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I. INTRODUCTION 

Enhancing radar target classification performance using neural 

networks is a crucial task that researchers worldwide are striving 

to accomplish. A high-performing neural network model should 

be characterized by high classification accuracy, low computation 

time, and a low number of model parameters. Typically, scientists 

and researchers have employed various approaches to improve 

the radar target classification performance of neural network 

models, including feature extraction using preprocessing tech-

niques [1–3], optimization of neural network structures [4, 5], 

hyperparameter optimization for network training [6], and appli-

cation of data augmentation algorithms [7]. 

Notably, radar target classification has unique properties that 

are distinct from those of camera image classification. First, the 

signal reflected from radar targets does not display the clear and 

distinct characteristics of the objects in an image. Second, the 

noise intensity in radar data is often quite significant, with some 

cases presenting noise levels that surpass useful signal strength. 

Therefore, to accurately detect and distinguish targets amid 

background noise, the application of algorithms, particularly 

those pertaining to radar signal processing such as accumulation, 

compression filtering, and noise reduction, is necessary. 

In practice, a received signal is susceptible to various types of 

noise—thermal noise, interference, and clutter [8]. Thermal 

noise, for instance, is generated by the received signal across the 

frequency band and the bandwidth of the radar. The other com-

ponents of a radar, such as the antenna, mixer, and cables, may 
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Abstract 
 

This paper presents a novel method for removing noise from range-Doppler images by using a filter prior to conducting target classifica-

tion using a deep neural network. Specifically, Kuan, Frost, and Lee filters are employed to eliminate speckle noise components from radar 

data images. Furthermore, a neural network that combines residual and inception blocks (RINet) is proposed. The RINet model is trained 

and tested on the RAD-DAR dataset—a collection of range-Doppler feature maps. The analysis results show that the application of a 

Lee filter with a window size of 7 in the RAD-DAR dataset demonstrates the most improvement in the model’s classification perfor-

mance. On applying this noise filter to the dataset, the RINet model successfully classified radar targets, exhibiting a 4.51% increase in 

accuracy and a 14.07% decrease in loss compared to the classification results achieved for the original data. Furthermore, a comparison of 

the RINet model with the noise filtering solution with five other networks was conducted, the results of which show that the proposed 

model significantly outperforms the others. 
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also contribute to such noise. Notably, thermal noise can be de-

termined using the following equation: 

 𝑁 = 𝑘𝑇 𝐵  (1)

 

where k is Boltzman’s constant, 𝐵  refers to the frequency 

bandwidth, and 𝑇  indicates the system noise temperature (°K). 

In radar systems, waves emitted by active sensors travel in 

phases, interacting only minimally on their journey to the target 

area. However, after interacting with the target area, these waves 

no longer remain in phase due to the different distances they 

travel from the target which leads to single/multiple bounce 

scattering. These factors, coupled with signals reflected from 

various sources, such as the ground, sea, rain, animals/insects, 

chaff, and atmospheric turbulence, cause interference and clutter 

noise. 

The noise components mentioned above, which appear as 

light and dark pixels on radar data images, are commonly re-

ferred to as speckle noise. This type of noise can be mitigated by 

employing either multi-look processing or spatial filtering tech-

niques [8]. Notably, multi-look processing is typically performed 

during the data acquisition stage, whereas speckle reduction 

through spatial filtering is conducted on the acquired image. 

Moreover, the spatial filter is generally categorized into two 

groups: non-adaptive and adaptive. The non-adaptive filter con-

siders the parameters of the entire image signal, disregarding the 

local properties of the terrain backscatter or the sensor’s nature. 

As a result, these types of filters are unsuitable for non-

stationary scene signals. One example of such filters is the fast 

Fourier transform technique. On the contrary, an adaptive filter 

accounts for changes in the local properties of the terrain 

backscatter and the sensor’s nature. In such filters, the speckle 

noise is considered stationary, and changes in the mean 

backscatters caused by different kinds of target are also factored 

in. An adaptive filter effectively reduces speckles while preserv-

ing the edges, thus clearly displaying the unique characteristics 

of each target. This is a particularly important feature for neural 

networks used in target recognition. Drawing on the above dis-

cussion, this study implemented adaptive filters, such as the Lee 

[9], Frost [10], and Kuan [11] filters, to reduce speckle noise in 

data images before feeding them into a neural network for target 

classification. 

Specifically, this study proposes a residual-inception neural 

network (RINet) for target classification using range-Doppler 

radar image data. This involved applying a speckle noise filter to 

the radar data prior to using it for training and testing the neural 

network, the experimental process for which is illustrated in Fig. 

1. The filter helped reduce speckle noise in the radar dataset by 

smoothing out the noise while retaining the edges or the sharp 

features in the image. The experimental results obtained using 

the preprocessed dataset indicate that the proposed approach 

can improve radar target classification accuracy by up to 4.51% 

and decrease loss by 14.07% compared to the classification re-

sults obtained using the original data. 

The rest of this paper is organized as follows: Section II pre-

sents the Real Doppler RAD-DAR dataset and the experi-

mental setup employed to train and test the RINet model, Sec-

tion III introduces the RINet model used for radar recognition 

based on range-Doppler feature maps and noise filtering algo-

rithms, Section IV details the experimental results, and Section 

V provides the concluding remarks. 

II. DATASET AND EXPERIMENTAL SETUP 

This study utilized the RAD-DAR dataset, collected using 

an X-band radar system equipped with a digital array receiver, 

to conduct its analyses. The system employed a frequency-

modulated continuous wave with a maximum bandwidth of 500 

MHz [4]. The RAD-DAR dataset contains 17,485 data images 

in the range-Doppler domain annotated with three types of 

targets: pedestrians, cars, and drones. The sample data for each 

target were saved in a CSV file with dimensions of 11 × 61 pix-

els, with 11 pixels corresponding to the range axis and 61 pixels 

corresponding to the Doppler frequency axis, as illustrated in 

Fig. 2. The value of each pixel represents the power of the re-

ceived signal at the corresponding data cell, measured in dBm. 

The reflected signal strength of the targets in the RAD-DAR 

dataset was within the range of -140 dBm to -70 dBm. Fur-

thermore, this dataset comprises a balanced distribution of the 

three target classes, with 38.32% pedestrian samples, 32.71% car 

samples, and 28.97% drone samples, as shown in Fig. 3. 

The RINet model was trained on the RAD-DAR dataset, 

with 80% of the data for training and 20% for testing. The other 

predefined training options were a mini-batch size of 32 and an 

initial learning rate of 0.001. To prevent overfitting, the early-

stop algorithm was applied to terminate the training process in 

the case of no observable improvement in the model’s accuracy 

for the test set after five training epochs. The RINet model was 

built using Python programming language and the TensorFlow 

framework, following which it was trained and tested on a com-

puter with the following configurations: Intel Xeon E5-2678 v3 

CPU, RTX 3060 GPU video card, and 32 GB RAM. 

 

Fig. 1. Block diagram of a general radar target recognition system.
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III. PROPOSED METHOD 

1. RINet Model 

A convolutional neural network (CNN) is a popular algo-

rithm utilized for carrying out deep learning through images 

and videos. The CNN considered in this study was designed to 

possess a residual-inception architecture, as shown in Fig. 4. 

The proposed RINet model comprises three main blocks: input, 

residual-inception, and output blocks. Furthermore, the feature 

extraction layer of the model consists of three parallel R-I blocks, 

each combining inception and residual structures. Each R-I 

block possesses an inception submodule and its skip connection. 

The inception module in each R-I block further comprise two 

parallel convolutional layers, each with 32 filters of size 1 𝑘 

and 𝑘 1, respectively. This design facilitated the reduction of 

network trainable parameters. The filter size (k) in the three R-I 

blocks of the RINet model was set to 3, 5, and 7, respectively. 

The rectified linear unit (ReLU) activation function was im-

plemented to activate the output of each R-I block. By feeding 

the input signal 𝑆  to the network’s input layer, the output of 

the R-I block was obtained using the following equation: 
 𝑆 = 𝛿 𝑆 𝐹 𝑆 𝐹 𝑆 , (2)
 

where 𝐹  denotes the convolution operation for the filter of 

size 𝑘 1, and 𝛿 denotes the ReLU activation. The output of 

the concatenation layer was expressed as a tensor combining the 

feature maps from the previous layer, as follows: 
 𝐹 = 𝑆 , 𝑆 , 𝑆 . (3)
 

Subsequently, the output feature maps of the three convolu-

tional branches were concatenated in the concatenation layer 

before being transferred to the output block for target classifica-

tion. At the output block, average pooling and normalization 

were performed before feeding to the dense layer, which used 

the softmax activation function. The output size of the dense 

layer was three, corresponding to the three types of targets that 

the model needed to classify. Furthermore, the RINet model 

employed parallel convolution blocks similar to the inception 

structure and utilized filters of different sizes in each branch to 

enhance its feature extraction ability from the input images. The 

 
(a) (b) (c) 

Fig. 2. Illustration of the gathered frames of the (a) drone, (b) human, and (c) car samples from the RAD-DAR dataset. 

 
Fig. 3. Distribution of car, pedestrian, and drone samples in the RAD-

DAR dataset. 

 

 

Fig. 4. Overall architecture of the RINet model for radar target classifi-

cation. 
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model also reduced the number of trainable parameters by uti-

lizing filters of sizes 1 𝑘 and 𝑘 1 instead of 𝑘 𝑘. Ad-

ditionally, the RINet model avoided the problems of vanishing 

gradient and overfitting by employing residual connections. 

 

2. Noise Filtering Algorithms 

As mentioned earlier, speckle filtering using adaptive filters 

involves moving a kernel over each pixel in the image and apply-

ing a mathematical calculation using the pixel values under the 

kernel, after which the central pixel is replaced with the calculat-

ed value. The kernel is then moved along the image, one pixel at 

a time, until the entire image is covered. This process creates a 

smoothing effect and reduces the visual appearance of the speck-

le. To examine this function, this paper built three filters—Lee 

[9], Frost [10], and Kuan [11]—with demonstrated speckle fil-

tering capabilities [12] to filter the noise in the radar images. 

 The Lee filter reduces speckle noise in images by applying a 

spatial filter to each pixel. This filter first calculates the local 

statistics within a square window and then replaces the value of 

the center pixel with a value calculated using neighboring pixels. 

The algorithm for the Lee filter involves several steps: 1) calcu-

lating the local mean and variance of each pixel using a square 

window, 2) calculating the signal-to-noise ratio (SNR) for each 

pixel, 3) calculating the weight of each pixel using the local 

mean and SNR, and 4) applying the weight to the neighboring 

pixels to obtain the filtered value for the center pixel. Notably, 

the Lee filter is well known for its ability to preserve image de-

tails while also reducing speckle noise. The above steps of the 

Lee filter can be described by the following equation: 
 𝐷 = 𝐿 𝐾 ∗ 𝑃 𝐿 , (4)
 

where 𝐾 denotes the weight function, 𝑃  represents the cen-

ter pixel value of the window, and 𝐿  refers to the local mean 

of the filter window. Furthermore, 
 𝐾 = var 𝑥 / 𝑧 𝜎 var 𝑥 , (5)
 

where var 𝑥  is the local variance of the filter window, 𝑧  

represents the local mean, and 𝜎  is the noise variance. 

The Frost filter reduces speckle noise while preserving the 

key image features present at the edges using an exponentially 

damped circularly symmetric filter that leverages the local statis-

tics within individual filter windows. Its implementation in-

volves defining a circularly symmetric filter with a set of 

weighting values M for each pixel. The algorithm used in the 

Frost filter is as follows: 
 𝐷 = 𝑒 ∗ , (6)
 

where 𝐵 = 𝐷 ∗ 𝐿 𝐿⁄ ∗ 𝐿  is the weighting factor, 𝑆 

indicates the absolute value of the pixel distance from the center 

pixel to its neighbors in the filter window, 𝐷 refers to the ex-

ponential damping factor (input parameter), 𝐿  is the local 

mean of the filter window, and 𝐿  represents the local variance 

of the filter window. 

The Kuan filter follows a similar process as the Lee filter—

reducing speckle noise by applying a spatial filter to each pixel in 

an image. It filters the data based on the local statistics of the 

central pixel value, which are calculated using neighboring pixels. 

Notably, the local statistics are computed using the same expres-

sions as in the Lee filter in (4), with the exact expression for 

variable 𝐾 being: 
 𝐾 = var 𝑥 / 𝑧 𝜎 1 𝜎 var 𝑥 . (7)
 

Fig. 5 illustrates the effects of applying the Lee, Kuan, and 

Frost filters, with a window size parameter of 3, on the range-

Doppler map. The filtered output data displays a significant 

reduction in speckle noise intensity when compared to the orig-

inal data. Notably, the Kuan filter yields a clearer representation 

of the target data in the range-Doppler image compared to the 

Lee and Frost filters. Furthermore, while the output data from 

the Kuan and Lee filters share a relatively high degree of simi-

larity, both exhibit blurred edges. In contrast, the edges are well 

preserved in the output image of the Frost filter, although it is 

worth noting that it contains larger residual noise components 

compared to the Lee and Kuan filters. 

(a) (b) (c) (d)

Fig. 5. Illustration of frames after applying the filters: (a) original data, (b) Lee filter, (c) Kuan filter, and (d) Frost filter. 
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IV. EXPERIMENT RESULTS 

1. Comparison of Different Noise Filters 

This study evaluated the performance of the RINet model in 

classifying radar targets by employing four different datasets, 

including an original dataset and three datasets filtered using 

Lee, Kuan, and Frost filters bearing a 3 × 3 window size. Specif-

ically, the model was evaluated in terms of classification accura-

cy and loss. The neural network model exhibited a significant 

enhancement in its target classification capabilities by utilizing 

input data noise filters, which effectively eliminated speckle 

noises. This enabled the neural network to concentrate solely on 

extracting features from the image regions carrying crucial in-

formation about the target. Upon applying the Lee and Kuan 

filters, the model’s classification accuracy remained comparable, 

attaining values of 98.17% and 98.06%, respectively. However, 

the model achieved the highest accuracy (98.17%) and the low-

est loss (4.08%) for the dataset filtered by the Lee filter, as pre-

sented in Table 1. This outcome highlights the efficacy of the 

Lee filter in enhancing target classification accuracy. 

The output image of the Kuan filter appeared to be cleaner 

than that of the Lee filter because the former accounts for both 

signal correlation and noise, as noted in (7). However, when 

dealing with data inputs possessing a small SNR (drones), the 

target pixels of the Kuan filter tended to be blurrier than the 

output image from the Lee filter, thereby hindering the ability 

to accurately classify the target. 

Meanwhile, the Frost filter’s response was dependent on the co-

efficient of variation, with a high coefficient of variation indicating 

that the sharp features in the image would be better preserved. As 

demonstrated in Fig. 5, the Frost filter’s range-Doppler image 

output retains more noise areas compared to the Lee and Kuan 

filter output images. As a result, the target classification results of 

the RINet model for the dataset after the application of the Frost 

filter were inferior to those achieved by the other two filters. 
 

2. Comparison of Different Filter Window Sizes 

The Lee filter’s window size parameter was observed to have 

a significant impact on the filter output data. Notably, larger 

filter sizes offer a higher noise suppression ability, but at the cost 

of a decline in the image features at the edges. Therefore, to 

identify the appropriate window size for the most suitable filter, 

experiments were conducted on the datasets by considering dif-

ferent window sizes—3, 5, 7, and 9—of the Lee filter. Table 2 

reports the target classification results of the RINet model for 

these datasets. When comparing the three filters with window 

sizes 3, 5, and 7, it was found that the larger the window size, 

the better the target classification results. However, when the 

window size was increased to 9, not only did the filter cause a 

decline in the target feature but the neural network model’s tar-

get classification ability for the concerned dataset also declined, 

registering an accuracy of 96.14% and a loss of 10.33%. There-

fore, for the RAD-DAR dataset, applying the Lee filter with a 

window size of 7 produced the best results for the RINet model, 

with an accuracy of 98.87% and an error of 2.61%. 

The training and validation accuracy of the RINet model 

with regard to the RAD-DAR dataset equipped with a Lee 

filter of window size 7 are plotted in Fig. 6(a), while the training 

and validation losses are traced in Fig. 6(b). The accuracy and 

loss curves show that the model exhibits rapid convergence dur-

ing the training process. Notably, since both the training and 

validation losses decreased steadily to reach a point of stability, 

resulting in a minimal gap between their final loss values, a fa-

vorable fit was established. 

The confusion matrix depicted in Fig. 7 shows that the pro-

posed RINet model attained the least optimal target classifica-

tion results for the drone sample, achieving an accuracy of 

97.31%. The model performed significantly better with regard 

to the car and people samples, achieving accuracies of 99% and 

99.04%, respectively. In this context, it is worth noting that cars 

and drones share relatively similar visual features, leading to a 

higher probability of misclassification between these two types 

of targets compared to the people sample. 
 

3. Comparison with Other CNN Models 

This section compares the classification performance of the 

proposed RINet model, trained on a dataset preprocessed using a 

Lee noise filter with a 7 × 7 window size, to those of several other 

well-known CNN models, namely AlexNet [13], VGG16 [14], 

Table 1. Comparison of the classification results of different datasets 

filtered using Lee, Kuan, and Frost filters 

Dataset Accuracy (%) Loss (%)

Original 94.36 16.68

Lee filter [9] 98.17 4.86
Kuan filter [11] 98.06 4.13

Frost filter [10] 97.65 5.47

The bold font indicates the best performance. 

 

Table 2. Comparison of target classification results using different 

window sizes of the Lee filter 

Window size of the Lee filter Accuracy (%) Loss (%)

3×3 98.17 4.86

5×5 98.34 3.78

7×7 98.87 2.61
9×9 96.14 10.33

The bold font indicates the best performance. 
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ResNet50 [15], MobileNetV2 [16], and NASNetMobile [17], 

all of which were tested using the original RAD-DAR dataset. 

The criteria for assessing and contrasting the results were accuracy, 

prediction time, and model size. Notably, all models were trained 

using identical parameters to ensure a fair comparison. 

The results of the comparison are illustrated in Fig. 8. Among 

the models tested, AlexNet achieved the lowest accuracy at 

88.62%, but exhibited a larger size and prediction time compared 

to RINet, MobileNetV2, and NasNetMobile. Meanwhile, Res-

Net emerged as the most accurate model, boasting an impressive 

accuracy of 94.59%. However, this accuracy was accompanied by 

a trade-off—the size and prediction time of this model were the 

largest, amounting to 31.98 million and 22.07 ms, respectively. In 

contrast, the proposed RINet model demonstrated exceptional 

performance, was smallest in size, and registered the fastest classi-

fication speed, while also maintaining significantly better accuracy 

than the other models at an impressive 98.87%. 

V. CONCLUSION 

This paper proposes the application of speckle noise filters on 

the RAD-DAR dataset before conducting target classification 

using a RINet model that combines inception and residual con-

ceptions to improve radar target classification accuracy. The classi-

fication performance of the proposed model, in terms of its accura-

cy and loss, was evaluated using four datasets. The numerical re-

sults showed that the application of data noise filters, such as Kuan, 

Frost, and Lee filters, helps increase classification performance 

compared to when only the original data is considered. Moreover, 

the Lee filter obtained better results than the Kuan and Frost fil-

ters. Regarding the impact of the window size of the Lee filter on 

the RINet model’s classification performance, a higher window 

size was observed to render more accurate model classification. 

However, when the filter size was too large, it degraded the target 

features in the radar data image, leading to a decrease in the mod-

el’s target classification accuracy. Therefore, in terms of the RAD-

DAR dataset, the RINet model achieved its best radar target clas-

sification results when using a Lee filter with a window size of 7. 

This result was further verified by conducting a performance com-

parison with five other models: AlexNet, VGG16, ResNet50, 

MobileNetV2, and NASNetMobile. Drawing on the above-

mentioned findings, future research on this topic should continue 

investigating and applying solutions to improve the probability of 

correct classification of important targets, such as the drone sample 

in the dataset considered in this study. 

 

This research is funded by the Vietnam National Founda-
tion for Science and Technology Development (NAFOSTED) 
under grant number 102.04-2021.14. 
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