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This paper argues that the introduction of spatial interactions to model the determinants 

of origin-destination (OD) flows can potentially result in excessive contiguity. To 

explain flows between OD regions, it is not only what happens in the origin and 

destination that is relevant, but also what happens in their neighbouring regions. 

However, what happens if there is a high degree of overlap between origin neighbouring 

areas and destination neighbouring areas? The paper presents an empirical illustration to 

re-examine the evidence presented in previous research (Alamá-Sabater et al., 2013) 

and more closely analyses the territorial level, focusing on the case of interregional 

trade of goods at the NUTS3 level (Spanish provinces). We then use two different 

methodologies within the framework of a spatial gravity equation for interregional trade 

modelling. The findings confirm the importance of spatial dependence on trade flows 

and in particular that logistics decisions within a province affect shipments from 

contiguous provinces. 
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1. Introduction 

The link between spatial dependence and trade flows stems from contributions made by 

LeSage and Pace (2004; 2008). LeSage and Polasek (2008) and LeSage and Thomas-

Agnan (2014) introduce spatial effects into the econometric flow model, which can be 

interpreted as an extension of OD models used in the international trade literature: the 

gravity equation. In particular, these authors redefine the concept of spatial effects by 

considering the idea that the relation between OD flows depends not only on the 

features of origin and destination, as in a traditional gravity equation, but also on the 

characteristics of neighbouring regions. These characteristics can be measured by the 

flows between the neighbouring regions and the origin or destination regions.  

This paper contributes to the existing literature in two ways. First, it explores the 

empirical performance of the gravity model to explain trade flows between regions 

using a spatial approach. To do so, it employs two different methodologies. The first 

methodology extends the gravity model controlling for the so-called multilateral 

resistance (MR) and introducing spatial lags, while the second methodology is based on 

the spatial econometric flow model introduced by LeSage and Pace (2008). Second, 

following the latest research in spatial econometrics, we control for the role of 

connectivity at a highly disaggregated territorial level. Specifically, we focus on level 

NUTS31 in Spain (i.e. provinces). 

Recent research has shown that spatial correlation exists in heavily broken down 

geographical data in Spain (LeSage and Llano, 2013) and it has already analysed the 

role of transport connectivity across regions on interregional trade in goods using a 

spatial econometric model approach (Alamá-Sabater et al., 2013). Although LeSage and 

Llano (2013) and Alamá-Sabater et al. (2013) focused on Spanish regions at the NUTS2 

level and their results revealed a spatial pattern, Alamá-Sabater et al. (2013) show the 
                                                 
1 Nomenclature of Territorial Units for Statistics.



 

 

limitations of the level of territorial breakdown chosen. In particular, they show 

evidence of problems associated with the excessive size of some of the regions, which 

leads to distortions, for example, in terms of shared neighbours across origin and 

destination regions. Certainly, consideration of smaller spatial units, such as provinces 

should substantially improve the results in terms of positive externalities from transport 

connectivity.  

We acknowledge that a problem of excessive contiguity might arise when analysing the 

determinants of OD flows by taking into account spatial interactions, which cover a 

wide variety of movements such as journeys to work, migrations, tourism, usage of 

public facilities, the transmission of information or capital, the market areas of retailing 

activities, international trade and freight distribution (Rodrigue et al., 2013). In fact, 

economic activities both generate and attract flows. Nonetheless, if regions are too 

large, depending on their location and the structure of the territory, there might be an 

excessive overlapping between neighbouring regions. A smaller basic unit area should 

therefore be considered. 

The rest of the paper is organized as follows. Section two describes the two 

methodological approaches used. Section three outlines data and variables used for the 

present study. The regression analysis is performed in section four. Section five 

contains the conclusions. 

2. The two methodologies 

Weighting matrices measure the degree of potential interaction between neighbouring 

locations. Spatial interactions have been included in gravity equations to model OD 

flows in a number of empirical applications such as tourism (De la Mata and Llano-

Verduras, 2012), migration (LeSage and Pace, 2008) and commodity flows (LeSage and 

Polasek, 2008). LeSage and Pace (2008) question traditional gravity models to explain 



 

 

the flow of goods between origin and destination due to the potential failure of a spatial 

component that can lead to model parameters being biased and consequently distort 

statistical inference. Similarly, Corrado and Fingleton (2012) argue that failing to 

acknowledge network dependence and spatial externalities leads to biased inference and 

to an incorrect understanding of true causal processes. However, the economic 

foundation of many spatial econometric models is weak. In order to overcome this 

shortcoming, we extend the theoretically justified gravity approach using spatial lags. 

2.1. Spatial lags 

The spatial dependence of the model is captured by the parameters i. The spatial 

econometrics literature (Anselin, 1988) measured relations with neighbouring regions 

by using weighting matrices. The structure of spatial dependence incorporated in 

weighting matrices preconditions any estimate obtained. With regards to how a 

neighbouring relation is defined in gravity-type models, the most common definition 

describes regions with the same border (Porojan, 2001), but there are studies that 

consider additional criteria, such as Behrens et al. (2012),2 LeSage and Polasek (2008) 

or Alamá-Sabater et al. (2011 and 2013).3  

In a gravity framework that uses symmetrical spatial interaction data,4 we have to 

amplify the weighting matrix and build an n2 *n2 matrix to take into account all trade 

flows between all regions. For example, the model matrices might be defined as 

, if W is n*n, then  is n2 * n2. Note that in this type of model the spatial 

effect is amplified because of the dimension of the flow model, as each region has a 

relationship with the other regions. 

                                                 
2 This application does not contain any form of geographic connectivity as they use a similarity measure 
based on the relative size of regions.
3 They construct a measure of transport connectivity to include in the weighting matrices.
4 Recently, Márquez-Ramos (2014) uses a spatial approach with asymmetrical spatial interaction data (i.e. 
the number of origins is different from the number of destinations. Moreover, origins cannot also be 
destinations).



 

 

By using �“destination-centric ordering�”, we consider three types of indirect effects in 

this paper: 1) , 2)  and 3)  . Where W matrix 

represents an n by n spatial weight matrix based on a neighbour�’s criteria of 

geographical first-order contiguity. Non-zero values for elements i and j denote that 

zone i neighbours zone j, whereas zero values denote that zones i and j are not 

neighbours. The elements on the diagonal are zero to prevent an observation from being 

defined as being its own neighbour. 

It is important to highlight that when working with autoregressive specifications, as is 

the case with this paper, the structure of the model implies that the influence of the 

�“neighbours of neighbours�” is taken into account. Consequently, with an autoregressive 

type model in a territorially highly-disaggregated trade dataset, we are taking into 

account �“second order�” neighbour relations that generate the abovementioned problem 

of excessive contiguity. 

2.2. A theoretically justified gravity approach with spatial lags 

According to the traditional gravity model of trade (Anderson, 1979), the volume of 

aggregate exports between pairs of regions and/or countries, depends on their income, 

geographical distance and a series of dichotomous variables. Trade is expected to be 

positively related to income and negatively related to distance. Gravity models applied 

to the study of trade flows among countries normally include dichotomous variables 

such as whether or not the trading partners share the same language or have a common 

border, as well as variables for free trade agreements in order to assess the effects of 

regional integration. Distance is also included in most empirical studies that employ 

gravity equations as a proxy for transport costs. 

The concept of transport connectivity has already been considered in gravity studies of 

trade by means of analysing transport�–cost reducing measures (Limao and Venables, 



 

 

2001; Sanchez et al., 2003; Clark et al., 2004; Micco and Serebrisky, 2004; Márquez-

Ramos et al., 2011). However, this branch of the literature only considers the spatial 

effects of the neighbouring regions as additional traditional regressors to be included in 

gravity equations, not defining weighting matrices. In this sense, ignoring a spatially 

lagged dependent variable can lead to biased parameter estimates, implying inaccurate 

estimates of infrastructure impacts (Cohen, 2010). 

It is important to highlight that when inherent spatial effects are explicitly taken into 

account in gravity models, the magnitude of the estimated parameter changes (Porojan, 

2001). Porojan (2001) also stressed that with the presence of spatial autocorrelation, the 

estimated parameter on the distance variable might capture a spatial pattern that reflects 

the structure of territory. In a more recent study, Behrens et al. (2012) estimate a gravity 

equation using spatial econometrics for Canada-US trade to control for cross-sectional 

interdependence and find that not a single Ordinary Least Squares (OLS) specification 

passes Moran�’s I test. Even after controlling for MR (Anderson and Van Wincoop, 

2003), a significant amount of cross-sectional correlation in the OLS residuals still 

remains.  

We then estimate a linear version of a gravity model of trade to explain trade flows 

between intra-national regions in a spatial approach that incorporates information on 

transport connectivity measures, in addition to the characteristics of each region: 

ijijijijji

jiijjjiiij

XXXareaarea
CICIDYhYYhYX

ln W+lnW +ln Wlnln
lnlnlnlnlnln

w3d2o198

76543210  (1) 

where lnXij denotes the logarithm of exports from a Spanish region i to an importing 

Spanish region j; lnYi (lnYj) is the logarithm of the GDP for exporter i (importer j); Yhi 

(Yhj) is GDP per capita in the exporting region (importing region); Distij measures the 

distance between capital cities or the economic centres of the two regions; CIi (CIj) is 

the connectivity index that measures transportation networks in each exporter 



 

 

(importer), which has been calculated using information on the number of logistics 

facilities and the number of square kilometres of logistics zones at the NUTS3 level 

(Suárez-Burguet, 2012); following LeSage and Polasek (2008), we also include areai 

(areaj) to control for the area of the origin and destination regions. The spatial lag vector 

 would be constructed by averaging flows from neighbours to the origin region 

and parameter 1 would capture the magnitude of the impact of this type of 

neighbouring observation on the dependent variable. The spatial lag vector  

would be constructed by averaging flows from neighbours to the destination region and 

parameter 2 would measure the impact and significance of flows from origin to all 

neighbours of the destination region. The third spatial lag in the model  is 

constructed using an average of all neighbours to both the origin and destination 

regions. Estimating parameters 1, 2 and 3 provides an inference of the relative 

importance of the three types of spatial dependence between the origin and destination 

regions. Then, 1, 2 and 3 are the spatial autocorrelation coefficients and the null 

hypotheses test that 1=0; 2=0 and 3=0. Rejecting these null hypotheses implies that 

trade flows from/in one region are directly affected by the importance of trade flows 

from /in neighbouring regions. Finally,  is a random disturbance. 

We estimate two additional specifications derived from equation (1). First, we take into 

account a remoteness factor in our gravity analysis by incorporating proxy variables and 

also using spatial lags, in line with Márquez-Ramos (2014). Then, we estimate equation 

(2): 

ijijijijjij
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w3d2o111109
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Where remi (remj) is the variable exporter (importer) remoteness based on equation 2a 

(2b). That is, for a given origin-destination pair i and j, the degree of remoteness of 

region i is defined as:  

j
w

ijj
i Y

DistY
rem         (2a) 

where wY  is the sum of the income of the importing regions of region i considered in 

this study (total GDP in the Spanish peninsula). Similarly, the variable remoteness is 

also calculated for the importer: 

i
w

iji
j Y

DistY
rem         (2b) 

In order to control MR factors, dummies for exporters and importers can be added to the 

empirical model instead of remoteness variables. However, since income, surface and 

transport connectivity variables are region specific, we estimate an additional version of 

equation (1) that includes country dummies for importers ( j ) and for exporters ( i ), 

and assumes that the effect of the transport connectivity variables is of equal magnitude 

for both exporters and importers (i.e. CIij=CIi*CIj): 

ijijijijijijjiij XXXCIDistX ln W+lnW +ln Wlnln w3d2o1210

 (3) 

We estimate equations 1, 2 and 3 using instrumental variables (IV) (Gibbons and 

Overman, 2012) and, as the dependent variable is for year 2007, we use the (7-year) 

lagged dependent variable to construct the spatial lags, namely trade flows in 2000. 

Consequently, the excluded instruments are 2000,o ln W ijX , 2000,d ln W ijX and 

2000,w ln W ijX . One way of validating the results is to observe whether they are robust 

for the different specifications (i.e. equations 1, 2 and 3). 

2.3. The spatial econometric modelling of OD flows 



 

 

LeSage and Pace (2009) and Behrens et al. (2012) suggest using spatial econometrics to 

control for MR. Therefore, our second methodology is the spatial econometric flow 

model (LeSage and Pace, 2008). Its purpose is to explain variation in the magnitude of 

flows between each OD pair and it is based on the type of spatial autoregressive models appearing in 

equation (4): 

ijijijijijddooij XXXDistXXX ln W+lnW +ln Wlnln w3d2o1  

(4)     

As in gravity models, X�’s matrix captures the characteristics of origin and destination 

regions that could influence bilateral trade. Each variable produces an n2 by 1 vector 

with the associated parameters in origin i, o, and destination j, d. The dependent 

variable represents an n by n square matrix of interregional flows from each of the n 

origin regions to each of the n destination regions, where each of the n columns of the 

flow matrix represents a different destination and the n rows reflect origins. 

Our focus is on extending gravity equations and then, we consider a number of 

characteristics of the origin and destination regions. As per LeSage and Polasek (2008), 

the explanatory variables used to construct the matrices Xo (origin) and Xd (destination) 

are the (logged) area, the (logged) population, the (logged) GDP per capita and the 

(logged) employment in each region. In keeping with the existing literature (LeSage and 

Polasek, 2008; Alamá-Sabater et al., 2011 and 2013), we estimate the variant of 

equation (4) using maximum likelihood. 

In a preliminary analysis and in order to compare results obtained when the model is 

estimated with and without spatial lags, we rely on the maximum likelihood method to 

test for spatial dependence. As the null hypothesis of absence of spatial dependence is 

rejected, the gravity model that includes the spatial lags appears to be a better 

alternative. In addition, lower values are produced for the Akaike Information Criterion 



 

 

(AIC) and Root Mean Squared Error (RMSE), indicating that the spatial model is 

preferred. Therefore, the empirical illustration relies on regressions that include the 

spatial lags. 

3. Data and variables 

We generate a dataset containing total commodity flows transported between 47 of the 

Spanish provinces during the year 2007 (see Figure A.1, Appendix).5 As we are 

considering the interregional trade in the peninsula and the effect of trade with 

bordering regions, neither the Canary and Balearic Islands, nor Ceuta and Melilla are 

included in the regressions. 

Weighting matrices have been constructed using a geographical criterion and 

introducing logistics characteristics. The geographical criterion controls for contiguity 

across regions (contiguity model) and  we also consider the presence of logistics 

platforms (connectivity model), i.e. the regions adjacent to A (origin) or B (destination) 

that also have logistics platforms. To proxy for the quality and level of logistics factors 

between OD regions, a transport connectivity index is calculated as a simple average of 

two dimension indices, the number and the size of the logistics platforms. 

Figures 1 and 2 show the number of logistics platforms and the logistics surface area as 

a percentage of the total logistics surface area in Spain (by province), respectively. 

Madrid, Barcelona, Zaragoza and Cadiz have the largest relative surface area of 

logistics platforms, mainly due to the presence of very large logistics platforms in these 

regions (such as the Zaragoza Logistics Centre in Aragon, the Madrid Barajas centre in 

the Madrid region and the Port of Algeciras in Andalusia). Provinces such as Valencia, 

in the Valencian Community, and a number of provinces in Andalusia-Extremadura 

                                                 
5 The Spanish Statistical Institute has been the source of information for explanatory variables and, as for 
the dependent variable, the data refer to 2007. Interregional trade data has been supplied by C-Intereg 
(Llano et al., 2009 and 2010) for the Relog Project (Suárez-Burguet, 2012). Note that trade data is 
available for two years: 2007 and 2000.



 

 

(Seville, Malaga, Granada and Badajoz6) also have a large number of logistics 

platforms. In contrast, the provinces in Extremadura, Castile-La-Mancha and Castile-

and-Leon display a real shortage of square metres dedicated to logistics activities. The 

Balearic and Canary Islands are also home to only a small number of large platforms 

linked to their ports. This transport connectivity picture is in line with the international 

or supra-regional intermodal nodes identified in PEIT (2005), which are located in the 

areas of Madrid, Barcelona/Catalonia, the Basque Country and Valencia, Zaragoza, 

Algeciras and Seville, as well as with the main national combined traffic corridors 

located along the Mediterranean Axis, the Central Corridor (Asturias-Madrid, Basque 

Country-Madrid and from there to Andalusia) and the Ebro Axis. Traffic levels are also 

significant in the Madrid-Levante7 Corridor. 

Figure 1: 

19

0

2007
 

NUMBER OF LOGISTICS PLATFORMS

 

Source: Own elaboration and Suárez-Burguet (2012). 

                                                 
6 Note that the Madrid-Badajoz-Portugal axis is also a very important corridor.
7 The term �‘Levante�’ refers to the eastern region of the Iberian Peninsula, on the Spanish Mediterranean 
coast.



 

 

 
Figure 2: 
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Source: Own elaboration and Suárez-Burguet (2012). 

In order to introduce logistics characteristics, the (transport) connectivity index (CI) is 

calculated as a simple average of the number and size of logistics platforms. Scores of 

every dimension are derived as an index relative to the maximum and minimum 

achieved by both origin and destination regions, based on the assumption that logistics 

play a comparable role in OD. The performance of the CI takes a value between 0 and 1 

calculated according to equation (5): 

   
)minmax(

)min(
valueobservedvalueobserved

valueobservedvalueactualCI   (5) 

According to this index, if regions i and j have a good logistics performance and share a 

border, the matrix element is close to 1; if however they border one another but the 

logistics infrastructure is poor, the matrix element is close to zero,  and if they do not 

border one another the matrix element is zero. 

Figure A.2 in the Appendix presents an example to illustrate the accuracy difference 

regarding transport connectivity in interregional trade flows between both the first-order 

contiguity and the connectivity model. In the example, Zaragoza has eight neighbours 

(Huesca, Lleida, Tarragona, Teruel, Guadalajara, Soria, La Rioja and Navarra) and, 



 

 

whereas in the contiguity model the eight regions are assigned equal weights (the 

geographical criteria are the same for all regions), in the connectivity model the 

imposed filter weights the eight regions with the connectivity index defined above, 

resulting in three regions being allocated the highest weightings (Tarragona, 

Guadalajara and Navarra). 

In order to explain the model and the dependent variable, we generate an n2 by 1 vector 

by stacking the columns of the matrix. If we consider a model with four regions, the 

flow matrix would appear as in Table 1. Columns show the dyad label (4 origin regions 

x 4 destination regions = 16), identifier (ID) of the origin region and ID of the 

destination region. Y denotes the dependent variable (exports)8 and Xs the explanatory 

variables (for example, in the second methodology, area, population, GDP per capita 

and employment, together with geographical distance). For simplicity, only four regions 

(Seville, Zaragoza, Barcelona and Madrid) are considered in Table 1. 

Table 1: Data organization 

Dyad 
labels 

Region origin ID 
origin 

Region 
destination 

ID 
destination 

Origin 
explanation 
variables  

Destination 
explanation 
variables 

Distances 

     Y X1 X2 X3 X1 X2 X3  
1 Seville 1 Seville 1 y11 a11 a12 a13 b11 b12 b13 d11 
2 Zaragoza 2 Seville 1 y21 a21 a22 a23 b11 b12 b13 d21 
3 Barcelona 3 Seville 1 y31 a31 a32 a33 b11 b12 b13 d31 
4 Madrid 4 Seville 1 y41 a41 a42 a43 b11 b12 b13 d41 
5 Seville 1 Zaragoza 2 y12 a11 a12 a13 b21 b22 b23 d12 
6 Zaragoza 2 Zaragoza 2 y22 a21 a22 a23 b21 b22 b23 d22 
7 Barcelona 3 Zaragoza 2 y32 a31 a32 a33 b21 b22 b23 d32 
8 Madrid 4 Zaragoza 2 y42 a41 a42 a43 b21 b22 b23 d42 
9 Seville 1 Barcelona 3 y13 a11 a12 a13 b31 b32 b33 d13 
10 Zaragoza 2 Barcelona 3 y23 a21 a22 a23 b31 b32 b33 d23 
11 Barcelona 3 Barcelona 3 y33 a31 a32 a33 b31 b32 b33 d33 
12 Madrid 4 Barcelona 3 y43 a41 a42 a43 b31 b32 b33 d43 
13 Seville 1 Madrid 4 y14 a11 a12 a13 b41 b42 b43 d14 

                                                 
8 Note that shipments made between regions within the customs territory of the European Union are no 
longer considered exports but rather intra-community supplies of goods and, more specifically, 
expeditions (or introductions, when it comes to goods receipts). Therefore, exports denote shipments from 
the origin to the destination Spanish region.



 

 

14 Zaragoza 2 Madrid 4 y24 a21 a22 a23 b41 b42 b43 d24 
15 Barcelona 3 Madrid 4 y34 a31 a32 a33 b41 b42 b43 d34 
16 Madrid 4 Madrid 4 y44 a41 a42 a43 b41 b42 b43 d44 

 

In the empirical analysis we use the two methodologies described above. A first variant 

of our models includes only first-order contiguity (contiguity-based model, with a 

modified matrix Wm_contiguity), whereas our second variant of the model (transport 

connectivity model, with a modified matrix Wm_connectivity) reflects transportation 

networks in Spanish provinces by using the surface area and size of logistics platforms. 

As a descriptive analysis, we present a map of Spain showing regions containing total 

trade flows, as export-trade (Figure 3) and as import-trade (Figure 4).9 The areas where 

the most important trade flows are concentrated are identified with darker colours (a 

darker shade of red reflects higher levels of flow, while lighter shades of red indicate 

lower levels). These maps represent total trade flows, so the analysis should be carried 

out from a general point of view. According to our data, the Spanish regions with the 

most outward and inward interregional trade flows are Barcelona, Madrid, Seville and 

Valencia.10 

Figure 3: 

1.5e+08

720621
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SPANISH PROVINCES (NUTS 3) BY EXPORT INTENSITY (OUTFLOWS)

 

Source: Own elaboration. 
                                                 
9 These maps are constructed by setting flows within regions to zero to emphasise interregional flows.
10 Note that the maps on intensity of trade flows are measured in tonnes. As a result, they do not control 
for the value/volume relation of flows. Consequently, a number of regions could appear to be very 
important trading regions, although in reality they are not.



 

 

Figure 4: 
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SPANISH PROVINCES (NUTS 3) BY IMPORT INTENSITY (INFLOWS)

 

Source: Own elaboration. 

Figure 5 shows the map of the connectivity index derived from equation (5).11 

Examining the maps in Figures 3 and 4 in conjunction with that of the logistics network 

in Figure 5, there appears to be more flows in origin and destination regions in the 

provinces where logistics networks are more extensive than in provinces with less 

developed logistics networks. Therefore, in the case of Spain, a clear differentiation can 

be made between provinces in terms of logistics performance. This descriptive test 

emphasizes the need to explicitly incorporate such information into the spatial and 

network dependence structure when analysing trade flows, as it might result in 

substantial differences in the estimates and inferences. It can also be compared to 

previous research that uses the spatial econometric flow model at the NUTS2 level in 

Spain (Alamá-Sabater et al., 2011 and 2013). Although their results support the use of 

an empirical framework where the spatial dependence of interregional trade flows is 

introduced, they also provide evidence of the limited significance of spatial lags.12 It is 

therefore expected that the higher the level of disaggregation of geographical data, the 

greater the positive effect of the spatial lags. There are three main reasons for this: First, 

it seems unlikely that a small spatial economic unit could produce many goods without 

                                                 
11 The regions containing the highest values are in dark red.
12  The Moran's I statistic is used to analyse the existence of spatial autocorrelation.



 

 

the help of the surrounding areas, or that a small economic unit would not benefit from 

the transport networks of the surrounding areas to reach markets that would otherwise 

be unreachable without crossing them. Second, the variability of data means that the 

larger the geographical units, the more heterogeneous they are when treated as a whole. 

Finally, a problem of excessive contiguity might potentially arise due to the structure of 

the territory. 

Figure 5: 

Deviation from the mean[+]
Deviation from the mean[-]

CONNECTIVITY INDEX

 

Source: Own elaboration and Suárez-Burguet (2012).  

4. Regression analysis 

4.1. Spatial gravity approach. Main results. 

Table 2 shows the results of the spatial lags when estimating the equations (1), (2) and 

(3). Our first variant of the model includes only first-order contiguity (contiguity), 

whereas our second variant of the model reflects the logistics performance in Spanish 

regions discussed in the previous section, as we employ a matrix W which considers 

logistics performance in conjunction with the restriction that only first-order neighbours 

are included in the formation of the spatial lags (connectivity). This results in a direct 

relationship between increased numbers of the nearest neighbours and the performance 

of the logistics segments that go on to form the spatial lag variables. Findings show that 



 

 

the spatial lags are both positive and significant. Provinces therefore benefit from their 

neighbours�’ transportation networks. 

With regards to the remaining variables included in the equations:13 income, income per 

capita (for the exporter) and area present a positive and significant influence on trade in 

2007. The coefficient of distance gives the expected results (negative) and is statistically 

significant. The variable remoteness (included in equation 2) is significant and positive 

for the exporter. The variables that proxy for transport connectivity have a non-

significant effect on Spanish interregional trade when they are included in equations (1) 

and (2). Nonetheless, results of estimating equation (3) show that CIij is both positive 

and significant. 

Table 2: Estimates from the connectivity and the contiguity spatial models by 

instrumental variables. Methodology 1. Total trade.   

 Equation 1 Equation 2 Equation 3 
1. Connectivity 0.105*** (5.021) 0.102*** (4.952) 0.057*** (2.687) 
2. Connectivity 0.108*** (6.617) 0.109*** (6.742) 0.071*** (3.727) 
3. Connectivity 0.079*** (3.559) 0.073*** (3.316) 0.063** (2.107) 
1. Contiguity 0.117***(4.761) 0.109*** (4.374) 0.063** (2.467) 
2. Contiguity 0.080*** (5.551) 0.083*** (5.813) 0.078*** (3.549) 
3. Contiguity 0.059*** (3.513) 0.052*** (3.049) 0.138*** (3.964) 

Notes: ***, **, * indicate significance at 1%, 5% and 10%, respectively. Z-statistics are given in 
brackets. The (logged) dependent variable is measured in Tonnes. 
 

4.2. The spatial econometric flow model. Main results. 

In order to analyse the spatial dependence of interregional Spanish trade flows, we 

estimate equation (4) by maximizing the log-likelihood function with respect to 

parameters 1, 2 and 3. As before, for simplicity, only the results of the spatial lags are 

presented as they are the main focus of this paper. First, Table 3 shows the results of the 

spatial lags for total trade in the contiguity and the connectivity models, and shows that 

the spatial lags are positive and significant. 

                                                 
13 These results have been omitted to save space. They are available from the authors upon request.



 

 

Table 3: Estimates from the connectivity and the contiguity spatial models. 

Methodology 2. Total trade.   

1. Connectivity 0.22*** (5.75) 
2. Connectivity 0.41*** (11.45) 
3. Connectivity 0.46*** (8.61) 
1. Contiguity 0.27*** (6.62) 
2. Contiguity 0.42*** (11.91) 
3. Contiguity 0.53*** (9.14) 

Notes: ***, **, * indicate significance at 1%, 5% and 10%, respectively. Z-statistics are given in 
brackets. The (logged) dependent variable is measured in Tonnes. 
 

If we compare results in Table 3 with those obtained at NUTS2 in previous literature 

(see Table 1 in Alamá-Sabater et al., 2013), they are in line with the expectation that the 

higher the level of disaggregation of geographical data, the greater the positive effect of 

transport connectivity on interregional trade flows. Spatial dependence is relevant in 

terms of explaining OD interregional trade flows, and if there are good logistics 

conditions in neighbouring provinces, trade flows increase. The findings are also in line 

with earlier research and confirm that both destination-based and OD-based dependence 

are more important than origin-based dependence for interregional Spanish commodity 

flows. 

Turning our attention to specific sectors,14 Tables 4 and 5 show the results by sector for 

the connectivity and the contiguity model, respectively. These results can be compared 

to those obtained at a NUTS2 level in previous literature (see Table A.1 in the 

Appendix).15 Table 4 shows that three different patterns emerge. First, those sectors for 

which origin-based dependence is the most important (R3: Food Industry and R7: 

Paper, printing and Graphic Arts), where an origin region with a good transportation 

connection network to surrounding regions benefits the most in terms of interregional 
                                                 
14 To do so, we follow previous research that introduces spatial lags in the spatial econometric flow model 
and estimates different regressions by activity branch (Alamá-Sabater et al., 2011 and 2013).
15 Although the level of significance and the elasticity of X variables changes for regressions in different 
sectors, overall, our results show that area, population and income per capita are both positive and 
significant. The larger the area, population and income per capita of a region, the greater the interregional 
trade flows. Unemployment is found not to be significant in most of the regressions, whereas distance 
results are ambiguous. Full results are available from the authors upon request.



 

 

exports. Second, we determine sectors where destination-based dependence is the most 

important (R1, R4, R8, R9, R10, R11, R14 and R15), where a destination region with a 

good transportation connection network to surrounding regions benefits the most in 

terms of interregional trade. Finally, we also find those sectors where OD dependence is 

the most important (R2, R5, R6, R12 and R13). Then, destination-based dependence, 

i.e. that dependence considering trade between an origin region and regions 

neighbouring the destination, is found to be of greater importance than origin-based 

dependence in a number of sectors. 

Table 4: Estimates from the connectivity model (by sector).   

Notes: ***, **, * indicate significance at 1%, 5% and 10%, respectively. Z-statistics are given in 
brackets. The (logged) dependent variable is measured in Tonnes. 
 

 NUTS3 (connectivity model) 1 2 3 

1 R1 - Agriculture, forestry and fishing 0.31*** 0.41*** 0.33*** 
  (8.42) (12.13) (6.91) 
2 R2 �– Mining and quarrying 0.26*** 0.30*** 0.54*** 
  (7.17) (8.61) (11.19) 
3 R3 �– Food industry 0.49*** 0.42*** -0.03 
  (14.51) (11.56) (-0.71) 
4 R4 - Textile and clothing -0.02 0.10*** 0.05 
  (-0.54) (3.39) (1.23) 
5 R5 �– Leather and footwear industry -0.02 0.12*** 0.18*** 
  (-0.73) (4.16) (4.30) 
6 R6 �–  Manufacture of wood and cork products 0.24*** 0.26*** 0.33*** 
  (6.41) (7.96) (6.73) 
7 R7 �– Paper, printing and graphic arts 0.23*** 0.22*** -0.06 
  (6.91) (6.62) (-1.43) 
8 R8 �– Chemical industry 0.18*** 0.36*** 0.19*** 
  (4.87) (10.98) (4.05) 
9 R9 �– Manufacture of rubber and plastic products -0.08** 0.22*** 0.12*** 
  (-2.30) (6.70) (2.65) 
10 R10 �– Industry, non-metallic mineral products 0.22*** 0.51*** 0.23*** 
  (5.69) (15.33) (4.88) 
11 R11 �– Basic metals and manufactured metal products 0.09** 0.41*** 0.22*** 
  (2.45) (12.64) (4.96) 
12 R12 �– Manufacture of machinery and mechanical equipment 0.08** 0.05 0.25*** 
  (2.47) (1.35) (4.72) 
13 R13 �– Electrical equipment, electronic and optical 0.16*** 0.18*** 0.23*** 
  (4.68) (5.60) (5.27) 
14 R14 �– Manufacture of transport equipment 0.27*** 0.31*** -0.04 
  (8.46) (9.98) (-1.00) 
15 R15 �– Diverse industries -0.07* 0.37*** 0.16*** 
  (-1.89) (12.25) (3.54) 



 

 

Finally, Table 5 shows the results by sector for the contiguity model. The sign and 

significance of 1, 2 and 3 are similar in both the contiguity and the connectivity 

models, excluding the case of R12 (Manufacture of machinery and mechanical 

equipment), for which origin dependence seems to be more important than destination 

dependence in the transport connectivity model, whereas the opposite is true for the 

first-order contiguity model. It is important to note that there is a consistent pattern of 

parameter 2 being positive and significant more times than 1 in a number of sectors, 

suggesting that neighbours of the destination region in both the contiguity and the 

connectivity model represent a more important determinant of higher levels of industrial 

commodity flows between OD pairs.  

Table 5: Estimates from the contiguity model (by sector).   

Notes: ***, **, * indicate significance at 1%, 5% and 10%, respectively. Z-statistics are given in 
brackets. The (logged) dependent variable is measured in Tonnes. 

 NUTS3 (contiguity model) 1 2 3 

1 R1 - Agriculture, forestry and fishing 0.32*** 0.46*** 0.37*** 
  (8.07) (12.63) (7.02) 
2 R2 �– Mining and quarrying 0.28*** 0.32*** 0.69*** 
  (6.73) (7.94) (11.92) 
3 R3 �– Food industry 0.51*** 0.48*** 0.04 
  (14.30) (12.82) (0.887) 
4 R4 - Textile and clothing -0.01 0.14*** 0.12* 
  (-0.17) (3.52) (1.83) 
5 R5 �– Leather and footwear industry -0.05 0.22*** 0.36*** 
  (-1.19) (5.71) (5.04) 
6 R6 �–  Manufacture of wood and cork products 0.26*** 0.31*** 0.46*** 
  (6.44) (8.06) (7.53) 
7 R7 �– Paper, printing and graphic arts 0.30*** 0.31*** -0.05 
  (7.92) (8.15) (-1.03) 
8 R8 �– Chemical industry 0.22*** 0.41*** 0.22*** 
  (5.44) (11.48) (4.14) 
9 R9 �– Manufacture of rubber and plastic products -0.05 0.32*** 0.22*** 
  (-1.24) (8.66) (3.86) 
10 R10 �– Industry, non-metallic mineral products 0.23*** 0.61*** 0.31*** 
  (5.52) (17.30) (5.62) 
11 R11 �– Basic metals and manufactured metal products 0.12*** 0.47*** 0.32*** 
  (2.82) (13.86) (6.05) 
12 R12 �– Manufacture of machinery and mechanical equipment 0.04 0.11*** 0.44*** 
  (1.01) (2.71) (5.85) 
13 R13 �– Electrical equipment, electronic and optical 0.19*** 0.28*** 0.36*** 
  (4.69) (7.09) (6.27) 
14 R14 �– Manufacture of transport equipment 0.36*** 0.39*** -0.05 
  (9.74) (10.85) (-0.85) 
15 R15 �– Diverse industries -0.06 0.50*** 0.31*** 
  (-1.55) (14.75) (5.02) 



 

 

 

5. Conclusions 

This paper analyses the role of transport connectivity in interregional trade flows using 

a spatial approach by using highly-disaggregated regional trade data at a provincial level 

in Spain. In order to do so, we use a gravity framework and take into account 

multilateral resistance in a two-methodology comparison. In order to test whether 

incorporating transport connectivity information into the spatial structure of the model 

results in substantial differences in the estimates, we have defined different types of 

neighbour relations. In particular, two different variants of the model were estimated, 

based on first-order contiguity and transport connectivity criteria in order to construct 

the weighting matrices. 

We find evidence that transport connectivity has a bearing on interregional trade. 

Moreover, we show that forces leading to flows from an origin province to a destination 

province would create similar flows to neighbouring destinations. Regions therefore 

benefit from their neighbours�’ transport connectivity. These results not only provide 

evidence about the role of the location of logistics platforms in satisfying the existing 

demand for transport structures, but also as to the benefit of introducing spatial 

dependence in gravity models of trade when analysing interregional trade flows, as 

ignoring spatial lags might lead to biased estimation of the parameters. 
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APPENDIX 

Figure A.1. Provinces in Spain (NUTS3). 

 

Note: The provinces in the same colour belong to the same Autonomous Community (NUTS2). Source: 
Hierro and Maza (2010). 
 

Figure A.2. First-order contiguity versus transport connectivity model. 

 

Source: Own elaboration 



 

 

 

Table A.1: Estimates from the connectivity model at NUTS2 (by sector).   

 NUTS3 (connectivity model) 1 2 3 

1 R1 - Agriculture, forestry and fishing 0.14** 0.11* 0.04 
  (2.09) (1.81) (0.41) 
2 R2 �– Mining and quarrying 0.05 0.04 -0.05 
  (0.59) (0.53) (-0.36) 
3 R3 �– Food industry 0.05 0.02 -0.01 
  (1.38) (0.81) (-0.17) 
4 R4 - Textile and clothing 0.05 0.02 -0.03 
  (1.58) (0.65) (-0.54) 
5 R5 �– Leather and footwear industry 0.26*** 0.26*** 0.54*** 
  (3.43) (3.36) (4.54) 
6 R6 �– Manufacture of wood and cork products -0.1 0.18** 0.06 
  (-0.92) (2.08) (0.41) 
7 R7 �– Paper, printing and graphic arts 0.06 0.11*** -0.03 
  (1.02) (2.7) (-0.48) 
8 R8 �– Chemical industry -0.05 0 0.06 
  (-1.05) (-0.04) (1.04) 
9 R9 �– Manufacture of rubber and plastic products -0.03 0.09 0.18 
  (-0.34) (1.22) (1.41) 
10 R10 �– Industry, non-metallic mineral products -0.1 -0.05 0.04 
  (-1.46) (-0.77) (0.39) 
11 R11 �– Basic metals and manufactured metal products -0.02 -0.03 0.06 
  (-0.68) (-0.99) (1.36) 
12 R12 �– Manufacture of machinery and mechanical equipment 0.06 -0.19 -0.11 
  (0.45) (-1.31) (-0.44) 
13 R13 �– Electrical equipment, electronic and optical 0.14* 0.14** 0.09 
  (1.78) (2.01) (0.73) 
14 R14 �– Manufacture of transport equipment 0.05 0.02 -0.03 
  (1.58) (0.65) (-0.54) 
15 R15 �– Diverse industries 0.26*** 0.26*** 0.54*** 
  (3.43) (3.36) (4.54) 

Notes: ***, **, * indicate significance at 1%, 5% and 10%, respectively. Z-statistics are given in 
brackets. The (logged) dependent variable is measured in Tonnes. Source: Alamá-Sabater et al. (2013) 
 

 

 

 

 

 

 

 


