
Speeding up the cyclic edit distance
using LAESA with early abandon

Vicente Palazón-Gonzáleza,∗, Andrés Marzala

aUniversitat Jaume I, Dept. Llenguatges i Sistemes
Informàtics and Institute of New Imaging Technologies,

Castellón de la Plana, Spain

Abstract

The cyclic edit distance between two strings is the mini-
mum edit distance between one of this strings and every
possible cyclic shift of the other. This can be useful,
for example, in image analysis where strings describe the
contour of shapes or in computational biology for classi-
fying circular permuted proteins or circular DNA/RNA
molecules.

The cyclic edit distance can be computed in
O(mn logm) time, however, in real recognition tasks
this is a high computational cost because of the size of
databases. A method to reduce the number of compar-
isons and avoid an exhaustive search is convenient. In
this work, we present a new algorithm based on a mod-
ification of LAESA (Linear Approximating and Elimi-
nating Search Algorithm) for applying pruning in the
computation of distances. It is an efficient procedure for
classification and retrieval of cyclic strings. Experimental
results show that our proposal considerably outperforms
LAESA.

Keywords:
Cyclic strings, cyclic edit distance, AESA, LAESA,
shape recognition, circular permuted proteins, circular
DNA/RNA.

1. Introduction

Comparison of strings is an important problem in
pattern recognition employed in applications that range
from speech and image analysis to molecular biology [20].
A widely used measure between two strings is the edit
distance (ED). This distance is defined as the cost of
the best sequence of edit operations for transforming one
string into the other [24].

There are situations in which the objects are better
described using cyclic strings. They are strings or se-
quences where the last element is followed by the first

∗Corresponding author: Tel.: +34-964-72-8335; fax: +34-964-
72-8435;

Email address: palazon@lsi.uji.es (Vicente
Palazón-González)

element, that is, there is no beginning or end [17, 18].
For example, contours of shapes can be represented by
cyclic chain-codes [1, 26]. We can also find them in com-
putational biology. Inherited information can be stored
on circular DNA or RNA molecules [15, 13, 5] and there
are also cyclic sequences in proteins [14, 25].

If we want to measure distances between cyclic strings,
we can use the cyclic edit distance (CED), which is de-
fined as the cost of the best sequence of edit operations
for transforming a string into any cyclic shift of the other.
This can be computed in O(m2n) time (where m and n
are the sizes of the strings). In [8], Maes introduced
an algorithm that reduces the time cost to O(mn logm).
In [10, 19], the authors improved the Maes’ algorithm us-
ing a branch and bound procedure achieving a significant
speeding up.

In classification or retrieval systems running-time is
a very important issue. For this reason, an exhaustive
search of databases is not appropriate. We need to avoid
it by means of indexing methods. AESA (Approximat-
ing and Eliminating Search Algorithm) [22, 23] is charac-
terised by a drastic reduction of the number of distances
computed. It is then specially interesting when the dis-
tance has a high cost. Although AESA offers a good
performance, it has a quadratic space complexity with
respect to the size of the database, then, it is not suitable
when our database begins to grow. In that case, linear
AESA (LAESA) [11] offers a better alternative because
its space complexity is linear. However, its performance
is lower than AESA.

In this paper, we present a modification of LAESA for
including pruning in the computation of the distances
(LAESA with early abandon) that improves the perfor-
mance of LAESA and AESA (in some cases) in the recog-
nition of cyclic strings.

The remainder of this document is organized as fol-
lows. In Sections 2 and 3, CED, AESA and LAESA
are revisited. The modification of LAESA, LAESA with
early abandon (LAESAEA) applied to the CED is pre-
sented in Section 4. In Section 5, experimental results
in classification and retrieval tasks compare the differ-
ent methods. Finally, conclusions and future work are
commented in Section 6.

2. Cyclic edit distance

Let Σ be a set of symbols and let Σ∗ be the set of
all finite strings over Σ. Let x = x1x2 . . . xm and y =
y1y2 . . . yn be two strings in Σ∗. Let u, v, z be symbols in
Σ and let λ be the empty string. An edit sequence is a
sequence e = e1e2 . . . eq where ei, for 1 ≤ i ≤ q, is one of
the following edit operations: deletion (u→ λ), insertion
(λ → v), substitution (u → v), and matching (u → u).
Let γ(e) = Σ1≤i≤qγ(ei) be the cost of the edit sequence
e, being γ(ei) the cost of the edit operation ei (satisfying
γ(u→ v) + γ(v → z) ≥ γ(u→ z)). The edit distance,

Preprint submitted to Elsevier July 1, 2016

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/61482679?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

λ 0

x1

0

x2

1

x3

1

x4

0

x1

0

x2

1

x3

1

x4

λ

0y1

1y2

1y3

0y4

0y5

Figure 1: Extended edit graph for strings x = 0011 and y = 01100.
The cyclic edit distance is computed using unit cost for insertions,
deletions and substitutions and zero cost for matchings. The op-
timal path for the cyclic edit distance is the optimal path among
those ones starting and ending at nodes with the same colour.

ED(x, y), is the cost of the optimal edit sequence (that
is, the one with minimum cost, γ(e)) that transforms x
into y.

The edit distance (ED) can be computed in O(mn)
time using a dynamic programming procedure [24]. This
procedure finds the optimal path in an edit graph. This
graph is connected by horizontal, vertical and diagonal
arcs. These arcs represent deletions, insertions and sub-
stitutions or matchings, respectively. Each path from
(0, 0) to (m,n) corresponds to an edit sequence.

Let σ(x1x2 . . . xm) = x2 . . . xmx1 denote a cyclic shift.
Let σk be k cyclic shifts. The equivalence class [x] =
{σk(x) : 0 ≤ k < m} is a cyclic string. We can obtain
the value of CED([x], [y]) by computing m edit distances
in O(m2n) time:

CED([x], [y]) = CED([x], y) = min
0≤k<m

ED(σk(x), y).

(1)
Maes’ algorithm [8] uses a divide and conquer recursive

procedure that computes these m edit distances (that is,
the CED) in a more efficient way. This procedure uses
an extended edit graph, an edit graph in which the string
x is twice (see Figure 1). Let T (k) be an optimal path
between nodes (k, 0) and (k +m,n). When we compute
ED(σk(x), y), it is possible to use the non-crossing prop-
erty of these paths. Each recursive call generates up to
two recursive calls (see Figure 2). The total computation
time is then O(mn logm).

Maes’ algorithm can be improved if we adopt a branch
and bound approach [10] only exploring those branches
in the tree that may lead to the optimal path. Formally,
a state in the search space is a pair (l, r) where 0 ≤
l < r ≤ m and r − l > 1, and it represents the set of
cyclic shifts {σk(x) : l < k < r}. The algorithm starts
by computing d = ED(x, y) and initializing the set of
live search states, S, to (0,m). S can be implemented
as a min-heap [3] ordered by the value of g, a function

such that g(l, r) ≤ minl<k<r d(σk(x), y) (a lower bound
on d). The branching function splits a given state (l, r)
in two states, (l, k) and (k, r), and a singleton {k}, where
k = l + d r−l2 e. The live states are implicitly pruned by
not inserting new states in S if their lower bound does
not decrease the value of d. It finishes when the lower
bound of the best state in S is greater or equal than d.

Although in [10] other lower bounds, g, are mentioned,
the one that obtains the best results in the experiments
is the following:

g((l, r)) =

max

(
0,

ED(σl(x), y) + ED(σr(x), y)− (D + I)(r − l)
2

)
≤ min

l<k<r
ED(σk(x), y), (2)

being D = γ(u→ λ) and I = γ(λ→ v).
This lower bound is computed in time O(1). There-

fore, the worst case time complexity of this algorithm is
O(mn logm).

3. AESA and LAESA

In certain cases, to perform a search over the entire
database is not suitable. In these cases, if we have a
metric space, it is a common practice to use indexing
methods based on the triangle inequality. These methods
organize data in a way that similarity queries can be per-
formed efficiently without processing the entire database.
There are many methods of this type: M-tree, R-tree,
vp-tree, . . . [2], although, among them, when distances
have a high computational cost, methods based on AESA
stand out. That is precisely our case, since our distance
is the CED.

AESA [22, 23] is characterised by a drastic reduction
of the computation of distances. AESA requires, in a
preprocessing step, the computation and storage of all
the distances in a matrix D. The search procedure in
AESA uses a branch and bound technique for finding
the nearest prototype, in a training set P , to a query
sample x. In the search step, an arbitrary candidate, s,
is chosen as the nearest neighbour and the distance to the
query sample, d(x, s), is computed. Then, s is eliminated
from the set of prototypes and the nearest neighbour is
updated. This distance is used for obtaining a new lower
bound, G, of the distance of each prototype, p, to the
query sample, using for it the triangle inequality (see
Figure 3):

d(p, x) ≥ |d(s, p)− d(x, s)|. (3)

If the lower bound is greater than the distance to the
nearest neighbour so far, the prototype is pruned. The
next prototype with a minimum value of the lower bound

2

T(0)

T(0)

T(0)

T(0)

T (2)T (2) T (4)

T (4)

T (4)

T (4)

T (6)T (6) T (8)

T (8)

T (8)

Computation of T (1)

Computation of T (2)

Computation of T (3)

Computation of T (4)

Computation of T (5)

Computation of T (6)

Computation of T (7)

Figure 2: Search space generated for the computation of the cyclic edit distance by Maes’ algorithm for m = 8. Each frame represents
an extended edit graph. Optimal paths never cross already known optimal paths. Shaded regions in each frame are not visited when
computing optimal paths.

s

p

x

d(s, x)

d(p, x)

d(p, s)

|d(s, x) − d(s, p)|

Figure 3: Lower bound using the triangle inequality.

is selected and the process is repeated until there are no
more prototypes.

AESA has a major drawback, its spatial complexity
is quadratic due to D. To solve this problem, LAESA
arose [11]. In the preprocessing step, instead of comput-
ing the distances between all the prototypes, this com-
putation is done just for base prototypes, B (that are
selected in a previous step) against the remainder proto-
types. Then, the matrix, D, is not square and the spatial
complexity of LAESA becomes linear with respect to P
and the cardinality of B. In the search process, base
prototypes are selected as candidates to nearest neigh-
bour and the distance to the query sample is computed,
using this distance and precomputed distances (in the
preprocessing step) to obtain a lower bound of the dis-
tance of each prototype to the query sample. When all
the base prototypes are eliminated, the process continues
but without updating the lower bounds.

The number of distances that LAESA computes is al-
ways greater than the ones of AESA. But, in [11], the au-
thors empirically showed that the number of computed
distances, in both algorithms, grows very slowly with re-
spect to the size of P , that is, it does not depend on

this size. However, an important factor for the number
of computed distances is the number of base prototypes
and how we select them.

4. LAESA with early abandon (LAESAEA) for
cyclic strings

As we commented before, LAESA only updates the
lower bounds using the computed distances of the pro-
totypes that belong to B. It is not necessary to com-
pute the distances to prototypes that do not belong to
B because we do not need them for updating the lower
bounds. This way, we can abandon the computation of
these distances as soon as we know that they are not
going to be lower than the distance to the nearest neigh-
bour so far. From now on we will call this distance to
this nearest neighbour: external bound. Then, when the
prototype belongs to B, we compute a regular distance.
Otherwise, we compute the distance with early abandon.
We can now reduce the computation time of the proto-
types that are not pruned by LAESA.

We call this algorithm LAESA with early abandon
(LAESAEA). This new algorithm is shown in Figure 4.
For transforming it to LAESA, we have to remove the
condition (with comments in Figure 4) where we check if
s ∈ B and to compute always the distance function d in-
stead of dEA (distance with early abandon). Finally, for
transforming LAESA to AESA, we only have to make
B = P . Thus, this early abandon is not applicable to
AESA since B = P and we have to compute all the dis-
tances for updating the lower bounds.

We cannot speed up any sort of distance using
LAESAEA. It makes no sense, for instance, to use

3

Figure 4: LAESAEA (LAESA with early abandon).

Input: P : prototypes, x: query sample
Output: nn ∈ P : nearest neighbour
var B ⊂ P : base prototypes, DB ∈ R|B|×|P |:
distances to base prototypes
begin

for p ∈ P do G[p] = 0
nn = unknown; dnn =∞; s = any element of B
while |P | > 0 do

if s ∈ B then
ds = d(x, s) // computing distance as in
LAESA

else
ds = dEA(x, s, dnn) // computing
distance with early abandon (dEA)

P = P − {s}
if ds < dnn then

nn = s; dnn = ds
nextB = unknown; gminB =∞; next =
unknown; gmin =∞
for p ∈ P do

if s ∈ B then
G[p] = max(G[p], |DB [s, p]− ds|)
if G[p] > dnn then

P = P − {p}
else

if p ∈ B then
if G[p] < gminB then
gminB = G[p]; nextB = p

else
if G[p] < gmin then
gmin = G[p]; next = p

if nextB 6= unknown then s = nextB
else s = next

return nn
end

LAESAEA with a distance that has a constant computa-
tional complexity. We need a distance that in the process
of computing we can stop it when we know that it is go-
ing to be greater than a determined value (the external
bound) and this stop must save a considerable amount
of time. That is, a distance with early abandon. As we
will see in the following, the CED has these properties.

We propose two ways of stopping the computation of
the CED using an external bound. The first is a mod-
ification of the branch and bound procedure for com-
puting the CED mentioned in Section 2. The adapted
algorithm, dEA1, is shown in Figure 5. This modified
version initializes d to the external bound if it is lower
than ED(x, y) (the cost of T (0)) and to ED(x, y) other-
wise. Then, the algorithm will not explore those ranges,
(l, r), where the external bound is lower than their lower

Figure 5: dEA1 (Branch and bound algorithm with early aban-
don).

Input: x, y : Σ∗; external bound : N
Output: d : N
var S : 2N×N; T : array [0..m] of edit paths
begin

d = ED(x, y)
if external bound < d then

d = external bound
Let T (0) be the optimal path underlying
ED(x, y)
Let T (m) be T (0) shifted m units to the right
S = {(0,m)}
while S 6= ∅ ∧ d > min(l,r)∈S g((l, r)) do

(l, r) = arg min(l′,r′)∈S g((l′, r′));
S = S− {(l, r)}
k = l + d r−l2 e
d = min(d,ED(ρk(x), y)) (between T (l) and
T (r))
Let T (k) be the optimal edit path underlying
ED(ρk(x), y)
if k > l + 1 ∧ g((l, k)) < d then
S = S ∪ {(l, k)}
if r > k + 1 ∧ g((k, r)) < d then
S = S ∪ {(k, r)}

return d
end

bound, g((l, r)).

The second proposal is based on a combination of the
previous algorithm and the Bunke and Bühler’s algo-
rithm [1] (BB). This algorithm computes an approxima-
tion of CED([x], [y]) in time O(mn). It obtains the short-
est path starting at any node (k, 0), for 0 ≤ k < m, and
finishing at any node (k′, n), for m ≤ k′ < 2m. This
method is suboptimal because the path that it obtains
could start at (k, 0) and finish at (k′, n), with k′ 6= k+m.
However, the path associated with CED([x], [y]) must
verify k′ = k + m. We can then deduce that the
distance obtained using the Bunke and Bühler’s algo-
rithm is a lower bound of the CED, that is, BB(x, y) ≤
CED([x], [y]]).

Based on this reasoning we can also develop a Bunke
and Bühler’s algorithm with early abandon. We can
abort BB computation whenever we can guarantee that
the final result will not improve the external bound. That
is, we can stop the computation at first row where all the
values are greater or equal than this external bound. The
modified version of this algorithm is shown in Figure 6.

The combination of both algorithms, dEA2, is depicted
in Figure 7. Basically, we compute BBEA and if the
value that returns is greater than the external bound, we
return infinity. This means that the BBEA has pruned
the computation of the distance of this particular element

4

in the database. If that is not the case, we compute
dEA1. If the value that it returns is equal to the external
bound, dEA1 has pruned the computation of the real
distance (infinity is also returned). Otherwise, this is
the new nearest neighbour and we return its distance.

Both algorithms, dEA1 and dEA2 can substitute dEA
in LAESAEA (see Figure 4). Although dEA2 seems to
be computationally more expensive than dEA1, we will
see in the experiments section that in practice it obtains
better results.

Figure 6: BBEA (Bunke and Bühler’s algorithm with early
abandon).

Input: x, y : Σ∗; external bound : N
Output: d : N
var X : x concatenated to x,EEG ∈ N2m×n:
extended edit graph
begin

for i in 0..m do
EEG[i][0] = 0

for i in m+ 1..2m do
EEG[i][0] =∞

for j in 0..n do
EEG[0][j] = EEG[0][j − 1] + γ(X[0], y[j])

for j in 1..n do
for i in 1..2m do

EEG[i][j] =
min(EEG[i−1][j−1]+γ(X[i−1], y[j−1]),

EEG[i− 1][j] +γ(X[i], λ),
EEG[i][j−1])+γ(λ, y[j]))

if every element at row j is ≥ external bound
then

d =∞
return d

d = min(EEG[i][n− 1] for i in
|X| − 1 .. 2|X| − 1)
return d

end

Other two important things that we have to consider in
order to speed up classification and retrieval are the fol-
lowing (both must be applied at the beginning of dEA1
and dEA2 algorithms). First, if m > n, we must swap
x and y, in order to have a lower computational com-
plexity O(nm log n). Second, we do not need to compute
the distance if m > n and (m − n) minu∈Σ γ(u → λ) ≥
external bound, or n > m and (n − m) minv∈Σ γ(λ →
v) ≥ external bound. This happens because at least
|m−n| insertions or deletions must be used to transform
one string into the other.

Finally, we can also apply our approach for retrieval
of samples or for k-nearest neighbour classification. We
simply have to use a sorted list of the k nearest neigh-
bours and to use the kth nearest neighbour as the exter-
nal bound.

Figure 7: dEA2.

Input: x, y : Σ∗; external bound : N
Output: d : N
begin

if
BBEA(x, y, external bound) > external bound
then

return ∞
d = dEA1 (x, y, external bound)
if d == external bound then

return ∞
else

return d

end

5. Evaluation and results

We performed comparative experiments in classifica-
tion and retrieval tasks on the following databases:

• Digits from the NIST Special Database 19 [16] (see
Figure 8). A total of 5000 digits were randomly
selected from the sets hsf {0,1,2,3,4}. Each digit
has 500 samples.

• Silhouette database [21]. It contains 1070 shapes
(see Figure 9). The shapes belong to 41 classes rep-
resenting different objects.

• Cybase [14, 25], a database of proteins. It consists
of 434 cyclic proteins.

Figure 8: Some digits in NIST Special Database 19.

The images were scaled, binarized and their contours
were represented by chain codes of eight directions. The
average length of these cyclic strings is: 100 for the digits,
190 for the shapes of the Silhouette database and 27 for
the proteins.

Time experiments were measured on a 2.66 GHz Intel
i7 running under Linux 3.2. The algorithms were im-
plemented in C++ and its code was compiled using the

5

Figure 9: Some images in Silhouette database.

GNU g++ compiler with -O2 optimizations. We used a
leaving-one-out approach [4]. The cyclic edit distances
were computed using unit cost for insertions, deletions
and substitutions of symbols, and zero cost for match-
ings.

We compare our approaches, LAESAEA using dEA1
(LAESAEA+dEA1) and dEA2 (LAESAEA+dEA2),
with respect to an exhaustive search (Exhaustive),
LAESA and AESA.

Time results of the digits database are shown in Fig-
ures 10, 11, 12, 13, 14 and 15. With this database we
created other 4 databases for performing the compar-
isons with different number of samples: 1000, 2000, 3000
and 4000 (the original database has 5000 samples). In
Figure 10 the classification results (k = 1) for different
sizes are shown. As we can see, both, LAESAEA+dEA1
and mainly LAESAEA+dEA2 outperform the results of
LAESA. The results of LAESAEA+dEA2 and AESA are
very similar. LAESAEA+dEA2 has better results for a
size greater than 4000 samples.

The classification rate in the whole dataset (5000 sam-
ples) is 96.88% using the ED and 98.34% using the CED.

In Figures 11, 12, 13, 14 and 15 we have results
for different values of k for shape retrieval or k near-
est neighbour classification (a figure for 1000, 2000,
3000, 4000 and 5000 prototypes). We can see that
LAESAEA+dEA2 has a very good behaviour with re-
spect to AESA. LAESAEA+dEA2 obtains the best re-
sult when k or the size of the database begin to grow.

Time results of the Silhouette database for different
values of k are in Figure 16. These results are very
similar to the ones of the digits database for 1000 and
2000 samples. The Silhouette database has 1069 sam-
ples and longer strings. As we can see, for k = 1
LAESAEA+dEA2 obtains a close result to the one of
AESA. For k = 10 and k = 20, LAESAEA+dEA2 im-
proves the result of AESA.

Here we obtain a classification rate of 96.63% using the
CED and 81.66% using the ED. For the shape retrieval
we use the mean average precision (MAP) [9]. The MAP
using the CED, in this database, is 64.00 and using the
ED is 22.81. We have to say that in this task the results

1000 2000 3000 4000 5000

Database size
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
ve

ra
ge

ti
m

e
(i

n
se

co
nd

s)

Exhaustive
AESA
LAESA
LAESAEA+dEA1
LAESAEA+dEA2

Figure 10: Average time needed to classify a query sample as a
function of the number of prototypes in the training set for the
digits database.

1 5 10 20

k
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A
ve

ra
ge

ti
m

e
(i

n
se

co
nd

s)

Exhaustive
AESA
LAESA
LAESAEA+dEA1
LAESAEA+dEA2

Figure 11: Average time needed for obtaining the nearest neig-
bours of a query sample as a function of k (the number of nearest
neighbours retrieved) for the digits database of 1000 samples.

of the CED are much better because we solve a different
problem [7] than the one of the digits database. In the
digits database, we reduce the error of choosing as the
beginning of the contour the upper leftmost point. How-
ever, in the Silhouette database we suppose any rotation
of the shapes. Then, we have a random selection of the
starting point.

Figure 17 shows the experiments with Cybase, the
database of cyclic proteins. Although these time results
are competitive, they are not as good as the ones with
the other databases. This is due to the small size of this
database and it also has shorter strings.

Finally, in Figures 18, 19 and 20 we show the exper-
iments for selecting the number of base prototypes for
each database. For selecting B we use the EC1 approx-
imation [11] as it is done in posterior works of the same
authors [6, 12]. In these figures a cross indicates the
number of base prototypes selected. For speeding up the
search, it is performed from 10 to 10 starting at B = 5.

6

1 5 10 20

k
0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

A
ve

ra
ge

ti
m

e
(i

n
se

co
nd

s)
Exhaustive
AESA
LAESA
LAESAEA+dEA1
LAESAEA+dEA2

Figure 12: Average time needed for obtaining the nearest neig-
bours of a query sample as a function of k (the number of nearest
neighbours retrieved) for the digits database of 2000 samples.

1 5 10 20

k

0.5

1.0

1.5

2.0

A
ve

ra
ge

ti
m

e
(i

n
se

co
nd

s)

Exhaustive
AESA
LAESA
LAESAEA+dEA1
LAESAEA+dEA2

Figure 13: Average time needed for obtaining the nearest neig-
bours of a query sample as a function of k (the number of nearest
neighbours retrieved) for the digits database of 3000 samples.

1 5 10 20

k
0.5

1.0

1.5

2.0

2.5

3.0

A
ve

ra
ge

ti
m

e
(i

n
se

co
nd

s)

Exhaustive
AESA
LAESA
LAESAEA+dEA1
LAESAEA+dEA2

Figure 14: Average time needed for obtaining the nearest neig-
bours of a query sample as a function of k (the number of nearest
neighbours retrieved) for the digits database of 4000 samples.

1 5 10 20

k
0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

A
ve

ra
ge

ti
m

e
(i

n
se

co
nd

s)

Exhaustive
AESA
LAESA
LAESAEA+dEA1
LAESAEA+dEA2

Figure 15: Average time needed for obtaining the nearest neig-
bours of a query sample as a function of k (the number of nearest
neighbours retrieved) for the digits database of 5000 samples.

1 5 10 20

k

0.5

1.0

1.5

2.0

2.5

3.0

3.5

A
ve

ra
ge

ti
m

e
(i

n
se

co
nd

s)

Exhaustive
AESA
LAESA
LAESAEA+dEA1
LAESAEA+dEA2

Figure 16: Average time needed for obtaining the nearest neig-
bours of a query sample as a function of k (the number of nearest
neighbours retrieved) for the Silhouette database.

6. Discussion

AESA has a major drawback, its spatial complexity is
quadratic. When the database begins to grow LAESA
is instead used because of its linear spatial complex-
ity. But, its results are not as good as the ones of
AESA. In this work, we propose a modified version of
LAESA to work with distances with early abandon such
as the CED. We call this version LAESA with early
abandon (LAESAEA). For stopping the computation of
the CED we propose two different methods: dEA1 and
dEA2. Experimental results with three databases in clas-
sification and retrieval show that the proposed method
considerably reduces the required time of LAESA for
cyclic strings. In most cases LAESAEA+dEA2 offers
similar results to the ones of AESA or even better re-
sults. But, if we also consider the spatial complexity,
LAESAEA+dEA2 is the best option.

In posterior work we want to explore the application
of LAESAEA in other contexts.

7

1 5 10 20

k
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

A
ve

ra
ge

ti
m

e
(i

n
se

co
nd

s)

Exhaustive
AESA
LAESA
LAESAEA+dEA1
LAESAEA+dEA2

Figure 17: Average time needed for obtaining the nearest neig-
bours of a query sample as a function of k (the number of nearest
neighbours retrieved) for the Cybase database.

0 100 200 300 400 500 600 700

Number of base prototypes (B)

0.7

0.8

0.9

1.0

1.1

1.2

1.3

To
ta

ln
um

be
r

of
di

st
an

ce
s

×107

Figure 18: Number of distances as a function of the number of
base prototypes (B) for the digits database. A cross indicates the
number of base prototypes selected.

Acknowledgements

Work partially supported by the Spanish Govern-
ment (TIN2010-18958), and the Generalitat Valenciana
(PROMETEOII/2014/062).

References

[1] Bunke, H., Bühler, H., 1993. Applications of ap-
proximate string matching to 2D shape recognition.
Pattern Recognition 26, 1797–1812.

[2] Chávez, E., Navarro, G., Baeza-Yates, R., Mar-
roqúın, J., 2001. Searching in metric spaces. ACM
Computing Surveys (CSUR) 33, 273–321.

[3] Cormen, T., Leiserson, C., Rivest, R., 1990. Intro-
duction to Algorithms. The MIT Press Cambridge,
MA.

[4] Duda, R.O., Hart, P.E., 1973. Pattern Classification
and Scene Analysis. Wiley.

0 50 100 150 200 250

Number of base prototypes (B)

520000

540000

560000

580000

600000

620000

640000

660000

680000

700000

To
ta

ln
um

be
r

of
di

st
an

ce
s

Figure 19: Number of distances as a function of the number of base
prototypes (B) for the Silhouette database. A cross indicates the
number of base prototypes selected.

0 10 20 30 40 50 60 70

Number of base prototypes (B)

52000

52500

53000

53500

54000

54500

55000

55500

56000

To
ta

ln
um

be
r

of
di

st
an

ce
s

Figure 20: Number of distances as a function of the number of
base prototypes (B) for the Cybase database. A cross indicates
the number of base prototypes selected.

[5] Fernandes, F., Pereira, L., Freitas, A.T., 2009. Csa:
An efficient algorithm to improve circular dna mul-
tiple alignment. BMC bioinformatics 10, 230.

[6] Juan, J.R.R., Mico, L., 2003. Comparison of AESA
and LAESA search algorithms using string and
tree-edit-distances. Pattern Recognition Letters 24,
1417–1426.

[7] Keogh, E., Wei, L., Xi, X., Vlachos, M., Lee, S., Pro-
topapas, P., 2009. Supporting exact indexing of ar-
bitrarily rotated shapes and periodic time series un-
der Euclidean and warping distance measures. The
VLDB Journal 18, 611–630.

[8] Maes, M., 1990. On a cyclic string-to-string cor-
rection problem. Information Processing Letters 35,
73–78.

[9] Manning, C.D., Raghavan, P., Schtze, H., 2008.
Introduction to Information Retrieval. Cambridge
University Press, New York, NY, USA.

8

[10] Marzal, A., Barrachina, S., 2000. Speeding up the
computation of the edit distance for cyclic strings,
in: International Conference on Pattern Recogni-
tion, pp. 483–519.

[11] Micó, M., Oncina, J., Vidal, E., 1994. A new version
of the nearest-neighbour approximating and elim-
inating search algorithm (AESA) with linear pre-
processing time and memory requirements. Pattern
Recognition Letters 15, 9–17.

[12] Moreno-Seco, F., Mico, L., Oncina, J., 2003. A mod-
ification of the LAESA algorithm for approximated
k-NN classification. Pattern Recognition Letters 24,
47–53.

[13] Mosig, A., Hofacker, I.L., Stadler, P.F., 2006. Com-
parative analysis of cyclic sequences: Viroids and
other small circular rnas., in: German Conference
on Bioinformatics, pp. 93–102.

[14] Mulvenna, J.P., Wang, C., Craik, D.J., 2006. Cy-
base: a database of cyclic protein sequence and
structure. Nucleic acids research 34, 192–194.

[15] Nicolas, Rivals, 2007. Longest common subsequence
problem for unoriented and cyclic strings. Theoret-
ical Computer Science 370, 1–18.

[16] P. J. Grother, 1995. NIST Special Database 19:
Handprinted Forms and Characters Database. Tech-
nical Report. National Institute of Standards and
Technology.

[17] Palazón-González, V., Marzal, A., 2012. On the
dynamic time warping of cyclic sequences for shape
retrieval. Image and Vision Computing 30, 978–990.

[18] Palazón-González, V., Marzal, A., Vilar, J.M., 2014.
On hidden markov models and cyclic strings for
shape recognition. Pattern Recognition 47, 2490–
2504.

[19] Peris, G., Marzal, A., 2002. Fast cyclic edit dis-
tance computation with weighted edit costs in clas-
sification, in: International Conference on Pattern
Recognition, pp. 184–187.

[20] Sankoff, D., Kruskal, J. (Eds.), 1983. Time Warps,
String Edits, and Macromolecules: the Theory and
Practice of Sequence Comparison. Addison-Wesley,
Reading, MA.

[21] Sharvit, D., Chan, J., Tek, H., Kimia, B.B., 1998.
Symmetry-based indexing of image databases, in:
Workshop on Content-Based Access of Image and
Video Libraries, pp. 56–62.

[22] Vidal, E., 1986. An algorithm for finding near-
est neighbours in (approximately) constant average
time. Pattern Recognition Letters 4, 145–157.

[23] Vidal, E., 1994. New formulation and improvements
of the nearest-neighbour approximating and elimi-
nating search algorithm (AESA). Pattern Recogni-
tion Letters 15, 1–7.

[24] Wagner, R., Fisher, M., 1974. The string-to-string
correction problem. Journal of the ACM 21, 168–
173.

[25] Wang, C.K., Kaas, Q., Chiche, L., Craik, D.J., 2008.
Cybase: a database of cyclic protein sequences and
structures, with applications in protein discovery
and engineering. Nucleic acids research 36, 206–210.

[26] Zhang, D., Lu, G., 2004. Review of shape represen-
tation and description techniques. Pattern Recogni-
tion 37, 1–19.

9

