forecasting suggest that the predictive accuracy of a model 

should be evaluated using out-of-sample data. Each training instance should 

not be included in the test sample since it could lead to an artificial 

overestimation of the model ability to forecast. For the same reason, out-of-time 

data sample is also known as a good practice and should be considered as 

well. In LGD forecasting the latter condition is even more compelling since there 

is evidence of systematic risk in LGD (Hu & Perraudin, 2002; Altman et al., 

2005; Bruche & González-Aguado, 2010 and Acharya et al., 2007).  Since LGD 

is the result of a stochastic process, from default to emergence, and not a time 

event, like default, it is also wise to consider a “pure” out-of-time sample, where 

every instance from the test sample postdates all instances from training 

sample. The effect of satisfying this condition has the drawback of excluding 

from training sample recent LGD experience. We should expect that out-of-

sample and out-of-time test samples should perform “worst” than other samples 

as they are not susceptible to over-fitting. This kind of evaluation truly replicates 

model use in practice, and gives more reliable benchmark performance 

indicators for generalization capacity and on-going model validation. For the 

objective of this study, it was considered an almost fifty-fifty split between 

training and test sample: defaulted instruments from 1987 to 2001 belong to the 

training sample (2293 observations), and those from 2002 to the end of the 

observation period are part of the test sample (2337 observations). 
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6.2  Dimension reduction 
 

6.2.1 Feature selection (and transformation) 
 
Besides the abovementioned industry, instrument type and collateral type, 

Moody’s URD comprises other variables that could be tested as determinants of 

LGD. A filter approach based on expert judgement was performed in order to 

define the following initial set of explanatory variables: 

 
Table 3 – Initial set of explanatory variables 

 
Besides categorical variables mentioned in Table 2, Moody’s URD also includes 

the Interest Rate Type of each credit instrument (fixed or variable, with different 

indexes in the latter case) and the Ranking in obligor liability structure (ranging 

from 1 – most senior – to 7 – most junior). Continuous variables include the 

percentage of obligors’ debt senior to the defaulted instrument (Above %) and 

debt outstanding junior to the defaulted instrument (Cushion %). It is also 

considered as explanatory variable the instrument outstanding amount at 

default and each instrument relative weight in obligors’ total debt at default. 

From the initial set, categorical variables are individually evaluated before their 

inclusion in the model. The performance of each of these features is 

benchmarked against the use of historical average (see Appendix A). Features 

that show better predictive power than the benchmark are included in the k-NN 

algorithm. Based on the analysis carried out, all categorical features were 

Variables Type

Industry Categorical
Instrument Type Categorical
Collateral Type Categorical

Interest Rate Type Categorical
Ranking in obligor liability structure Categorical

Above (%) Continuous
Cushion (%) Continuous

Instrument default amount Continuous
Instrument amount / total debt (at default) Continuous
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selected for the k-NN algorithm. Selected categorical features have a “Forced 

Entry” in the model, as the application of dissimilarity measures only to the 

subset of these features often result in a number of ties greater than k, the 

neighborhood dimension. In order to enable the usage of Goodall, IOF and OF 

dissimilarity measures, categorical variables were then transformed and their 

values were replaced by their correspondent frequency in the training sample. 

 
For continuous variables two distinct approaches were tested: forced entry of all 

subset (forming, with the subset of categorical variables, the “full model”) or 

selection through the use of a wrapper method (forward selection). After the 

forward selection, debt cushion and instrument amount / total debt at default 

were added to the model from here on called the “forward model” (see 

Appendix B). 

 
Both Z-score transformation and min-max normalization were performed in 

order to choose the one that maximizes model performance. Experiences 

carried out showed better performance of the Z-score transformation. The 

results presented in this paper consider this transformation for continuous 

variables. 

6.2.2 Instance selection 
 
Using an out-of-time and out-of-sample test sample prevents the existence of 

default instruments for the same obligor in both training and test samples. This 

scenario could easily had lead to overfitting, since instruments for the same 

query instance obligor could likely be in the k-nearest neighbors (distances 

between instruments from the same obligor tend to be very short since they 

have many common feature values). The impact of such problem would be 
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bigger for small k values and for local models that give greater importance to 

closer neighbors, as these noisy instances would be overweighted. For the 

same reason, it is worth to consider another reduction of redundant instances: 

preventing each query neighborhood to have more than one instance (neighbor) 

from the same obligor. After experiments carried out it was decided to allow 

only one instance from the same obligor (the closest one) to be part of each 

query instance neighborhood. Note that this is not a permanent deletion from 

the training data, just a condition to be met on a query basis.  

6.3  Distance / dissimilarity measures 
 
Every distance / dissimilarity measure described in Section 3.4 was tested in 

this study. For continuous variables, Euclidean distance proved to be the most 

appropriate. The real challenge in this area is to find a proper dissimilarity 

measure to deal with categorical variables. Each dissimilarity measure 

mentioned above was tested for categorical features and combined with 

Euclidean distance for continuous features as follows:  

 �
�, #� � ∑ �*�*pq 
3,`�! > ∑ ����pq 
3,`�1   (24) 

where � and K are the number of categorical and continuous features, 

respectively.   

6.4  Neighborhood dimension and local models 
 
In the tested models, neighborhood dimension was increased in multiples of 5 

neighbors. The stopping criteria was met when the improvement in forecasting 

performance indicators (see Section 3.7) was negligible. Once defined the 

neighborhood, local models were applied. Due the nature of dataset features 

(five categorical variables, tree bounded continuous variables), and the way 



 

 
Page 36 

 

categorical and continuous features partial distances are combined,  distances 

between each neighbor and the query instance tend to be insensitive (i.e. to 

change little) to weighted / kernel regressions mentioned in Section 3.6.  Two 

local models are tested in this study: the unweighted average presented in (16) 

and a new weighted local model based on the distance between every k-1 

neighbor and the closest (1-NN) neighbor. In the latter local model, the weight 

U� of each neighbor is given by the inverse of the min-max normalization of its 

distance: 

      U� � k �*
3,`�+2��
�
3,`��203 
�
3,`��+ 456 
�
3,`�� >  1m+	  (25) 

where 7����
�, #�� and 78���
�, #�� are the distances from query instance to 

the closest and the furthermost neighbor, respectively. With this local model, 

each neighbor weight (U�� lies between 0.5 and 1. 

Appendix C helps us understand which combination between distance / 

dissimilarity measures and local model is better. Results show that the k-NN 

algorithm performs better with the combination of IOF / Euclidean distances.  

There is no significant difference between unweighted and weighted local 

models for this distance combination. Best results are achieved at k = 35.   

6.5 Results 
 
The k-NN algorithm was applied to Moody’s URD and the results obtained were 

compared to a fractional response model (see Appendix D) and to the use of 

historical LGD averages. Two different k-NN models were fitted to the data: the 

“full model”, with all features considered in the study (presented above in Table 

3) and the “forward model”, with all categorical features and two continuous 

features chosen by the forward selection technique described in section 3.5. 
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Both models were initially applied to the complete dataset, and then applied 

separately to the subsample of bonds and the subsample of loans (see 

Appendix E). Despite the existence of a small gain in predictive accuracy after 

the forward selection of continuous variables, k-NN algorithm is apparently less 

sensitive to the set of explanatory variables considered. k-NN forecasts clearly 

dominate the forecasts given by the fractional response model and that 

superiority in the full model is overwhelming when we weight errors by 

instrument default amount. Considering all data, results in Table 4 show that 

after some neighborhood growth (with optimal k between 35 and 40), k-NN 

outperforms the benchmark parametric model and the historical average across 

all measures, both in full and forward model. The root mean squared error in the 

k-NN forward model is lower (0.325) than in the fractional response model 

(0.339). When measuring the performance with wMAE and wRMSE it is 

observable, in the full model, that the fractional response model has worse 

predictive power than the historical average. However, in the forward model, 

that situation no longer happens, which might indicate that the LGD forecasts 

from the parametric full model are affected by the inclusion of the percentage of 

debt senior to the instrument (Above %) and the instrument outstanding amount 

at default. When considering the subsample of bonds, k-NN continues to 

present better performance than the benchmark.  Main conclusions about 

models ability to forecast LGD dot not differ if we consider the entire data set or 

if we consider bonds and loans separately. Nevertheless, is worth mentioning 

that every model gives better predictions for loans than for bonds, perhaps due 

to the difference in their LGD distribution (more concentrated and skewed to left 

in the case of loans). Optimal k arrives “earlier” in the subsample of loans 



 

 
Page 38 

 

(k=10) than in the subsample of bonds (k=40). This means that, when 

comparing with bonds, we need less defaulted loans (i.e. less information) to 

make a LGD estimate for a new defaulted loan. 

  

Table 4 – Out-of sample and out-of-time predictive accuracy measures of LGD forecasts given by historical 

average, a fractional response model and a k-NN algorithm. Results presented refer to the entire data set 

and to the subsample of bonds and loans only. 

7. Conclusion 
  

This work shows that the nearest neighbor algorithm is a valid alternative to 

more conventional parametric models in LGD forecasting. Using data from the 

Moody’s Ultimate Recovery Database, it is shown that the k-NN algorithm tend 

to outperformsthe factional response model, whether we consider the entire 

All data

Full model Forward model

Fractional

response K-NN

Fractional

response K-NN

Mean absolute error 0.353 0.271 0.258 0.261 0.256

Root mean squared error 0.385 0.354 0.327 0.339 0.325

Relative absolute error (%) 100.00 76.99 73.25 73.93 72.50

Root relative squared error (%) 100.00 92.09 85.10 88.22 84.57

Weigthed mean absolute error 0.340 0.376 0.304 0.276 0.268

Weighted root mean squared error 0.374 0.478 0.356 0.350 0.335

Bonds

Full model Forward model

Fractional

response K-NN

Fractional

response K-NN

Mean absolute error 0.336 0.303 0.299 0.293 0.298

Root mean squared error 0.375 0.386 0.371 0.377 0.369

Relative absolute error (%) 100.00 90.38 89.06 87.47 88.94

Root relative squared error (%) 100.00 103.03 99.04 100.57 98.57

Weigthed mean absolute error 0.335 0.348 0.313 0.312 0.305

Weighted root mean squared error 0.374 0.433 0.385 0.390 0.378

Loans

Full model Forward model

Fractional

response K-NN

Fractional

response K-NN

Mean absolute error 0.257 0.224 0.219 0.214 0.209

Root mean squared error 0.305 0.311 0.292 0.293 0.284

Relative absolute error (%) 100.00 87.31 85.33 83.36 81.55

Root relative squared error (%) 100.00 102.08 95.86 96.33 93.25

Weigthed mean absolute error 0.251 0.407 0.306 0.224 0.231

Weighted root mean squared error 0.287 0.532 0.362 0.301 0.286

Historical 

average

Historical 

average

Historical 

average
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data set or subsamples containing only bonds or loans. Unlike other machine 

learning techniques, k-NN seems to be very intuitive. Each LGD estimate can 

be easily detailed and reproduced. On the other hand, k-NN is very sensible to 

the data itself. When using this algorithm to LGD forecasting, it is very important 

to perform an adequate data dimension reduction (both in explanatory variables 

and instances). Expert analysis is a major requirement if banks consider the use 

of k-NN in LGD forecasting. Furthermore, this algorithm does not enable risk 

analysts to know the marginal effect on recoveries of each variable and to 

understand which variables are contributing to the forecasts. 

It has been demonstrated that the nearest neighbor algorithm has potential to 

be used by banks in LGD forecasting. From a deeper study of 

distance/dissimilarity measures and weighted local models can surely result 

better algorithms than the one presented in this work. This machine learning 

technique has also potential to deal with other important (and sometimes tricky) 

issues regarding LGD forecasting: deriving a downturn LGD (for example, by 

considering only data from the recession period of the economic cycle in the 

training set), the inclusion of unfinished recovery workouts (for instance, 

combining NN with survival analysis) and LGD stress testing (i.e. including 

features that represent macroeconomic variables).  
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Appendix A 

Table presents accuracy measures from simple models where LGD estimates correspond to the historical 

LGD average by each categorical variable value. Based on these results it was decided to include all the 

variables in the model. 

  

Predictive accuracy measures

Model (average)
Average

LGD forecast
MAE RMSE RAE RRSE wMAE wRMSE

Historical 0.441 0.353 0.385 100.00 100.00 0.340 0.374

Industry 0.476 0.343 0.391 97.40 101.77 0.321 0.379
Instrument type 0.387 0.291 0.336 82.46 87.37 0.287 0.325
Collateral type 0.411 0.288 0.336 81.56 87.43 0.288 0.334

Interest rate type 0.429 0.310 0.351 87.81 91.26 0.308 0.345
Ranking in liability structure 0.460 0.306 0.354 86.92 92.07 0.302 0.357
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Appendix B  

In this appendix are presented the results of the forward selection technique described in Section 3.5. In 

each step, (positive) negative values represent a (loss) gain in the predictive accuracy from the previous 

step.  Categorical variables had a forced entry in the model and then, in step 1, the instrument amount / 

total debt at default entered the model. Later, in Step 2, cushion (%) joined the model. Larger improvement 

in accuracy measures was the criteria to select features each step (feature selection stopped in Step 3).  

 

  

Forward model - feature selection
Distance/Dissimilarity measures: IOF + Euclidean distance
Local model: weighted
k = 10

Change in predictive accuracy measures

RMSE MAE RRSE RAE wRMSE wMAE

Historical average - - - - - -

Forced entry:

Industry
Instrument type
Collateral type
Interest rate type
Ranking in liability structure

Forward selection:

Step 1: 

Instrument amount / total debt (at default) -0.006 -0.002 -0.016 -0.004 -0.007 0.0011

Step 2: 

Cushion (%) -0.001 -0.014 -0.004 -0.039 0.0102 -0.005

Step 3: stop.

-0.043 -0.077 -0.111 -0.22 -0.034 -0.068
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Appendix C 

 
The table above presents out-of-sample and out-of-time accuracy measures for the “full model” 

considering an unweighted local model. Different combinations of distance/dissimilarity measures were 

tested: Goodall, Occurrence Frequency and Inverse Occurrence Frequency (for categorical features) and 

Euclidean distance (for continuous features). Results show that the combination IOF / Euclidean 

outperforms the other two combinations. For categorical variables it seems important to be similar on less 

frequent values. Best result were achieved with k = 35. 

  

"Full model" with unweighted local model

Predictive accuracy measures

Model k
Average

LGD forecast
RMSE MAE RRSE RAE wRMSE wMAE

Historical average - 0.441 0.385 0.353 100.00 100.00 0.374 0.340

5 0.497 0.365 0.285 94.97 80.92 0.395 0.334
10 0.488 0.348 0.276 90.43 78.27 0.379 0.323
15 0.479 0.345 0.276 89.75 78.17 0.367 0.315
20 0.475 0.342 0.275 88.97 77.98 0.365 0.314
25 0.474 0.340 0.274 88.27 77.65 0.362 0.313
30 0.474 0.337 0.271 87.49 76.85 0.363 0.313
35 0.475 0.334 0.269 86.95 76.38 0.361 0.312
40 0.475 0.334 0.268 86.72 76.09 0.360 0.310
45 0.475 0.334 0.268 86.77 76.08 0.361 0.311
50 0.475 0.334 0.268 86.71 75.98 0.361 0.311

5 0.490 0.357 0.275 92.80 78.08 0.392 0.327
10 0.486 0.343 0.267 89.19 75.67 0.374 0.315
15 0.483 0.334 0.261 86.89 74.07 0.363 0.309
20 0.479 0.331 0.259 85.97 73.40 0.359 0.305
25 0.477 0.328 0.257 85.34 72.93 0.355 0.302
30 0.474 0.327 0.258 85.08 73.13 0.355 0.303
35 0.472 0.327 0.258 84.96 73.20 0.355 0.304
40 0.470 0.327 0.260 85.02 73.62 0.355 0.303
45 0.468 0.327 0.260 84.90 73.71 0.355 0.303
50 0.467 0.327 0.260 84.88 73.82 0.356 0.303

5 0.488 0.355 0.274 92.23 77.81 0.390 0.325
10 0.486 0.340 0.265 88.35 75.10 0.373 0.315
15 0.479 0.334 0.263 86.73 74.55 0.362 0.309
20 0.477 0.332 0.263 86.35 74.71 0.359 0.307
25 0.475 0.329 0.261 85.56 73.97 0.354 0.304
30 0.475 0.328 0.260 85.38 73.84 0.357 0.306
35 0.474 0.328 0.261 85.25 74.02 0.356 0.306
40 0.472 0.328 0.261 85.24 74.13 0.356 0.306
45 0.471 0.328 0.262 85.33 74.22 0.357 0.306
50 0.471 0.328 0.262 85.35 74.43 0.358 0.307

Goodall / Euclidean

IOF / Euclidean

OF / Euclidean
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Appendix C (cont.) 

 

The table above presents out-of-sample and out-of-time accuracy measures for the “full model” 

considering a weighted local model. Different combinations of distance/dissimilarity measures were tested: 

Goodall, Occurrence Frequency and Inverse Occurrence Frequency (for categorical features) and 

Euclidean distance (for continuous features). Results show that the combination IOF / Euclidean 

outperforms the other two combinations. For categorical variables it seems important to be similar on less 

frequent values. Best result were achieved with k = 35. 

  

"Full model" with weighted local model

Predictive accuracy measures

Model k
Average

LGD forecast
RMSE MAE RRSE RAE wRMSE wMAE

Historical average - 0.441 0.385 0.353 100.00 100.00 0.374 0.340

5 0.497 0.366 0.286 95.13 81.03 0.395 0.334
10 0.490 0.349 0.276 90.63 78.38 0.379 0.324
15 0.482 0.345 0.276 89.74 78.15 0.368 0.316
20 0.477 0.342 0.275 89.03 77.91 0.366 0.315
25 0.476 0.340 0.274 88.43 77.69 0.363 0.314
30 0.476 0.338 0.272 87.76 77.07 0.364 0.314
35 0.476 0.336 0.270 87.24 76.64 0.362 0.313
40 0.476 0.335 0.269 86.98 76.36 0.361 0.311
45 0.476 0.335 0.269 86.97 76.31 0.361 0.312
50 0.475 0.334 0.269 86.87 76.19 0.362 0.311

5 0.492 0.360 0.277 93.51 78.50 0.394 0.327
10 0.488 0.344 0.268 89.51 75.95 0.375 0.316
15 0.484 0.335 0.262 87.20 74.32 0.365 0.310
20 0.481 0.332 0.260 86.25 73.67 0.360 0.307
25 0.479 0.329 0.258 85.57 73.15 0.356 0.304
30 0.476 0.328 0.258 85.27 73.25 0.356 0.304
35 0.474 0.327 0.258 85.10 73.25 0.356 0.304
40 0.472 0.327 0.259 85.10 73.58 0.355 0.304
45 0.470 0.327 0.260 84.96 73.66 0.355 0.304
50 0.469 0.327 0.260 84.91 73.76 0.356 0.304

5 0.490 0.357 0.276 92.88 78.36 0.391 0.324
10 0.487 0.341 0.266 88.62 75.50 0.373 0.316
15 0.481 0.335 0.264 86.98 74.79 0.363 0.310
20 0.479 0.333 0.264 86.49 74.79 0.360 0.308
25 0.477 0.330 0.261 85.69 74.08 0.355 0.305
30 0.477 0.329 0.261 85.43 73.89 0.357 0.306
35 0.475 0.328 0.261 85.27 73.99 0.357 0.307
40 0.474 0.328 0.261 85.22 74.06 0.356 0.306
45 0.473 0.328 0.261 85.29 74.14 0.357 0.306
50 0.472 0.328 0.262 85.29 74.33 0.357 0.307

Goodall / Euclidean

IOF / Euclidean

OF / Euclidean
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Appendix D 

 
Determinants of LGD given by a fractional response model with logistic link function and robust standard 

errors. It was fitted a model for the entire data set (“All data”) and models for the subsample of bonds only 

and for the subsample of loans only. Fitted models include all the explanatory variables (“Full model”). 

  

Fractional Response Model: Full model

All data Bonds Loans
coef. p-value coef. p-value coef. p-value

Instrument default amount 0.203 <0.001 0.182 0.001 0.207 0.001
Above (%) 0.062 0.405 0.188 0.022 -0.258 0.276
Cushion (%) -0.780 <0.001 -0.678 <0.001 -0.942 <0.001
Instrument amount / total debt (at default) 0.015 0.705 0.098 0.027 -0.328 0.001
Industry:

Automotive -2.021 <0.001 -1.631 <0.001 -2.524 <0.001
Chemicals -1.545 <0.001 -1.228 0.010 -2.453 <0.001
Construction -1.811 <0.001 -1.782 <0.001 -1.841 0.002
Consumer products -2.219 <0.001 -2.302 <0.001 -2.165 <0.001
Distribution -1.405 <0.001 -1.279 <0.001 -1.526 <0.001
Energy -2.932 <0.001 -2.943 <0.001 -2.243 <0.001
Environment -0.155 0.513 -0.367 0.239 -0.049 0.896
Healthcare -1.300 <0.001 -1.658 <0.001 -1.145 <0.001
Leisure & entertainment -1.987 <0.001 -1.746 <0.001 -2.662 <0.001
Manufacturing -2.268 <0.001 -2.284 <0.001 -2.137 <0.001
Media -2.320 <0.001 -2.286 <0.001 -3.021 <0.001
Metals & mining -1.306 <0.001 -1.113 0.001 -1.979 <0.001
Natural products -2.903 <0.001 -3.031 <0.001 -2.147 <0.001
Other -0.883 0.006 -0.747 0.052 -0.833 0.016
Services -2.158 <0.001 -2.316 <0.001 -1.761 <0.001
Technology -1.355 <0.001 -1.218 <0.001 -1.339 <0.001
Transportation -1.012 <0.001 -0.735 0.044 -15.725 <0.001

Instrument type:
Revolver -1.345 <0.001 - - -0.300 0.025
Senior Secured Bonds -0.798 0.02 -0.560 0.190 - -
Senior Subordinated Bonds 0.002 0.994 0.004 0.990 - -
Senior Unsecured Bonds -0.852 0.006 -0.785 0.013 - -
Subordinated Bonds -0.324 0.297 -0.290 0.358 - -
Term Loan -0.918 0.013 - - - -

Ranking in liability structure:
Ranking 1 1.461 0.101 1.727 0.041 14.804 <0.001
Ranking 2 1.861 0.034 1.925 0.020 15.533 <0.001
Ranking 3 2.052 0.019 2.037 0.013 17.600 <0.001
Ranking 4 2.601 0.004 2.613 0.003 - -
Ranking 5 3.131 0.003 2.667 0.006 33.661 <0.001
Ranking 7 1.305 0.364 1.133 0.416 - -

Collateral type:
All or most assets -0.210 0.292 -0.803 0.030 0.359 0.236
Capital Stock -0.090 0.679 -0.730 0.037 0.720 0.030
Inventory, accounts receivable, cash -2.095 <0.001 -1.279 0.275 -1.344 0.002
Other -0.183 0.601 0.589 0.191 -14.150 <0.001
PP&E -0.140 0.565 -0.459 0.236 0.342 0.387
Second and third lien 0.025 0.916 -0.164 0.582 0.218 0.748

Interest rate type:
Fixed -0.145 0.936 -0.747 0.055 - -
LIBOR -0.136 0.941 -1.054 0.030 0.494 0.063
Prime -0.201 0.912 - - 0.298 0.319
Treasury - - -0.715 0.645

Intercept 0.799 0.691 1.268 0.181 -14.750 <0.001
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Appendix D (cont.) 

 

Determinants o LGD given by a fractional response model with logistic link function and robust standard 

errors. It was fitted a model for the entire data set (“All data”) and models for the subsample of bonds only 

and for the subsample of loans only. Fitted models include only the set of explanatory variables which 

resulted from the technique presented in Appendix B.  

Fractional Response Model: Forward model

All data Bonds Loans
coef. p-value coef. p-value coef. p-value

Cushion (%) -0.786 <0.001 -0.734 <0.001 -0.916 <0.001
Instrument amount / total debt (at default) 0.048 0.169 0.080 0.043 -0.219 0.015
Industry:

Automotive -2.047 <0.001 -1.690 <0.001 -2.383 <0.001
Chemicals -1.710 <0.001 -1.398 0.002 -2.523 <0.001
Construction -1.884 <0.001 -1.876 <0.001 -1.804 0.002
Consumer products -2.312 <0.001 -2.399 <0.001 -2.186 <0.001
Distribution -1.547 <0.001 -1.393 <0.001 -1.657 <0.001
Energy -3.000 <0.001 -3.051 <0.001 -2.118 <0.001
Environment -0.253 0.291 -0.517 0.093 0.066 0.857
Healthcare -1.387 <0.001 -1.730 <0.001 -1.169 <0.001
Leisure & entertainment -2.117 <0.001 -1.846 <0.001 -2.800 <0.001
Manufacturing -2.386 <0.001 -2.408 <0.001 -2.182 <0.001
Media -2.470 <0.001 -2.431 <0.001 -3.130 <0.001
Metals & mining -1.456 <0.001 -1.297 <0.001 -2.081 <0.001
Natural products -2.987 <0.001 -3.141 <0.001 -2.180 <0.001
Other -1.001 0.002 -0.897 0.018 -0.770 0.025
Services -2.246 <0.001 -2.400 <0.001 -1.730 <0.001
Technology -1.465 <0.001 -1.273 <0.001 -1.521 <0.001
Transportation -1.124 <0.001 -0.840 0.021 -16.562 <0.001

Instrument type:
Revolver -1.323 <0.001 - - - -
Senior Secured Bonds -0.740 0.030 -0.675 0.112 - -
Senior Subordinated Bonds 0.007 0.982 -0.042 0.895 - -
Senior Unsecured Bonds -0.865 0.005 -0.887 0.004 - -
Subordinated Bonds -0.370 0.232 -0.374 0.233 - -
Term Loan -0.926 0.011 - - 0.291 0.030

Ranking in liability structure:
Ranking 1 -0.053 0.964 1.301 0.109 16.135 .
Ranking 2 0.437 0.706 1.733 0.032 16.704 .
Ranking 3 0.679 0.560 1.952 0.015 18.302 .
Ranking 4 1.247 0.291 2.583 0.002 - -
Ranking 5 1.810 0.168 2.683 0.005 35.059 .
Ranking 6 -1.300 0.364 - - - -
Ranking 7 - - 1.233 0.375 - -

Collateral type:
All or most assets -0.268 0.183 -0.699 0.059 0.302 0.313
Capital Stock -0.111 0.617 -0.690 0.052 0.776 0.017
Inventory, accounts receivable, cash -2.226 <0.001 -1.275 0.276 -1.496 0.001
Other -0.240 0.475 0.625 0.162 -15.019 <0.001
PP&E -0.222 0.366 -0.427 0.278 0.339 0.364
Second and third lien -0.069 0.768 -0.182 0.544 0.011 0.987

Interest rate type:
Fixed -0.123 0.946 -0.746 0.052 - -
LIBOR -0.003 0.999 -0.955 0.045 0.568 0.040
Prime -0.181 0.921 - - 0.217 0.478
Treasury - - -0.710 0.651 - -

Intercept 2.341 0.274 1.722 0.059 -16.105 .
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Appendix E  

 
In this appendix are presented the results of the k-NN forward model, for different k values. “All” refers to 

the entire URD data set and “Bonds” and “Loans” refers to a subsample including only bonds or loans, 

respectively. 

"Forward model" with weighted local model

Predictive accuracy measures

Model k
Average

LGD forecast
RMSE MAE RRSE RAE wRMSE wMAE

Historical average - 0.441 0.385 0.353 1.000 1.000 0.374 0.340

5 0.479 0.358 0.272 0.932 0.771 0.362 0.277
10 0.480 0.334 0.260 0.869 0.737 0.342 0.269
15 0.481 0.329 0.260 0.856 0.736 0.338 0.270
20 0.482 0.327 0.258 0.851 0.731 0.336 0.268
25 0.482 0.327 0.257 0.850 0.728 0.336 0.267
30 0.482 0.326 0.256 0.848 0.727 0.336 0.268
35 0.479 0.326 0.256 0.847 0.727 0.336 0.269
40 0.480 0.325 0.256 0.846 0.725 0.335 0.268
45 0.479 0.325 0.257 0.846 0.728 0.334 0.267
50 0.478 0.325 0.256 0.845 0.727 0.333 0.267

5 0.634 0.401 0.316 1.043 0.896 0.405 0.320
10 0.643 0.375 0.301 0.976 0.854 0.383 0.307
15 0.649 0.370 0.301 0.963 0.852 0.378 0.306
20 0.653 0.370 0.299 0.962 0.848 0.378 0.303
25 0.657 0.371 0.298 0.965 0.845 0.379 0.304
30 0.658 0.370 0.298 0.963 0.845 0.379 0.306
35 0.658 0.370 0.300 0.962 0.849 0.378 0.305
40 0.659 0.369 0.298 0.960 0.846 0.378 0.305
45 0.659 0.370 0.300 0.961 0.852 0.378 0.305
50 0.659 0.370 0.301 0.961 0.854 0.377 0.306

5 0.267 0.291 0.208 0.756 0.589 0.288 0.220
10 0.273 0.284 0.209 0.738 0.594 0.286 0.231
15 0.290 0.288 0.219 0.749 0.621 0.283 0.234
20 0.308 0.292 0.230 0.760 0.653 0.292 0.246
25 0.383 0.293 0.211 0.762 0.597 0.322 0.246
30 0.331 0.301 0.245 0.781 0.695 0.305 0.262
35 0.340 0.304 0.252 0.791 0.714 0.311 0.269
40 0.348 0.308 0.257 0.802 0.729 0.316 0.275
45 0.357 0.312 0.262 0.811 0.744 0.318 0.278
50 0.367 0.317 0.269 0.824 0.764 0.321 0.282

BONDS

LOANS

ALL


