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Abstract

In this paper we propose a tensor based description of the Bézier Shape Deformation (BSD) algo-
rithm, denoted T-BSD. The BSD algorithm is a well-known technique, based on the deformation
of a Bézier curve through a field of vectors. A critical point in the use of real-time applications
is the cost in computational time. Recently, the use of tensors in numerical methods has been
increasing because they drastically reduce computational costs. Our formulation based in tensors
T-BSD provides an efficient reformulation of the BSD algorithm. More precisely, the evolution of
the execution time with respect to the number of curves of the BSD algorithm is an exponentially
increasing curve. As the numerical experiments shown, the T-BSD algorithm transforms this evo-
lution into a linear one. This fact allows to compute the deformation of a Bézier with a much lower
computational cost.
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1. Introduction

One of the most important facts in engineering applications is the cost in computational time.
A critical point appearing in this context is related to real-time processes. In consequence, one
of the main goals is to develop algorithms that reduce, as much as possible, the execution time of
existing real-time algorithms.

The numerical methods to solve these kind of problems are related with the classical matrix
theory (see Bellman (1987)) and linear system theory (see Zadeh and Desoer (1963)). The coeffi-
cient matrices arising from the discretization of physical models are, in general, sparse; i.e., only
a bounded number of entries per row or column do not vanish. To solve such linear systems is
preferably the use of iterative methods, which in contrast to direct methods do not change the spar-
sity of the matrix during the computation. On the other hand, Krylov subspace methods requires
only the ability to multiply the coefficient matrix by a given vector. However, its convergence is
determined by the spectrum of the matrix. and hence for some linear systems arising in physical
modelling the convergence rate of Krylov subspace methods deteriorates for large n. It is well-
known that multiplying a linear system by a non-singular matrix improve the spectral properties
of the coefficient matrix, in consequence the use of the preconditioning methods are unavoidable.
However, finding appropriate pre-conditioners is not, in some cases, an easy task. The introduction
of hierarchical matrices (H -matrices) by Hackbusch Hackbusch (1999, 2009) has paved the way
to methods which have almost linear complexity and which are robust. This class of structured
matrices are related with natural tensor product structure of the matrix space.

In consequence, interest in numerical methods that make use of tensors has increased because
they drastically reduce computational costs. It is particularly useful for high-dimensional spaces
where one must pay attention to the numerical cost (in time and storage).

A first family of applications using tensor decompositions concerns the extraction of informa-
tion from complex data. It has been used in many areas such as psychometrics Tucker (1966);
Carroll (1970), chemometrics Appellof (1981), analysis of turbulent flows Berkooz (1993), image
analysis and pattern recognition Vasilescu (2002), data mining. . . Another family of applications
concerns the compression of complex data (for storage or transmission), also introduced in many
areas such as signal processing Lathauwer (2004) or computer vision Wang (2004). A survey
of tensor decompositions in multilinear algebra and an overview of possible applications can be
found in the review paper Kolda (2009). In the above applications, the aim is to compress the best
as possible the information. The use of tensor product approximations is also receiving a grow-
ing interest in numerical analysis for the solution of problems defined in high-dimensional tensor
spaces, such as PDEs arising in stochastic calculus Ammar (2007); Cances (2010); Falcó (2010)
(e.g., Fokker-Planck equation), stochastic parametric PDEs arising in uncertainty quantification
with spectral approaches Nouy (2007); Doostan (2009); Nouy (2010), and quantum chemistry (cf.,
e.g., Vidal (2003)). Details can be found in Hackbusch (2011).

On the other hand we recall that parametric curves are extensively used in Computer Aided
Geometric Design (CAGD). The different engineering applications that exist are due to the useful
mathematical properties of this kind of curves. The most common parametric curves in these
applications are, among others, Bézier, B-Splines, NURBS and Rational Bézier, and every one of
them has many special properties. A recently research topic in the CAGD framework is the study of
shape deformations in parametric curves. There are different ways to compute these deformations
depending on the parametric curve under consideration (see Piegl (1991); Au (1995); Sanchez
(1997); Hu (1999, 2001); Meek (2003) for NURBS and Piegl (1989); Opfer (1988); Qingbiao

2



(2009); Fowler (1993) for B-Splines). In particular, in Xu (2002) a deformation of a Bézier was
introduced by means of a constrained optimization problem related to a discrete coefficient norm.
Later in Wu (2005) a new technique to deform the shape of a Bézier curve was introduced. This
technique was improved including a set of concatenated Bézier curves and more constraints to
the optimization problem.This algorithm was called Bézier Shape Deformation (BSD) and this
improvement was applied in the numerical simulation of Liquid Composite Moulding Processes
Montés (2008) and also in the path planning problem in mobile robotics Hilario (2010, 2011).

The BSD algorithm is a new technique based on the deformation of a Bézier curve through
a field of vectors. The modified Bézier is computed with a constrained optimization method (La-
grange Multipliers Theorem). A linear system is solved to achieve the result. In addition, the linear
system can be solved offline if the Bézier curve order is maintained constant.

The main goal of this paper is to introduce tensor calculus in order to improve the procedure
described in Montés (2008); Hilario (2010, 2011). The tensor reformulation of the BSD algorihtm
is called Tensor-Bézier Shape Deformation (T-BSD). As a result, the computational cost is reduced
to obtain a suitable real-time performance.

This paper is organized as follows. Firstly, in Section 2 it is shown our previous work, the BSD
algorithm, and two of the possibles applications of this algorithm. In Section 3 we give preliminary
definitions and results about tensors, also some useful properties are introduced. In Section 4 the
algorithm for shape deformation using a basis of parametric curve is developed. In Section 5 the T-
BSD algorithm using a set of Bézier curves concatenated is defined. In Section 6 the comparative
between BSD and T-BSD algorithm is shown. Finally, in Section 7 we provide some conclusions
about the present work.

2. Previous Work

The previous work developed a novel technique for obtaining the deformation of a Bézier
curve: Bézier Shape Deformation (BSD).

Definition 1. A Bézier curve is defined as,

αn
t (u) =

n

∑
i=0

Pi(t)Bi,n(u) ;u ∈ [0,1] (1)

1. n is the order of the Bézier curve.

2. Bi,n(u) =
(n

i

)
ui(1−u)n−i, i = 0, . . . ,n are the Bernstein Basis.

3. u ∈ [0,1] is the Intrinsic Parameter.

4. (n+1) are the Control Points in each time instant t, Pi(t) such that i = 0,1, · · · ,n.

Definition 2. A Modified Bézier curve is defined as,

αn
t+∆t(u) =

n

∑
i=0

(Pi(t)+Xi(t +∆t)) ·Bi,n(u);u ∈ [0,1] (2)

where, Xi(t +∆t) represents the displacement of every control point to obtain the deformed Bézier.
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The curve deformation αn
t+∆t(u) was computed based on the displacements of the control

points, Xi(t +∆t), given by a field of vectors. In order to calculate the displacements Xi(t +∆t) a
constraint optimization problem was proposed. The optimization function was defined as follows,

min
Xi(t+∆t)

∫ 1

0
‖αn

t+∆t(u)−αn
t (u)‖du (3)

This function minimizes the changes of the shape minimizing the distance between the original
1 curve and the modified one 2. In order to guarantee numerical stability, two or more Bézier curves
had to be concatenated because Bézier curve is numerically unstable if the Bézier curve has a large
number of control points. As a consequence, the optimization function 3 was redefined as,

min
k

∑
l=1

∫ 1

0
‖αni

t+∆t(u)−αni
t (u)‖du, (4)

where k is the number of the curves.
This problem needs a set of constraints:

1. The Modified Bézier passes through the Target Point, Ti. In figure 1, it is shown this con-
straint. Si represents the Start Points on the original Bézier.

Figure 1: The deformation of a Bézier imposing that the modified Bézier passes through the Target Points. The field
of vectors are joining the Start Points and the Target Points.

2. Continuity and derivability is necessary to impose on the joined points of the concatenated
curves to obtain a smooth curve.

3. To maintain the derivative property of the curve, derivative constraints on the start and end
points of the resulting concatenated curves are imposed.

The BSD algorithm was applied in Liquid Composite Moulding (LCM) processes and Mobile
Robots.

In LCM processes, see Figure 2, the resin’s flow front is an important tool to take decisions
during the mould filling. This flow front was computed and updated using BSD. It was represented
with a Bézier curve and updated through a field of vectors. In that case, these vectors represented
the velocity vectors obtained solving the flow kinematics with Finite Element Methods (FEM),
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Figure 2: Particle Age evolution through BSD+FEM.

see Sánchez, F. (2005). The parametrization of the flow front permits a continuous numerical
formulation using a Bézier, avoiding approximation techniques.

In Mobile Robots, see Figure 3, the idea was to obtain a flexible Trajectory for a Mobile Robot
free of collisions. This flexible Trajectory was based on the deformation of a Bézier curve through
a field of vectors. The field of vectors, in this case forces, was computed with a recently artificial
potential field method called Potential Field Projection method (PFP), see Mora (2007,o, 2008).
The Initial Trajectory was modified through the field of forces in order to avoid the obstacles and
guiding the robot to non-collision positions.

3. Definitions and preliminary results

First of all we introduce some of the notation used in this paper,(see Graham (1981), Magnus
(2007) or Loan (2000) for more details). We denote the set of (n×m)-matrices by Rn×m, and the
transpose of a matrix A is denoted AT . By 〈x,y〉 we denote the usual Euclidean inner product given
by xT y = yT x and its corresponding 2-norm, ‖x‖2 = 〈x,x〉1/2. The matrix In is the (n×n)-identity
matrix and when the dimension is clear from the context, we simply denote it by I.

Now, we recall the definition and some properties of the Kronecker product. The Kronecker
product of A ∈ Rn′1×n1 and B ∈ Rn′2×n2, written A⊗B, is the tensor algebraic operation defined as

A⊗B =




a11B a12B · · · a1n′1
B

a21B a22B · · · a2n′1
B

...
...

. . .
...

an11B an12B · · · an1n′1
B


 ∈ Rn′1n′2×n1n2.

Also, the Kronecker product of two matrices A∈Rn′1×n1 and B∈Rn′2×n2, can be defined as A⊗B∈
Rn′1n′2×n1n2, where

(A⊗B)( j1−1)n′2+ j2;(i1−1)n2+i2 = A j1;i1B j2;i2 .
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Figure 3: Snapshots of the Trajectory (left images) obtained by the BSD+PFP algorithm in an environment with 15
obstacles. Right images show detailed views of robot Trajectory for the corresponding left images.

Finally, we list some of the well-know properties of the Kronecker product.
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(T1) A⊗ (B⊗C) = (A⊗B)⊗C.

(T2) (A+B)⊗ (C +D) = (A⊗C)+(B⊗C)+(A⊗D)+(B⊗D).

(T3) If A+B and C +D exist, AB⊗CD = (A⊗C)(B⊗D).

(T4) If A and B are non-singular, (A⊗B)−1 = A−1⊗B−1.

(T5) If (A⊗B)T = AT ⊗BT .

(T6) If A and B are banded, then A⊗B is banded.

(T7) If A and B are symmetric, then A⊗B is symmetric.

(T8) If A and B are definite positive, then A⊗B is definite positive.

Let A = [A1 · · ·An] be an m× n matrix where A j is its j-th column vector. Then vecA is the
mn×1 vector

vecA =




A1
...

An


 .

Thus the vec operator transforms a matrix into a vector by stacking the columns of the matrix one
underneath the other. Notice that vecA = vecB does not imply A = B, unless A and B are matrices
of the same order. The following properties are useful:

(V1) vecuT = vecu = u, for any column vector u.

(V2) vecuvT = v⊗u, for any two column vectors u and v (not necessarily of the same order).

(V3) Let A, B and C be three matrices such that the matrix product ABC is defined. Then,

vecABC = (CT ⊗A)vecB. (5)

Definition 3. Let F : Rn×q −→ Rm×p be a differentiable function. The Jacobian matrix of F at X
is the mp×nq matrix

DF(X) =
∂ vecF(X)
∂ (vecX)T .

Clearly, DF(X) is a straightforward matrix generalization of the traditional definition of the
Jacobian matrix and all properties of Jacobian matrices are preserved. Thus, the above definition
reduces the study of functions of matrices to the study of vector functions of vectors, since it allows
F(X) and X only in their vectorized forms vecF and vecX . The next properties will be useful (see
Chapter 9 in Magnus (2007))

(P1) Assume y = f (X) = X u, such that u is a vector of constants, here f : Rn×m −→ Rn. Then
the Jacobian matrix is D(Xu) = uT ⊗ I ∈ Rn×nm ∼= R1×m⊗Rn×n.

(P2) Assume y = f (x) = xT x, here f : Rn −→ R. then D(xT x) = 2xT ∈ R1×n.
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(P3) Let F : Rn×m −→ Rp×q be defined as F(X) = AXB where A ∈ Rp×n and B ∈ Rm×q are
matrices of constants. Then

DF(X) = BT ⊗A. (6)

Theorem 1 (chain rule). Let S be a subset of Rn×q and assume that F : S−→Rm×p is differentiable
at an interior point C of S. Let T be a subset of Rm×p such that F(X)∈ T for all X ∈ S, and assume
that G : T −→Rr×s is differentiable at an interior point B = F(C)∈ T. Then the composite function
H : S−→ Rr×s defined by H(X) = G(F(X)) is differentiable at C, and

DH(C) = (DG(B))(DF(C)).

The following theorem will be useful.

Theorem 2. Let A be a (p+q)× (p+q)-matrix such that

A =
[

A1,1 A1,2
−AT

1,2 0

]
where A1,1 ∈ Rp×p and A1,2 ∈ Rp×q.

Assume that A1,1 is non-singular, that is, invertible and rankA1,2 = q. Then A is non-singular and

A−1 =
[

X1,1 X1,2
X2,1 X2,2

]
,

where X2,2 = (AT
1,2A1,1A1,2)−1,X2,1 = X2,2AT

1,2A−1
1,1,X1,1 = A−1

1,1 − A−1
1,1A1,2X2,1 and X1,2 =

−A−1
1,1A1,2X2,2.

4. A matrix-based optimization algorithm for shape deformation using a basis of parametric
curves

Now, the aim is the reduction of the cost in computational time of the BSD algorithm because
this is a critical point in real-time applications and we notice that this computational cost increased
exponentially if the number of the Bézier curves is increased. For that reason, the BSD algorithm
is reformulated using tensors.

We will consider for each fixed n ≥ 1 a finite dimensional basis {B0,n, . . . ,Bn,n} ⊂ L2[0,1] (in
particular, Bi,n are the Bernstein polynomials of degree n when the curve generated is a Bézier
curve) and Ω⊂R2 a compact and convex set. Now, assume that for each time t ∈ (0, tend] we have
a matrix of Target Points

Tr(t) =
[

T1
r (t) · · · Tr

r(t)
]
∈ R2×r

where T j
r (t) ∈ Ω,1 ≤ j ≤ r. Our main goal is to construct a map from [0, tend] to C 1([0,1];R2)

given by

t 7→αn
t (u) =

n

∑
i=0

Pi
n(t)Bi,n(u); u ∈ [0,1], (7)

where

Pn(t) =
[

P0
n(t) · · · Pn

n(t)
]
∈ R2×(n+1),

8



for each fixed t is a finite set of control points, Pn(0) is previously known and

{T1
r (t), · · · ,Tr

r(t)} ⊂αn
t ([0,1]),

for each t ∈ (0, tend]. Observe that we can write (7) in a equivalent matrix form,

αn
t (u) = Pn(t)Bn(u);u ∈ [0,1] (8)

where
Bn(u) =

[
B0,n(u) · · · Bn,n(u)

]T ∈ R(n+1)×1. (9)

Since αn
t (u) ∈ R2 we can write its standard euclidean norm as

‖αn
t (u)‖2

2 = Bn(u)T Pn(t)T Pn(t)Bn(u), (10)

then, for each fixed t, the energy of the u-parametrized curve αn
t in C([0,1],R2) can be given by

its L2([0,1],R2)-norm, that is,

‖αn
t ‖∆2 =

(∫ 1

0
‖αn

t (u)‖2
2 du

)1/2

=
(∫ 1

0
Bn(u)T Pn(t)T Pn(t)Bn(u)du

)1/2

. (11)

Assume that for some t ∈ [0, tend) we previously know αn
t as αn

t (u) = Pn(t)Bn(u). Then it
moves in a given small interval of time ∆t to a parametric curve αn

t+∆t , by using a set of perturba-
tions for each control point, namely

Xn(t +∆t) =
[

X0
n(t +∆t) · · · Xn

n(t +∆t)
]
∈ R2×(n+1), (12)

The resultant parametric curve αn
t+∆t will be given by,

αn
t+∆t(u) = Pn(t +∆t)Bn(u); u ∈ [0,1]. (13)

where
Pn(t +∆t) := Pn(t)+Xn(t +∆t). (14)

To compute Xn(t + ∆t) we will use the following least action principle: the curve minimize the
energy to move from αn

t to αn
t+∆t and it has to pass through the set of Target Points {T1

r (t +
∆t), . . . ,Tr

r(t +∆t)} for a given set of parameter values, namely

0 = ur
1 < ur

2 < · · ·< ur
r−1 < ur

r = 1.

More precisely, we would like to find αn
t+∆t such that

min‖αn
t+∆t−αn

t ‖2
∆2

s. t. αn
t+∆t(u

r
j) = T j

r(t +∆t) for 1≤ j ≤ r and r ≤ n−1.

(15)

In order to write (15) in a equivalent matrix form we introduce the following notation. Let

Br
n =

[
Bn(ur

1) · · · Bn(ur
r)
]
∈ R(n+1)×r,

9



where we assume that

rankBr
n = r = min{n+1,r}, (16)

holds for the set of parameter values {ur
1,u

r
2, . . . ,u

r
r−1,u

r
r}. Finally, we consider the matrix function

Φn : R2×(n+1)→ R, defined by

Φn(Xn(t +∆t)) =
∫ 1

0
Bn(u)T Xn(t +∆t)T Xn(t +∆t)Bn(u)du. (17)

Then the miminization problem (15) can be written in a matrix form as:

min
Xn(t+∆t)∈R2×(n+1)

Φn(Xn(t +∆t)) (18)

s. t. (Pn(t)+Xn(t +∆t))Br
n = Tr(t +∆t). (19)

By using the vec operator in (19) and the property V3 defined in the equation (5), we obtain a
useful equivalent formulation written as

((Br
n)

T ⊗ I2)vecXn(t +∆t) = vecTr(t +∆t)−vec(Pn(t)Br
n). (20)

Note that the set of constrains of this problem 19 is linear where (Br
n)

T ⊗ I2 ∈ R2r×2(n+1). In
consequence, the map Φn is defined over a convex set. Thus, by proving the convexity of Φn, each
stationary point of Φn over the constrained set will give us an absolute minimum. In particular, the
following proposition give us the first and the second derivative of Φn.

Proposition 1. The following statements hold:

(a) DΦn(Xn(t +∆t)) = 2
∫ 1

0
(Xn(t +∆t)Bn(u))T (Bn(u)T ⊗ I2)du,∈ R1×2(n+1).

(b) (DΦn(Xn(t +∆t)))T = 2
(∫ 1

0
(Bn(u)T ⊗Bn(u)⊗ I2)du

)
vecXn(t +∆t).

(c) D2Φn(Xn(t +∆t)) = 2
∫ 1

0
(Bn(u)Bn(u)T ⊗ I2)du = 2

(∫ 1

0
Bn(u)Bn(u)T du

)
⊗ I2. Moreover,

D2Φn(Xn(t + ∆t)) ∈ R2(n+1)×2(n+1) is a definite positive symmetric matrix and hence Φn is
a convex function over each convex set Ω.

Proof. First, we observe that

DΦn(Xn(t +∆t)) =
∫ 1

0
D
(
Bn(u)T Xn(t +∆t)T Xn(t +∆t)Bn(u)

)
du. (21)

Let us consider yn = F(Xn(t +∆t)) = Xn(t +∆t)Bn(u) and G(yn) = yT
n yn. Then, DF(Xn(t +∆t)) =

Bn(u)T ⊗ I2 and DG(yn) = 2yT
n . Thus, by using Theorem 1 we obtain that

D
(
Bn(u)T Xn(t +∆t)T Xn(t +∆t)Bn(u)

)
= 2yT

n

(
Bn(u)T ⊗ I2

)

= 2(Xn(t +∆t)Bn(u))T (Bn(u)T ⊗ I2
)
,

10



and this follows statement (a). By using the fact that,

(DΦn(Xn(t +∆t)))T = 2
∫ 1

0

(
(Xn(t +∆t)Bn(u))T (Bn(u)T ⊗ I2

))T
=

= 2
∫ 1

0

(
Bn(u)T ⊗ I2

)T
(Xn(t +∆t)Bn(u)) = 2

∫ 1

0
(Bn(u)⊗ I2)(Xn(t +∆t)Bn(u))du ∈ R2(n+1)×1

(22)
and taking the vec operator we obtain that,

(DΦn(Xn(t +∆t)))T = 2
(∫ 1

0
(Bn(u)T ⊗Bn(u)⊗ I2)du

)
vecXn(t +∆t), (23)

an it follows (b). To prove (c) note that

D2 (Bn(u)T Xn(t +∆t)T Xn(t +∆t)Bn(u)
)

= 2
(
Bn(u)T ⊗ I2

)T (
Bn(u)T ⊗ I2

)
. (24)

Since (Bn(u)Bn(u)T ⊗ I2) is definite positive, we obtain that D2Φn(Xn(t + ∆t)) is also definite
positive for all Xn(t +∆t) ∈ R2×(n+1).

Moreover, we have the following lemma.

Lemma 1. The matrix
∫ 1

0
(Bn(u)T ⊗Bn(u)⊗ I2)du is invertible.

Proof. Observe that
∫ 1

0
(Bn(u)T ⊗Bn(u)⊗ I2)du =

=




∫ 1
0 B0,n(u)B0,n(u)du · · · ∫ 1

0 Bn,n(u)B0,n(u)du∫ 1
0 B0,n(u)B1,n(u)du · · · ∫ 1

0 Bn,n(u)B1,n(u)du
...

. . .
...∫ 1

0 B0,n(u)Bn,n(u)du · · · ∫ 1
0 Bn,n(u)Bn,n(u)du


⊗ I2.

Since
∫ 1

0
Bi,n(u)B j,n(u)du = 〈Bi,n,B j,n〉L2([0,1];R) we have that

G(B0,n, . . . ,Bn,n) =




∫ 1
0 B0,n(u)B0,n(u)du · · · ∫ 1

0 Bn,n(u)B0,n(u)du∫ 1
0 B0,n(u)B1,n(u)du · · · ∫ 1

0 Bn,n(u)B1,n(u)du
...

. . .
...∫ 1

0 B0,n(u)Bn,n(u)du · · · ∫ 1
0 Bn,n(u)Bn,n(u)du




is the Gramian matrix of the basis {B0,n, . . . ,Bn,n}. From Lemma 7.5 of Deusch (2001) we have
that G(B0,n, . . . ,Bn,n) is a non-singular matrix and hence

∫ 1

0
(Bn(u)T ⊗Bn(u)⊗ I2)du = G(B0,n, . . . ,Bn,n)⊗ I2

in invertible.
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In order to characterize the minimum of (18) and (20) we construct the associate Lagrangian

L (Xn(t +∆t),µ) =Φn(Xn(t +∆t))−µT [(Br
n)

T ⊗ I2)vecXn(t +∆t)−
−vecTr(t +∆t)+vec(Pn(t)Br

n)],

where µ = [µ1 · · ·µ2r]T ∈ R2r. The first order optimality conditions are (20) and

DΦn(Xn(t +∆t))−µT ((Br
n)

T ⊗ I2) = 0, (25)

which is obtained by using Proposition 1 (a) and the property (P3) defined by the equation 6. The
equation (25) is equivalent to

(DΦn(Xn(t +∆t)))T − (I2⊗Br
n)µ = 0. (26)

Proposition 1 (b) allows us to write the first order optimality conditions as:

2
(∫ 1

0
(Bn(u)T ⊗Bn(u)⊗ I2)du

)
vecXn(t +∆t)− (I2⊗Br

n)µ = 0

((Br
n)

T ⊗ I2)vecXn(t +∆t) = vecTr(t +∆t)−vec(Pn(t)Br
n),

(27)

that we can write in matrix form as

Az(t +∆t) = f(t), (28)

where

A =


 2

(∫ 1

0
(Bn(u)T ⊗Bn(u)⊗ I2)du

)
−(I2⊗Br

n)

((Br
n)

T ⊗ I2) 0


 ∈ R(2(n+1)+2r)×(2(n+1)+2r),

z(t +∆t) =
[

vecXn(t +∆t)
µ

]
and f(t) =

[
0

vecTr(t +∆t)−vec(Pn(t)Br
n)

]
,

which are in R(2(n+1)+2r).

Proposition 2. Assume that rankBr
n = r. Then the matrix A is invertible.

Proof. First at all we remark that

A =
[

A1,1 A1,2
−AT

1,2 0

]
∈ R2(n+1)+2r×2(n+1)+2r,

where

A11 = 2
(∫ 1

0
(Bn(u)T ⊗Bn(u)⊗ I2)du

)
∈ R2(n+1)×2(n+1),

and

A1,2 =−(I2⊗Br
n) =

[
−Br

n 0
0 −Br

n

]
∈ R2(n+1)×2r.

From Lemma 1 we known that A1,1 is a non-singular matrix. Since rankA1,2 = 2r because
rankBr

n = r, from Theorem 2 the proposition follows.
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Now, the algorithm is the following.

1. Construct the matrix A.

2. Consider ∆t =
tend

N−1
for a fixed N ≥ 2, and write t j = ( j−1)∆t for 1≤ j ≤ N.

3. Obtain the initial control points Pn(t1) and a sample of Target Points {Tr(t1), . . . ,Tr(tN)} ⊂
Ω⊂ R2×r.

4. For j = 1 to N

(a) Compute z(t j+1) as the solution of the linear system Az(t j+1) = f(t j);

(b) Obtain Xn(t j+1) from z(t j+1);

(c) Compute the new control points Pn(t j+1) = Pn(t j)+Xn(t j+1);

5. A matrix-based optimization algorithm for Bézier Shape Deformation

Now, we consider that the curve αt ∈ C ([0,1];Ω) is now described by a finite set of con-
catenated parametrized Bézier curves αn1

t , . . . ,αnk
t constructed with basis functions of dimensions

n1, . . . ,nk, respectively. By using Section 4, each of these curves can be written as

αni
t (u) = Pni(t)Bni(u); u ∈ [0,1]; 1≤ i≤ k (29)

where the matrix of the controls points is,

Pni(t) =
[

P0
ni
(t) · · · Pni

ni(t)
]
∈ R2×(ni+1). (30)

and the matrix of the Bernstein Basis is,

Bni(u) =
[

B0,ni(u) · · · Bni,ni(u)
]T ∈ R(ni+1)×1. (31)

We assume that

Bi,n j(u) =
(

n j

i

)
ui(1−u)n j−i, i = 0, . . .n j

are the Bernstein basis polynomials of degree n j for 1≤ j ≤ k. Let us consider for t ∈ (0, tend] and
each 1≤ i≤ k a set of ri-Target Points

Tri(t) =
[

T1
ri
(t) · · · Tri

ri(t)
]
∈ R2×ri, (32)

where T j
ri(t) ∈Ω for 1≤ j ≤ ri, and

{T1
ri
(t), . . . ,Tri

ri
(t)} ⊂αni

t ([0,1]) (33)

for all t ∈ (0, tend]. Moreover, Pni(0) is previously known.
In a similar way as in Section 4, we assume that αt , described by {αni

t }k
i=1, is given. Then we

would like to construct αt+∆t from {αni
t+∆t}k

i=1, as follows. Consider

αni
t+∆t(u) = Pni(t +∆t)Bni(u); u ∈ [0,1] (34)
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where,

Pni(t +∆t) := Pni(t)+Xni(t +∆t) (35)

and
Xni(t +∆t) =

[
X0

ni
(t +∆t) · · · Xni

ni(t +∆t)
]
∈ R2×(ni+1), (36)

for each 1≤ i≤ k−1.
Since (33) holds, for each 1≤ i≤ k we will consider

0 = uri
1 < uri

2 · · ·< uri
ri−1 < uri

ri
= 1

and the matrix
Bri

ni
=
[

Bni(u
ri
1 ) · · · Bni(u

ri
ri)
]
∈ R(ni+1)×ri. (37)

Since αni
t+∆t(u

ri
j ) = T j

ri(t +∆t), for 1≤ j ≤ ri and 1≤ i≤ k, we have

(Pni(t)+Xni(t +∆t))Bri
ni

= Tri(t +∆t) for 1≤ i≤ k. (38)

The continuity of αt given by αni
t (1−) = α

ni+1
t (0+) for 1≤ i≤ k−1, implies that

Pni
ni
(t) = P0

ni+1
(t) (39)

holds for 1≤ i≤ k−1. Since αt+∆t ∈ C ([0,1];Ω), from αni
t+∆t(1

−) = α
ni+1
t+∆t(0

+) we have

Xni
ni
(t +∆t) = X0

ni+1
(t +∆t), (40)

for 1 ≤ i ≤ k− 1. Assume that αn1
t (0),αnk

t (1) belong to the boundary of Ω, denoted by ∂Ω, and
that

d
du

αn1
t (u)

∣∣
u=0+ = V1(t),

d
du

αnk
t (u)

∣∣
u=1− = Vk(t),

are given data for all t. This equality and the fact that Bi,n j , for 0 ≤ i ≤ n j and 1 ≤ j ≤ k, are
Bernstein polynomials, implies

n1(P1
n1

(t)−P0
n1

(t)) = V1(t), nk(Pnk
nk

(t)−Pnk−1
nk (t)) = Vk(t). (41)

In a similar way, since

d
du

αn1
t+∆t(u)

∣∣
u=0+ = V1(t +∆t),

d
du

αnk
t+∆t(u)

∣∣
u=1− = Vk(t +∆t),

and (41) hold we obtain

n1(X1
n1

(t +∆t)−X0
n1

(t +∆t)) = V1(t +∆t)−V1(t), (42)

nk(Xnk
nk

(t +∆t)−Xnk−1
nk (t +∆t)) = Vk(t +∆t)−Vk(t). (43)

To obtain a differentiability condition, that is αt ∈ C 1([0,1];Ω), we assume

d
du

αni
t (u)|u=1− =

d
du

α
ni+1
t (u)

∣∣
u=0+ . (44)
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and then
ni(Pni

ni
(t)−Pni−1

ni
(t)) = ni+1(P1

ni+1
(t)−P0

ni+1
(t)) (45)

holds for 1≤ i≤ k−1. In a similar way, if we assume that αt+∆t ∈ C 1([0,1];Ω) then,

ni(Xni
ni
(t +∆t)−Xni−1

ni
(t +∆t)) = ni+1(X1

ni+1
(t +∆t)−X0

ni+1
(t +∆t)) (46)

holds for 1≤ i≤ k−1.
To conclude, we would like to compute Xni(t +∆t) ∈ R2×(ni+1) for 1≤ i≤ k satisfying

min(Xn1(t+∆t),...,Xnk (t+∆t)) ∑k
i=1 Φni(Xni(t +∆t))

s. t. (Pni(t)+Xni(t +∆t))Bri
ni = Tri(t +∆t), 1≤ i≤ k,

Xni
ni(t +∆t) = X0

ni+1
(t +∆t), 1≤ i≤ k−1,

n1(X1
n1

(t +∆t)−X0
n1

(t +∆t)) = V1(t +∆t)−V1(t),
nk(X

nk
nk(t +∆t)−Xnk−1

nk (t +∆t)) = Vk(t +∆t)−Vk(t),
ni(X

ni
ni(t +∆t)−Xni−1

ni (t +∆t)) = ni+1(X1
ni+1

(t +∆t)−X0
ni+1

(t +∆t)), 1≤ i≤ k−1,
(47)

Introduce the matrix function

Φ(Xn1(t +∆t), . . . ,Xnk(t +∆t)) :=
k

∑
i=1

Φni(Xni(t +∆t)),

which is a linear combination with positive coefficients of convex functions. In consequence it is
also a convex function over each convex set Ω⊂ (R2×(n1+1)×·· ·×R2×(nk+1)). Moreover,

DΦ(Xn1(t +∆t), . . . ,Xnk(t +∆t)) =
[

DΦn1(Xn1(t +∆t)) · · · DΦnk(Xnk(t +∆t))
]
,

where DΦ(Xn1(t +∆t), . . . ,Xnk(t +∆t)) ∈ R1×2∑k
i=1(ni+1) and

D2Φ(Xn1(t +∆t), . . . ,Xnk(t +∆t)) = diag
(
D2Φn1(Xn1(t +∆t)), . . . ,D2Φnk(Xnk(t +∆t))

)
.

By using Proposition 1, we see that D2Φ(Xn1(t +∆t), . . . ,Xnk(t +∆t)) is a definite positive matrix.
Now, we would like to write (47) in a more compact notation. To this end we use the following
four block matrices. For 1≤ i≤ k we define

Rni =
[

0 · · · 0 0 I2
]
∈ R2×2(ni+1),

R∗ni
=
[

0 · · · 0 −I2 I2
]
∈ R2×2(ni+1),

Lni =
[

I2 0 0 · · · 0
]
∈ R2×2(ni+1)

and

L∗ni
=
[
−I2 I2 0 · · · 0

]
∈ R2×2(ni+1).

Finally, we denote by

0ni =
[

0 0 0 · · · 0
]
∈ R2×2(ni+1),
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here and for all the above matrices 0 denotes the square matrix
[

0 0
0 0

]
.

Then by using the above matrices and the vec operator we can write the set of constrains in (47) as

((Bri
ni)

T ⊗ I2)vecXni(t +∆t) = vecTri(t)−vec(Pni(t)B
ri
ni), 1≤ i≤ k,

RnivecXni(t +∆t) = Lni+1vecXni+1(t +∆t), 1≤ i≤ k−1,
n1L∗n1

vecXn1(t +∆t) = V1(t +∆t)−V1(t),
nkR∗nk

vecXnk(t +∆t) = Vk(t +∆t)−Vk(t),
niR∗ni

vecXni(t +∆t) = ni+1L∗ni+1
vecXni+1(t +∆t), 1≤ i≤ k−1.

(48)

Now, the Lagrangian function associated to (47) is

L (Xn1(t +∆t), . . . ,Xnk(t +∆t),λr1
1 , . . . ,λrk

k ,µ1, . . . ,µ2k)

= ∑k
i=1 Φni(Xni(t +∆t))

−∑k
i=1(λ

ri
i )T

[
((Bri

ni)
T ⊗ I2)vecXni(t +∆t)−vecTri(t)+vec(Pni(t)B

ri
ni)
]

−∑k−1
i=1 µT

i

[
RnivecXni(t +∆t)−Lni+1vecXni+1(t +∆t)

]

−µT
k

[
n1L∗n1

vecXn1(t +∆t)−V1(t +∆t)+V1(t)
]

−µT
k+1

[
nkR∗nk

vecXnk−Vk(t +∆t)+Vk(t)
]

−∑k−1
i=1 µT

i+1+k

[
niR∗ni

vecXni(t +∆t)−ni+1L∗ni+1
vecXni+1(t +∆t)

]
,

(49)

where,

λri
i =




λ 1
i
...

λ 2ri
i


 ∈ R2ri, (50)

for 1≤ i≤ k, and

µ j =
[

µ1
j

µ2
j

]
∈ R2, (51)

for 1≤ j ≤ 2k. The first order optimality conditions are given by (48),

DΦn1(Xn1(t +∆t))− (λr1
1 )T ((Br1

n1)
T ⊗ I2)−µT

1 Rn1−µT
k n1L∗n1

−µT
k+2n1R∗n1

= 0, (52)

DΦni(Xni(t +∆t))− (λri
i )T ((Bri

ni)
T ⊗ I2)−µT

i Rni +µT
i−1Lni−µT

k+1+iniR∗ni
+µT

k+iniL∗ni
= 0,

(53)
for 2≤ i≤ k−1, and

DΦnk(Xnk(t +∆t))− (λrk
k )T ((Brk

nk)
T ⊗ I2)+µT

k−1Lnk−µT
k+1nkR∗nk

+µT
2knkL∗nk

= 0. (54)
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Thus, the first order optimality conditions with respect to the vecXni(t + ∆t)-variables (52)–(54)
can be written respectively as,

0 = 2
(∫ 1

0
(Bn1(u)T ⊗Bn1(u)⊗ I2)du

)
vecXn1(t +∆t)− (I2⊗Br1

n1)λ
r1
1

−RT
n1

µ1−n1(L∗n1
)T µk−n1(R∗n1

)T µk+2,

(55)

0 = 2
(∫ 1

0
(Bni(u)T ⊗Bni(u)⊗ I2)du

)
vecXni(t +∆t)− (I2⊗Bri

ni)λ
ri
i

+LT
ni
µi−1−RT

ni
µi +ni(L∗ni

)T µk+i−ni(R∗ni
)T µk+i+1,

(56)

for 2≤ i≤ k−1.

0 = 2
(∫ 1

0
(Bnk(u)T ⊗Bnk(u)⊗ I2)du

)
vecXnk(t +∆t)− (I2⊗Brk

nk)λ
rk
k

+LT
nk

µk−1−nk(R∗nk
)T µk+1 +nk(L∗nk

)T µ2k.

(57)

Finally, we conclude that the solution of the minimization program (47) can be computed by means
the following linear system,

Az(t +∆t) = f(t) (58)

where A is a block matrix given by

A =
[

A1,1 A1,2
A2,1 0

]
.

The block matrices are

A1,1 = diag(Zn1, . . . ,Znk)

where,

Zni = 2
∫ 1

0
(Bni(u)T ⊗Bni(u)⊗ I2)du ∈ R2(ni+1)×2(ni+1)

for i = 1,2, . . . ,k,

A1,2 = [B1 B2 B3 B4] and A2,1 =




C1
C2
C3
C4


 .

where

B1 = diag(−(I2⊗Br1
n1

), . . . ,−(I2⊗Brk
nk

)),

C1 = diag((Br1
n1

)T ⊗ I2, . . . ,(Brk
nk

)T ⊗ I2),

17



B2 =




−RT
n1

0T
n1

0T
n1

0T
n1
· · · 0T

n1
0T

n1

LT
n2
−RT

n2
0T

n2
0T

n2
· · · 0T

n2
0T

n2

0T
n3

LT
n3
−RT

n3
0T

n3
· · · 0T

n3
0T

n3
...

...
...

...
. . .

...
...

0T
nk−1

0T
nk−1

0T
nk−1

0T
nk−1

· · · LT
nk−1

−RT
nk−1

0T
nk

0T
nk

0T
nk

0T
nk
· · · 0T

nk
LT

nk




,

C2 =




Rn1 −Ln2 0n3 · · · 0nk−2 0nk−1 0nk

0n1 Rn2 −Ln3 · · · 0nk−2 0nk−1 0nk
...

...
...

. . .
...

...
...

0n1 0n2 0n3 · · · Rnk−2 −Lnk−1 0nk

0n1 0n2 0n3 · · · 0nk−2 Rnk−1 −Lnk




,

B3 =




−n1(L∗n1
)T 0T

n1

0T
n2

0T
n2

...
...

0T
nk−1

0T
nk−1

0T
nk

−nk(R∗nk
)T




,

C3 =
[

n1L∗n1
0n2 0n3 · · · 0nk−1 0nk

0n1 0n2 0n3 · · · 0nk−1 nkR∗nk

]

B4 =




−n1(R∗n1
)T 0T

n1
0T

n1
· · · 0T

n1
0T

n1
0T

n1

n2(L∗n2
)T −n2(R∗n2

)T 0T
n2

· · · 0T
n2

0T
n2

0T
n2

0T
n3

n3(L∗n3
)T −n3(R∗n3

)T · · · 0T
n3

0T
n3

0T
n3

...
...

...
. . .

...
...

...
0T

nk−1
0T

nk−1
0T

nk−1
· · · 0T

nk−1
nk−1(L∗nk−1

)T −nk−1(R∗nk−1
)T

0T
nk

0T
nk

0T
nk

· · · 0T
nk

0T
nk

nk(L∗nk
)T




,

and

C4 =




n1R∗n1
−n2L∗n2

0n3 · · · 0nk−2 0nk−1 0nk

0n1 n2R∗n2
−n3L∗n3

· · · 0nk−2 0nk−1 0nk
...

...
...

. . .
...

...
...

0n1 0n2 0n3 · · · nk−2R∗nk−2
−nk−1L∗nk−1

0nk

0n1 0n2 0n3 · · · 0nk−2 nk−1R∗nk−1
−nkL∗nk




.

We point out the dimension of the block matrices:

A1,1 ∈ R2∑k
i=1(ni+1)×2∑k

i=1(ni+1), B1 ∈ R2∑k
i=1(ni+1)×2∑k

i=1 ri, B2 ∈ R2∑k
i=1(ni+1)×2(k−1),

B3 ∈ R2∑k
i=1(ni+1)×4, B4 ∈ R2∑k

i=1(ni+1)×2(k−1), C1 ∈ R2∑k
i=1 ri×2∑k

i=1(ni+1),

C2 ∈ R2(k−1)×2∑k
i=1(ni+1), C3 ∈ R4×2∑k

i=1(ni+1) and C4 ∈ R2(k−1)×2∑k
i=1(ni+1),
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and hence A ∈ Rp×p for

p = 2
k

∑
i=1

(ni +1)+2
k

∑
i=1

ri +2(k−1)+4+2(k−1) = 2
k

∑
i=1

(ni + ri)+6k. (59)

Since,

C j =−BT
j for j = 1,2,3,4, (60)

we can write

A =
[

A1,1 A1,2
−AT

1,2 0

]
.

Finally, we have

z(t +∆t) =




vecXn1(t +∆t)
...

vecXnk(t +∆t)
λr1

1
...

λrk
k

µ1
...

µ2k




∈ Rp×1 and f(t) =




V1(t +∆t)−V1(t)
0
...
0

Vk(t +∆t)−Vk(t)
vecTr1(t)−vecPn1(t)B

r1
n1

...
vecTrk(t)−vecPnk(t)B

rk
nk

0
...
0




∈ Rp×1.

Next, we will show that A is a non-singular matrix and hence there exists a unique minimum
for our problem.

Proposition 3. Assume that rankB
r j
n j = r j for 1≤ j ≤ k. Then the matrix A is invertible.

Proof. First, observe that
A1,1 = diag(Zn1, . . . ,Znk).

By Proposition 1 the matrix Zn j is invertible for 1 ≤ j ≤ k and, in consequence, rankA1,1 =
∑k

j=1 2(n j +1). Thanks to Theorem 2 the proposition follows if

rankA1,2 = rank(−AT
1,2) =

k

∑
j=1

2r j +2k,

holds. Observe that k < ∑k
j=1 r j < ∑k

j=1(n j + 1). Let us denote by {e(i)
1 , . . . ,e(i)

ni+1} the canonical
basis of Rni+1 for 1≤ i≤ k, and observe that

Rni =
[

0 · · · 0 0 I2
]
= (I2⊗ e(i)

ni+1)
T ,
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R∗ni
=
[

0 · · · 0 −I2 I2
]
= (I2⊗ (e(i)

ni+1− e(i)
ni ))T ,

Lni =
[

I2 0 0 · · · 0
]
= (I2⊗ e(i)

1 )T

and

L∗ni
=
[
−I2 I2 0 · · · 0

]
= (I2⊗ (e(i)

2 − e(i)
1 ))T ,

By inspection it is possible to see that the subspace spanned by the rows of the ∑k
j=1 2r j + 2k×

∑k
j=1 2(n j +1)-matrix (−AT

1,2), that is,




(B
r1
n1 )T ⊗ I2 0 0 · · · 0 0

0 (B
r1
n2 )T ⊗ I2 0 · · · 0 0

0 0 (B
r2
n3 )T ⊗ I2 · · · 0 0

0 0 0 · · · 0 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 0 · · · (B
rk−1
nk−1 )T ⊗ I2 0

0 0 0 · · · 0 (B
rk
nk )T ⊗ I2

− − − − − −
(e(1)

n1+1)T ⊗ I2 −(e(2)
1 )T ⊗ I2 0 · · · 0 0

0 (e(2)
n2+1)T ⊗ I2 −(e(3)

1 )T ⊗ I2 · · · 0 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

0 0 0 · · · −(e(k−1)
nk−1 )T ⊗ I2 0

0 0 0 · · · (e(k−1)
nk−1+1)T ⊗ I2 −(e(k)

1 )T ⊗ I2
− − − − − −

n1((e(1)
2 − e(1)

1 ))T ⊗ I2 0 0 · · · 0

0 0 0 · · · 0 nk((e
(k)
nk+1− e(k)

nk ))T ⊗ I2
− − − − − −

n1((e(1)
n1+1− e(1)

n1 ))T ⊗ I2 −n2(e(2)
2 − e(2)

1 )T ⊗ I2 0 · · · 0 0

0 n2(e(2)
n2+1− e(2)

n2 ))T ⊗ I2 −n3(e(3)
2 − e(3)

1 )T ⊗ I2 · · · 0 0

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

0 0 0 · · · −nk−1(e(k−1)
2 − e(k−1)

1 )T ⊗ I2 0

0 0 0 · · · nk−1(e(k−1)
nk−1+1− e(k−1)

nk−1 ))T ⊗ I2 −nk(e
(k)
2 − e(k)

1 )T ⊗ I2




has dimension equal to ∑k
j=1 2r j +2k and the proposition follows.

6. Comparing BSD with T-BSD

The BSD was applied and published in Montés (2008); Hilario (2010, 2011). The BSD algo-
rithm computes the deformation of a continuous Bézier curve. In Montés (2008), it was used to
improve the numerical simulation of Liquide Composite Moulding processes. In this case the BSD
was used to represent as a continuous curve and update the information of the resin’s flow front
when the mould is filling.

Later, in Hilario (2010, 2011), the algorithm was applied to mobile robots to obtain a new
technique for flexible path planning based on the deformation of a Bézier curve through a field of
forces (vectors). The focus of this research was the generation of a smooth collision-free trajectory
for an holonomic mobile robot.

The use of tensors in the algorithms has two different objectives: a low storage cost and as
a consequence of the represented tensors are involved into operations, for that reason operations
should have a comparably low cost. The idea is the reduction of the data size from nd to O(dn).
We can see different applications and specific theory about tensors in Hackbusch (2011).
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With T-BSD the reduction of the computational cost of the BSD algorithm is achieved. Figure 4
shows the evolution in computational time required for the calculation of the deformation of Bézier
curves (composed of different number of Bézier curves) with the BSD and T-BSD methods. It is
clear that, as the number of curves increases, BSD grows exponentially, whereas T-BSD grows
linearly. As a consequence of the use of tensors it is got a reduction of the numerical cost. The
comparison shown in Figure 4 has been computed using a PC with a 3.06 GHz Intel Core i3 and
4GB RAM.

Our objective is the use of this algorithm in real-time. In fact, whereas the BSD algorithm can
use up to 70 quadratic curves for the computation of the modified Bézier curve in one second (see
Figure 4), its reformulated algorithm T-BSD is able to use up to 170 curves within the same period
of time, which highly increases the accuracy of the modified Bézier curve when it is compared to
the BSD method. The use of tensors reduces the calculation time.

Figure 4: The comparison of the computational cost of BSD and T-BSD methods

Another big advantage of the use of tensors is how the matrix is structured in blocks. This type
of structure allows the computation of the algorithm using parallel computing, Grama (2003). The
aim of parallel computing is how to break a problem intro discret parts that can be solved con-
currently. Each discrete part is executed simultaneously on different processors. For that reason,
the computational cost is reduced because a complex problem is solved in less time with multiple
compute resources than a single compute resource. There are several applications of parallel com-
puting, for example: databases, data mining, medical imaging and diagnosis, advanced graphics
and virtual reality, etc. As a consequence of using tensors and using the parallel computing the
numerical cost of the T-BSD algorithm would be reduced as much as possible.
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7. Conclusions

This work presents a use of tensors which reduces the computational time of the BSD (Bézier
Shape Deformation) algorithm, initially developed within the framework of mobile robotics and
liquid composite moulding processes. The result is a tensorial method called T-BSD (Tensor Bézier
Shape Deformation) which enjoys the same properties of the former method including a key ad-
vantage: its low computational time and real-time performance. This is a critical issue in some
engineering applications. For that reason, the reduction of the execution time of the Bézier gener-
ation algorithm is such an important goal to achieve.

In this case of the T-BSD algorithm, the calculation costs depend on the number of curves
required to compute a new Bézier from a given one. A field of vectors indicate the direction of de-
formation at predefined points in the initial Bézier. The algorithm performs then the concatenation
of a set of curves to obtain the deformed Bézier. Besides, the number of curves is highly related
to the accuracy of the modified Bézier. In fact, the more curves are used the better the accuracy of
the new Bézier.

As a consequence, the T-BSD algorithm is computed with very low computational time and
excellent accuracy. This is a great outcome in a lot of engineering fields.
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