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Abstract. Detection of the driver’s cognitive load while driving is crucial 

to prevent the likelihood of traffic collisions and improve road safety. A 

physiological-based approach has gained significant attention due to its 

potential to provide reliable indicators for the driver’s state. The 

physiological signal of electrocardiography (ECG) is considered a 

promising biomarker for detecting the driver’s cognitive load. Despite the 

interest in cognitive load detection using ECG, an attempt has yet to be made 

to identify the relationship between ECG measures and driver cognitive load 

level. This paper seeks to investigate this gap in cognitive load literature. 

The finding demonstrates that further research is still needed on ECG-based 

driver’s cognitive load detection by examining and analyzing the limitations 

of research challenges and earlier studies. This study also addresses the 

performance and problems faced in the detection of a driver’s cognitive load 

considering ECG. With a better understanding of how cognitive load affects 

ECG measures, both researchers and companies can design more effective 

driver’s state detection systems. 

1  INTRODUCTION 

Driving under cognitive load is considered as significant causes of traffic accidents. High 

cognitive load negatively impacts driving behavior and often resulting in accidents that cause 

significant harm to both people and vehicles each year. According to the National Safety 

Council (NSC), 21% of all accidents are attributed to cognitive overload, characterized by 

distractions or inattention [1]. In addition, the National Highway Traffic Safety 

Administration (NHTSA) reported that driver inattention, including distracted attention from 

driving, is responsible for approximately 25% of all police-reported collisions [2]. The early 

detection and intervention of cognitive overload while driving is crucial to reduce the 

likelihood of traffic accidents.  

An increasing number of studies have investigated the detection of driver states, including 

cognitive load, using diverse approaches [3]–[7]. These approaches can be broadly 

categorized into three primary categories based on the sources of information they rely on. 

The first category relates to the vehicle behavior-based performances, which involves the 

steering wheel’s position and movement, vehicle acceleration, and speed. The second 

category is the driver behavior-based approach, including factors such as like head yawning, 

head pose, head movement, eye-gaze dynamics, and eye closure. Lastly, the third group 

relates to the driver physiology-based approach, such as measurements derived from 
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electrocardiography (ECG), electroencephalography (EEG), electromyography (EMG), and 

electrooculography (EOG). 

The driver physiology-based approach has gained significant attention due to its potential 

to provide reliable biomarker of the driver’s state. While the vehicle behavior-based approach 

is non-invasive and relatively straightforward to measure, its effectiveness hinges greatly on 

factors such as driver’s skills, road conditions, and vehicle characteristics. Similarly, the 

driver behavior-based approach, which relies on cameras to monitor driver actions, is also 

non-invasive.  However, it is constrained to identifying visual cues, which can be 

intentionally concealed by the driver and may only become apparent when it is too late. 

Furthermore, these methods involving camera-based data collection may raise privacy 

concerns and necessitate adequate ambient light. Contrarily, the physiology-based approach 

is emerging as a promising alternative to both the vehicle-based and behavior-based 

approaches for detecting driver states. This approach offers valuable insights into the driver’s 

condition through capturing tell-tale physiological signals [8]–[10].  

Physiological signals of driver’s cognitive load offer a potential solution to address this 

challenge. Among the various physiological signals, ECG signals have emerged as a 

promising indicator for predicting a driver’s cognitive load. This is due to their practicality, 

non-intrusiveness, reliability, and potential, as highlighted in previous studies [8], [10], [11]. 

Recent advancements in sensor technology have made it feasible to incorporate ECG sensors 

into various vehicle components, such as the steering wheel, seat belt, or driver's seat [12]–

[14]. This integration enables effective, practical, and non-disruptive monitoring of ECG 

signals within a vehicle setting. Moreover, the autonomic nervous system (ANS) plays a 

crucial role in regulating heart rate, with both the sympathetic and parasympathetic nerves 

contributing significantly. Consequently, heart rate variability, derived from ECG signals, 

can serve as a reliable indicator of the driver's internal condition, which operates beyond 

conscious control, making it as a meaningful tell-tale sign [10], [15]–[17] 

While numerous studies have reviewed various methods for detecting driver states, there 

is a limited of study investigating on ECG measures for driver’s cognitive load. This review 

aims to summarize the existing literature regarding on the how ECG measurements respond 

to cognitive load, the effectiveness of ECG-based systems for detecting driver’s cognitive 

load, and the potential application of ECG as an indicator of cognitive load in real-world 

driving scenarios. We conducted a brief review of studies that have investigated the 

relationships between ECG and driver cognitive load, as well as those that have developed 

ECG-based systems for detecting cognitive load in drivers. 

2  LITERATURE REVIEW 

2.1 Driver Cognitive Load 

Driving is a dynamic activity involving three essential elements: driver, vehicle, and the 

driving surroundings [18]. To ensure the safety of life and property, a driver is responsible to 

make suitable decisions and executing actions in line with the surrounding environment and 

the present circumstances, while remaining vigilant and attentive [19]. When a driver 

becomes distracted, it can negatively impact their driving abilities, leading to unintended 

speed fluctuations, difficulties in controlling the vehicle, and veering out of the lane 

boundaries which ultimately elevates the risk of a car accident. The driver distraction occurs 

when a person operating a vehicle loses focus on the task at hand and becomes engrossed in 

another activity, or when something, either inside or outside the vehicle, diverts the driver’s 

attention from the primary task of driving [19]. 
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There are six categories of human driver distractions, which encompass visual, cognitive, 

manual, auditory, olfactory, and gustatory forms [19]. Specifically, the cognitive distraction, 

involves the driver shifting their mental focus away from driving and engaging in thoughts 

unrelated to operating the vehicle. Driving is a multitasking activity, requiring the allocation 

of a driver’s attentional resources towards various aspects, including visual aspects (such as 

visual perception), cognitive aspects (like spatial working memory), and manual aspects 

(involving motor responses).  

Prior works employed various terms to describe a subject’s cognitive state, such as 

cognitive workload, mental workload, cognitive load (or workload), or task load. In this 

study, we adopted cognitive load and it could be defined as a metric that quantifies the extent 

to which a subject utilizes their working memory during a task. The working memory is 

regarded as the storage for conscious information, limited by one’s capacity to hold and 

process information [20]. 

Cognitive load refers to the level of mental exertion being employed within working 

memory in a particular moment. It is often linked to the Cognitive Load Theory (CLT), which 

revolves around how cognitive resources are directed and utilized during the processes of 

learning and problem-solving [21]. The CLT highlights the concept that humans possess a 

restricted working memory capacity. In situations of high mental load, mental resources are 

allocated more towards processing information rather than addressing problem at hand. 

2.2 Electrocardiography (ECG)  

ECG signals are biological signals used to identify irregularities in heartbeats by analyzing 

the heart’s bioelectrical and muscle activity [22]. An electrocardiogram recordings, usually 

abbreviated as “ECG” or “EKG”, record the electrical potential present on the body’s surface, 

which arises from the transmission of the electrical signal within the heart [23]. It captures 

the heart’s electrical functions by positioning non-invasive electrodes (known as leads) on 

the individual’s body, typically on the chest and limbs. These leads quantify the changes in 

voltage caused by the involuntary impulses of cardiac cells during the heart’s contraction. 

Consequently, these fluctuations constitute the heartbeats, which are observed as a sequence 

of waves. 

Figure 1 depicted an example of the components of ECG waveforms. ECG consists of 

five waves known as PQRST waves, which provide information regarding the heart’s 

electrical activity. These waves have diagnostic value in identifying different heart 

conditions. The initiation of a heartbeat occurs when an electrical pulse originates from the 

sinoatrial (SA) node, located within the right atrium of the heart [22]. ECG serves as a 

valuable non-invasive instrument with diverse biomedical applications, including heart rate 

measurement, heart rhythm analysis, heart disorder diagnosis, emotion recognition, and 

biometric identification. In addition, ECG can effectively assess various conditions of driver, 

including stress, cognitive load, and drowsiness [24].  

Heart rate refers to the number of heartbeats occurring within a minute. HRV represents 

the variations in the time intervals between successive heartbeats. HRV serves as an indicator 

of neurocardiac function and is generated by heart-brain interactions and dynamic non-linear 

autonomic nervous system (ANS) processes [25]. The heart rate variability (HRV) features 

were summarized in Table 1 [25], [26].  

The standard HRV derived from ECG signals could be categorized in terms of time and 

frequency domains. The time-domain metrics of HRV assess the extent of variability in inter-

beat interval (IBI) measurements, which represent the time intervals between consecutive 

heartbeats. Time domain measures including the mean inter-beat intervals (mean IBI), the 

standard deviation of IBIs (SDNN), and the root mean squared difference of adjacent IBIs 

(RMSSD). The mean IBI represents the time between successive heartbeats and is inversely 
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related to heart rate. These time domain measures tend to decrease as cognitive workload 

increases [3], [11]. In contrast, frequency domain measures estimate distribution of absolute 

or relative power into several frequency bands. As observed in previous studies [27], an 

elevation in cognitive load is typically associated with an increase in both the LF and LF/HF 

ratio, coupled with a decrease in HF. 

 

 

Fig. 1. Illustration of an ECG signal [28] 

Table 1. Summary of the HRV measures in time and frequency domains 

Domain Measure Unit Description 

Time 

Mean IBI ms 
Mean of inter-beat interval (IBI) - the time period between 

successive heartbeats 

SDNN ms Standard deviation of normal-to-normal (NN) intervals 

RMSSD ms Root mean square of successive RR interval differences 

pNN50 % 
Percentage of successive RR intervals that differ by more 

than 50 ms 

Frequency 

VLF ms2 
Absolute power of the very low frequency band (0.0033 - 

0.04 Hz) 

LF ms2 
Absolute power of the low frequency band (0.04 - 0.15 

Hz) 

LF norm n.u. 
Relative power of the low frequency band (0.04 - 0.15 Hz) 

in normalized units 

HF ms2 Absolute power of the high-frequency band (0.15 - 0.4 Hz) 

HF norm n.u. 
Relative power of the high-frequency band (0.15 - 0.4 Hz) 

in normalized units 

LF/HF - Ratio between LF and HF  

3  METHODS  

In this review, we conducted searches across three databases considered highly relevant to 

our research topic: PubMed, Scopus, and Elsevier. These searches were carried out in July 

2023, with the inclusion of studies published from the year 2019 onward. Our search terms 

“(heart rate variability OR heart rate OR electrocardiography OR hr OR hrv OR ecg) AND 
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(cognitive workload OR cognitive overload)”. We searched for these terms within the fields 

of title, abstract, and keywords. We then downloaded the metadata and abstracts of the 

articles from the search results, which were subsequently imported into the Rayyan software 

for the purpose of screening and selection. 

This study specifically included original research journal articles written in English. Our 

focus was solely on exploring the relationship between ECG signals and driver cognitive 

load. Consequently, studies that combined ECG with other measurements were not 

considered for this review. Additionally, we excluded studies that did not involve car driving 

tasks (e.g., airplane, ship, or train driving). In total, we identified 1213 records across the 

three databases, and after eliminating duplicates, 1134 records remained. The journal articles 

in English were retained for initial screening. Following a review of the titles and abstracts, 

1085 articles were excluded, leaving 49 articles for full-text assessment. Subsequently, after 

conducting a thorough examination of the full texts, 45 articles were excluded, resulting in 4 

articles eligible for review as shown in Figure 2.  

 

 

Fig. 2. Flow chart of articles review used in this study 

4  RESULTS AND DISCUSSION 

The summary of the review papers on cognitive load detection using ECG signal was 

summarized in the Table 2.  
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Table 2. Summary of research on the cognitive load using ECG 

Paper Features Classification problem Models Performance 

Yang et al. 

[29] 

ECG 

measures 

4 classes: baseline, N-

back, texting, and N-

back+texting 

distraction) in two 

repeated one-hour 

blocks 

Random Forest (RF) 
Accuracy: 

76% 

Tavakoli et 

al. [30] 

ECG 

measures:  

RMSSD 

2 classes: low and high 

cognitive load/stress (in 

various contextual 

settings of road, 

weather, and presence 

of a passenger) 

Hierarchical modeling 

RMSSD 

decreased as 

cognitive 

load 

increased 

Huang et al. 

[10] 

Spectrograms 

of ECG signal 

based on 

mean IBI 

3 classes: low, medium, 

and high cognitive load 

Convolutional Neural 

Network (CNN) 

Accuracy: 

92.8% 

Amin et al. 

[31] 

Scalogram 

images of 

ECG signal 

3 classes: low, medium, 

and high cognitive load 

GoogLeNet, DarkNet-

53, ResNet-101, 

InceptionResNetV2, 

Xception, DenseNet-

201, InceptionV3 

Accuracy: 

98.11% 

 

A study conducted by Yang et al. [29] explored the robustness of detecting driver 

cognitive workload using ECG, while considering changes over time and individual 

variations in cognitive workload. They conducted a driving simulation experiment to 

categorize driver cognitive workload across four experimental scenarios (baseline, N-back 

task, texting, and N-back task with texting distraction). Heart rate and HRV were then 

assessed across the different experimental conditions and between the test blocks. To classify 

cognitive workload for various individuals and blocks, random forests were constructed 

based on HR and HRV data and achieved an accuracy of 76%.  

Meanwhile, Tavakoli et al. [30] developed personalized hierarchical driver’s state models 

by considering the RMSSD measures in relation to the changes in various contextual factors 

like road conditions, weather, and the presence of a passenger, which could induce stress or 

a high cognitive load. Their experiment involved 12 participants and was conducted in real-

world driving scenarios. They found that, on average, drivers experienced less stress on 

highways compared to city streets, when accompanied by a passenger compared to driving 

alone, and when driving in non-rainy conditions compared to rainy weather. Typically, the 

presence of a passenger, clear weather, and highway driving were associated with higher 

RMSSD. Conversely, lower RMSSD in rainy weather, solo driving, and city streets could 

suggest increased stress for drivers in these specific driving scenarios. 

Huang et al. [10] proposed a novel classification method for a driver’s cognitive stress or 

high cognitive load level using convolution neural network (CNN) based on ECG pictures. 

The picture was generated from the inter-beat intervals extracted from ECG signal. The 

experiment was performed under driving simulation condition. In addition, an arithmetic task 

was utilized to induced driver’s cognitive stress while driving. They classified three driver’s 

cognitive load levels into low, medium, and high with reported accuracy of 92.8%. The 

findings presented in the paper demonstrate the viability of the approach, surpassing the 

6

SHS Web of Conferences 189, 01008 (2024)
ICESH & Ergo-Camp 2023

https://doi.org/10.1051/shsconf/202418901008



 

 

performance of methods relying on the artificial neural network (ANN) model, which have 

been frequently applied in recent studies.  

Recently, Amin et al. [31] developed several deep transfer learning model (GoogLeNet, 

DarkNet-53, ResNet-101, InceptionResNetV2, Xception, DenseNet-201, and InceptionV3) 

to detect the three driver’s cognitive load levels (low, medium, and high) from ECG based 

scalogram images. They achieved overall accuracy of 98.11%. The findings indicated that 

utilizing deep transfer learning techniques led to higher accuracy levels in driver stress 

models when compared to conventional machine learning and deep learning methods. 

ECG signals considered as a valuable indicator for detecting a driver’s cognitive load 

since it could reflect the ongoing driver’s internal states of driver. However, more 

advancements are still necessary before ECG-based driver cognitive load detection could be 

effectively applied in real-world driving scenarios. The accuracies of ECG-based cognitive 

load detection systems varies from 76% to 98%. This variability can be attributed to 

individual differences and variations in measurement settings. It also found that ECG are 

usually gathered in relatively short driving experiment, typically less than one hour for 

cognitive load detection. The reliability of cognitive load detection might be decreased in 

prolonged driving if the algorithms used are trained solely with early-stage driving data [29]. 

This is due to temporal variations in the cognitive load. Cognitive load is also difficult to 

measure because of individual differences [3], [29]. Lastly, a notable trend in recent years 

has been the increasing adoption of deep learning models for the classification of a driver’s 

cognitive load. Thus, future studies could explore the utilization of advanced transfer learning 

in deep learning to enhance the performance of ECG based detection. 

5  CONCLUSION  

The present study reviewed the recent existing literatures related to the detection of driver 

cognitive load based on ECG signals. ECG signals hold promise as a valuable tool for 

detecting a driver’s cognitive load due to their convenience and non-intrusiveness. However, 

the issue in temporal variation and individual differences need to be considered in the 

development of the advanced driver assistance systems. Next, the performance of ECG based 

cognitive load detection systems show a wide range of accuracy (range: 76% ~ 98%). Lastly, 

there has been a growing trend in recent years towards the utilization of deep learning models 

for classifying a driver’s cognitive load, particularly using images derived from ECG signals. 
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