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Summary Drying curves at different temperatures were established for Quercus suber and Quercus rotundifolia fruits.

Flours produced by milling fruits dried at different conditions were evaluated for colour, starch granules

morphology, amylose and sugars content. The drying temperature was positively related to the reducing

sugar content and negatively to starch content. The amilose content generally increased with drying

temperature and the effect was more evident for the Q. rotundifolia. Results showed that flour colour

parameters generally decreased with increased drying temperature. However, the drying temperature does

not seem to affect starch morphology. It can also be stated that Q. suber produced darker flours, higher

amylose and reducing sugar content, and bigger starch granules. Q. rotundifolia showed a lower level of

damaged starch and higher fat and disaccharides content. According to the results, it was possible to

conclude that drying temperature exerted marked effects on the properties of acorn flours in both studied

species.
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Introduction

In Europe sclerophyllous forests are characterised by a
dominance of evergreen broad-leaved trees such as
Quercus suber L. and Quercus rotundifolia Lam.
Although particularly abundant in Spain and Portugal,
these forests are characterised by the dispersion of
individual trees and groups of trees known respectively
as dehesas and montados (Pinto-Correia, 1993). These
open wooded landscapes can also be found in Greece,
Italy and France (Grove & Rackham, 2001). In Portu-
gal, the total forest area is 38% of the used soil area,
being 13% and 23% of that total area occupied
respectively by Q. rotundifolia and Q. suber,(GPP,
2007). Montados are predominant in the Centre and
South of Portugal, producing about 400–700 kg/ha/
year of fruits (Oliver, 1993). Most of the fruit produc-
tion goes to animal feeding, mainly to the pig. However,
the use of acorn flour for human nutrition is also
traditional in the Iberian Peninsula. Ribeiro (1992)
referred that primitive Lusitanian people (III-I b.C.
centuries) feeding was based on oats porridge, dark

bread and acorn flour. Nowadays, in Portugal, there are
some uses of acorn flours in traditional recipes. These
fruits are also consumed in other European countries, as
referred by Rakic et al. (2006). However, the valorisa-
tion of under exploited resources is now a major trend in
order to improve sustainability of agri-food chain. In
order to find new potentialities of these materials further
studies are needed. The first step should be to improve
fruit preservation along the year, by the establishment of
convenient drying conditions.
The aim of the present study was the optimisation of

drying process conditions and a further understanding
of the effect of drying temperature on some morpho-
logical and physical-chemical properties of Q. suber and
Q. rotundifolia fruit flours.

Materials and methods

Samples

Acorns from Q. suber L. and Q. rotundifolia Lam. were
collected in ‘montados’ located in Idanha-a-Nova
(Centre East of Portugal). Mature acorns were har-
vested and three sets of 1 kg each were randomly*Correspondent: E-mail: paularcorreia@hotmail.com
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collected for each species. Samples were stored at 4 �C
until testing.

Drying experiments

Fresh fruits were subjected to hand peeling (removing
the tegument and pericarp) and the nuts chopped into
little pieces, to facilitate the milling operations. Acorn
pieces were then milled in a SK 100 Cross Beater Retsch
hammer mill to pass a 1 mm sieve.
The drying process was conducted in two steps.

First, acorns were pre-dehydrated at 40 �C for 24 h in
a FD 115 Binder ventilated drying chamber, with an
air flow of 300 m)3 hour)1. Afterwards, fruits were
hand peeled, the nuts chopped into little pieces and
dried in the referred equipment at 40, 50, 60 and 70 �C,
until a final aw value of about 0.2. The dried fruit
pieces were subject to the same milling process as the
fresh fruits.
To establish the drying curves the water activity

variations were monitored at 25 �C, using a BTsrl
Selecta Unitronic hygrometer. The water activity was
measured every 2 h in samples of 4–5 g, taken from the
drying chamber.

Chemical analysis

Samples were evaluated for: moisture, protein (% N *
6.25), fat, fibre, ash and reducing sugars content
(AOAC, 2000). All reagents used were from analytical
grade.
Moisture content was determined by gravimetric

method at 100–105 �C, until constant weight.
Nitrogen Free Extract (NFE) was calculated by

difference (Nap et al., 1991):

%NFE (dwb) ¼
100� ð%Proteinþ%Fatþ%Ashþ%Fibre)

ð1Þ

Total starch content was determined by polarimetric
method as proposed by Garcia & Wolf (1972), as
suggested by Knutson (2000). The colorimetric
method proposed by Juliano (1971) and referred by
Yadav & Jindal (2007), was used to determine
amylose content. Amylose content was expressed on
starch basis.
Total reducing sugars were determined by the Mun-

son–Walker method (AOAC, 2000) and some individual
sugars by HPLC, equipped with a 6000 A pump, RI 400
detector and Sugar-pack column (Waters Corporation,
Milford, MA, USA) at 90 �C, using EDTA-Ca 50 ppm
aqueous solution at 0.5 ml min)1, as proposed by
Medlicott & Thompson (1984). The external standard
method was used to identify and quantify sugars. All
reagents were HPLC grade. Since the column used does

not clearly separate sucrose from maltose, which present
similar retention times, sucrose and maltose are always
considered as a whole (sucrose+maltose).
Damaged starch was determined following the

method proposed by AACC (2000), being reducing
sugars determined by the Hizukuri et al. (1981)
method.
All reported values are expressed on a dry weight

basis (dwb) and represent the average value of the
analysis of at least three different replicates.

Scanning electron microscopy

The milled fresh acorns and the dried flours were
observed directly by scanning electron microscope
(SEM). The dimensions (length and width) of 200 starch
granules in flours were measured by SEM.
For SEM, fresh acorns and the dried fruit flours were

placed onto double-sided tape on a microscope stub.
Samples were analysed by taking images on an envi-
ronmental scanning electron microscope (ESEM) model
Quanta 400 (FEI Company, USA), at 10 KV and 4 m
bar.

Colour evaluation

Colour of milled fresh acorn and flours was assessed by
CIELAB (1986) system using a Chroma Meter CR-300
Minolta (Osaka, Japan) colorimeter. From L* a* b*,
chroma (c*) and hue angle (ho) were determined.
Colour lightness (value), L* (100: white to 0: black),
measures how light/dark is the colour of the object;
chroma or saturation, c* (0–60), measures how dull/
vivid is the object colour; hue angle, hº (0�–360�),
express the characteristic/dominant colour (0� red/
purple; 90� yellow; 180� bluish/green). A white tile
(L* = 97.46; a* = –0.02; b* = 1.72) was used as
reference. Total colour difference (TCD*) (McGuire,
1992; Silva & Silva, 1999) as defined by eqn 2 was also
calculated:

TCD� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L� � L�0
� �2þ a� � a�0

� �2þ b� � b�0
� �2q

ð2Þ

Twenty five individual measurements were performed
for each sample.

Statistical analysis

The data reported in all the tables and figures are
averages of at least three different determinations. A
Statistic� vs. 6 and Excel�2003 software was used for
statistic analysis. Colour and chemical results were
subjected to a variance analysis and the significance of
differences between means was determined with the
Fisher LSD test at a 5% level.
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Results and discussion

Drying process

The drying curves expressed by the evolution of water
activity (aw) until having reached a final value of 0.2 are
shown in Fig. 1. The second order polynomial of the
form:

y ¼ aþ bxþ cx2 ð3Þ

was used to adjust curves, and the results of the fittings
are presented in Table 1.
Drying patterns were found to be similar for both

studied species at tested drying conditions. However,
Q. rotundifolia fruits generally presented a lower drying
rate. As expected free water evaporation rate was lesser
when the drying temperature was lower.
Total moisture loss results for the drying processes are

shown in Table 2. The total moisture losses are not

much different for both species at the tested drying
temperatures. Studies based on other fruits, like chest-
nuts, made by Koyuncu et al. (2004) showed that
temperature was the most important drying parameter
affecting the total drying time and, therefore, the
consumed energy, the time and the heat energy which
decrease with increasing temperatures. Being so, the
fastest process is the best, provided that the higher
temperature does not affect the quality parameters.

Chemical analysis

Proximate components of raw materials and dried flours
The results of fresh acorn fruits proximate analysis are
presented in Table 3. In what concerns flours dried at
different conditions, no significant differences were
found (P ‡ 0.05), showing, as expected, that drying
temperature did not affect the total amounts of protein,
fat, fibre and ash. Q. rotundifolia results are similar to
those found by Ferreira (2000).
Comparing the study species, Q. rotundifolia pre-

sented higher values of fat content. This result is
corroborated by Ferreira-Dias et al. (2003). These
authors studied the fat content and fatty acid profile
of three Quercus species (Q. rotundifolia, Q. suber and
Q. pyrenaica) and they concluded that Q. rotundifolia
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Figure 1 Evolution of water activityduring the fruits drying, showing

the 2nd order polynomial fitting for each drying process (QR, Quercus

rotundifolia; QS, Quercus suber, 40, 50, 60, 70 �C stand for temper-

ature).

Table 1 Second order polynomial fitting for

the drying processes Variety Drying temperature a b c R2 Drying ratea

Quercus rotundifolia 40 �C 0.9388 –0.0079 –0.00001 0.991 –0.00002

50 �C 0.9413 –0.0088 –0.00030 0.987 –0.00060

60 �C 0.9258 –0.0215 –0.00020 0.981 –0.00040

70 �C 0.9136 –0.0285 –0.00001 0.988 –0.00002

Quercus suber 40 �C 0.9982 –0.0066 –0.00005 0.993 –0.00010

50 �C 0.9964 –0.0091 –0.00030 0.982 –0.00060

60 �C 1.0093 –0.0156 –0.00030 0.977 –0.00060

70 �C 0.9565 –0.0357 –0.00008 0.986 –0.00016

aDrying rate is the constant rate (cr) of the equation obtained by derivation of the second order

polynomial equations (y = k + cr.x).

Table 2 Influence of drying on the moisture content of chestnuts

Specie

Moistures

content

(g/100 g)

Moisture

loss (1) (%)

Fresh

fruits

Dried

at 40 �C

Dried

at 50 �C

Dried

at 60 �C

Dried

at 70 �C

QS 42.0 ± 0.03a 78.8 84.0 79.3 86.4

QR 37.6 ± 0.01a 79.8 82.2 80.1 85.1

(1)variation = (Moisture(initial) – Moisture(final))/Moisture(initial)* 100%
aMeans ± standard error of mean.
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presented the highest average oil content followed by
Q. suber. Due to these characteristics, the extraction of
the oil from Q. rotundifolia acorns was carried out in
some oil extraction plants in Portugal until the early 70s,
due to the very similar fatty acid composition to olive oil
(Ferrão & Ferrão, 1988).

Reducing sugars, starch and amylose contents
Results on the effect of drying conditions on carbohy-
drates content are shown in Table 4. It may be observed
that reducing sugars content increased in both species
with drying temperature and that Q. suber flours
presented higher reducing sugars content, when com-
pared to Q. rotundifolia. This effect may be explained by
a lower degree of starch damage observed in
Q. rotundifolia flours (Fig. 2). Both species presented
similar starch contents and the drying temperature
seems to exert a marked effect on it compared to the
milled fresh fruit. This effect was also observed in
chestnuts fruits by Attanasio et al. (2004).
Fresh acorns amylose content was found to be 41.7%

and 48.9% for Q. rotundifolia and Q. suber (Fig. 3). For
Q. rotundifolia the value determined was much higher
than that found by Ferreira (2000), 24.6%. Encountered

differences may be justified by differences in the botan-
ical source, the climatic conditions and soil type during
growth (Singh et al., 2003). As it can be seen in Fig. 3,
the amylose contents are, in all cases, higher for Q. suber
when compared to Q. rotundifolia. As to the effect of
drying temperature, the amilose content generally
increased with drying temperature and the effect was
more evident for the Q. rotundifolia. The observed
increase on amylose content for drying temperatures
until 60 �C, inclusively, may be due to the combined
action of enzymes during the acorn drying processes.
Besides, this effect may also explain the reducing sugar
increase. Amylolitic enzymes are, mainly, a-amylase,
b-amylase, glucoamylase and pullulanase (Atwell et al.,
1980; Madi et al., 1987). These enzymes hydrolyse both

Table 3 Proximate analysis of fresh acorns (g/

100 g)aMoisture Protein Fat Ash Fibre NFE

QS 42.0 ± 0.03 4.2 ± 0.15 5.2 ± 0.08 1.7 ± 0.02 2.7 ± 0.03 86.2 ± 0.09

QR 37.6 ± 0.01 4.8 ± 0.04 11.1 ± 0.06 1.9 ± 0.03 3.0 ± 0.11 79.2 ± 0.06

aResults are the means ± standard error of mean, expressed in dry solids.

NFE, nitrogen free extract.

Table 4 Reducing sugars and total starch contents of acorn drying

floursab

Drying

temperature

(�C)

Reducing

sugars

(g/100 g)

Starch

(%)

QS None 5.4 ± 0.01e 49.0 ± 1.82a

40 �C 13.9 ± 0.02d 36.3 ± 0.95b

50 �C 13.3 ± 0.03c 33.7 ± 1.41c

60 �C 14.3 ± 0.02b 31.4 ± 0.50c

70 �C 15.3 ± 0.01a 33.3 ± 0.30c

QR None 6.6 ± 0.03e 48.0 ± 2.54a

40 �C 7.5 ± 0.01d 35.7 ± 2.49b

50 �C 7.9 ± 0.02c 33.5 ± 1.17b

60 �C 8.8 ± 0.03b 31.6 ± 0.36b

70 �C 9.3 ± 0.03a 34.2 ± 1.49b

aPercentage on dry weight basis.
bResults are the means ± standard error of mean.

For each determined parameter values followed by the same uppercase

letter are not significantly different at P < 0.05, Fisher LSD test.
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amylose and amylopectin, but the extent of hydrolysis of
the amylopectin is different because of the a,1-6
branching (Delatte et al., 2006). The majority of amy-
lolitic enzymes, mainly a-amylase, b-amylase and glu-
coamylase, are active at the tested drying temperatures,
as their optimum temperature situates between 55 �C
and 60 �C (Mathewson, 1998), therefore, promoting the
increase on amylose (as seem previously in Fig. 3) and
reducing sugar content (as expressed in Table 4 and also
in Table 5 for glucose). As referred by Li et al. (2004),
since the way of action of amylases is not yet completely
known, it becomes complicated to consider the variety
of a-amylase sources and the changes in the complex
structure of starch granules. When fruits were dried at
70 �C the amylose content presented lower values
probably due to enzymes inactivation.

Sugar content
The sugar content of both species and the influence of
drying temperature on individual sugar content are
shown in Table 5. For both species the effect of the
drying temperature on the disaccharides and monosac-
charides content was quite different. Milled fresh fruit
flours and flours from fruits dried at 40 �C presented
similar values for both species.
Disaccharides decrease with the increase of the drying

temperature, being the differences more evident for
higher drying temperatures. This decreasing affect could
be due to thermal and enzymatic degradation, as
previously mentioned, obviously leading to an increase
in the monosaccharides content. Q.suber presented a
lower content of disaccharides and a higher content of
monosaccharides. Flour obtained from Q. suber fresh
fruits presented lower content of monosaccharides,

significantly different from the dried flours, and for fruit
flours dried at 40/50 �C and 60/70 �C the results are
respectively similar for glucose and frutose. In what
concerns glucose content, Q. rotundifolia flours pre-
sented distinct results, but fructose values are quite
similar. From these results, it could be stated that the
drying temperature exercised a marked effect on sugar
content and the two species responses are quite different,
suggesting different flour characteristics.

Damaged starch
Damaged starch is the fraction of starch that is
mechanically disrupted during processing (Thomas &
Atwell, 1999). The word ‘damaged’ can be interpreted in
a general sense to imply any change in granular
structure or, more specifically, to describe particular
changes in structure that are manifested as important
technological advantages (Evers & Stevens, 1985) and
not necessarily as a detrimental effect. As previously
stated, by observing Fig. 2, it is possible to conclude
that Q. suber presented higher percentage of damaged
starch for all acorn flours. Considering the drying
process temperatures applied to acorn fruits, flours
from fruits dried at 50 �C and 60 �C presented slightly
lower levels of damaged starch, when compared with
those at 40 �C and 70 �C.
Starch damage affects physicochemical properties,

such as water absorption. This in turn influences the
functionality of damaged starch in food applications,
and subsequently, the quality of the final product.
Extensive starch damage causes disruption in the
molecular structure of the starch (Niba, 2006). Modifi-
cations to the starch granule, therefore, result in
increased swelling ability and a higher susceptibility to
enzymatic hydrolysis (Stark & Lynn, 1992). Belitz et al.
(2004) referred that when starch granules are damaged
by grinding or by application of pressure at various
water contents, the amorphous portion is increased,
resulting in improved dispersibility and swellability in
cold water, a decrease in gelatinisation temperature and
an increase in enzymatic vulnerability.

Morphological characteristics of starch granules
The SEM of the acorn flours for both studied species
is shown in Fig. 4. Starch is the main compound of
acorn flours (as corroborated by the chemical analy-
sis). Starch granules seem to be surrounded by little
pieces of other materials, like fibres and proteins,
giving the appearance of ‘raising dust’ (basically on
fresh acorn flours). Starch granules of both species
presented similar morphology after drying at the tested
temperatures.
Starch granules were always found to be round or

oval in shape. However, in the fresh fruits the surface
was not so clearly defined, because it was more evident
the inclusion of the granules in a matrix. Starch granules

Table 5 Values of simple sugars in acorns (g/100 g dry solids).

Drying

temperature

(�C)

Sucrose +

Maltose Glucose Fructose

QS Fresh 20.1 ± 0.13d 2.0 ± 0.04a 4.3 ± 0.02a

40 19.8 ± 0.05d 6.0 ± 0.03c 9.0 ± 0.01c

50 19.0 ± 0.09a 6.0 ± 0.01c 9.0 ± 0.02c

60 15.7 ± 0.03c 6.3 ± 0.01b 9.5 ± 0.02b

70 16.3 ± 0.07b 6.3 ± 0.01b 9.5 ± 0.01b

QR Fresh 30.2 ± 0.38c 0.8 ± 0.01e 6.6 ± 0.02a

40 29.9 ± 0.49c 2.0 ± 0.01cd 6.9 ± 0.02b

50 29.2 ± 0.17ac 2.0 ± 0.02cd 6.9 ± 0.01b

60 26.7 ± 0.31ab 2.1 ± 0.01bd 6.8 ± 0.24ab

70 24.4 ± 0.16b 2.2 ± 0.02ab 7.1 ± 0.01b

aPercentage on dry weight basis.
bResults are the means ± standard error of mean.

Results are the means of three determinations ± standard error of mean

For each sugar parameter values followed by the same uppercase letter

are not significantly different at P < 0.05, Fisher LSD test.
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from dried material exhibited some fractures. This effect
was also observed by Grant (1998) for wheat granules
and the fractures were more evident for higher drying
temperatures.
Both dimensions, length and width, measured on

starch granules presented a high variability: some
smaller than 2 lm and others larger than 18 lm
(Fig. 5). In the case of Q. suber, the dimensions showed
a normal distribution, different from Q. rotundifolia. For
Q. suber the predominant length and width are between

6 and 8 lm and Q. rotundifolia starch granules
are between 2 and 4 lm wide and 6–8 lm long.
Q. rotundifolia starch granules seem to be smaller and
less regular than the ones of Q. suber. This is further
confirmed by the mean values presented in Table 6.
From further studies carried out, it was also observed

that the drying temperature did not significantly
(P > 0.05) influence the dimensions of the starch
granules in both species.

Colour evaluation
Colour of acorn flours showed to be different depending
on drying conditions. The appearance of Q. suber and
Q. rotundifolia fruits after drying can be seen in Fig. 6. It
could be observed that Q. suber fruits are darker
comparing with the Q. rotundifolia. Colour parameters
of flours produced after drying and fresh fruits are
significantly different (Table 7). Dried fruit flours results

Q. rotundifolia

(a)

(b)

Q. suber

20 µm 20 µm

20 µm 20 µm

Figure 4 SEM and light microscopy of the fresh (a) and dried acom

flours at 40� (b) Fractures are signed by an indication arrow.
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Table 6 Analysis of starch granules dimen-

sions of fresh fruitsLength (lm) Width (lm)

Mean±r Maximum Minimum Mean±r Maximum Minimum

QS 7.7 ± 3.60 19.4 1.2 5.9 ± 2.57 15.6 1.2

QR 6.0 ± 3.31 19.8 1.2 4.8 ± 2.63 18.1 1.1

40 °C

(a)

(b)

50 °C 60 °C 70 °C

Figure 6 Aspect of acorn friuts after drying, (a) Q. Suber, (b) Q.

rotundifolia.
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are quite different comparing to fresh fruit flours. All the
acorn flours presented a yellow predominant colour (ho

values near 90�). Fresh fruit flours presented a darker
colour comparing to the dried fruits flours. The darker
colour may be attributed to the oxidation of phenolic
compouds, even though the colour of milled fruits flours
was measured immediately after milling. As expected,
the whitest (L*) samples are those produced by drying at
lower temperatures, like 40 �C and 50 �C, for both
species. As drying temperatures increase, the flours
became darker, most probably due to a larger extension
of caramelisation. On the other hand, the intensity and
vivid colour (c*) decreased with the drying temperature.
Comparing the drying temperatures, for both species,
the c* was lower in flours obtained at 40 �C and 50 �C,
increasing in those obtained at 60 �C and 70 �C. The
encountered colour difference might be classified as
according to Drlange (1994) as very great (TCD*
>12.0) for all flours. In what concerns the species,
flours from 40 �C and 50 �C presented equal values for
colour parameters for both species. Q. suber flours
obtained from drying temperatures of 60 �C and 70 �C
are quite similar. Q. suber flours are darker and more
vivid, then Q. rotundifolia flours, with a higher colour
difference, probably due to a higher content of reducing
sugars.

Conclusion

The aim of the present study was to evaluate the effect of
drying temperature on morphology and physicochemical
properties of Q. suber and Q. rotundifolia acorn species.
Based on results, it could be concluded that drying
temperature was a relevant parameter to the physico-
chemical properties of flours, but not so important to the
starch morphology. In fact, the physicochemical prop-
erties were significantly affected by drying temperatures

in both species. However, Q. suber and Q. rotundifolia
showed to be differently affected by drying conditions. It
can be said that Q. suber presented bigger starch
granules, darker flours, high reducing sugar and amylose
contents. Starch was less damaged and presented higher
disaccharides contents in Q. rotundifolia. Based on the
results, for both species flour dried at 60 �C, it seems to
be the one where the drying process was faster than the
drying at 40 �C and 50 �C and with a lower content of
damaged starch. Considering these effects, more work
must be done in order to study the influence of the drying
temperature on the functional properties of the flours,
and its relation to those morphological and chemical
changes.
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Engenharia Agro-Industrial. Lisbon: Instituto Superior de Agron-
omia da Universidade Técnica de Lisboa.
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