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Abstract: Circadian rhythms, including sleep/wake cycles as well as hormonal, immune, metabolic,
and cell proliferation rhythms, are fundamental biological processes driven by a cellular time-keeping
system called the circadian clock. Disruptions in these rhythms due to genetic alterations or irregular
lifestyles cause fundamental changes in physiology, from metabolism to cellular proliferation and
differentiation, resulting in pathological consequences including cancer. Cancer cells are not uniform
and static but exist as different subtypes with phenotypic and functional differences in the tumor
microenvironment. At the top of the heterogeneous tumor cell hierarchy, cancer stem cells (CSCs),
a self-renewing and multi-potent cancer cell type, are most responsible for tumor recurrence and
metastasis, chemoresistance, and mortality. Phenotypically, CSCs are associated with the epithelial–
mesenchymal transition (EMT), which confers cancer cells with increased motility and invasion ability
that is characteristic of malignant and drug-resistant stem cells. Recently, emerging studies of different
cancer types, such as glioblastoma, leukemia, prostate cancer, and breast cancer, suggest that the
circadian clock plays an important role in the maintenance of CSC/EMT characteristics. In this review,
we describe recent discoveries regarding how tumor intrinsic and extrinsic circadian clock-regulating
factors affect CSC evolution, highlighting the possibility of developing novel chronotherapeutic
strategies that could be used against CSCs to fight cancer.
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1. Introduction

Circadian clocks are cell-autonomous timing systems that generate roughly 24 h peri-
odic rhythms and are conserved in nearly all life, from unicellular organisms to humans.
These internal timing systems integrate with diverse environmental (e.g., light, tempera-
ture) and metabolic (e.g., food intake) stimuli to regulate a myriad of temporal biological
activities, including sleep/wake, feeding times, energy metabolism, hormonal and immune
functions, and cellular proliferation and differentiation [1]. Evolutionarily, these flexible
clock systems are thought to help organisms survive better by increasing their ability to
timely anticipate and adapt to the cyclic changes of light and food availability as well as
predation risk [2,3]. At the unicellular level, as in the case of all prokaryotes that are classi-
fied into bacteria and archaea, the timely compartmentalization of biochemical and redox
processes by the intrinsic circadian clock ensures the temporal fitness of cell physiology and
functions across species [4]. In lower eukaryotic species, including yeast and fungi, biologi-
cal timekeepers may help these single-celled organisms escape the DNA-damaging effects
of ionizing radiation from sunlight as well as oxidative stress during cell division [5–7].
In higher, complex organisms, such as most vertebrate species, including humans, multi-
stimuli responsive oscillators in neurons and fibroblasts are tightly coupled to form the
brain and peripheral organ clock systems, which, in turn, constitute a body-wide circadian
network with adaptive capacity for the environmental entrainment of rhythmic behaviors
and physiology [8].

Int. J. Mol. Sci. 2022, 23, 14181. https://doi.org/10.3390/ijms232214181 https://www.mdpi.com/journal/ijms

https://doi.org/10.3390/ijms232214181
https://doi.org/10.3390/ijms232214181
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0003-0498-3342
https://doi.org/10.3390/ijms232214181
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms232214181?type=check_update&version=1


Int. J. Mol. Sci. 2022, 23, 14181 2 of 18

In contrast to the evolutionarily adaptive benefits of circadian rhythms, rhythm dis-
ruptions, primarily due to modern lifestyles lacking regular patterns of working, eating,
and sleeping, have been recognized to increase the susceptibility of humans to the onset
and development of cardio-metabolic and immune disorders as well as multiple types of
cancers [9–12]. Furthermore, several studies of animal models possessing genetic mutations
in clock genes or exposed to forced circadian desynchrony regimens have strengthened the
causal relationship between circadian disturbances and pathological consequences [13–16].
In particular, genetic and environmental perturbations of circadian rhythms largely alter
the expressions and activities of several tumor suppressors and oncogenes in both host
and tumor tissues in favor of cancer incidence and progression [17,18]. These circadian
disruptions also reprogram host metabolism and immune systems, facilitating an immuno-
suppressive tumor microenvironment and enabling tumor progression and metastasis of
multiple cancer types [13,14,19].

One of the most formidable issues in cancer diagnosis and treatment is cancer cell
heterogeneity and plasticity, the adaptive capacity of diverse cancer cell populations to
survive upon tumor-environmental challenges [20]. Cancer cells in tumor tissues are not
uniform, but consist of distinct types of cell subpopulations that can change their cellular
morphology, physiology, and behavior in response to tumor-intrinsic and extrinsic changes
(e.g., gene mutations, low nutrient or oxygen levels, immune surveillance, or toxic drug
exposure) [20,21]. Among the different tumor cell populations, the cancer stem cell (CSC), a
self-renewing cancer cell type with multi-differentiation potential, is highly responsible for
tumor recurrence and metastasis, therapy resistance, and mortality [21]. The generation of
tumor cells with stem cell properties has been closely linked to the epithelial–mesenchymal
transition (EMT), a process that increases the migratory and invasive capacities of cancer
cells, leading to drug-resistance and metastatic potential in CSC populations [22,23]. Ac-
cordingly, effective eradication of these deadly cell populations during chemotherapeutic
intervention is becoming more important for improved therapeutic outcomes. Growing
evidence suggests that the cellular heterogeneity observed in several cancer types is not
just genetically determined but also arises from inherent cancer cell plasticity instructed by
the tumor-extrinsic microenvironment [24–28]. In line with this, recent cancer studies have
shown that genetic (e.g., clock gene mutations) and environmental (e.g., chronic jet lag)
factors that disrupt circadian rhythms highly impact the maintenance and/or properties of
CSCs in tumors. In this review, we will discuss further details regarding the potential link
between the circadian clock and tumor evolution, highlighting the possibility of developing
treatment strategies that target CSC populations from the chronotherapeutic point of view.

2. The Molecular Clockwork and Circadian System

In all living organisms, the basic biological timing unit is the cell. In mammals, in-
cluding humans, circadian rhythms are primarily driven by a cell-autonomous molecular
feedback mechanism in which the circadian transcriptional activators aryl hydrocarbon
receptor nuclear translocator-like (BMAL1) and circadian locomotor output cycles kaput
(CLOCK) cyclically activate the expressions of their own repressors, period (PER) and
cryptochrome (CRY) [29]. The core oscillator is complemented by a second loop in which
cycling expression of BMAL1 is maintained by the REV-ERBα/β repressor and RORα/β
activator proteins [29] (Figure 1A). Besides the core regulatory loops, multiple levels of
epigenetic, posttranscriptional, and posttranslational regulation involving various kinases,
phosphatases, ubiquitin-proteasome pathway components, nuclear-cytoplasmic trans-
porters, non-coding RNAs, and chromatin remodelers contribute to the molecular clock-
work, thus coordinating temporal programs via multiple clock-output genes involved in
cellular physiology and metabolism [30–37]. The core clock machinery is mobilized to reset
cellular rhythms upon intrinsic and extrinsic stimuli involving multiple post-translational
(e.g., phosphorylation, sumoylation) and metabolic (e.g., Ca2+, cAMP) signaling path-
ways [32,36,38,39]. Systemically, oscillators that respond to multiple stimuli in neurons and
fibroblasts are tightly coupled to form the brain and peripheral organ clock systems, which,
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in turn, constitute a body-wide circadian network with adaptive synchronous capacity for
environmental entrainment of rhythmic behaviors (e.g., sleep/wake and feed/fast cycles)
and physiology (e.g., temperature, blood pressure, energy metabolism, immune functions,
cellular proliferation and differentiation) [30]. In particular, the hypothalamic suprachi-
asmatic nucleus (SCN), a central circadian pacemaker in the brain, communicates retinal
light input to peripheral clock systems, thus mediating periodic synchronization of internal
body rhythms with external day and night cycles [40] (Figure 1B). Besides SCN-mediated
photic entrainment, a growing number of studies report that non-SCN brain regions (e.g.,
substantia nigra [SN], nucleus accumbens [NA], arcuate nucleus [ARC], choroid plexus
[CR]), and peripheral tissues (e.g., liver, kidney, muscle, and adipose) possess their own
autonomous and muti-stimuli entrainable oscillators that influence not only circadian
functions in the SCN and neighboring local clocks, but also whole body rhythms via neural,
hormonal, and metabolic feedback mechanisms [11,41–49].
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Figure 1. The core circadian timing systems in mammals. (A) Schematic of the molecular mechanisms
of the circadian clock oscillator. At the molecular level, the circadian loop consists of a core loop and a
stabilizing loop. In the core loop, the heterodimer BMAL1/CLOCK binds to the E box enhancer element
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(E) of the PER and CRY genes to initiate transcription. PER and CRY proteins accumulate before they
heterodimerize and act as a transcriptional repressor. Expression of BMAL1, a core clock gene, is
controlled by an ROR/REV-ERB-response element (RORE)-dependent mechanism, which plays an
important role in stabilizing the period of the molecular circadian clock. (B) The suprachiasmatic
nucleus (SCN), a small region in the brain, represents the highest hierarchy of core clock functions.
When light stimuli are transmitted to the SCN through the retinohypothalamic tract (RHT), the SCN
acts as a central pacemaker to synchronize the circadian clocks present in peripheral organs and
coordinate temporal physiology. However, non-photic external cues (e.g., temperature changes, food
intake, metabolic stimuli, hormonal changes) can reset circadian rhythms in peripheral clock tissues,
thereby influencing the rhythmic output of physiology and behaviors.

3. Circadian Disruption and Cancer Pathogenesis

Mirroring the interactive features of biological clock systems, studies in both human
and animal models have suggested that daily mismatches between the internal body clock
and environmental cycles, such as irregular work (e.g., night shift) and life schedules (e.g.,
jet lag, mistimed eating), cause physiological complications that increase the risk of cardiac,
metabolic, neurological, and neoplastic diseases [9–12]. Globally, artificial light sources
in modern society are a primary contributor to disrupted circadian rhythmicity. Eighty
percent of the world’s population is now exposed to light during the night, and about
18–20% of workers in the USA and Europe are engaged in night or rotating shift work,
which predisposes them to multiple rhythm disorders, particularly cancer [50]. Indeed,
several epidemiological studies suggest that night shift work and chronic jet lag increase
the risks of onset and development of the most common cancer types (i.e., breast, lung,
prostate, colorectal, and skin cancers) [51]. Based on such accumulating evidence, the
International Agency for Research on Cancer (IARC) classified “shift-work that involves
circadian disruption” as potentially “carcinogenic to humans (Group 2A)” in 2007 [52]
and again in 2019 [53]. Besides work-related disruptions, additional factors that alter
circadian rhythms, such as abnormal lighting conditions [54], irregular eating habits [55],
and traumatic stress [56], may also contribute to tumor pathogenesis and progression.
For example, a recent population-based case–control study reported that mistimed eating
patterns increased the risks of breast and prostate cancers [57]. Overall, these findings
underscore the importance of maintaining normal circadian rhythms for the prevention
and management of cancer.

4. The Circadian Clock and Cancer Cell Proliferation

The relevance of the circadian clock to cancer pathophysiology has mainly been
attributed to the regulatory relationship between the circadian clock and cell proliferation.
Accumulating studies have unraveled molecular connections between the circadian clock
and cell cycle-regulating factors [58,59]. Indeed, most of the genes regulating critical steps
in the phases of the cell cycle have been found to be controlled by the circadian clock. For
instance, c-MYC and cyclin D1, which induce entry into the DNA synthesis (S) phase, as
well as WEE1, which controls entry into the mitosis (M) phase, exhibit circadian cycles of
expression in a CLOCK/BMAL1-dependent manner [17,58,60–62]. There are also other
cell cycle regulators and checkpoint controllers (e.g., p21, p16/INK4a, p27, and p57), as
well as cell cycle signaling pathway factors (e.g., mitogen-activated protein kinase (MAPK),
Wnt/β-catenin, and transforming growth factor (TGF)), that are regulated by the circadian
clock to mediate daily cycles of cell proliferation [63]. Furthermore, the DNA damage
response, DNA repair mechanisms, and apoptotic signaling pathways, which are closely
associated with cell cycle checkpoints, are directly controlled by circadian clock components,
such as CLOCK, PER1/2, and CRY1/2 in the core loop and RORA and NR1D1/2 in the
stabilizing loop, of the molecular clockwork [64–70].
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Notably, a growing number of studies have suggested direct roles of clock genes in
tumor proliferation and growth. For example, genetic or epigenetic silencing of BMAL1
and/or CLOCK has been shown to increase tumor proliferation or growth rates in hema-
tologic cancer [71], colon cancer [72], pancreatic cancer [73], tongue squamous cell car-
cinoma (TSCC) [74], breast cancer [75], lung adenocarcinoma [18], hepatocellular carci-
noma (HCC) [76], nasopharyngeal carcinoma (NPC) [77], and glioblastoma multiforme
(GBM) [78]. Conversely, overexpression of these clock activators suppresses the prolif-
erative and malignant properties of tumor cells via cell cycle arrest and p53-dependent
apoptosis [78,79]. In line with this, downregulation or upregulation of the BMAL1/CLOCK
target genes PER1, PER2, and CRY1 promote or suppress tumor onset and proliferation, re-
spectively, in Lewis lung carcinoma (LLC), mammary carcinoma [80], pancreatic cancer [81],
lung carcinoma [18], leukemia [82,83], glioma [84], ovarian cancer [85], and oral squamous
cell carcinoma [86,87]. At the molecular level, these studies suggest that the anti-cancer
activity exerted by PER1/2 occurs via the inhibition of PI3K/AKT/mTOR-mediated glycol-
ysis as well as cell cycle arrest and apoptosis induction [80,86,87]. In addition, recent studies
from the Lamia group have reported that CRY1 and/or CRY2 promote the degradation of
cMYC, early 2 factor (E2F) family members, and tousled like kinase 2 (TLK2) by recruiting
these cell cycle-related oncogenic factors to the SCFFBXL3 ubiquitin-ligase complex [88].
Correlating with this, a recent large-scale systems analysis of 32 human cancer types has
revealed that PERs and CRYs, along with several other clock genes, are downregulated
in several types of cancers [89]. Taken together, these findings indicate that core clock
components have tumor suppressor functions in most cancer types. However, most of
these chrono-cancer studies have been based on bulk analyses of tumor cells grown in
monolayer cultures or on tumor tissues grafted in mice, which are unable to recapitulate the
spatiotemporal variations in phenotypes or the functions of distinct cancer cell populations
in tumors under normal or abnormal circadian conditions [17].

5. The Circadian Clock and Cancer Stem Cell Heterogeneity and Plasticity

Stem cells are a dedicated group of cells with the potential to develop into many differ-
ent types of cells in the body that are necessary for tissue differentiation, development, and
homeostasis [90]. Recently, intensive stem cell research has demonstrated that the circadian
clockwork plays an important role in the generation and maintenance of embryonic and
adult stem cells during differentiation and tissue homeostasis (see these recent reviews for
details [91,92]). In a growing number of studies, the genetic ablation of clock genes (e.g.,
CLOCK, BMAL1) in human and/or mouse stem cell populations has been shown to alter
rhythmic oscillations in a variety of embryonic and adult stem cell-dependent processes,
such as hematopoietic progenitor cell migration, the hair follicle cycle, bone remodeling,
regenerative myogenesis, and neurogenesis [93]. Notably, similar to mouse embryonic
stem cells (ESCs) and induced pluripotent stem cells (iPSCs) [94], human ESCs and iPSCs
lack circadian rhythms, which was found to be primarily due to the post-transcriptional
suppression of CLOCK protein expression [95,96]. In line with this, a recent study using
human and/or mouse intestinal organoids and enteroids showed that the maturation of
iPSC-derived intestinal organoids is required to develop robust circadian rhythms and
gene expression that modulate circadian phase-dependent necrotic cell death responses to
Clostridium difficile toxin B (TcdB), a toxin-producing intestinal pathogen [97]. These findings
suggest that circadian clock functions not only control stem cell differentiation and devel-
opment but also mediate time-of-day dependent responses during disease pathogenesis.

With the growing characterization of stem cell-specific markers (e.g., SOX2, OCT4,
NANOG, CD133, CD44, ALDH1), as well as the development of lineage tracing (e.g.,
barcode technology, single-cell RNA sequencing) and three dimensional (3D) organoid
technology in the area of stem cell research, it has become gradually clear that, such as nor-
mal tissues, cancer cells in tumor tissues are not homogenous but instead consist of diverse
cell populations with different cellular lineages and properties [98]. Such intratumoral
heterogeneity has been a major ongoing challenge in the effective therapeutic targeting of
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cancer. In particular, accumulating evidence suggests that CSCs (or cancer-initiating cells),
which make up just a fraction of the cells within a tumor, are primarily responsible for the
cancer cell diversity that results in therapeutic resistance and metastasis. Since the first
discovery of malignant stem cell populations in tumors, a myriad of studies have reported
on the identification of CSCs in many common cancer types, including leukemia [99–101],
breast cancer [102], colorectal cancer [103–105], and brain cancer [106].

Interleukin-4 (IL-4) signaling, drug efflux proteins, and the upregulation of aldehyde
dehydrogenase (ALDH) activity are all known to be associated with the resistance of
CSCs to conventional cancer therapies [107]. The aberrant expression of genes within
the Janus-activated kinase/signal transducer and activator of transcription (JAK/STAT),
Hedgehog, Wnt, Notch, phosphatidylinositol 3-kinase/phosphatase and tensin homolog
(PI3K/PTEN), and nuclear factor-κB (NF-κB) signaling pathways in various CSCs has also
been reported to mediate drug/treatment resistance in these cells [104]. Phenotypically,
CSCs have self-renewing capacity with a slow cycling rate relative to differentiated cancer
cell populations [98]. This means that most anti-cancer drugs that target highly prolifera-
tive non-CSCs allow quiescent CSCs to escape, leading to tumor recurrence and therapy
failure [22,98]. Thus, intensive pharmacological efforts have been made to screen for
chemotherapeutic agents that selectively target CSC populations [108,109]. For example, a
previous study using a chemical screening method discovered compounds (e.g., etoposide,
salinomycin, and abamectin) that showed moderate-to-strong selective toxicity for breast
CSCs [108]. One compound in particular, the potassium ionophore salinomycin, was found
to reduce the proportion of CSCs by >100-fold relative to paclitaxel, a commonly used
breast cancer chemotherapeutic drug, and inhibit mammary tumor growth in vivo [108].

Notably, a growing amount of evidence has shown that cancer cells in tumors exhibit
an exceptional ability to dynamically switch between a stem cell state and a differentiated
state [110] (Figure 2A). In several studies, such cancer cell plasticity has been suggested
to be triggered by tumor intrinsic genetic variation and/or epigenetic modification, or
systemic and external cues that affect the tumor microenvironment, such as hypoxia,
cellular senescence, inflammation, injury, and drug exposure [109]. Furthermore, the
trans-differentiation process of EMT has been identified as a key mechanism underlying
cancer cell plasticity [111,112]. During EMT, cancer cells lose their round, cobblestone-like
(epithelial) morphology and become elongated cells with fibroblast-like (mesenchymal)
morphology, resulting in increased motility and invasion ability that is characteristic of
malignant and stem cells [22] (Figure 2A). Indicative of the functional link between EMT
and CSC phenotype, it has been shown that the tumor-initiating potential in several types
of cancer cells, specifically breast cancer, melanoma, and glioblastoma cells, is enhanced
by the overexpression of transcription factors involved in EMT activation, such as the
zinc finger E-box binding homeobox genes ZEB1 and ZEB2 [111–114]. The loss of E-
cadherin, a ‘caretaker’ of the epithelial phenotype, is also considered a key feature of
EMT [115]. The E-cadherin/β-catenin complex plays a crucial role in maintaining the
integrity of epithelial cell-to-cell contacts by keeping Wnt/ β-catenin signals in check [115].
Upon activation of Wnt signaling, disruption of the E-cadherin/-catenin complex leads
to catenin release and subsequent translocation to the nucleus, where it promotes the
transcription of EMT-associated genes (e.g., vimentin) [116]. EMT transition in CSCs has
also been suggested to occur upon signals, such as growth factors and cytokines, released
into the tumor-immune microenvironment by cancer-associated fibroblasts (CAFs) and
tumor-associated macrophages (TAMs), or in response to hypoxia [110,117,118]. Due to
the important relationship between EMT and cancer, several CSC-targeting anti-tumor
agents have been generated to block or reverse EMT-related signaling pathways and/or
gene expression to induce dedifferentiation of CSCs [111,112].



Int. J. Mol. Sci. 2022, 23, 14181 7 of 18

Int. J. Mol. Sci. 2022, 23, x FOR PEER REVIEW 7 of 18 
 

 

circadian rhythms in cellular morphology and population size related to CSC/EMT phe-

notype under stem cell-inducing media (SCM) conditions [119]. These in vitro results cor-

related with another earlier study showing that a number of stem-like cell populations 

with high ALDH1 activity in 4T1 breast cancer tumors implanted in mice exhibited circa-

dian oscillations [120]. Circadian dynamics in CSC/EMT phenotypes may also explain, in 

part, a more recent study reporting that the metastatic spread of breast cancer cells accel-

erates during sleep both in humans and in mice, with the highest metastatic potential of 

circulating cancer cells (CTCs) being during the rest phase [121]. Notably, circadian dis-

ruptions using the chronic jet lag model have recently been shown to promote breast can-

cer cell dissemination and metastasis in mice by increasing the stemness and tumor-initi-

ating potential of tumor cells and by creating an immunosuppressive shift in the tumor 

microenvironment [14]. In line with this, a more recent study using a rat model reported 

chronic circadian rhythm disturbance accelerated the proinflammatory responses that ac-

companied the activation of the canonical Wnt/β-catenin signaling pathway, which is 

closely linked to EMT in CSCs [122]. These results not only underscore the regulatory 

impacts of tumor intrinsic and/or extrinsic circadian functions in malignant tumor evolu-

tion but also indicate the importance of timed cancer therapy targeting circadian varia-

tions in the CSC/EMT phenotype (Figure 2B). 

 

Figure 2. Role of the circadian clock in cancer stem cell plasticity and maintenance. (A) The genera-

tion and maintenance of cancer stem cells (CSCs) is associated with cellular plasticity in that the 

cells remodel themselves from a stem cell state (epithelial) into a differentiated state during a pro-

cess called the epithelial–mesenchymal transition (EMT), according to tumor-microenvironmental 

changes. (B) Diagram showing the regulatory influences of molecular clock functions and circadian 

disruptions on CSC development. Circadian disruptions (e.g., chronic jet lag) remodel the tumor-

immune microenvironment to favor the proliferation of CSCs. In turn, changes in the tumor micro-

environment can alter circadian clock functions that contribute to the differentiation of cancer stem 

cells into malignant cancer cells. (C) Down-regulation of the BMAL1/CLOCK circadian activator 

complex or overexpression of the period genes (e.g., PER2 and PER3) inhibits CSC maintenance and 

survival in multiple types of cancers. One notable exception is a breast cancer stem cell model in 

which CLOCK repression was shown to increase tumor cell growth. 

  

Figure 2. Role of the circadian clock in cancer stem cell plasticity and maintenance. (A) The generation
and maintenance of cancer stem cells (CSCs) is associated with cellular plasticity in that the cells
remodel themselves from a stem cell state (epithelial) into a differentiated state during a process
called the epithelial–mesenchymal transition (EMT), according to tumor-microenvironmental changes.
(B) Diagram showing the regulatory influences of molecular clock functions and circadian disruptions
on CSC development. Circadian disruptions (e.g., chronic jet lag) remodel the tumor-immune
microenvironment to favor the proliferation of CSCs. In turn, changes in the tumor microenvironment
can alter circadian clock functions that contribute to the differentiation of cancer stem cells into
malignant cancer cells. (C) Down-regulation of the BMAL1/CLOCK circadian activator complex or
overexpression of the period genes (e.g., PER2 and PER3) inhibits CSC maintenance and survival in
multiple types of cancers. One notable exception is a breast cancer stem cell model in which CLOCK
repression was shown to increase tumor cell growth.

Accumulating evidence has suggested a potential role of the circadian clock in CSC
heterogeneity and plasticity. Indeed, a recent study using monolayer and/or tumorsphere
culture systems showed that C6 rat glioma and MCF-7 human breast tumor cells exhib-
ited circadian rhythms in cellular morphology and population size related to CSC/EMT
phenotype under stem cell-inducing media (SCM) conditions [119]. These in vitro results
correlated with another earlier study showing that a number of stem-like cell popula-
tions with high ALDH1 activity in 4T1 breast cancer tumors implanted in mice exhibited
circadian oscillations [120]. Circadian dynamics in CSC/EMT phenotypes may also ex-
plain, in part, a more recent study reporting that the metastatic spread of breast cancer
cells accelerates during sleep both in humans and in mice, with the highest metastatic
potential of circulating cancer cells (CTCs) being during the rest phase [121]. Notably,
circadian disruptions using the chronic jet lag model have recently been shown to promote
breast cancer cell dissemination and metastasis in mice by increasing the stemness and
tumor-initiating potential of tumor cells and by creating an immunosuppressive shift in
the tumor microenvironment [14]. In line with this, a more recent study using a rat model
reported chronic circadian rhythm disturbance accelerated the proinflammatory responses
that accompanied the activation of the canonical Wnt/β-catenin signaling pathway, which
is closely linked to EMT in CSCs [122]. These results not only underscore the regulatory
impacts of tumor intrinsic and/or extrinsic circadian functions in malignant tumor evolu-
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tion but also indicate the importance of timed cancer therapy targeting circadian variations
in the CSC/EMT phenotype (Figure 2B).

6. The Role of Circadian Clock Genes in Cancer Stem Cell Maintenance and Survival
6.1. The Role of CLOCK and BMAL1 in Cancer Stem Cells

In addition to the rhythmic properties of the CSC/EMT phenotype, emerging but lim-
ited studies have unraveled the functional roles of canonical circadian pathway components
in CSC maintenance and survival (Figure 2C) (Table 1).

Table 1. The role of circadian clock genes in cancer stem cell phenotypes.

Cancer Stem Cell Type/Origin Methods Results Ref.

Glioblastoma stem cells derived
from patients undergoing surgical
resection for glioblastomas at
Duke University

BMAL1 and Clock Targeted
shRNA knockdown;

CRISPR/Cas9 Mediated
Knockout of BMAL1 and CLOCK
genes;

Chip-Seq;

RT-PCR;

In Vivo Intracranial Tumor
Formation

Knockdown of BMAL1 and
CLOCK genes resulted in Cell
Cycle Arrest and Apoptosis of
Glioblastoma Stem Cells (GSCs);

BMAL1 is repurposed to regulate
tumor metabolism in GSC;

BMAL1 and Clock contributes
significantly to in vivo growth of
GSC;

Cell proliferation rate was
substantially reduced in
shBMAL1- and
shCLOCK-transduced GSCs

Dong et al. [123]

Glioma Stem cells derived from
U251 and U87 cell lines

Western Blot Analysis;

RT-qPCR;

In vivo Intracranial tumor
formation;

RNA-Seq;

Immunofluorescence and
immunohistochemical staining;

Neurosphere formation assay;

Cell proliferation assay and GSC
flow cytometric assay

PER2 expression is
downregulated in GSCs;

PER2 overexpression could
inhibit the stemness and
self-renewal capability of GSCs;

Overexpression of PER2 causes
the G0/G1 cell cycle arrest,
reducing proliferation rate;

PER2 suppresses the stem cell-like
phenotype of Glioblastoma by
dysregulating Wnt/β-catenin
signaling;

Ma et al. [124]

4T1 Breast Cancer tumors
implanted in mice

Tumors plated under
spheroid-forming condition;

Transfection of plasmid vectors
expressing products of circadian
genes (BMAL1, CLOCK, CRY1,
PER1, or PER2);

3D Culture chip;

miRNA microarray Analysis;

mIR-182 Knockout;

RT-qPCR;

Western Blot Analysis;

Establishment of 4T1 cells stably
expressing CLOCK;

Invasion Assay;

mRNA microarray analysis

CSC-like properties are observed
in ALDH-positive cells;

Expression levels of Clock mRNA
were lower in ALDH-positive
cells than ALDH-negative cells
throughout the day;

Attenuation of 4T1 cells invasive
potential through EMT
suppression by enhancement of
CLOCK
Expression;

Suppression of tumor malignancy
by enhancement of CLOCK
expression in 4T1 cells;

miR-182 suppresses the
expression of Clock mRNA in
ALDH-positive 4T1 cells;

miR-182 Depletion suppresses
growth in 4T1 cell-bearing mice

Ogino et al. [125]
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Table 1. Cont.

Cancer Stem Cell Type/Origin Methods Results Ref.

Human colon cancer cell lines
HCT116, SW480, and SW620
(CRC)

RNA-Seq Analysis;

Western Blot Analysis;

RT-qPCR;

BMAL1 Gene Knockdown;

Wound healing Assay;

MTT Assay

BMAL1 knockdown Increases
E-Cadherin Expression and
E-Cadherin/β-Catenin
Co-Localization at the Plasma
Membrane of CRC Cells;

BMAL1 Knockdown induces loss
of mesenchymal traits and
reinforce epithelial phenotypes;

BMAL1 Knockdown decreases
migratory capabilities and
invasiveness of CRC cells

Zhang et al. [126]

PC3 and DU145 human prostate
cancer cell line

Sphere and Colony-Formation
Assays;

Subcutaneous Injection of Cells
into NOD/SCID Male Mice;

RT-qPCR;

PER3 Gene Overexpression and
knockdown with lentiviral
vectors;

RNA-Seq;

Purification of Double Marker
Cells by Fluorescence-Activated
Cell Sorting (FACS);

Immunofluorescence;

Western Blotting

Double Positive cancer cells
exhibited higher sphere-forming
capacity than Double Negative
cells;

PER3 Overexpression inhibits
sphere-forming capabilities of
Double Positive Cancer Cells,
negatively regulates stemness
in vitro;

Per3 is downregulated in PC3
Double Positive Cells;

PC3 Double Positive cells bear
CSC features in vitro by
expressing higher levels of CD44,
ALDH1A1, and CD133 mRNA
levels;

PER3 negatively regulates
stemness of PCSCs, probably via
WNT/β-catenin signaling
pathway

Li et al. [127]

As noted above, circadian clock regulators have been suggested to function as tu-
mor suppressors in most types of cancers. However, in recent loss-of-function studies
using RNA interference (RNAi) and/or CRISPR genome editing technology, circadian
molecular functions involving the core clock transcriptional activators CLOCK and/or
BMAL1 have proven to be required for the maintenance of CSC/EMT properties in cancer
cells [123,128,129]. In an earlier study using a murine model of acute myeloid leukemia
(AML), disruption of Clock and/or Bmal1 using RNAi in leukemic stem cells (LSCs) in vivo
was shown to produce anti-leukemic effects, including impaired proliferation, enhanced
myeloid differentiation, and depletion of LSCs [128]. Similar to these results, a subsequent
GBM model study showed that downregulation of CLOCK or BMAL1 in glioblastoma stem
cells (GSCs) induced cell-cycle arrest and apoptosis [123]. In further analysis, targeting
CLOCK or BMAL1 was found to attenuate mitochondrial metabolic function and reduce the
expression of tricarboxylic acid cycle enzymes, suggesting a critical role for these circadian
activators in promoting stemness maintenance and metabolism in GSCs [123]. In addition
to cancer cell stemness, the positive role of circadian activators in cancer malignancy was
shown in a recent colorectal carcinoma (CRC) model. In this study, gene set enrichment
analysis showed a significant enrichment of EMT and invasive signatures in BMAL1_high
CRC patients compared to BMAL1_low CRC patients [126]. Correspondingly, BMAL1
knockdown increased the expressions of epithelial markers (E-cadherin, CK-20, and Ep-
CAM) but decreased the expressions of TWIST and mesenchymal markers (N-cadherin
and vimentin) in CRC cell lines (HCT116 and SW480), promoting mesenchymal-epithelial
transition (MET)-like changes in these cells [126]. As a result, BMAL1-depleted CRC
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cells exhibited decreased migration/invasion and drug resistance capacities, revealing the
crucial role of BMAL1 in EMT-related CRC metastasis and chemoresistance [126].

In contrast, some studies using breast cancer cell models have reported opposite
functions of circadian activators in CSC/EMT physiology. Studies of breast cancer stem
cells (BCSCs) identified in aggressive breast tumors, such as triple-negative breast cancers
(TNBCs), were found to exhibit high aldehyde dehydrogenase (ALDH) activity, which is as-
sociated with poor prognosis among breast cancer patients [102,130,131] and is considered
to be a CSC marker for other types of cancers [132–134]. Furthermore, in a study from Dr.
Shigehiro Ohdo’s lab using mouse 4T1 breast cancer cells, it was shown that the oscillation
of clock gene expression was suppressed in ALDH-positive CSCs but not in surrounding
cells in the tumor microenvironment [120]. In a subsequent study, among the clock genes,
the expression levels of CLOCK mRNA and protein were found to be downregulated in
ALDH-positive 4T1 cells. Moreover, enhanced expression of CLOCK was shown to exert
a suppressive effect on the stemness and malignant properties of BCSCs, resulting in the
prevention of tumor growth [125]. Similar to the role of CLOCK in suppressing stemness-
related malignancy in breast cancer, recent transcriptomic and cell-based studies from Nuri
Ozturk’s group have shown that BMAL1 disruption enhances EMT gene expression and
the invasive properties of malignant breast cancer cells [75,135]. These results suggest
divergent roles of CLOCK/BMAL1 in tumor evolution and pathogenesis, depending on
the type and/or state of the cancer cell (Figure 2C).

6.2. The Role of PER2 and PER3 in Cancer Stem Cells

Unlike the mixed roles of CLOCK and BMAL1 in CSCs, period circadian regulator
genes (e.g., PER2 and PER3), generally known as tumor suppressors in various types of
cancer, have been shown to inhibit CSC maintenance and survival in tumors. For example, a
recent study using a human GSC model showed that PER2 mRNA and protein expressions
were downregulated in GSCs compared to non-stem glioma cells, suggesting that PER2
could be involved in the malignant process of glioma [124]. Moreover, PER2 overexpression
was shown to induce the arrest of GSCs at the G0/G1 phase and suppresses their prolif-
eration, stemness, and invasion ability in vitro and in vivo [124]. Mechanistically, PER2
suppresses the stem cell-like phenotype of GBM by dysregulating Wnt/β-catenin signaling,
indicating that PER2 plays a critical role in regulating the stemness of GSCs [124]. Notably,
these results are reminiscent of an earlier study showing that oncogenic transformation of
PER2-defective cells resulted in the development of chemoresistance [136].

Similar to the role of PER2, another recent study using a prostate cancer stem cell
(PCSC) model showed that PER3 (period circadian regulator 3) is a negative regulator of
CSC biogenesis and phenotype. In this study, deep RNA-sequencing analysis using PCSCs
(ALDHhi/CD44+) and non-PCSCs (ALDHlow/CD44–) revealed that PER3 is markedly
downregulated in therapy-resistant PCSCs. Moreover, PER3 overexpression in PCSCs
was shown to significantly inhibit their clonogenicity and tumorigenicity, hence arresting
tumor proliferation and development, while PER3 knockdown in non-PCSCs was shown
to dramatically promote their colony-forming and tumor-initiating abilities [127]. Mecha-
nistically, low expression levels of PER3 result in the upregulation of BMAL1 expression,
resulting in the phosphorylation of β-catenin and its translocation from the cytoplasm
into the nucleus to activate the Wnt/β-catenin signaling pathway [127]. The prognostic
relevance of PER3 function in cancer cell stemness is further indicated by a study showing
that patients with high levels of PER3 expression have better survival rates than those
with low levels of PER3 expression [127]. Collectively, these studies suggest that PER2 and
PER3 are negative regulators of CSC physiology that could be potential targets for anti-CSC
cancer therapy (Figure 2C).

7. Chronotherapeutic Approaches Targeting the Circadian Clock and CSCs

Given the functional roles of the molecular clockwork in cancer pathogenesis, it is
becoming more important to take circadian mechanisms into account in the treatment of
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cancer [137,138]. In recent years, the idea of exploiting the circadian clock has been inves-
tigated in cancer therapy by modulating the activities of circadian clock molecules [129],
enhancing intra-tumoral circadian rhythms [139], and optimizing anti-cancer drug delivery
by timing it to the host’s circadian rhythms [140,141].

Notably, the presence of functional clocks in tumors is still debatable. It is commonly
thought that circadian functions in cancer cells are largely compromised or deregulated,
particularly due to mutations and/or the aberrant expression of oncogenes, such as Ras,
p53, and Myc, that perturb the tumor clock [142,143]. However, some cancer cells, including
U-2 OS human osteosarcoma and B16 mouse melanoma cells, exhibit marked circadian
rhythms in a molecular clock-dependent manner, despite their highly tumorigenic and
metastatic potentials [17,139,144,145]. Related to this, a more recent study using 2D and
3D mammalian culture models in vitro (mainly human U-2 OS cells) and ex vivo have
shown that tumor cell oscillators can be coupled via paracrine pathways, particularly via
TGF-β, which mediates phase adjustments of molecular clocks, similar to the intercellular
coupling among cell-autonomous oscillators in normal tissues [146]. Furthermore, another
relevant study showed that non-rhythmic MCF-7 human breast tumor cells, as well as C6
cells from rat glioma that have a well-established circadian clock, exhibit marked circadian
rhythms in both Per2 promoter activity and cellular morphology linked to CSC/EMT
phenotype under stem cell media-based spheroid culture conditions [119]. In addition to
experimental tumor models, patient-derived CSCs from glioblastoma or acute myeloid
leukemia also display robust circadian rhythms that are similar to their differentiated cell
counterparts [123,128]. These results point to the utility of exploiting intratumoral circadian
rhythms in anti-cancer treatment.

In support of this notion, recent studies by Lee et al. have determined time-of-day
specific activities of existing anti-tumor drugs, such as Palbociclib (PD0332991) [17], a Food
and Drug Administration (FDA)-approved potent and selective CDK4/6 inhibitor, and 17-
AAG [145], a heat shock protein 90 (HSP90) inhibitor, using human U-2 OS cell lines in vitro
and in vivo mouse B16 melanoma tumor models. These time-specific drug actions were
shown to occur in a tumor clock-dependent manner because genetic perturbation of BMAL1
in the cancer cells via RNAi knockdown or CRISPR genome editing abrogated the temporal
response of the tumor to the drugs [17,145]. Importantly, a more recent study using human
TNBCs (MDA-MB-468LN, MDA-MB-231) reported that novel C-terminal heat shock protein
90 inhibitors (KU711 and KU758) as well as 17-AAG can target breast cancer stem cells
and block migration, self-renewal, and epithelial–mesenchymal transition in tumorspheres
in vitro and in in vivo tumor xenograft model experiments [147]. In line with this, the anti-
tumor and anti-metastatic effects of the ALDH inhibitor N,N-diethylaminobenzaldehyde
were shown to be enhanced by administration at the time of day when ALDH activity was
high in 4T1 breast cancer stem cells that produce tumors in mice [120]. These findings
suggest that existing or newly developed anti-cancer drugs can be repurposed to target
CSC populations from chronotherapeutic perspectives.

Remarkably, recent studies have revealed that clock-targeting compounds, such as
REV-ERB agonists (e.g., SR9009 and SR9011) and/or CRY protein stabilizers (e.g., KL001
and SHP656), exhibit potent anti-cancer properties in glioblastoma, leukemia, breast, colon,
and melanoma cancer cell lines by inhibiting autophagy and de novo lipogenesis that is
important for cancer cell survival [123,148,149]. In particular, some of these drugs (SR9009,
SR9011, KL001) have been found to selectively inhibit patient-derived GSC proliferation
and growth by suppressing the activation functions of CLOCK and BMAL1 in the mainte-
nance of mitochondrial metabolic function and the expression of tricarboxylic acid (TCA)
cycle enzymes [123]. Moreover, a recent in vitro study using human T98G cells, a useful
GBM model, showed that dexamethasone-synchronized cells displayed differential, time-
based responses to SR9009 treatment, with the highest responses being 18 to 30 h after
synchronization [149]. This evidence suggests that chemotherapeutic use of clock targeting
compounds can be combined with time-of-day specificity to increase their effectiveness.
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8. Conclusions

CSCs, as a subpopulation of bulk tumors, have posed major challenges to conven-
tional cancer treatments due to their drug-resistant and plastic properties involving EMT.
So far, extensive pharmacological and chemotherapeutic efforts in both cancer research
and clinical trials have been made to effectively target CSC/EMT pathways and improve
treatment outcomes. In line with these efforts, the recent identification of the role of the
circadian clock in CSC development presents an opportunity to find more effective thera-
peutic solutions by targeting tumor evolution from a chronobiological perspective. Unlike
previous studies suggesting clock dysfunctions in tumors or tumor suppressive roles of
clock genes, emerging evidence has revealed that circadian clocks function in favor of
the development and maintenance of CSCs, particularly in brain and blood cancers. In
addition to circadian gene oscillations, limited evidence has identified rhythmic properties
in the cellular identities and compositions of CSC/EMT populations in tumors. However,
the mechanisms underlying the circadian properties in CSC/EMT phenotypes are still
debatable. Results from a recent 2D monolayer and 3D tumorsphere culture study using
glioma and breast cancer cells suggested that daily changes in CSC/EMT phenotypes
are cell-autonomous [119]. On the other hand, another metastatic breast cancer model
study changes in the phenotypic rhythms of originally rhythm-negative CSCs can oc-
cur, primarily due to the paracrine effects of rhythm-positive non-CSCs via intercellular
communications [125]. This discrepancy might be due to differences in the experimental
methods and cell lines used and warrants further investigation, including research on other
types of tumors. Regardless of either mechanism, the presence of circadian rhythms in
CSC/EMT phenotypes may provide important insights and rationale for the development
of chronotherapeutic approaches that target the time of day when the greatest number
of invasive and metastatic cells are present in a tumor. In support of this notion, it was
recently shown that circulating tumor cells (CTCs) that break away from breast tumors
and metastasize to other parts of the body spread more aggressively during sleep in both
humans and mice. Based on these results, it is tempting to assume that night-time delivery
of anti-CSC/EMT agents is likely to be more helpful in improving treatment outcomes in
patients with metastatic cancers. Furthermore, with the growing number of clock-targeting
small molecules with CSC-specific toxicity being identified, it may be reasonable to expect
that integrating chrono-cancer therapy into future research and clinical trials will improve
the treatment and management of multiple cancers linked to CSC evolution.
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