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Abstract

This paper presents an alternative technique for financial distress prediction sys-
tems. The method is based on a type of neural network, which is called hybrid
associative memory with translation. While many different neural network archi-
tectures have successfully been used to predict credit risk and corporate failure, the
power of associative memories for financial decision-making has not been explored
in any depth as yet. The performance of the hybrid associative memory with trans-
lation is compared to four traditional neural networks, a support vector machine
and a logistic regression model in terms of their prediction capabilities. The exper-
imental results over nine real-life data sets show that the associative memory here
proposed constitutes an appropriate solution for bankruptcy and credit risk predic-
tion, performing significantly better than the rest of models under class imbalance
and data overlapping conditions in terms of the true positive rate and the geometric
mean of true positive and true negative rates.

Keywords: Associative memory, Neural network, Financial distress, Bankruptcy,
Credit risk

1. Introduction

A large number of techniques have been developed to help decision-makers
and analysts in predicting financial distress. Traditionally, decisions on credit risk
of a corporate borrower were exclusively based upon subjective judgments made
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by human experts, using past experiences and some guiding principles [69]. How-
ever, two major problems with this approach are the difficulty to make consistent
estimates and the fact that it tends to be reactive rather than predictive. The world
financial crisis has led to increasing attention of banks and financial institutions
on this question because of its significant impact on the decisions made [14], re-
sulting in the development of numerous techniques to face the important challenge
of credit risk and bankruptcy prediction from financial ratios using mathematical
models. From the pioneer work by Altman [7], based on multivariate discrimi-
nant analysis, a variety of statistical and operations research methods have sub-
sequently been applied to credit risk and bankruptcy prediction, including linear
and logistic regression, multivariate adaptive regression splines, survival analysis,
linear and quadratic programming, and multiple criteria programming. Most of
these techniques typically rely on the assumptions of linear separability, multivari-
ate normality and independence of the predictive variables, but they are very often
violated in real-life problems [25, 34, 55].

Popular computational intelligence tools such as decision trees, neural net-
works, support vector machines, fuzzy systems, rough sets, artificial immune sys-
tems, and evolutionary algorithms are techniques that can deal with non-linearity.
Besides, these methods are highly capable of extracting meaningful information
from imprecise data and detecting trends that are too complex to be discovered
by either humans or conventional systems. Despite various studies have con-
cluded that no technique is clearly superior to other competing algorithms be-
cause it depends on the characteristics of the problem analyzed [13, 15, 16], dif-
ferent neural network architectures have shown good performance in comparison
to other methods for a range of financial applications [10, 19, 48, 53, 78]. How-
ever, when the number of examples is relatively small, several works have demon-
strated that the accuracy and generalization performance of a support vector ma-
chine (SVM) is usually better than that of statistical and other soft computing tech-
niques [23, 24, 65, 67]. While typical neural networks used in this context are the
multi-layer perceptron (MLP), the radial basis function (RBF) and the probabilistic
or Bayesian network (BN), other neural models such as the associative memories
have not been explored as yet.

The ability of human brain to make associations from partial information has
historically attracted great interest among researchers, leading to a variety of the-
oretical neural networks that act as associative memories. An associative mem-
ory [39] is an early type of artificial neural network that relates an input vector x
with an output vector y. The functionality of associative memories is reached in
two phases: learning and recall. The learning process consists of building a con-
nection matrix W with a value for each association (xk,yk). In the recall phase,
an output vector y, which corresponds to the most similar to the input vector x, is
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obtained from the associative memory. These models are powerful computational
tools due to their conceptual and implementational simplicity, their strong mathe-
matical foundation, and their capability of storing huge amounts of data that allow
to properly recover the most similar patterns to an input vector with low computa-
tional efforts [77].

Representative examples of associative memories are lernmatrix [66], the lin-
ear associator [8, 38], the Moore-Penrose generalized inverse associative mem-
ory [40], the Hopfield network [28], the bidirectional associative memory [41], the
fuzzy associative memory [42], the morphological associative memory [58], and
the alpha-beta associative memory [2]. Some of these models have been used to
solve very different problems. Sabourin and Mitiche [59] developed a Kohonen
associative memory with selective multiresolution for OCR. A fuzzy associative
memory was introduced to determine rock types from well-log signatures [17]. The
bidirectional associative memory networks were used to find the relations between
various cancers and elemental contents in serum samples with the aim of diagnos-
ing cancer [81]. A hybrid classifier based on self-organizing maps and associative
memories was designed for speaker recognition [31]. Zhang et al. [79] proposed
a modular face recognition scheme by combining the wavelet subband represen-
tations and kernel associative memories. An associative memory based on the re-
stricted Coulomb energy was also applied to human face recognition [49]. Namba
and Zhang [50] devised an associative memory to recognize Braille images. A
novel system for medical diagnosis based on associative memories was proposed
by Aldape-Pérez et al. [5]. Itkar and Kulkarni [32] developed an efficient algorithm
for mining frequent patterns using an auto-associative memory.

Apart from the associative memories just mentioned, Santiago-Montero [63]
introduced the hybrid associative classifier and its extension, the hybrid associative
classifier with translation (HACT). Both these associative memories are based on
the learning phase of the linear associator and the recall phase of the Steinbuch’s
lernmatrix. This paper applies the HACT neural network to decision making prob-
lems for financial distress prediction and presents an empirical comparison with
other popular prediction methods. To the best of our knowledge, this model has
not been used for classification purposes, and even less in the context of finance
and management. The aim of this paper therefore is four-fold:

1. To explore the capability of the HACT model in the prediction of bankruptcy
and credit risk;

2. to analyze the behavior of this neural network under the presence of im-
balance in class distribution, which constitutes a data complexity often ne-
glected in financial applications;

3. to investigate how the class overlapping affects the performance of the asso-
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ciative memory; and
4. to compare the performance of HACT with that of other prediction tech-

niques.

From now on, the paper is organized as follows. Section 2 provides a review
of works related to neural networks used for corporate bankruptcy and credit risk
prediction. Section 3 introduces the fundamental concepts of the associative mem-
ories and describes the bases of the HACT model. The experimental set-up and
databases are given in Section 4, while the results are discussed in Section 5. Fi-
nally, Section 6 presents the concluding remarks and outlines some directions for
future research.

2. A review of neural networks applied to financial distress prediction

From the beginning of the 1990’s, the development of artificial neural network
technologies for bankruptcy and credit risk prediction problems has been the sub-
ject of considerable attention and research efforts. The first reference to using neu-
ral networks can be found in the paper by Odom and Sharda [51], showing that a
three-layer feed-forward perceptron is more accurate and robust than multi-variate
discriminant analysis. After this seminal work, many other studies have proposed
the use of neural networks in credit scoring, bankruptcy or business failure predic-
tion. For instance, Tam and Kiang [68] compared neural network models to linear
discriminant analysis, logistic regression, nearest neighbors and decision tree for
evaluating bank status. Salchenberger et al. [61] reported that the neural networks
produced fewer or equal number of total errors, type-I errors and type-II errors
compared to the logit model. Lacher et al. [43] investigated the use of the Cascade-
Correlation neural network architecture and compared its performance with that
of the multivariate discriminant analysis approach. Chang et al. [18] applied the
theory and numerical algorithms of the BN to risk scoring and compared the re-
sults with traditional methods for computing scores and posterior predictions of
performance variables.

Desai et al. [22] concluded that the MLP and the modular neural network can
be especially useful to correctly predict the bad loans, but logistic regression mod-
els are comparable to the neural networks when the performance is measured by the
percentage of good and bad loans correctly classified. West [74] analyzed the credit
scoring accuracy of the MLP, the RBF network and several statistical techniques,
suggesting that the MLP may not be the most accurate neural network model. An
auto-associative memory trained with only data of non-bankrupt firms was devel-
oped by Baek and Cho [11]. Baesens et al. [12] used Markov Chain Monte Carlo
search to learn unrestricted Bayesian network classifiers for credit scoring, which
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gave a very good performance in terms of accuracy and area under the ROC curve.
Also, Leong [46] showed that the BN performs well against logistic regression and
MLP particularly with class imbalance, higher dimensions and a rejection sample,
and it can be scaled efficiently when implemented onto a large data set.

The power of probabilistic and MLP neural networks was compared to that of
discriminant analysis, probit analysis and logistic regression to evaluate credit risk
in Egyptian banks [1]. Khashman [36] explored various back-propagation learning
schemes to train three models (each with a different number of hidden neurons) of
a three-layer supervised neural network. Angelini et al. [9] developed two neural
network systems with a four-layer feed-forward topology, proving their applica-
bility to credit risk prediction. An algorithm based on the threshold accepting
meta-heuristic to train the principal component neural network architecture was
investigated by Ravi and Pramodh [56], who inferred that their proposal outper-
formed other classifiers.

Lee and Chen [44] developed a credit scoring system using a hybrid mod-
eling procedure with artificial neural networks whose input nodes were the vari-
ables obtained by multivariate adaptive regression splines. Hsieh [29] designed a
credit scoring model that employed the SOM and K-means clustering algorithms
to obtain the best inputs to a feed-forward MLP. Similarly, Lee et al. [45] explored
the performance of credit scoring by integrating the linear discriminant analysis
approach into a three-layer back-propagation neural network, revealing that the
proposed hybrid approach converges much faster than the conventional neural net-
work model and outperforms the discriminant analysis and logistic regression ap-
proaches. Cheng et al. [20] adopted an RBF to construct the financial prediction
model and then carried out a logit analysis on the groups of similar firms present
in the hidden layer of the network.

Chuang and Lin [21] proposed a reassigning credit scoring model involving
two-stages: the classification stage builds a neural network-based credit scoring
model, which classifies applicants with good or bad credits; then the reassign stage
tries to reduce the type-I error by reassigning the rejected good credit applicants to
the conditional accepted class by using a case-based reasoning classification tech-
nique. Khashei et al. [35] employed basic concepts of fuzzy logic and MLP neural
networks to implement a hybrid binary credit risk prediction model, where fuzzy
numbers were used so that the uncertainties and complexities in financial data sets
can be better modeled. The emotional neural networks were successfully applied to
credit scoring and evaluation [37], showing higher accuracy and lower computing
time than the conventional neural models based on the back-propagation learning
algorithm.

Another research direction refers to the application of ensembles of neural net-
works to credit scoring and bankruptcy prediction problems. For instance, West
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et al. [75] investigated bagging and boosting with the MLP as the base classifier
and found that the ensembles were superior to the single best model in most cases.
Conversely, Tsai and Wu [72] concluded that the single best neural network is more
suitable than multiple neural network classifiers. Yu et al. [78] employed bagging
with three-layer back-propagation neural networks. Hung and Chen [30] proposed
a selective ensemble of three classifiers (decision tree, back-propagation neural
network and support vector machine) integrated with the concept of the expected
probability, showing that it performs better than other stacking ensembles using the
weighting or voting strategies. Tsai et al. [70] carried out an extensive comparison
of ensembles using MLP, support vector machines and decision trees as the base
classifiers for bagging and boosting, suggesting that boosting with decision trees
perform significantly better than the other ensembles.

Apart from the many proposals for using different neural network architectures,
we can find numerous comprehensive reviews and comparative studies related to
credit risk and bankruptcy prediction where the neural network approaches have
played an important role. Zhang et al. [80] reviewed the application of neural net-
works to predict corporate distress and studied their robustness in terms of sam-
pling variability. Atiya [10] gave a thorough survey on the problem of bankruptcy
prediction using neural networks and claimed the superiority of these models over
other techniques. Verikas et al. [73] presented a comprehensive review of hybrid
and ensemble-based soft computing techniques applied to bankruptcy prediction.
One of the most complete benchmarking studies of classification algorithms in
credit scoring is the one by Baesens et al. [13], which has further been extended
with novel learning methods, performance measures and techniques to reliably
compare different classifiers [47]. It is also interesting to highlight the paper
by Brown and Mues [16], in which an exhaustive comparison of prediction tech-
niques for imbalanced credit scoring data sets was presented.

3. Hybrid associative classifier with translation

In its most general form, an associative memory is a content-addressable neu-
ral network based on matrix algebra [39, 57] that maps input patterns (examples)
to output patterns by using the p different associated pattern pairs (xk,yk) stored
during the learning phase. The associative memory takes the form of a connection
weight matrix W = [wi,j]m×n generated from a finite set of p encoded associa-
tions, called fundamental set of associations, {(xµ,yµ) | µ = 1, 2, . . . , p}, where
xµ ∈ Rn are the fundamental input patterns of dimension n and yµ ∈ Rm are the
the fundamental output patterns of dimension m. Then, xµj and yµi denote the j-th
component of an input pattern xµ and the i-th component of an output pattern yµ,
respectively.
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The associative memories can be of two types depending on the retrieved pat-
tern: hetero-associative (e.g., lernmatrix and linear associator) and auto-associative
(e.g., Hopfield network). A hetero-associative memory relates input patterns with
output patterns of distinct nature and formats (xµ ̸= yµ), while an auto-associative
memory is a particular case where xµ = yµ and n = m.

The HACT neural network is an associative memory that merges the learning
(or encoding) phase of the linear associator with the recall (or decoding) phase of
the Steinbuch’s lernmatrix to exploit their strengths and improve the performance
of the classifier. Basically the main advantages of HACT over its predecessors are:
(i) the HACT model allows to operate with real-valued input patterns, while the
lernmatrix only supports the binary values 0 and 1; and (ii) the input vectors are
not required to be orthonormal, unlike those in the linear associator.

At this point it is worth stressing that the HACT approach cannot be deemed
as a hybrid or combining prediction model in the sense of traditional hybridiza-
tion. In general, hybrid learning methods are understood as systems that combine
two or more different techniques in order to benefit from the synergistic effect be-
tween the individual components [71, 76]. For instance, a hybrid prediction model
may consist of one unsupervised learner to pre-process the training data into ho-
mogeneous clusters and one supervised algorithm to build the classifier from the
clustering result [29, 71], or it may use a feature selection strategy to choose the
most relevant explanatory variables and then these are employed to design the pre-
dictor [44, 45, 56], or even it may be built from different cascading predictors in
order to build an ensemble of classifiers [20, 21, 35]. However, as already de-
scribed previously, the HACT model simply makes use of the fundamental ideas
of two types of associative memories (one for the learning phase and the other for
the recall phase), but there is not hybridization between them.

3.1. Learning phase

The learning phase of the HACT model, which is based on that of the linear
associator, consists of constructing a matrix W such that when an input pattern xµ

is presented, the stored pattern yµ associated with the input pattern is retrieved.
This process comprises two basic steps:

1. For each association (xµ,yµ) in the fundamental set, compute the outer
product yµ(xµ)T , where (xµ)T is the transpose of the input vector xµ.

2. Sum the p outer products to obtain the matrix W = α
∑p

µ=1 y
µ(xµ)T ,

where α is the normalizing constant (usually set to 1/p). The (i, j)-th com-
ponent of W is defined as wi,j =

∑p
µ=1 y

µ
i x

µ
j .
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Unlike the standard hybrid associative memory, the HACT model incorporates
an initial step in the learning phase, which consists of a translation of the coordi-
nate axes to a new origin located at the centroid of the fundamental input patterns.
The aim of shifting the fundamental set is the representation of the fundamental
input patterns in a new n-dimensional space where patterns belonging to two dif-
ferent classes are located diametrically opposite to each other and the midpoint of
the diameter is defined by the mean vector x. This should allow for a better clas-
sification result because patterns of different classes will presumably be grouped
quite far apart in different quadrants [63].

Let A = {x1,x2, . . . ,xp} be a set of n-dimensional fundamental input patterns
that belong to m classes, and let Â = {x̂1, x̂2, . . . , x̂p} be the corresponding set
of fundamental input patterns that have been translated to the new origin x. The
implementation of the learning phase of HACT to construct the connection weight
matrix W is described in Algorithm 1.

Algorithm 1 HACT learning phase
1: s← 0
2: for all xµ ∈ A do
3: s← s+ xµ

4: end for
5: x← s/p {x is the new origin of the coordinate axes}
6: for all xµ ∈ A do
7: x̂µ ← xµ − x {Translate the input patterns to the new coordinate axes}
8: k ← 1

{Assign an output vector of size m to patterns that belong to class k}
9: while k ≤ m do

10: if class(x̂µ) = k then
11: yµ

k = 1
12: else
13: yµ

k = 0
14: end if
15: end while
16: end for
17: W← 0
{Apply the learning phase of the linear associator}

18: for all (x̂µ,yµ) do
19: W←W + (yµ)(x̂µ)T

20: end for

3.2. Recall phase

Assume that the matrix W has been constructed by using Algorithm 1, then the
classification of a new input pattern x will consist of two steps: (i) the application
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of the same translation to x as that used in the learning phase (step 7) in order to
obtain x̂, and (ii) the use of the recall phase of lernmatrix in order to assign x to a
class.

The recall or decoding phase consists of determining the components of the
vector yµ associated to a given input pattern xµ. The i-th component yµi of the
class vector yµ is calculated by means of the following bipolar output function:

yµi =

{
1 if

∑n
j=1 wi,j x̂

µ
j = maxph=1

[∑n
j=iwh,j x̂

µ
j

]
0 otherwise

(1)

If a given input vector x̂µ is assigned to class k, this expression leads to an
m-dimensional output vector yµ with its k-th component equal to 1 (yµk = 1) and
all the remaining components equal to zero (yµj = 0 for j = 1, 2, . . . , k − 1, k +
1, . . . ,m).

It is worth pointing out that, despite an input pattern may contain errors and
noise, the HACT model will still be able to retrieve the closest stored output pattern.
Like most associative memories in general [52], the HACT network also shows a
robust and fault tolerant behavior, which means that noise or errors will cause a
certain decrease in generalization performance rather than a total degradation of
the classifier effectiveness.

4. Experimental set-up

Nine data sets related to bankruptcy/creditworthiness have been employed in
order to make a comprehensive comparison of the HACT model with four well-
known neural networks (MLP, RBF, BN and the voted perceptron, VP), whose
architectures and parameter settings are reported in Table 1. In addition, an SVM
with a linear kernel (widely acknowledged as one of the best soft computing tech-
niques) and the logit model (a classical econometric method) have also been in-
cluded in this study. Note that, except for the HACT technique, the WEKA [27]
and KEEL [3, 4] data mining and knowledge discovery suites have been used to
conduct our experiments. Table 2 summarizes the main characteristics of the ex-
perimental databases, including the amount of explanatory variables with the num-
ber of categorical variables given in brackets, the percentage of default cases (a
measure of imbalance in class distribution) and the Fisher’s discriminant ratio (F1)
whose value determines how well the two classes are separated from each other
(the higher the value of F1, the easier the classification problem).

The Australian, German and Japanese data sets are from the UCI Machine
Learning Database Repository (http://archive.ics.uci.edu/ml/). The
Iranian data set comes from a modification to a corporate client database of a small
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Table 1: Parameter values used in the prediction models

MLP Learning rate = 0.3; Momentum = 0.2; Training time = 500; Hidden
layers = (variables + classes)/2

RBF Normalized Gaussian RBF; Center vectors of the functions determined
using K-means clustering

BN Initial count for estimating the conditional probability tables = 0.5;
Naive Bayes network used as the initial structure; Bayesian Dirichlet
score to evaluate the structure learned

VP Linear kernel; Maximum number of alterations to the perceptron =
10000; Number of iterations = 1

SVM Linear kernel; Complexity = 1.0: Tolerance = 0.001; Epsilon = 1.0E-12
Logit Multinomial logistic regression; Quasi-Newton optimization method;

Ridge value in the log-likelihood = 1.0E-8

private bank in Iran [60]. The Polish data set contains bankruptcy information of
120 companies recorded over a two-year period [54]. The SabiSPQ database [6]
contains business information of 1180 companies whose accounts are placed on
the Spanish Mercantile Registry. The Thomas data set [69] describes applicants
for a credit product. The UCSD data set is a reduced version of a database used in
the 2007 Data Mining Contest. The USA database [64] consists of the accounting
statements from 8293 banks recorded by the Federal Deposit Insurance Corpora-
tion.

Table 2: Some characteristics of the data sets used in the experiments

Data set Variables Default/non-default cases % Default cases F1

Australian 14(8) 307/383 44.5 2.33
German 24(21) 300/700 30.0 0.35

Japanese 15(9) 296/357 45.3 2.54
Iranian 27(4) 50/950 5.0 0.36
Polish 30(0) 112/128 46.7 0.70

SabiSPQ 19(3) 590/590 50.0 3.19
Thomas 12(4) 323/902 26.4 0.18

UCSD 38(6) 599/1836 24.6 0.42
USA 17(0) 320/7973 3.9 0.94

The common way to assess the performance of financial distress prediction
systems when databases are small or medium sized corresponds to k-fold cross-
validation [26]. Accordingly, a 10-fold cross-validation has been adopted for the
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experiments: each original data set has been randomly divided into ten stratified
parts of equal (or approximately equal) size. For each fold, nine blocks have been
pooled as the training data, and the remaining part has been employed as an inde-
pendent test set. Stratification has been used to preserve the class proportions of
the whole data set into each one of the subsets obtained by the sampling method,
thus reducing the prior probability of data set shift and the variance in the estima-
tion process [62]. The results from classifying the test samples using the training
sets have been averaged across the ten runs and then evaluated for significant dif-
ferences between models by means of statistical tests.

4.1. Evaluation scores

Standard performance evaluation scores in many financial applications as is the
case of bankruptcy and credit risk prediction are usually calculated from a 2 × 2
confusion matrix (see Table 3), where each entry (i, j) contains the number of
correct/incorrect predictions.

Table 3: Confusion matrix for a binary classification problem

Predicted as positive Predicted as negative

Positive class True Positive (TP) False Negative (FN)
Negative class False Positive (FP) True Negative (TN)

Most prediction systems often employ the accuracy as the criterion for perfor-
mance evaluation. It represents the proportion of the correctly predicted cases (pos-
itive and negative), Acc = (TP+TN)/(TP+FN+TN+FP ), but it is strongly
biased towards the majority class when data are skewed [33]. As bankruptcy and
credit risk databases are commonly imbalanced, alternative measures have been
used with the aim of obtaining a trade-off between the performance evaluation on
both classes. A well-known example is the geometric mean of the true positive and
true negative rates:

Gmean =
√
TPR · TNR (2)

where TPR = TP/(TP+FN) is the true positive rate (the percentage of default-
ers that are correctly predicted) and TNR = TN/(TN +FP ) is the true negative
rate (percentage of non-defaulters that are correctly classified).

Overall performance scores such as accuracy and geometric mean help decision-
makers to compare firms or borrowers against each other, but neglecting the cost of
different error types. Thus two of the most popular measures to predict corporate or
credit default are the true positive and true negative rates, which concentrate only
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on a part of the data and therefore, exhibit performance results on each class sep-
arately. This is especially important for this kind of financial applications because
of the different misclassification costs associated to false positives and false nega-
tives: the cost of predicting a defaulter as non-defaulter is generally much higher
than the expected cost of false positives (non-defaulters classified as defaulters).

5. Experimental results and discussion

Table 4 reports the true positive rate averaged across the 10 runs for each
database, the average values across all the databases and the Friedman’s average
rank for each neural network approach (the one with the lowest average rank has to
be deemed as the best solution). The values for the best performing method in each
database are underlined. Based on the Friedman’s average ranks, the results reveal
that the HACT model corresponds to the algorithm with the best performance, fol-
lowed by MLP and the logit method. What is more interesting, however, is that the
associative memory has been the best in 6 out of the 9 databases, demonstrating
the benefits of applying this technique to the prediction of financial distress.

Table 4: True positive rate and Friedman’s average rank

HACT MLP BN RBF VP SVM Logit

Australian 92.50 80.78 81.09 72.31 89.60 92.53 86.97
German 79.30 47.67 41.34 48.00 39.34 46.67 47.67
Iranian 72.00 10.00 0.00 0.00 2.00 0.00 6.00
Japanese 93.60 81.71 80.68 76.22 92.20 93.90 89.13
Polish 80.45 73.39 75.05 68.85 66.89 75.23 72.42
SabiSPQ 77.25 99.15 84.57 80.84 94.74 100 99.15
Thomas 64.40 18.83 10.87 3.40 4.05 0.00 9.91
UCSD 86.00 60.97 80.32 7.87 53.27 55.77 65.11
USA 97.60 44.81 82.17 23.50 25.71 15.96 39.14

Average 82.57 57.48 59.57 42.33 51.98 53.84 57.28
Rank 1.8889 3.5556 4.2222 5.8889 4.8889 3.8889 3.6667

In order to make easier the comparison of the neural networks in terms of TPR,
Figure 1 contains a spider plot showing the relationship between the true positive
rate and the complexity of the problem: each radius represents a database and each
star corresponds to a model. The databases have been placed in clockwise order
from the most to the least complex problem based on the value of the percentage of
default cases (a) and F1 (b). The performance of a model on a database is calculated
as the distance from the center and therefore, a higher area corresponds to a better
algorithm in terms of TPR. As can be seen, HACT has performed significantly
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better than the other techniques especially with the most complex databases, while
there have not been differences when applied to the “easiest” problems.
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Figure 1: Spider plot of true positive rates

Table 5 includes the true negative rates and the Friedman’s average rank for
each model. Again the best values in each database are underlined. It is inter-
esting to compare these results with those in Table 4 with the purpose of better
understanding the behavior of each method in function of class imbalance and
overlapping. For instance, the only case where HACT has performed the worst
in terms of TPR is the SabiSPQ database, which corresponds to a non-complex
problem with perfectly balanced (50% of default cases) and well-separated classes
(F1 = 3.19). Here logistic regression appears to be the best performing algorithm
(TPR = 99.15, TNR = 99.49) since differences in true negative rates are not signif-
icant at all. Quite the contrary, when the classes are strongly imbalanced (Iranian,
USA) and/or overlapped (German, Iranian, Thomas), the associative memory has
made significantly better predictions on the default cases than any other method, as
reflected by the high differences in the true positive rates. In these cases, the other
techniques have in general achieved very high true negative rates (correct predic-
tions on non-defaulters), but failed in the classification of the minority class. Three
representative examples of this situation are the BN, RBF and SVM approaches
applied to the Iranian database (5% of default samples and F1 = 0.36), which have
reached a perfect classification of non-default cases (TNR ≃ 100) while mispre-
dicting the class of all default patterns (TPR = 0). Similar comments can be made
with regard to the Thomas database (26.4% of defaulters and F1 = 0.18) where
MLP, BN, RBF, VP, SVM and logit have achieved high true negative rates (94% –
100%) and very low true positive rates (0% – 19%), whereas the associative model
has shown a significant trade-off between both performance rates.

With the aim of checking whether or not the TPR results are significantly dif-
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Table 5: True negative rate and Friedman’s average rank

HACT MLP BN RBF VP SVM Logit

Australian 80.40 86.95 90.89 90.59 81.97 79.92 85.15
German 62.14 81.44 84.87 84.70 91.00 89.14 88.00
Iranian 56.40 98.50 99.47 100 99.89 100 99.16
Japanese 80.90 84.79 90.41 88.10 82.80 80.05 84.80
Polish 59.50 81.14 71.00 75.13 73.58 67.37 75.13
SabiSPQ 100 98.81 99.49 98.30 99.83 90.51 99.49
Thomas 47.00 94.02 97.47 97.47 97.69 100 97.12
UCSD 58.00 88.72 80.18 97.16 92.16 32.10 91.07
USA 53.70 99.08 93.19 99.26 99.68 99.91 99.41

Average 66.45 90.38 89.66 92.30 90.96 88.78 91.04
Rank 6.1111 4.5556 3.7778 3.0556 2.8889 3.9444 3.6667

ferent, the Iman-Davenport’s statistic has been computed. This is distributed ac-
cording to an F -distribution with K − 1 and (K − 1)(N − 1) degrees of freedom,
where K denotes the number of models and N is the total number of data sets.
The p-value computed by F (6, 48) was 0.002955595039, which is less than a sig-
nificance level of α = 0.05. Therefore, the null-hypothesis that all the prediction
techniques perform equally well can be rejected. As the Iman-Davenport’s statistic
only allows to figure out differences among all methods, we have also carried on
with the Holm’s and Li’s post hoc tests using the HACT model (the one with the
lowest Friedman’s rank) as the control algorithm.

Table 6: Post hoc comparisons over the results of Friedman’s test for the true positive rates

i Model z p-value Holm’s Li’s

6 RBF 3.927922 0.000086 0.008333 0.047279
5 VP 2.945942 0.00322 0.01 0.047279
4 BN 2.291288 0.021947 0.0125 0.047279
3 SVM 1.963961 0.049535 0.016667 0.047279
2 Logit 1.745743 0.080856 0.025 0.047279
1 MLP 1.636634 0.101707 0.05 0.05

Values in Table 6 show that the Holm’s procedure rejects the null-hypothesis of
equivalence for those methods that have an unadjusted p-value ≤ 0.0125, proving
that HACT has been significantly better than RBF and VP at a significance level
of α = 0.05. On the other hand, the Li’s post hoc test rejects those hypotheses
that have an unadjusted p-value ≤ 0.047279, indicating that HACT has performed
significantly better than RBF, VP and BN. Therefore, it is possible to conclude that
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the associative memory is statistically equivalent to SVM, logit and MLP, while
significantly better than the remainder of the neural networks in terms of the true
positive rate.

For each database, Figure 2 displays all the prediction models in the space
spanned by the true positive rate on the x-axis and the true negative rate on the
y-axis. A method with perfect prediction will be located on the upper right cor-
ner (100% TPR, 100% TNR) of the plot. Therefore the closer the classifier is to
the upper right corner, the higher the performance on both classes. However, in
financial distress applications it is preferable not to miss a defaulter rather than
a non-defaulter, which means that it is more important to maximize TPR (points
close to the right side) than to maximize TNR (points close to the upper side).
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Figure 2: True positive rates versus true negative rates

In line with our previous findings, one can observe in Figure 2 that the associa-
tive memory mostly lies the closest to the right side of the chart and in general, it is
not too far from the other models in terms of TNR. Very remarkable cases are the
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Iranian and Thomas databases where all techniques except HACT are very close to
the upper left corner of the plot, which reveals that they have misclassified almost
all the default patterns. Note that the classes in these both databases are strongly
imbalanced and highly overlapped. A similar behavior can be viewed on the Ger-
man, UCSD and USA databases, which correspond to data with high/moderate
imbalance and/or high overlapping between classes.

Table 7: Geometric mean and Friedman’s average rank (the values for the best performing technique
on each database are underlined)

HACT MLP BN RBF VP SVM Logit

Australian 86.24 83.81 85.85 80.94 85.70 85.99 86.06
German 70.20 62.31 59.23 63.76 59.83 64.50 64.77
Iranian 63.72 31.38 0.00 0.00 14.13 0.00 24.39
Japanese 87.02 83.24 85.41 81.94 87.37 86.70 86.94
Polish 69.19 77.17 73.00 71.92 70.16 71.19 73.76
SabiSPQ 87.89 98.98 91.73 89.14 97.25 95.14 99.32
Thomas 55.02 42.08 32.55 18.20 19.89 0.00 31.02
UCSD 70.63 73.55 80.25 27.65 70.07 71.67 77.00
USA 72.40 66.63 87.51 48.30 50.62 39.93 62.89

Average 73.59 68.79 66.17 53.54 61.67 57.24 67.29
Rank 3.0000 3.3333 3.8889 5.8889 4.5556 4.7778 2.5556

The averaged geometric means of the performance on both classes in Table 7
show that the HACT method has achieved the highest balanced trade-off between
the true positive and true negative rates. The associative memory has been the best
in 4 out of the 9 databases, and it is still very close to the VP algorithm on the
Japanese data. The fact that the probabilistic neural network, the RBF model and
the SVM show a geometric mean of 0 on the very strongly skewed Iranian database
is because these methods have obtained a TPR = 0 (i.e., they have predicted all
cases as non-defaulters), as already discussed with the results in Tables 4 and 5.

The low Friedman’s average rank of HACT in Table 7 corroborates that this
neural model is also one of the best performing methods in terms of an overall
score. In this case, however, logistic regression shows the lowest Friedman’s aver-
age rank, while the MLP and BN models are very close to HACT. Finally, the RBF,
SVM and VP approaches have been the techniques with the poorest performances,
as already seen with the Friedman’s ranks calculated on the true positive rate.
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6. Conclusions and future work

From the first works in the beginning of the 1990’s, the artificial neural net-
works emerged as an effective method for bankruptcy and credit risk prediction.
They differ from classical financial prediction systems, such as the models based
on statistical techniques, mainly in their black-box nature and in the assumption of
a non-linear relation among variables. In this paper, the hybrid associative memory
with translation has been explored and compared to other well-known neural mod-
els (MLP, RBF, BN and VP), a generally well-performing soft computing technique
(SVM) and a common econometric model (logit).

The experimental results over nine real-life financial databases suggest that the
associative memories can be an appropriate approach to prediction of financial dis-
tress, especially in the case of databases where the classes are strongly imbalanced
and/or overlapped. The HACT neural network has obtained the highest true pos-
itive rates, which means that this model predicts the default cases better than the
remainder of the methods here analyzed. When evaluated with the geometric mean
of both rates, HACT has still shown to be an appropriate solution, revealing that
the degradation of the true negative rate has not been abrupt.

There are several very interesting open research questions to work on. For in-
stance, a more thorough and extensive analysis on the HACT model with a large
pool of prediction techniques such as instance-based learners and decision trees
deserves further consideration. Another avenue for future research is to study the
performance of other well-known associative memories (e.g., the Hopfield net-
work and the bidirectional associative memory) when applied to the prediction of
financial distress. Other issues include to investigate the potential of ensembles of
associative memories, both using these as the only base classifier and also together
with other prediction models.
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