
On the Performance of Multi-GPU-Based Expert
Systems for Acoustic Localization Involving Massive

Microphone Arrays

Jose A. Bellocha,∗, Alberto Gonzaleza, Antonio M. Vidalb, Maximo Cobosc

aInstitute of Telecommunications and Multimedia Applications, Universitat Politècnica de
València, Camino de Vera s/n, 46022 Valencia, Spain.

bDSIC department, Universitat Politècnica de València, Camino de Vera s/n, 46022,
Valencia, Spain.

cComputer Science Department, Universitat de València,Poligon de la Coma s/n, 46100,
Valencia, Spain.

Abstract

Sound source localization is an important topic in expert systems involving mi-

crophone arrays, such as automatic camera steering systems, human-machine

interaction, video gaming or audio surveillance. The Steered Response Power

with Phase Transform (SRP-PHAT) algorithm is a well-known approach for

sound source localization due to its robust performance in noisy and reverberant

environments. This algorithm analyzes the sound power captured by an acoustic

beamformer on a defined spatial grid, estimating the source location as the point

that maximizes the output power. Since localization accuracy can be improved

by using high-resolution spatial grids and a high number of microphones, accu-

rate acoustic localization systems require high computational power. Graphics

Processing Units (GPUs) are highly parallel programmable co-processors that

provide massive computation when the needed operations are properly paral-

lelized. Emerging GPUs offer multiple parallelism levels; however, properly

managing their computational resources becomes a very challenging task. In

fact, management issues become even more difficult when multiple GPUs are

∗Corresponding author: Phone Number +34-655436190
Email addresses: jobelrod@iteam.upv.es (Jose A. Belloch), agonzal@dcom.upv.es

(Alberto Gonzalez), avidal@dsic.upv.es (Antonio M. Vidal), maximo.cobos@uv.es
(Maximo Cobos)

Preprint submitted to Journal of LATEX Templates February 25, 2015

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/61479237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


involved, adding one more level of parallelism. In this paper, the performance of

an acoustic source localization system using distributed microphones is analyzed

over a massive multichannel processing framework in a multi-GPU system. The

paper evaluates and points out the influence that the number of microphones

and the available computational resources have in the overall system perfor-

mance. Several acoustic environments are considered to show the impact that

noise and reverberation have in the localization accuracy and how the use of

massive microphone systems combined with parallelized GPU algorithms can

help to mitigate substantially adverse acoustic effects. In this context, the pro-

posed implementation is able to work in real time with high-resolution spatial

grids and using up to 48 microphones. These results confirm the advantages

of suitable GPU architectures in the development of real-time massive acoustic

signal processing systems.

Keywords: Sound Source Localization; Steered Response Power; Microphone

Arrays; Graphics Processing Units

1. Introduction

Microphone arrays are commonly employed in many signal processing tasks,

such as speech enhancement, acoustic echo cancellation or sound source separa-

tion (Brandstein & Ward, 2001). The localization of broadband sound sources

under high noise and reverberation is another challenging task in multichannel5

signal processing, being an active research topic with applications in human-

computer interfaces (Kodagoda & Sehestedt, 2014), teleconferencing (Wang

et al., 2011) or emergency units (Calderoni et al., 2015). Microphone arrays

may follow a given geometry, such as spherical arrays (Huang & Wang, 2014),

or may be distributed. Algorithms for sound source localization can be broadly10

divided into indirect and direct approaches (Madhu & Martin, 2008). Indirect

approaches usually follow a two-step procedure: they first estimate the Time

Difference Of Arrival (TDOA) (Chen et al., 2006) between microphone pairs,

and, afterwards, they estimate the source position based on the geometry of

2



the array and the estimated delays. On the other hand, direct approaches per-15

form TDOA estimation and source localization in one single step by scanning

a set of candidate source locations and selecting the most likely position as

an estimate of the real source location. Although the computation of TDOAs

usually requires time synchronization, new approaches are being developed to

avoid this limitation (Xu et al., 2013). Most localization algorithms are based20

on the Generalized Cross-Correlation (GCC) (Knapp & Carter, 1976), which is

calculated by using the inverse Fourier transform of the weighted cross-power

spectral density of the signals. The Steered Response Power - Phase Trans-

form (SRP-PHAT) algorithm is a direct approach that has been shown to be

very robust in adverse acoustic environments (DiBiase et al., 2001). The algo-25

rithm is usually interpreted as a beamforming-based approach that searches for

the candidate position that maximizes the output of a steered delay-and-sum

beamformer.

The CUDA platform (CUDA, 2015) provides a computing framework that

enables the use of Graphics Processing Units (GPUs) in applications beyond30

image processing (Liu et al., 2007; Zhao & Lau, 2013). GPUs are high parallel

programmable co-processors that provide efficient computation when the needed

operations are properly parallelized. Programming a GPU efficiently requires

having good knowledge of both the underlying architecture and the mechanisms

used by GPUs to distribute their tasks among their processing units. Since the35

appearance of CUDA programming, many researchers in different areas have

made use of it to achieve better performances in their respective fields. For

example, well-known computational cores have also been adapted to a GPU

computing framework, such as LU factorization (Dazevedo & Hill, 2012), matrix

multiplication (Matsumoto et al., 2011) or the Boltzmann equation (Kloss et al.,40

2010). In audio and acoustics, several works demonstrate the potential of GPUs

for carrying out audio processing tasks. For example, the implementation of a

multichannel room impulse response reshaping algorithm was carried out in

(Mazur et al., 2011), and implementations of adaptive filtering algorithms were

presented in (Schneider et al., 2012; Lorente et al., 2012, 2013, 2014). GPU-45

3



based room acoustics simulation was carried out in (Savioja, 2010; Southern

et al., 2010; Webb & Bilbao, 2011; Hamilton & Webb, 2013). One of the main

contributions within this field was carried out in (Savioja et al., 2011), where

improved performances in additive synthesis, Fourier transform and convolution

in the frequency domain were presented. A comparison between CPU and GPU50

performance for a simple crosstalk canceller is presented in (Belloch et al., 2011).

Similarly, a binaural audio application with massive audio processing that was

fully implemented on a GPU is presented in (Belloch et al., 2013a). GPUs are

also used in (Vanek et al., 2012) and in (Bradford et al., 2011) for evaluating

the likelihood function in automatic speech recognizers and for sliding phase55

vocoder, respectively.

The use of GPUs for implementing sound source localization algorithms has

also recently been tackled in the literature. The time performances of different

localization algorithms implemented on GPU were reported in (Peruffo Minotto

et al., 2012) and (Liang et al., 2012). In fact, although different implementations60

of the SRP-PHAT in the time-domain and frequency-domain are analyzed in

(Peruffo Minotto et al., 2012), their results mainly focus on pure computational

issues and do not discuss how localization performance is affected by using differ-

ent numbers of microphones or a finer spatial grid. In (Seewald et al., 2014), the

SRP-PHAT algorithm is implemented over two Kinects for performing sound65

source localization. In the same work, the algorithm only estimates the relative

source direction instead of providing the absolute source position and the im-

plementation is evaluated on different GPUs that belong to the old-fashioned

Fermi(CUDA, 2015).

One of our previous works (Belloch et al., 2013b) analyzed the performance of70

a 2-D SRP-PHAT implementation with different Nvidia GPU architectures. The

present paper extends that work in various aspects. First, 3-D source localiza-

tion is considered, leading to a significant increase in the required computational

cost. Second, the system considered in this work makes use of multiple GPUs,

facing new challenges in parallelization and resource management. Finally, this75

paper provides a deeper analysis of the influence of the acoustic environment

4



and the number of microphones in the final performance. As a result, this paper

is aimed at demonstrating how localization systems using a high number of mi-

crophones distributed within a room can perform sound source localization in

real time under adverse acoustic environments by using GPU massive computa-80

tion resources. Specifically, the well-known SRP-PHAT algorithm is considered

here. Note that coarse-to-fine search strategies have been proposed to overcome

many of the processing limitations of SRP-PHAT (Do & Silverman, 2007; Said

et al., 2013; Marti et al., 2013). However, while these strategies provide more

efficient ways to explore the localization search volume, they only provide better85

performance than the conventional SRP-PHAT when the number of operations

is restricted. Thus, the performance of the conventional SRP-PHAT with fine

spatial grids is usually considered as an upper bound in these cases.

Relevant parameters that affect the computational cost of the algorithm

(number of microphones and spatial resolution) are analyzed, showing their in-90

fluence on the localization accuracy in different situations. We also discuss the

scalability of the algorithm when multi-GPU parallelization issues are consid-

ered. This paper highlights the need for massive computation in order to achieve

high-accuracy localization in adverse acoustic environments, taking advantage

of GPUs to fulfill the computational demand of the system.95

In comparison with the implementation presented in (Seewald et al., 2014),

we design our application to achieve maximum performance on GPUs making

use of the Kepler architecture GK110 (K20, 2014) (See Appendix A for de-

tails). This architecture can be found on the Tegra K1 (TK1) systems-on-chip

(SoC), embedded in the Jetson development kit (DevKit) (Jetson, 2015), and100

it is becoming widespread in current mobile devices such as Google’s Nexus

9 tablet (Nexus, 2015). Thus, the proposed implementation can be success-

fully adapted to work properly on GPUs that are currently embedded in mobile

devices.

The paper is structured as follows. Section 2 briefly describes the basic SRP-105

PHAT localization algorithm that will be used throughout this paper. Section

3 presents the implementation of the algorithm on multi-GPU systems. The

5



proposed acoustic environments for real-time sound source localization are pre-

sented in Section 4, describing the experiments conducted for studying the per-

formance of the method in a real application context. The computational perfor-110

mance of the different multi-GPU implementations are also analyzed. Finally,

Section 5 provides some concluding remarks. Two Appendixes are provided in

order to facilitate the understanding of the parallelization techniques that are

used throughout this article.

2. Sound Source Localization: SRP-PHAT Algorithm115

Consider the output from microphone l, ml(t), in an M microphone system.

The Steered Response Power (SRP) at the spatial point x = [x, y, z]T for a

time frame n of length TL can then be defined as

Pn(x) ≡
∫ (n+1)TL

nTL

∣∣∣∣∣
M∑
l=1

wlml (t− τ(x, l))

∣∣∣∣∣
2

dt, (1)

where wl is a weight and τ(x, l) is the direct time of travel from location x to

microphone l. DiBiase (DiBiase, 2000) showed that the SRP can be computed120

by summing up the Generalized Cross-Correlations (GCCs) for all possible pairs

of the set of microphones. The GCC for a microphone pair (k, l) is defined as

Rmkml
(τ) =

∫ ∞
−∞

Φkl(ω)Mk(ω)M∗l (ω)ejωτdω, (2)

where τ is the time lag, ∗ denotes complex conjugation, Ml(ω) is the Fourier

transform of the microphone signal ml(t), and Φkl(ω) is a combined weighting

function in the frequency domain. The phase transform (PHAT) (Knapp &125

Carter, 1976) has been shown to be a suitable GCC weighting for time delay

estimation in reverberant environments. The PHAT weighting is expressed as:

Φkl(ω) ≡ 1

|Mk(ω)M∗l (ω)|
. (3)

Taking into account the symmetries involved in the computation of Eq.(1)

and removing some fixed energy terms (DiBiase, 2000), the part of Pn(x) that

6



changes with x can be isolated as130

P ′n(x) =

M∑
k=1

M∑
l=k+1

Rmkml
(τkl(x)) , (4)

where τkl(x) is the Inter-Microphone Time-Delay Function (IMTDF). This func-

tion is very important since it represents the theoretical direct path delay for the

microphone pair (k, l) resulting from a point source located at x. The IMTDF

is mathematically expressed as (Cobos et al., 2011)

τkl(x) =
‖x− xk‖ − ‖x− xl‖

c
, (5)

where c is the speed of sound (≈ 343 m/s), and xk and xl are the locations of135

the microphone pair (k, l).

The SRP-PHAT algorithm consists in evaluating the functional P ′n(x) on a

fine grid G with the aim of finding the point-source location xs that provides

the maximum value:

xs = arg max
x∈G

P ′n(x). (6)

Figure 1 shows schematically the intuition behind SRP-PHAT localization.140

In this figure, an anechoic environment is assumed so that the GCC for each

microphone pair is a delta function located at the real TDOA. Each TDOA de-

fines a half-hyperboloid of potential source locations. The intersection resulting

from all the half-hyperboloids matches the point of the grid having the greatest

accumulated value.145

2.1. SRP-PHAT Implementation

The SRP-PHAT algorithm is usually implemented on a grid by carrying out

the following steps:

1. A spatial grid G is defined with a given spatial resolution r. The the-

oretical delays from each point of the grid to each microphone pair are150

pre-computed using Eq.(5).

2. For each analysis frame, the GCC of each microphone pair is computed

as expressed in Eq.(2).

7



-5 -4 -3 -2 -1 0 1 2 3 4 5
-5

-4

-3

-2

-1

0

1

2

3

4

5
Intersecting Half-Hyperboloids for a Point-Source

x   [m]

y
 
 
[m

]

Mic 1

Mic 2

Mic 3

Figure 1: Intersecting half-hyperboloids for M = 3 microphones. Each half-hyperboloid

corresponds to a TDOA peak in the GCC.

3. For each position of the grid x ∈ G, the contribution of the different

cross-correlations are accumulated (using delays pre-computed in 1), as in155

Eq.(4).

4. Finally, the position with the maximum score is selected as in Eq.(6).

The SRP-PHAT localization performance depends on the selected spatial

resolution r. Figure 2 illustrates the algorithm performance when considering

different spatial grid resolutions. The accumulated SRP-PHAT values for each160

spatial grid location are shown for a 2-D plane in a 4 × 6 m room with N = 6

microphones. Note how the location of the source is more easily detected when

finer spatial resolutions are used, as in the case of r = 0.01 m.

8



2.2. Computational Cost

The SRP-PHAT algorithm is usually implemented by performing a frequency-165

domain processing of the input microphone signals. Given M microphones, the

number of microphone pairs to process is Q = M(M − 1)/2. For a DFT size

of L (equal to the time-window size), an FFT takes 5L log2 L arithmetic oper-

ations that result from L
2 log2 L complex multiplications and L log2 L complex

additions. Note that one complex multiplication is equivalent to four real mul-170

tiplications and one real addition, while a complex addition is equivalent to two

real additions. As a result, the signal processing cost for computing the GCC

is given by:

• DFT: Compute M FFTs, then, M × 5L log2 L.

• Cross-Power Spectrum: A complex multiplication for L points, result-175

ing in 6L operations (4 real multiplications and 2 real additions). This is

done for Q microphone pairs, resulting in a cost of 6QL.

• Phase Transform: Magnitude of the L points of the GCC, which costs

L operations. This is also done for Q pairs, resulting in QL operations.

• IDFT: The IDFT forQ pairs must be performed, which requiresQ5L log2 L180

operations.

Moreover, for each functional evaluation, the following parameters must be

calculated:

• M Euclidean distances, ‖xm‖, requiring 3 multiplications, 5 additions and

1 square root (≈ 12 operations): 20M operations185

• Q TDOAs, requiring 2 operations (1 subtraction and 1 division by c) per

microphone pair: 2Q operations.

• The SRP requires truncating the TDOA values to the closest sample ac-

cording to the system sampling frequency, multiplying the cross-power

spectrum to obtain the phase transform for each microphone pair and190

adding up all the GCC values: 5Q operations.

9



0 1 2 3 4

0

1

2

3

4

5

6

SRP-PHAT values with r = 0.01 m

0 1 2 3 4

0

1

2

3

4

5

6

SRP-PHAT values with r = 0.1 m

y 
[m

]

y 
[m

]
x [m] x [m]

(a) (b)

Figure 2: Accumulated SRP-PHAT values for a 2-D spatial grid (4 × 6 m and M = 6

microphones) with different spatial resolutions. (a) r = 0.01 m. (b) r = 0.1 m.

As a result, the cost of the SRP-PHAT is given by:

Cost =

(
M +M2

2

)
5L log2 L+

7M(M − 1)

2
L + ν

(
20M +

7M(M − 1)

2

)
, (7)

where ν is the total number of functional evaluations. In the conventional full

grid-search procedure, ν equals the total number of points of the grid G. Figure

3 shows the computational cost of the algorithm for different spatial resolutions195

and number of microphones, considering a 3D grid search space with a uniform

spatial resolution of r meters.

3. Algorithm Parallelization for real-time GPU implementation

The GPU-based implementation of the SRP-PHAT algorithm is applied to

Nvidia hardware devices with Kepler architecture GK110 (K20, 2014). Ap-200

pendix A provides a detailed description of the GPU-parallelization techniques

used throughout this section.

10



Computational Cost

M (Number of microphones)

5 10 15 20 25 30 35 40 45
10

6

10
7

10
8

10
9

10
10

10
11

10
12

10
13

=  0.05 m  
=  0.1 m  

=  0.01 m 
=  0.005 m  r

r

r

r

N
u
m

b
er

 o
f 
op

er
a
ti

on
s

Figure 3: Computational cost when for different number of microphones M and spatial reso-

lutions r.

Since the localization is carried out in three dimensions, three different reso-

lutions rx, ry, and rz define the spatial grid G. Taking a shoe-box-shaped room

as a model room with dimensions lx × ly × lz, the size of the grid is ν = Px ×205

Py × Pz, where Px = lx
rx

, Py =
ly
ry

and Pz = lz
rz

.

The real-time implementation of the SRP-PHAT algorithm uses 50% time-

window overlap, with audio sample buffers of size L. These L×M samples are

transferred to the GPU first. A GPU buffer (denoted here as TGPU ) stores the

audio samples in consecutive memory positions as they arrive to the GPU. One210

aspect that affects the performance for all audio signal processing applications

on GPU is the transfer of audio samples from CPU to GPU. As mentioned in

Appendix A.1, streams can be used to parallelize these transfers and overlap

them with the computation. Since we use 50% overlap, the processing is carried

out in blocks of size 2L, which are composed of the current audio-sample buffer215

and the previous one. Thus, a size of 2LM is used for TGPU . The SRP-PHAT

11



GPU implementation carries out the following steps:

1. M streams are created (one stream for each microphone in the system).

The streams are launched consecutively in an asynchronous way. Stream l

transfers L samples captured by microphone l to the GPU and stores them220

in TGPU , with l = 0, . . . ,M−1. Then, stream l launches Kernel A, which

is responsible for grouping 2L elements of microphone l (L samples from

previous buffers and L samples from current buffers). These 2L elements

are also weighted using a Hamming window vector. For this purpose, the

stream launches a kernel that is composed of 128-size thread blocks in a225

CUDA grid of dimensions ( 2L
128 × 1 ) (i.e., it is composed of 2L CUDA

threads). Each thread computes one element of the 2L elements.

The tasks carried out by Kernel A are simple. Each thread reads one

value from global-memory, multiplies it by a float number (a value of

Hamming window vector) and stores it in a different position of global-230

memory. The accesses to global-memory are totally coalesced, since audio

samples are stored in consecutive memory positions both when reading and

when writing (see Fig. 4). Also, L is power of 2 and is always larger than

1024. Thus, each thread block reads and writes in 128 consecutive memory

positions. The selection of 128 for the block size was done experimentally235

among 64, 128, 256 and 512, with 128 being the one that requires less

time.

2. Once Kernel A has finished, stream l uses the CUFFT library to per-

form a 2L-FFT using these 2L elements. As a result of the computation

performed by all the streams, M vectors that are composed of 2L fre-240

quency bins (denoted as fl, l = 0, . . . ,M − 1 ) are obtained. The use of

streams allows us to overlap data transfers with computation. For exam-

ple, while stream 1 is transferring samples from microphone 1, stream 0

can be executing Kernel A. However, the next steps involve operations

among different channels. Thus, all the previous operations must finalize245

before continuing. This implies synchronization among all the streams.

12



bl
oc

kD
im

.y

(ThreadIdx.x, ThreadIdx.y)

Grid of CUDA threads

blockDim.x

. . .. . . .. .. .. . .. .

TGPU

L

ML elements from previous audio samples ML elements from current audio samples

f0

Hamming Vector

2L
128 128

Figure 4: Operations that are carried out by CUDA kernel 21 in case M=4.

The following steps are computed by only one stream.

3. The GCC matrix is computed by means of another kernel (Kernel B).

In this kernel, a GPU thread takes one value from each of two different

fl buffers that are at the same vector position. It conjugates one of the250

values and multiplies it by the corresponding value of the other fl buffer.

The phase of the complex number obtained by the multiplication is stored

in the corresponding position in the GCC matrix.

The accesses to the two fl buffers by GPU threads are totally coalesced

since consecutive threads access consecutive memory positions (see Fig. 5).255

Kernel B is limited by the instruction bandwidth since GPU-native func-

tions cosf, sinf, and atan2f are used and all of them require various

clock cycles. Kernel B computes 2LQ values of the GCC matrix, where

Q represents the number of microphone pairs. In order to define the size

and the number of blocks to launch in Kernel B, different tests were exe-260

cuted. The best performance was achieved by using 128-size thread blocks

in a CUDA grid with size 32×16. This implies launching 65536 threads,

where each thread is responsible for computing 2LQ
65536 values of the GCC

matrix. In this case, increasing the amount of work per thread block in

Kernel B is more beneficial than launching more blocks with fewer oper-265

ations per GPU thread. Thus, the grid configuration applied to Kernel B

13



achieves maximum occupancy when 512 blocks are launched. This kernel

does not require using shared-memory but preferably a large number of

registers. Thus, we set L1 cache to 48 KB. As described in (K20, 2014),

cache L1 is used for register spills, local memory, and stack, which are all270

private per-thread variables.

bl
oc

kD
im

.y

(ThreadIdx.x, ThreadIdx.y)

Grid of CUDA threads
blockDim.x

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .idx

f0

M
f1

fM-1

Q

GCC

Multiplication
and

Phase Computation

2L

128

gridDim.y=16

gridDim.x=32

128 x 32 = 4096

Figure 5: Operations that are carried out by Kernel B.

4. Q inverse FFTs of size 2L are then carried out by using the CUFFT library.

The GCC matrix is now composed of temporal (time delay) values (i.e.,

2LQ real values).

5. The computation of a tridimensional matrix SRP storing the accumulated275

SRP values is carried out by Kernel C. This kernel also launches thread

blocks of size 128 in a tridimensional CUDA grid whose dimension depends

on the number of points of the grid G (ν). In total, ν threads are launched.

In this kernel, each GPU thread is devoted to the computation of the

total value of the SRP at each point of the grid. To this end, each thread280

computes and accumulates Q GCC values (it takes a value from each row

of the GCC matrix and accumulates it). The computation of the SRP

requires Q calculations of the IMTDF (see Eq. 5) at each point of the

grid. The IMTDF of a pair of microphones specifies the column of the

GCC matrix that should be selected and then accumulated in the SRP.285

Figure 6 illustrates these operations.

Since the value of the IMTDF can indicate any position of the column

of the GCC matrix, coalesced access to the global-memory is not guar-

anteed. In fact, the most probable situation is that the accesses will be

14



. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

bl
oc

kD
im

.y

(ThreadIdx.x, ThreadIdx.y, ThreadIdx.z)

Grid of CUDA threads

blockDim.x

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

. . .. . . .. .. .. . .. .

blockDim.z

idx

SRP

Px

Py

GCC

Pz

A GCC value is accumulated
 from each Row. 

This value corresponds to the column
 pointed out by the IMTDF.

Computation 
of      IMTDF  Q

Figure 6: Operations that are carried out by Kernel C.

quite disordered, so that the kernel employs most of its time in memory290

accessing. However, this limitation can be reduced if we force the compiler

to use the Kepler read-only data cache with the GCC matrix, since this

cache does not require aligned accesses. This read-only cache memory has

also been used in recent GPU-based audio research such as (Hamilton &

Webb, 2013) and (Bilbao & Webb, 2013). Furthermore, as in Kernel B, we295

set L1 cache to 48 KB to favor possible register spills. In the accumulation

loop of the SRP values, we have set a #pragma unroll to accelerate the

computation.

6. The grid position corresponding to the maximum SRP value has to be

searched. To this end, we launch Kernel D. This kernel exactly follows300

the reduction example in Harris’ implementation (Harris, 2014) that comes

with the Nvidia GPU Computing SDK (Software development kit), but

it changes the sum operation for a maximum operation. However, even

though this code is optimized for finding the maximum value, it does not

indicate its position. Thus, after obtaining the maximum, we launch an-305

other kernel (Kernel E). This kernel launches as many threads as elements

of the SRP matrix and only performs a comparison operation with the

maximum. If the comparison matches, the thread writes the value of its

index in a variable.

15



3.1. Memory considerations310

The computation of the IMTDF could be carried out off-line since the grid

resolutions and the microphone locations are static. However, this would imply

storing a 4-dimensional data structure composed of ν ·Q elements. If we use a

standard room size (such as 6.0 × 4.0 × 3.0 m), a resolution of r = rx = ry =

rz = 0.01 m, and M = 48 microphones, this data structure would require using315

more than eight gigabytes of global-memory. This exceeds the global-memory

size of most available GPU devices. Thus, every IMTDF value is computed for

each group of processed buffers.

There are also other variables that are used to compute the values of the

GCC and SRP matrices, such as the room dimensions, the number of mi-320

crophones and their position. Since all of these read-only variables must be

available for all of the threads, they are stored in the constant memory (with

size 64 KB).

3.2. Multi-GPU Parallelization

Distributing the above processing tasks among different GPUs is not straight-325

forward. The greatest computational load relies on Step 6, which consists in

computing the maximum value of the SRP matrix. Table 1 shows the elapsed

time corresponding to each step for M =48 microphones and a spatial grid

resolution of r =0.01 m.

The tasks from Kernels C, D and E can be easily distributed among NGPU330

GPUs (the number of GPUs present in the system): each GPU computes ν
NGPU

elements of the SRP matrix and locates the maximum among its computed

elements. To this end, NGPU CPU threads are created at the beginning of a

parallel region by means of openMP (see Appendix A.2 to know how openMP

can deal with multiple GPUs). This strategy is only focused on multi-GPU335

parallelization of the SRP matrix.

In Appendix B, there is a description of an alternative strategy that aims at

parallelizing both the computation of the SRP matrix and the GCC matrix.

16



Table 1: Elapsed Time in each kernel with M=48 and spatial grid resolution r=0.01.

Steps of the algorithm Time [ms]

Transfer + Kernel A + FFT (steps 1 and 2 in Section III) 1.416

Kernel B (step 3: Computation of GCC) 0.015

IFFT of GCC (step 4) 0.006

Kernel C (Computation of SRP matrix) 0.007

Kernel D (Reduction: Computation of Maximum SRP value) 121.267

Kernel E (Localization of the Maximum) 0.009

Total elapsed time 122.720

This strategy uses also the UVA (Unified Virtual Addressing) feature for inter-

GPU communication. This strategy requires different synchronization points340

that significantly penalize their performances, especially when compared to the

parallelization presented in this article.

3.3. Basic Implementation using two GPUs

As shown in Section 4, the performance of the SRP-PHAT algorithm is

assessed in a system that is composed of two GPUs. Using all the parallelization345

techniques previously presented, the SRP-PHAT algorithm is implemented on

two GPUs as follows:

1. A parallel region is created with two CPU threads. Each CPU thread is

bound with a GPU.

2. Since different audio buffers are received in the system, each CPU thread350

independently and asynchronously sends all audio buffers to its GPU by

using stream parallelization. The Kernels A and the FFTs are computed

for each channel inside the streams.

3. As in step 2 of Section 3, stream synchronization is addressed. Only one

stream is used to compute the rows of the GCC matrix.355

17



CPU master thread

CPU thread 0 CPU thread 1

Transfer L 

Kernel A
2L-FFT 

Stream 0 Stream 1

Transfer L 

Kernel A
2L-FFT 

Stream 11

Transfer L 

Kernel A
2L-FFT 

Stream 12

Kernel A
2L-FFT 

Transfer L 

Kernel A
2L-FFT 

Stream 0 Stream 1

Transfer L 

Kernel A
2L-FFT 

Stream 11

Transfer L 

Kernel A
2L-FFT 

Stream 12

Transfer L 

Kernel A
2L-FFT 

Kernel B computes 66 rows of GCC matrix 

Kernel C computes half elements of SRP matrix 

Kernel B computes 66 rows of GCC matrix 

Kernel C computes half elements of SRP matrix 

Kernels D and E computes and locate the maximum of
 half elements of SRP matrix

Kernels D and E computes and locate the maximum of
 half elements of SRP matrix

Transfer maximum and localization to CPU Transfer maximum and localization to CPU

CPU master thread

Select Maximum value and its localization

GPU0 GPU1

Transfer L 

Figure 7: Steps of the GPU-based SRP-PHAT implementation using two GPUs and openMP.

4. Since both of them have computed the GCC matrix, each GPU computes

ν/2 elements of the SRP matrix and locates a maximum value among the

computed elements.

5. Each GPU transfers back to the CPU its maximum value and its location

inside the SRP matrix. Then, a synchronization barrier for both CPU360

threads is set followed by an openMP section that is only executed by

the master thread. This thread compares the two maximum values and

chooses the greatest one, getting its location. This location indicates the

sound source position. Figure 7 illustrates the computation of the SRP-

PHAT when M = 12.365

4. Experiments and Performance

To analyze both the computing and localization performance of the above

GPU implementations, a set of acoustic simulations using the image-source

method (Allen & Berkley, 1979) have been considered. A shoe-box-shaped

room with dimensions 4×6×3 m and wall reflection factor ρ (Kuttruff, 2000)370

was simulated using different numbers of microphones (M ∈ {6, 12, 24, 48}).

18



M = 6 M = 12

M = 24 M = 48

x
y

6 m

4 m

3 m

Figure 8: Microphone set-ups for M = 6, M = 12, M = 24 and M = 48. The black dots

denote the actual active microphones in each configuration.

The microphone set-up for the considered systems are shown in Figure 8. Note

that the microphones are located on the walls of the room and are placed on

eight different planes (z = {0.33, 0.66, 1.00, 1.33, 1.66, 2.00, 2.33, 2.66}) following

hexagon-like shapes. Moreover, different reflection factors (ρ ∈ {0, 0.5, 0.9})375

were used to take into account different reverberation degrees. In all cases, in-

dependent white Gaussian noise was added to each microphone signal in order

to simulate different Signal to Noise Ratios (SNR ∈ {0, 5, 10, 20}) (in dB).

The audio card used in the real-time prototype uses an ASIO (Audio Stream

Input/Output) driver to communicate with the CPU and provides 2048 samples380

per microphone (L=2048) every 46.43 ms at a sample frequency of 44.1 kHz.

This time is denoted by tbuff . The time employed for the computation is denoted

by tproc. This time takes into account all transfer times and measures the time

from the first audio sample transferred to the GPU until the final source location

19



Table 2: Characteristics of the GPU K20c.

Cuda Device Tesla K20c

Architecture Kepler

Capability 3.5

Number of SM 13

Total number of cores 2496

Max. dimension of a block 1024 x 1024 x 64

Max. dimension of a grid 231-1 x 65535 x 65535

Total amount of global memory 4 GB

is estimated (at each time frame). The localization system works in real time385

as long as tproc < tbuff . Otherwise, microphone samples would be lost and the

localization would not be correctly performed. The simulations were carried out

in the Nvidia GPU K20c (K20, 2014), which has the characteristics shown in

Table 2. Both computational and localization performances have been assessed

taking into account three spatial grid resolutions (r ∈ {0.1, 0.05, 0.01}) in the390

XY plane (resolutions rx and ry are equal). The resolution rz is 0.33 m (resulting

from dividing the height of the room into eight slots).

4.1. Localization Performance

The source signal used in this study was a 5-second male speech signal with

no speech pauses. Pauses were manually suppressed to evaluate localization395

performance only over frames where speech was present. The processing was

carried out by using 50% overlap in time windows of length 4096 samples (size

2L), with sampling frequency fs = 44.1 kHz. For each frame, a source location

x̂ = [x̂, ŷ, ẑ]T was estimated. A total number of 107 frames (Nf=107) per 40

different positions (Np=40) that were uniformly distributed over the room space400

were performed. Localization accuracy was computed by means of the Mean

20



Absolute Error, which is given by:

MAE =
1

Nf

1

Np

Nf∑
i=1

Np∑
j=1

|eij |2, (8)

where eij=xij − x̂ij , with xij and x̂ij being the true and estimated source loca-

tions at a given time frame i and source position j. Note that the above MAE

was computed for each environmental condition (reflection factor and signal to405

noise ratio), microphone setup and spatial grid resolution. Figure 9 shows the

results for different values of wall reflection factor ρ taking into account different

spatial resolutions and number of microphones.

It is important to point out that using a high number of microphones helps to

substantially improve localization accuracy under high noise and reverberation.410

The error decreases as the SNR increases and/or reverberation decreases (lower

ρ). It is important to see how the spatial resolution has an impact when there are

few microphones. In this case, a coarse spatial grid is not sufficient to correctly

find the minimum of the SRP search space, which is more easily detected when

the SRP is enhanced by the contributions of additional microphone pairs. In415

fact, when the number of microphones is 12 or higher, the performance difference

between r = 0.01 and r = 0.1 is almost negligible. Accuracy differences among

different values of ρ are noticiable. It should be emphasized that, under favorable

acoustic conditions (high SNR and low ρ), the experimental error is always below

the maximum expectable error independently of the number of microphones.420

Note that the maximum error in anechoic conditions is given by the largest

diagonal of the cuboids forming the 3D grid (≈ 0.179 m for r = 0.1 and ≈

0.165 m for r = 0.01). In all cases, the use of a higher number of microphones

significantly helps in reducing this error.

4.2. Computational Performance425

The spatial resolutions considered in this paper result in large-scale SRP

matrices. Table 3 shows the processing times tproc for different combinations

of r and M when using two GPUs. It can be observed that the only that does

not obtain a tproc lower than 46.43 ms (tbuff) is the configuration composed of

21



SNR

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Accuracy   =0.01 ρ=0.0

SNR

 

 
6 Mic.
12 Mic.
24 Mic.
48 Mic.

M
A

E
 [
m

]

spr

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Accuracy   =0.01 ρ=0.5

 

 
6 Mic.
12 Mic.
24 Mic.
48 Mic.

M
A

E
 [
m

]

spr

Accuracy   =0.01 ρ=0.9

0 5 10 15 20
0

0.5

1

1.5

2

2.5

SNR

 

 
6 Mic.
12 Mic.
24 Mic.
48 Mic.

M
A

E
 [
m

]

spr

0 5 10 15 20
0

0.5

1

1.5

2

2.5
Accuracy   =0.1 ρ=0.9

SNR

 

 
6 Mic.
12 Mic.
24 Mic.
48 Mic.

M
A

E
 [
m

]

spr

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Accuracy   =0.1 ρ=0.5

SNR

 

 
6 Mic.
12 Mic.
24 Mic.
48 Mic.

M
A

E
 [
m

]

spr

0 5 10 15 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Accuracy   =0.1 ρ=0.0

SNR

 

 
6 Mic.
12 Mic.
24 Mic.
48 Mic.

M
A

E
 [
m

]

spr

Figure 9: Localization accuracy for different wall reflection factors (ρ ∈ {0, 0.5, 0.9}) as a

function of the SNR and the number of microphones M . Each column presents results for

different spatial resolutions (r = 0.1 and r = 0.01 m).

M = 48 and r = 0.01. Thus, real-time processing is not possible in this case.430

However, by looking at the results shown in Table 4, it is possible to observe

22



Table 3: Processing time tproc using two GPUs.

r M = 6 M = 12 M = 24 M = 48

0.01 1.031 ms 3.578 ms 15,564 ms 60.108 ms

0.05 0.381 ms 0.758 ms 2.238 ms 6.433 ms

0.1 0.371 ms 0.650 ms 1.588 ms 4.588 ms

Table 4: Processing time tproc using one GPU.

r M=6 M=12 M=24 M=48

0.01 1.894 ms 6.731 ms 30.145 ms 122.720 ms

0.05 0.564 ms 1.132 ms 3.484 ms 11.203 ms

0.1 0.546 ms 0.926 ms 2.336 ms 7.493 ms

that the influence of the second GPU becomes relevant. In the case of M = 48,

the processing time is halved for any resolution. Real-time processing would be

easily achieved for M = 48 and r = 0.01 by adding an additional GPU. Figure 10

shows more clearly the time differences among all the configurations by varying435

the number of microphones and the grid resolutions r ∈ {0.1, 0.05, 0.01}. Note

that the time tbuff is marked by a solid black line.

5. Conclusion

New emerging GPU architectures help to overcome different computational

problems in acoustic signal processing algorithms involving many microphone440

channels. This paper has analyzed the specific case of sound source localization,

where very fine spatial resolutions or having a high number of microphones have

a deep impact in the performance of real-time applications. In this context, the

following contributions have been presented in this paper.

Firstly, we have proposed a scalable multi-GPU implementation of the well-445

known SRP-PHAT algorithm for source localization in three dimensions. To

this end, two parallelization levels have been considered. On the one hand,

23



0.01 0.05 0.1
0

20

40

60

80

100

120

 One GPU

r

[m
s]

M=06
M=12
M=24
M=48

tbuff

 

0.01 0.05 0.1
0

20

40

60

80

100

120

Two GPUs

r

[m
s]

 

M=06
M=12
M=24
M=48
tbuff

Figure 10: Time tproc for different resolutions and number of microphones.

multiple cores are included in a GPU device. On the other hand, the system is

composed of several GPUs. The analyzed computational performance indicates

that the algorithm is scalable, so that the time employed to estimate the source450

location is reduced with the number of GPU devices.

Secondly, we have evaluated the relation existing among localization accu-

racy, number of microphones and available computational resources. While

most works take into account computational issues or performance issues only,

we have approached both aspects from a practical implementation perspective.455

To this end, simulated experiments going from a noiseless anechoic case to a

noisy and highly reverberant case have been analyzed, studying the overall per-

formance with a varying number of microphones and spatial resolutions. Results

show that thanks to the GPU computational resources, a fine spatial search grid

and a high number of microphones can be used to improve the localization ac-460

curacy and the robustness of the system.

Finally, the presented implementation exploits the resources of GPUs with

Kepler architecture, which can be currently found in new generation mobile

devices such as Google’s Nexus 9 tablet. Thus, the proposed implementation

can be successfully run on embedded mobile devices.465

24



Acknowledgments

This work has been partially funded by the Spanish Ministerio de Economı́a

y Competitividad (TEC2009-13741, TEC2012-38142-C04-01, and TEC2012-

37945-C02-02), Generalitat Valenciana PROMETEO 2009/2013, and Univer-

sitat Politècnica de València through Programa de Apoyo a la Investigación y470

Desarrollo (PAID-05-11 and PAID-05-12).

References

Allen, J. B., & Berkley, D. A. (1979). Image method for efficiently simulating

small-room acoustics. J. Acoust. Soc. Am., 65 , 943–950.

Belloch, J. A., Ferrer, M., Gonzalez, A., Martinez-Zaldivar, F., & Vidal, A. M.475

(2013a). Headphone-based virtual spatialization of sound with a GPU accel-

erator. J. Audio Eng. Soc, 61 , 546–561.

Belloch, J. A., Gonzalez, A., Martinez-Zaldivar, F. J., & Vidal, A. M. (2011).

A real-time crosstalk canceller on a notebook GPU. In Proc. of IEEE Inter-

national Conference on Multimedia and Expo (ICME) (pp. 1 –4). Barcelona,480

Spain.

Belloch, J. A., Gonzalez, A., Vidal, A. M., & Cobos, M. (2013b). Real-Time

Sound Source Localization on Graphics Processing Units. In Proc. of the

International Conference on Computational Science, ICCS 2013 . Barcelona,

Spain.485

Bilbao, S., & Webb, C. J. (2013). Physical modeling of timpani drums in 3D

on GPGPUs. J. Audio Eng. Soc, 61 , 737–748.

Bradford, R., Ffitch, J., & Dobson, R. (2011). Real-time sliding phase vocoder

using a commodity GPU. In Proc. of ICMC 2011 . University of Huddersfield,

United Kingdom.490

Brandstein, M., & Ward, D. (2001). Microphone arrays. Springer.

25



Calderoni, L., Ferrara, M., Franco, A., & Maio, D. (2015). Indoor localization

in a hospital environment using Random Forest classifiers. Expert Systems

with Applications, 42 , 125 – 134. doi:http://dx.doi.org/10.1016/j.eswa.

2014.07.042.495

Chen, J., Benesty, J., & Huang, Y. (2006). Time delay estimation in room

acoustic environments: an overview. EURASIP Journal on Applied Signal

Processing , 2006 , 1–19.

Cobos, M., Marti, A., & Lopez, J. J. (2011). A modified SRP-PHAT functional

for robust real-time sound source localization with scalable spatial sampling.500

IEEE Signal Processing Letters, 18 , 71–74.

Cook, S. (2013). A Developer’s Guide to Parallel Computing with GPUs. Mor-

gan Kaufmann.

CUDA (2015). Nvidia CUDA Developer Zone.

https://developer.nvidia.com/cuda-downloads. (accessed 2015 Febru-505

ary 02).

Dazevedo, E., & Hill, J. (2012). Parallel LU Factorization on GPU Cluster.

Procedia Computer Science, 9 , 67 – 75. doi:10.1016/j.procs.2012.04.008.

Proceedings of the International Conference on Computational Science, ICCS

2012.510

DiBiase, J. H. (2000). A high accuracy, low-latency technique for talker local-

ization in reverberant environments using microphone arrays. Ph.D. thesis

Brown University Providence, RI.

DiBiase, J. H., Silverman, H. F., & Brandstein, M. S. (2001). Robust localization

in reverberant rooms. In M. S. Brandstein, & D. Ward (Eds.), Microphone515

Arrays: Signal Processing Techniques and Applications chapter 8. (pp. 157–

180). Berlin, Germany: Springer-Verlag.

Do, H., & Silverman, H. F. (2007). A fast microphone array SRP-PHAT source

location implementation using coarse-to-fine region contraction (CFRC). In

26

http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2014.07.042
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2014.07.042
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2014.07.042
https://developer.nvidia.com/cuda-downloads
http://dx.doi.org/10.1016/j.procs.2012.04.008


Proc. of the IEEE Workshop on Applications of Signal Processing to Audio520

and Acoustics. New Paltz, USA.

Hamilton, B., & Webb, C. J. (2013). Room acoustics modelling using GPU-

accelerated finite difference and finite volume methods on a face-centered

cubic grid. In Proc. of Conference on Digital Audio Effects (DAFx-13).

Maynooth, Ireland.525

Harris, M. (2014). Optimizing Parallel Reduction in CUDA NVIDIA.

http://developer.download.nvidia.com/assets/cuda/files/

reduction.pdf. (accessed 2014 August 27).

Huang, Q., & Wang, T. (2014). Acoustic source localization in mixed field using

spherical microphone arrays. EURASIP Journal on Applied Signal Process-530

ing , 90 , 1–16.

Jetson (2015). Mobile GPU: Jetson.

http://developer.download.nvidia.com/embedded/jetson/TK1/docs/

Jetson_platform_brief_May2014.pdf. (accessed 2014 November 22).

K20 (2014). NVIDIA Kepler Architecture.535

http://www.nvidia.com/content/PDF/kepler/

NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf. (accessed 2014

August 27).

Kloss, Y., Shuvalov, P., & Tcheremissine, F. (2010). Solving Boltzmann equa-

tion on GPU. Procedia Computer Science, 1 , 1083 – 1091. Proceedings of540

the International Conference on Computational Science, ICCS 2010.

Knapp, C. H., & Carter, G. C. (1976). The Generalized Correlation Method

for Estimation of Time Delay. IEEE Transactions on Acoustics, Speech and

Signal Processing , ASSP-24 , 320–327.

Kodagoda, S., & Sehestedt, S. (2014). Simultaneous people tracking and mo-545

tion pattern learning. Expert Systems with Applications, 41 , 7272 – 7280.

doi:http://dx.doi.org/10.1016/j.eswa.2014.05.019.

27

http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/assets/cuda/files/reduction.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/Jetson_platform_brief_May2014.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/Jetson_platform_brief_May2014.pdf
http://developer.download.nvidia.com/embedded/jetson/TK1/docs/Jetson_platform_brief_May2014.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2014.05.019


Kuttruff, H. (2000). Room acoustics. Abingdon, Oxford, UK: Taylor & Francis.

368 pages.

Liang, Y., Cui, Z., Zhao, S., Rupnow, K., Zhang, Y., Jones, D. L., & Chen, D.550

(2012). Real-time implementation and performance optimization of 3D sound

localization on GPUs. In DATE’12 (pp. 832–835).

Liu, W., Schmidt, B., Voss, G., & Muller-Wittig, W. (2007). Streaming

algorithms for biological sequence alignment on GPUs. IEEE Transac-

tions on Parallel and Distributed Systems, 18 , 1270–1281. doi:http://doi.555

ieeecomputersociety.org/10.1109/TPDS.2007.1069.

Lorente, J., Ferrer, M., , De Diego, M., & Gonzalez, A. (2014). GPU Implemen-

tation of Multichannel Adaptive Algorithms for Local Active Noise Control.

IEEE Transactions on Acoustics, Speech and Signal Processing , 22 , 1624 –

1635. doi:10.1109/TASLP.2014.2344852.560

Lorente, J., Ferrer, M., De Diego, M., Belloch, J. A., & Gonzalez, A. (2013).

GPU implementation of a frequency-domain modified filtered-X LMS algo-

rithm for multichannel local active noise control. In Proc. of the 52nd AES

Conference. Guildford, United Kingdom.

Lorente, J., Gonzalez, A., Ferrer, M., Belloch, J. A., De Diego, M., Piñero,565

G., & Vidal, A. M. (2012). Active noise conrol using Graphics Processing

Units. In Proc of the International Congress on Sound and Vibration. Vilnius,

Lithuania.

Madhu, N., & Martin, R. (2008). Advances in digital speech transmission.

chapter Acoustic Source Localization with Microphone Arrays. (pp. 135–166).570

New York, NY, USA: Wiley.

Marti, A., Cobos, M., & Lopez, J. J. (2013). A steered response power iterative

method for high-accuracy acoustic source location. Journal of the Acoustical

Society of America, 134 .

28

http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TPDS.2007.1069
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TPDS.2007.1069
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TPDS.2007.1069
http://dx.doi.org/10.1109/TASLP.2014.2344852


Matsumoto, K., Nakasato, N., Sakai, T., Yahagi, H., & Sedukhin, S. G. (2011).575

Multi-level Optimization of Matrix Multiplication for GPU-equipped Sys-

tems. Procedia Computer Science, 4 , 342 – 351. Proceedings of the In-

ternational Conference on Computational Science, ICCS 2011.

Mazur, R., Jungmann, J., & Mertins, A. (2011). On CUDA implementation of

a multichannel room impulse response reshaping algorithm based on p-norm580

optimization. In IEEE Workshop on Applications of Signal Processing to

Audio and Acoustics (WASPAA) (pp. 305 –308). doi:10.1109/ASPAA.2011.

6082310.

Nexus (2015). Google’s nexus 9.

http://blogs.nvidia.com/blog/2014/10/17/585

nvidia-tegra-k1-google-nexus-9/. (accessed 2015 January 11).

openMP (2014). openMP API Specifications.

http://www.openmp.org. (accessed 2014 June 05).

Peruffo Minotto, V., Rosito Jung, C., Gonzaga da Silveira, L., & Lee, B. (2012).

GPU-based approaches for real-time sound source localization using the SRP-590

PHAT algorithm. International Journal of High Performance Computing

Applications, . doi:10.1177/1094342012452166.

Said, A., Lee, B., & Kalker, T. (2013). Fast steered response power computation

in 3D spatial regions. Technical Report HPL-2013-40 HP Labs Palo Alto,

USA.595

Savioja, L. (2010). Real-time 3D finite-difference time-domain simulation of

low- and mid-frequency room acoustics. In Proc. of the Int. Conf. Digital

Audio Effects. Graz, Austria.

Savioja, L., Välimäki, V., & Smith, J. O. (2011). Audio Signal Processing using

Graphics Processing Units. J. Audio Eng. Soc, 59 , 3–19.600

Schneider, M., Schuh, F., & Kellermann, W. (2012). The Generalized

Frequency-Domain Adaptive Filtering Algorithm Implemented on a GPU for

29

http://dx.doi.org/10.1109/ASPAA.2011.6082310
http://dx.doi.org/10.1109/ASPAA.2011.6082310
http://dx.doi.org/10.1109/ASPAA.2011.6082310
http://blogs.nvidia.com/blog/2014/10/17/nvidia-tegra-k1-google-nexus-9/
http://blogs.nvidia.com/blog/2014/10/17/nvidia-tegra-k1-google-nexus-9/
http://blogs.nvidia.com/blog/2014/10/17/nvidia-tegra-k1-google-nexus-9/
http://www.openmp.org
http://dx.doi.org/10.1177/1094342012452166


Large-Scale Multichannel Acoustic Echo Cancellation. Speech Communica-

tion; 10. ITG Symposium; Proceedings of , (pp. 1 –4).

Seewald, L. A., Gonzaga, L., Veronez, M. R., Minotto, V. P., & Jung, C. R.605

(2014). Combining SRP-PHAT and two Kinects for 3D Sound Source Lo-

calization. Expert Systems with Applications, 41 , 7106 – 7113. doi:http:

//dx.doi.org/10.1016/j.eswa.2014.05.033.

Southern, A., Murphy, D., Campos, G., & Dias, P. (2010). Finite difference

room acoustic modelling on a General Purpose Graphics Processing Unit. In610

Proc. of the 128th AES Convention. London, United Kingdom.

Vanek, J., Trmal, J., Psutka, J., & Psutka, J. (2012). Optimized Acoustic

Likelihoods Computation for NVIDIA and ATI/AMD Graphics Processors.

IEEE Transactions on Audio, Speech, and Language Processing , 20 , 1818–

1828. doi:10.1109/TASL.2012.2190928.615

Wang, R., Wang, X., & Kim, M. J. (2011). Motivated learning agent model for

distributed collaborative systems. Expert Systems with Applications, 38 , 1079

– 1088. doi:http://dx.doi.org/10.1016/j.eswa.2010.05.003. Intelligent

Collaboration and Design.

Webb, C. J., & Bilbao, S. (2011). Computing room acoustics with CUDA - 3D620

FDTD schemes with boundary losses and viscosity. In Proc of IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP).

Prague, Czech Republic.

Xu, B., Sun, G., Yu, R., & Yang, Z. (2013). High-Accuracy TDOA-Based

Localization without Time Synchronization. IEEE Transactions on Parallel625

and Distributed Systems, 24 , 1567–1576. doi:10.1109/TPDS.2012.248.

Zhao, Y., & Lau, F. C. (2013). Implementation of Decoders for LDPC

Block Codes and LDPC Convolutional Codes Based on GPUs. IEEE

Transactions on Parallel and Distributed Systems, 99 , 1. doi:http://doi.

ieeecomputersociety.org/10.1109/TPDS.2013.52.630

30

http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2014.05.033
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2014.05.033
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2014.05.033
http://dx.doi.org/10.1109/TASL.2012.2190928
http://dx.doi.org/http://dx.doi.org/10.1016/j.eswa.2010.05.003
http://dx.doi.org/10.1109/TPDS.2012.248
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TPDS.2013.52
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TPDS.2013.52
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TPDS.2013.52


Appendix A. GPU and CUDA

GPUs are wellknown for their potential in highly parallel data processing.

A GPU is composed by multiple Stream Multiprocessors (SM) where, for 3.5

capability (Kepler architecture (K20, 2014)), there are 192 pipelined cores per

SM1. In the CUDA model, the programmer defines the kernel function where the635

code to be executed on the GPU is written. A grid configuration, which defines

the number of threads and how they are distributed and grouped, must be built

into the main code (threads are grouped into thread blocks, and thread blocks

configure a grid that is organized in three dimensions, denoted as BlockIdx.x,

BlockIdx.y, and BlockIdx.z). The total number of threads launched in a640

kernel by means of thread blocks can exceed the number of physical cores. At

runtime, the kernel distributes all the thread blocks among SMs. Each SM can

host up to 16 thread blocks. If the number of blocks exceeds the resources of

the GPU, these blocks wait until other blocks finish in order to be hosted later.

A GPU device has a large amount of off-chip device memory (global-memory)645

and a fast on-chip memory (shared-memory, registers). As its name indicates,

the shared-memory is normally used when multiple threads must share data.

There are also read-only cached memories called constant-memory and texture-

memory. The first memory is optimized for broadcast (i.e., when all the threads

read the same memory location), while the second one is more oriented to graph-650

ics. Figure A.1 shows how the GPU architecture is organized. Advanced GPU

devices (beyond 2.x capability) come with an L1/L2 cache hierarchy that is used

to cache global-memory. Cache L1 uses the same on-chip memory as shared-

memory ; how much of the on-chip memory is dedicated to L1 is set for each

kernel call.655

1At the time this paper was written, the most advanced GPU device was K20c with Kepler

architecture which is the one considered throughout this work

31



SP

SM
GPU

Shared M. / L1 Cache
Registers

SM

Shared M. / L1 Cache
Registers

SM

Shared M. / L1 Cache
Registers

Constant Memory/Texture Memory

L2 Cache

Global Memory

SP SP SP SP
SP SP SP SP

SP SP SP

SP SP SP SP
SP SP SP SP

SP SP SP SP

SP SP SP SP
SP SP SPSP

SP SP SP SP

Figure A.1: The GPU is configured by 16 Stream Multiprocessors (SMs), each of which has

192 pipelined cores (SP).

Appendix A.1. Streams on GPU

Streams are virtual work queues on the GPU. They are used for asynchronous

operation, (i.e, the control of the program returns to the CPU immediately).

Operations assigned to the same stream are executed in order and sequentially.

Multiple streams can be defined on CUDA programming; however, up to 32660

streams are available to be independently run on the GPU thanks to the Hyper-

Q technology that is presented in hardware with 3.5 capability (Cook, 2013).

Different streams may execute their assigned operations out of order with

respect to one another or concurrently. Thus, when a launched kernel does

not require all the GPU resources, these could be used for another kernel that665

was launched from a different stream. Hence, streams allow multiple kernels

to be launched concurrently. Following this idea, data transfer between CPU

and GPU can also be overlapped with kernel computations and other transfers

whenever they are carried out in different streams. If the data transfers are

not assigned to any stream queue, they are executed synchronously and in an670

isolated way, (i.e., the CPU waits until all the previous operations have finished).

GPU kernels are always launched asynchronously by the CPU (regardless of

32



whether or not they are scheduled on a stream queue). Thus, data transfers are

usually used as a synchronization barrier.

Figure A.2 illustrates the parallelization obtained using streams when M = 4675

(number of microphones) for steps 1,2, and 3 from Section 3 in the main article.

Note that, in Fig.A.2, the alternative Kernel A’ would have a CUDA grid with

dimensions ( 2L
128 × M ).

Transfer L audio samples

Kernel A

2L-FFT Transformation
Transfer L audio samples

Kernel A

Stream 0 Stream 3

Transfer L audio samples

Kernel A

2L-FFT Transformation

Transfer L audio samples

Kernel A

2L-FFT Transformation

2L-FFT Transformation

Stream 1 Stream 2

CPU thread

Transfer ML 
audio samples

Kernel A’

M 2L-FFT
Transformations

CPU thread

Figure A.2: Parallelization obtained with streams when M=4.

Appendix A.2. Multi-GPU programming with multicore

One of the standards that allows for multicore processing is openMP (openMP,680

2014). This standard works by using a fork/join pattern, that is, parallel regions

are specified by the programmer. The CPU code runs sequentially and at some

point hits a section where work can be distributed into several processors that

perform the computations (CPU core spans several CPU threads). Afterwards,

when all the computations are completed, all the CPU threads converge to a685

single thread again, which is called the master thread.

If a machine has a multicore processor and several GPUs, the parallelization

can be achieved by defining a number of threads in the parallel region equal

to the number of GPUs. In this sense, each CPU thread deals with a GPU.

This is very important since a CPU thread is bound with a GPU context.690

Thus, all subsequent CUDA calls (e.g. cudaMalloc) allocate memory only on

its corresponding GPU (Cook, 2013).

33



PCI-E

GPU 0
Communication 

through
CPU memory 

space
GPU 1

CPU
Memory
space

PCI-E

GPU 0

GPU 1

Memory
space
CPU

Peer-to-Peer
Communication 

Figure A.3: The UVA feature reduces data-transfer time among GPUs by using peer-to-peer

communication (bottom).

Recent CUDA releases (beyond 2.x capability and CUDA SDK 4.x) allow

the time employed in data transfers among GPUs to be reduced by using the

UVA (Unified Virtual Addressing) feature. That means that inter-GPU com-695

munication (peer-to-peer, P2P) can also be performed without routing the data

through the CPU, saving PCI-E bandwidth. Before the appearance of these

recent features, communication among GPUs had to be carried out through

memory space in the CPU, as shown in Figure A.3.

Appendix B. Multi-GPU Parallelization strategy involving GCC and700

SRP matrices

The challenge of this strategy consists in parallelizing the computation of the

GCC matrix. Initially, all the GPUs must have access to this matrix since each

point of the SRP matrix requires a contribution from each pair of microphones

(each row of the GCC matrix).705

The strategy that we present aims at achieving a good trade-off between the

total operations carried out in each GPU and the number of transferred audio

34



buffers. For example, if the number of microphones is M = 12, the number of

pairs to compute in GCC matrix is Q = 66. These pairs are distributed among

the NGPU in a pseudo-triangular way. Figure B.1 shows the distribution of the710

computation and audio buffers among 2, 3 and 4 GPUs. The notation 01 x 05,

indicates the element-wise multiplication of vector 1 and vector 5 of all computed

vectors fl, l = 0, . . . ,M − 1 (see step 2 of Section 3). Note that the GPU that

performs more multiplications deals with less audio buffers, minimizing the data

transfers between CPU and GPU. This triangular structure can be considered715

independently of the number of microphones.

Finally, after the distributed computation of the GCC matrix, all GPUs

need all of the rows of the GCC matrix in order to compute their corresponding

ν/NGPU elements of the SRP matrix. The use of UVA (see Appendix A.2)

allows each GPU to access other GPU via peer-to-peer over the PCI-E bus720

rather than copying data back to the host and then to another GPU. Thus, each

GPU transparently accesses the memories of other GPUs by just referencing a

memory location.

Appendix B.1. Basic Implementation using two GPUs

Using all the parallelization techniques presented in Appendix A, the SRP-725

PHAT algorithm is implemented on two GPUs as follows:

1. A parallel region is created with two CPU threads. Each CPU thread is

bound with a GPU.

2. Since different audio buffers are received in the system, each CPU thread

independently and asynchronously sends its corresponding audio buffers730

to its GPU by using stream parallelization. The Kernels A and the FFTs

are computed for each channel inside the streams.

3. As in step 2 of Section 3, stream synchronization is addressed. Only one

stream is used to compute the rows of the GCC matrix. According to

Figure B.1, in the case of M = 12, one GPU would compute 35 vectors735

and the other one would compute 31 vectors.

35



01 x 02
01 x 03   02 x 03
01 x 04   02 x 04   03 x 04
01 x 05   02 x 05   03 x 05   04 x 05
01 x 06   02 x 06   03 x 06   04 x 06   05 x 06
01 x 07   02 x 07   03 x 07   04 x 07   05 x 07   06 x 07
01 x 08   02 x 08   03 x 08   04 x 08   05 x 08   
01 x 09   02 x 09   03 x 09   04 x 09                
01 x 10   02 x 10   03 x 10       
01 x 11   02 x 11 

05 x 09
05 x 10
05 x 11
05 x 12

06 x 08   07 x 08
06 x 09   07 x 09   08 x 09
06 x 10   07 x 10   08 x 10   09 x 10 
06 x 11   07 x 11   08 x 11   09 x 11   10 x 11
06 x 12   07 x 12   08 x 12   09 x 12   10 x 11   11 x 12

04 x 10
04 x 11
04 x 12

03 x 11
03 x 1202 x 12

GPU 1

GPU 0 uses 11 audio buffers and performs 35 element-wise multiplications
GPU 1 uses 12 audio buffers and performs 31 element-wise multiplications
     

01 x 12

GPU 0

01 x 02
01 x 03   02 x 03
01 x 04   02 x 04   03 x 04
01 x 05   02 x 05   03 x 05   04 x 05
01 x 06   02 x 06   03 x 06   04 x 06   05 x 06
01 x 07   02 x 07   03 x 07   04 x 07   05 x 07   06 x 07
01 x 08   02 x 08   03 x 08   04 x 08   05 x 08   06 x 08   07 x 08

07 x 09   08 x 09
07 x 10   08 x 10   09 x 10 
07 x 11   08 x 11   09 x 11   10 x 11
07 x 12   08 x 12   09 x 12   10 x 11   11 x 12

06 x 10
06 x 11
06 x 12

05 x 11
05 x 1204 x 12

01 x 09   02 x 09   03 x 09   04 x 09   05 x 09   06 x 09
01 x 10   02 x 10   03 x 10   04 x 10   05 x 10       
01 x 11   02 x 11   03 x 11   04 x 11
01 x 12   02 x 12   03 x 12

GPU 0

GPU 1

GPU 2

GPU 0 uses 08 audio buffers and performs 28 element-wise multiplications
GPU 1 uses 10 audio buffers and performs 18 element-wise multiplications
GPU 2 uses 09 audio buffers and performs 20 element-wise multiplications
     

01 x 02
01 x 03   02 x 03
01 x 04   02 x 04   03 x 04
01 x 05   02 x 05   03 x 05   04 x 05
01 x 06   02 x 06   03 x 06   04 x 06   05 x 06
01 x 07   02 x 07   03 x 07   04 x 07   05 x 07   06 x 07

07 x 08
07 x 09   08 x 09
07 x 10   08 x 10   09 x 10 
07 x 11   08 x 11   09 x 11   10 x 11
07 x 12   08 x 12   09 x 12   10 x 11   11 x 12

04 x 10
04 x 11
04 x 12

03 x 11
03 x 1202 x 12

01 x 08   02 x 08   03 x 08   04 x 08   05 x 08
01 x 09   02 x 09   03 x 09   04 x 09   
01 x 10   02 x 10   03 x 10 
01 x 11   02 x 11
01 x 12

GPU 0

GPU 1

GPU 3

GPU 0 uses 07 audio buffers and performs 21 element-wise multiplications
GPU 1 uses 09 audio buffers and performs 15 element-wise multiplications
GPU 2 uses 10 audio buffers and performs 15 element-wise multiplications
GPU 3 uses 06 audio buffers and performs 15 element-wise multiplications

05 x 09
05 x 10
05 x 11
05 x 12

06 x 08
06 x 09
06 x 10
06 x 11
06 x 12

GPU 2

01 x 02
01 x 03   02 x 03
01 x 04   02 x 04   03 x 04
01 x 05   02 x 05   03 x 05   04 x 05
01 x 06   02 x 06   03 x 06   04 x 06   05 x 06
01 x 07   02 x 07   03 x 07   04 x 07   05 x 07   06 x 07
01 x 08   02 x 08   03 x 08   04 x 08   05 x 08   06 x 08   07 x 08
01 x 09   02 x 09   03 x 09   04 x 09   05 x 09   06 x 09   07 x 09   08 x 09
01 x 10   02 x 10   03 x 10   04 x 10   05 x 10   06 x 10   07 x 10   08 x 10   09 x 10 
01 x 11   02 x 11   03 x 11   04 x 11   05 x 11   06 x 11   07 x 11   08 x 11   09 x 11   10 x 11
01 x 12   02 x 12   03 x 12   04 x 12   05 x 12   06 x 12   07 x 12   08 x 12   09 x 12   10 x 11   11 x 12

GPU 0 uses 12 audio buffers and performs 66 element-wise multiplications 

GPU 0

Figure B.1: Distribution of the audio buffers in order to compute the rows of the GCC matrix

when NGPU is 1,2,3 and 4.

36



Table B.1: Speed up between strategies.

rx,ry M = 6 M = 12 M = 24 M = 48

0.01 30.097 35.443 36.968 31.649

0.05 12.259 24.043 31.291 43.313

0.1 4.815 9.861 15.310 21.249

4. By using UVA, each GPU has access to the whole GCC matrix in order to

compute ν/2 elements of the SRP matrix and locates a maximum value

among the computed elements.

5. Each GPU transfers back to the CPU its maximum value and its location740

inside the SRP matrix. Then, a synchronization barrier for both CPU

threads is set followed by an openMP section that is only executed by

the master thread. This thread compares the two maximum values and

chooses the greatest one, getting its location. This location indicates the

sound source position.745

Appendix B.2. Comparison between strategies

Table B.1 shows the speed up that the implementation strategy presented

in section 3.3 achieves with respect to the strategy presented in Appendix B.

Two important aspects significantly penalize the performance of this strategy

in comparison with the strategy in section 3.3. First, since each GPU does not750

contain the whole GCC matrix, each GPU must access the global-memory of the

other GPU in order to compute the SRP matrix; second, after computing the

corresponding elements of the GCC matrix, both GPUs must be synchronized.

37


	Introduction
	Sound Source Localization: SRP-PHAT Algorithm
	SRP-PHAT Implementation
	Computational Cost

	Algorithm Parallelization for real-time GPU implementation
	Memory considerations
	Multi-GPU Parallelization
	Basic Implementation using two GPUs

	Experiments and Performance
	Localization Performance
	Computational Performance

	Conclusion
	GPU and CUDA
	Streams on GPU
	Multi-GPU programming with multicore

	Multi-GPU Parallelization strategy involving GCC and SRP matrices
	Basic Implementation using two GPUs
	Comparison between strategies


