
New approach to electroweak symmetry nonrestoration

Marcela Carena ,1,2,* Claudius Krause ,1,3,† Zhen Liu ,4,‡ and Yikun Wang 1,2,§

1Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, Illinois 60510, USA
2Enrico Fermi Institute and Kavli Institute for Cosmological Physics,

University of Chicago, Chicago, Illinois 60637, USA
3NHETC, Dept. of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA
4School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA

(Received 24 April 2021; accepted 21 July 2021; published 13 September 2021)

Electroweak symmetry nonrestoration up to high temperatures well above the electroweak scale offers
new alternatives for baryogenesis. We propose a new approach for electroweak symmetry nonrestoration
via an inert Higgs sector that couples to the Standard Model Higgs as well as an extended scalar singlet
sector. We implement renormalization group improvements and thermal resummation, necessary to
evaluate the effective potential spanning over a broad range of energy scales and temperatures. We present
examples of benchmark scenarios that allow for electroweak symmetry nonrestoration all the way up to
hundreds of TeV temperatures and also feature suppressed sphaleron washout factors down to the
electroweak scale. Our method for transmitting the Standard Model broken electroweak symmetry to an
inert Higgs sector has several intriguing implications for (electroweak) baryogenesis and early universe
thermal histories and can be scrutinized through Higgs physics phenomenology and electroweak precision
measurements at the HL-LHC.
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I. INTRODUCTION

The Standard Model (SM) of particle physics accurately
describes the behavior of the particles making up the
ordinary matter, but it fails to provide an explanation of
how they came to be. Under the assumption that particles
and antiparticles are produced in equal numbers in the
early Universe, the SM predicts that they would have
long annihilated each other without leaving any remnant
matter today. Sakharov [1] enunciated that producing a
baryon asymmetry (BA), i.e., more matter than anti-matter,
requires baryon number violation, C and CP violation, and
out-of-equilibrium processes to all occur at the same time.
Although the SM provides sources of C, CP, and baryon
number violation through the electroweak interactions and
sphalerons, respectively, it fails to explain the observed BA.
Indeed, the SM electroweak phase transition (EWPT) is a
smooth crossover and, thus, is not giving rise to sufficient
deviations from thermal equilibrium [2]. In addition, the

amount of C and CP violation in the SM is insufficient to
generate the observed baryon asymmetry [3]. To generate
the observed baryon asymmetry, sources of CP violation
and out-of-equilibrium processes beyond those found in the
SM must be realized in nature.
There are many mechanisms proposed in the literature

to explain the generation of a net baryon number B, and
in most cases, sphaleron processes that are capable of
violating Bþ L, but conserve B-L, play a relevant role
(with L the lepton number). One interesting possibility to
achieve sphaleron-induced B number generation is via a
strong first-order electroweak phase transition (SFOEWPT),
yielding promising conditions for electroweak baryogenesis
[4]. Accommodating a SFOEWPT demands modifications
of the Higgs potential. Such modifications may be induced
predominantly by thermal effects, as it happens, e.g., in the
minimal supersymmetric extension of the Standard Model
[5–11], or by zero-temperature effects that have a lasting
consequence after thermal effects are taken into account.
The latter situation naturally occurs in models of new
physics containing additional light scalar particles with
sizable couplings to the Higgs.
In this study, we are interested in models in which the

electroweak (EW) symmetry is broken at temperatures well
above the EW scale. Taking a bottom-up approach, we
called these scenarios (i) delayed restoration, if the electro-
weak symmetry is restored at very high temperatures, or
(ii) nonrestoration, if the electroweak symmetry remains
broken all the way up to some high-energy scale Λ of
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validity of the theory. Electroweak nonrestoration or
delayed restoration scenarios have advantages in modeling
mechanisms for baryogenesis. For example, in the case
of electroweak baryogenesis (EWBG), one important
advantage is that the additional, required sources of CP
violation will only be effective at high energies and,
therefore, will avoid current electric dipole moment exper-
imental bounds.
Symmetry nonrestoration at high temperatures was first

studied a long time ago [12–18] and recently [19–27]. In
particular, new ideas of electroweak symmetry nonrestora-
tion or delayed restoration have been discussed [22–24,26]
by extending the SM Higgs sector with additional singlet
scalars that couple to the SM Higgs and provide it with a
negative thermal mass at very high temperatures. Such
models typically require several hundreds of new scalar
fields. On top of the new scalar sectors, for models with
delayed restoration, the UV completions typically require
additional scalar and/or fermion fields that couple with the
EW sector and yield electroweak symmetry restoration, as
well as a strong first-order phase transition, at very high
temperatures [23,24,26].

In this work, we explore the EW nonrestoration or
delayed restoration with an extended-inert two Higgs
doublet model (I2HDM) [28,29], where, instead of the
SM Higgs, it is the inert Higgs that acquires a nonzero
vacuum expectation value (vev) up to very high temper-
ature by coupling to an additional scalar sector. Such a
model requires minimal couplings between the new scalar
fields and the SM Higgs boson and opens the window to
different realizations for baryogenesis at very high energy
scales. Because of the lack of large Yukawa couplings to
the inert sector, the number of scalars required to achieve
negative thermal masses is somewhat reduced. Specific
new physics models for high-scale EW baryogenesis in the
context of extensions of the I2HDM will be the topic of a
forthcoming publication.
The EW nonrestoration sets the boundary conditions at

high temperatures (≲TUV), while the observed EW vacuum
defines them at zero temperature; see the top row of Fig. 1
for a schematic view. For intermediate temperatures, the
I2HDM allows different phase histories that we depict in
the bottom row of Fig. 1. There could either be a temper-
ature range (between Tc

H and Tc
Φ—to be precisely defined

FIG. 1. Schematic illustration of the phase values of Higgs and inert scalar at the global minimum for nonrestoration and delayed
restoration. The top panel shows the global view up to very high temperatures, where the nonrestoration can either persist or the
symmetry becomes eventually restored (depicted by dashed lines). The lower panel zooms into the gray region and shows three different
scenarios of the transition between the two doublets.
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below) for which the global minimum is given by non-
vanishing vevs of both the Higgs and the inert fields (left
plot) or be a discrete jump between the Higgs and the inert
phases at a critical temperature Tc (central plot). A third
option is given by a scenario in which the Higgs vev goes to
zero at a restoration temperature Tr

H lower than the
temperature Tr

Φ above which the inert vev starts to grow
(right plot). In the temperature range between Tr

H and Tr
Φ,

the system is in a EW-preserving vacuum.
In this work, we utilize the perturbative effective

potential (EP) method to calculate the finite-temperature
phase structure and quantities relevant to the baryon
asymmetry. However, unlike for typical EWPT calculations
for which the electroweak symmetry breaking takes place
close to the EW scale, here we need to take into account
important effects due to the large-scale separation between
the high temperatures [greater than or approximately equal
toOð1–100Þ TeV)] and high field values and the EW scale,
which requires careful treatment and improvement of the
perturbative calculation. For this purpose, we will imple-
ment a renormalization group (RG) improvement and
daisy resummation of the EP to ameliorate the perturbative
convergence.
This paper is organized as follows. In Sec. II, we introduce

our model and discuss its zero-temperature constraints. In

Sec. III, we investigate the validity of the radiatively
corrected, finite-temperature effective potential in calculat-
ing the phase structures, introducing the RG improvement
and daisy resummation, and we set up schemes for the
improved perturbative calculation. In Sec. IV, we present an
analytical study of the possible thermal histories based on a
mean-field approach. In Sec. V, we present the full numerical
computation of the finite-temperature phase structure for
two benchmark (BM) scenarios. In Sec. VI, we discuss the
baryon washout conditions and consider them in light of the
thermal history results for the two BM scenarios presented
in the previous section. We also discuss the impact of
future model building on high-temperature baryogenesis.
In Sec. VII, we discuss phenomenological constraints in this
type ofmodel. Finally,we present our conclusion in Sec.VIII.
We collect various technical aspects in the Appendixes.

II. MODEL

A. Effective potential at tree level

We consider an extension of the SM Higgs sector that
includes an inert Higgs doublet with additional singlet
scalars. In such a case, the most general Z2-symmetric
potential reads1

VZNþI2HDM ¼ −μ2HH†H þ λHðH†HÞ2 þ μ2ΦðΦ†ΦÞ þ λΦðΦ†ΦÞ2 þ λHΦðH†HÞðΦ†ΦÞ þ λ̃HΦðH†ΦÞðΦ†HÞ

þ μ2χ
2
χ2i þ

λ̃χ
4
χ4i þ

λχ
4
ðχiχiÞ2 þ

λΦχ

2
χ2i ðΦ†ΦÞ þ λHχ

2
χ2i ðH†HÞ; ð1Þ

where the two Higgs doublets are written as

H ¼
� Gþ

1ffiffi
2

p ðhþ iG0Þ
�

ð2Þ

Φ ¼
� ϕþ

1ffiffi
2

p ðφþ iϕ0Þ
�
; ð3Þ

and the fields χi represent N real, singlet scalars. Assuming
that extra sources of CP violation will come from a new
sector, once we study the complete UV theory, we impose
CP invariance in the Higgs sector and define all model
parameters to be real. The assumed Z2-symmetry for-
bids couplings of the type μ212ðH†ΦÞ; λ6ðH†ΦH†HÞ, and
λ7ðH†ΦΦ†ΦÞ. Portal couplings of the form ðΦ†HÞðΦ†HÞ
and ðH†ΦÞðH†ΦÞ are allowed by the Z2 symmetry and are

related to the operator ðH†ΦÞðΦ†HÞ by custodial sym-
metry [30]. However, assuming a Uð1Þ-symmetry on (one
of the) doublets forbids these additional portal couplings
and simplifies the potential. Given the custodial symmetry
and the additional Uð1Þ symmetry, we can set the coupling
λ̃HΦ to 0 as well. However, this is not stable under
RG running, as the hypercharge gauge coupling breaks
custodial symmetry. We therefore keep track of the operator
with the coefficient λ̃HΦ for future RG improvement of
the EP; see the discussion in Sec. III. In addition, to
better accommodate phenomenological constraints, we set
λHχ ¼ 0, although, similarly to λ̃HΦ, this coupling will also
be induced by the renormalization group evolution (RGE),
and we will keep track of its effects. Finally, observe that
λ̃χ ¼ 0 is protected by an SOðNÞ symmetry of the singlet
sector, and we shall impose such symmetry. In the case of a
potential with generic values of λ̃χ , the singlet sector
exhibits a discrete ZN symmetry.
To summarize, parameters in the above potential can be

separated as follows:
(i) fixed parameters: fμ2H; λHg,
(ii) free parameters: fμ2Φ; μ2χ ; λΦ; λχ ; λΦχ ; λHΦ; Ng,

1Here, Z2 is defined as H → H, χi → −χi, and Φ → −Φ. As
we shall discuss later, instead of the Z2, we require a continuous
global Uð1Þ symmetry on the doublet Φ to ensure it being inert,
which forbids additional terms that we omitted here in the
potential.
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(iii) free parameters set to zero: fλ̃HΦ; λHχ ; λ̃χg,
(iv) RGE induced parameters: fλ̃HΦ; λHχg,

where the two fixed parameters are given by the current
observation of the EW vev v0 ¼ 246 GeV and the SM
Higgs mass mh ¼ 125 GeV.
In general, there could be charge-breaking and CP-

breaking minima in two Higgs doublet models. However,
Refs. [31,32] showed that at tree level, if an EW-breaking
minimum exists, any possibly existing charge-breaking
or CP-breaking extremum is necessarily a saddle point

above the EW-breaking minimum. Although the validity of
this result may not hold after the inclusion of radiative
corrections, and its validation requires a more detailed
analysis beyond the scope of this work, we shall only allow
for the neutral CP-even components to develop non-
zero vacuum expectation values at any temperature.
Therefore from now on, we focus on analyzing the effective
potential of the CP-even components of the two Higgs
doublets and the singlet sector. The tree-level CP-even
potential reads

VZNþI2HDM
0;CP even ¼ −

μ2H
2
h2 þ λH

4
h4 þ μ2Φ

2
φ2 þ λΦ

4
φ4 þ λHΦ þ λ̃HΦ

4
h2φ2

þ μ2χ
2
χ2i þ

λ̃χ
4
χ4i þ

λχ
4
ðχiχiÞ2 þ

λΦχ

4
χ2iφ

2 þ λHχ

4
χ2i h

2: ð4Þ

The particles in the plasma include bosons fh;G0; G�;φ;ϕ0;ϕ�; χ; γ;W�; Zg with corresponding particle degrees of
freedom (d.o.f.) nbos ¼ f1; 1; 2; 1; 1; 2; N; 3; 6; 3g and fermions ftg with corresponding particle d.o.f. nferm ¼ f12g that
couple (self-couple) to the dynamical fields. Notice that we work in the Landau gauge so there are no ghost d.o.f. We collect
the effective, field-dependent masses of these particles in Appendix A.

B. Zero-temperature constraints

In this section, we present the tree-level, zero-temperature constraints on our model, including the bounded from below
(BFB) conditions, and the correct vacuum structure of the tree-level potential. This study provides guidance, later on, in
defining the viable parameter space for which we shall perform numerical calculations to constrain the model after the
inclusion of radiative corrections.

1. Bounded from below conditions

The BFB conditions, which need to be satisfied simultaneously, for the generic tree-level potential given in Eq. (1) are

λH > 0; λΦ > 0; Λχ;n > 0;

ΛHΦ > −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHλΦ

p
; λΦχ > −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λΦΛχ;n

q
; λHχ > −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHΛχ;n

q
;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHλΦΛχ;n

q
þ ΛHΦ

ffiffiffiffiffiffiffiffi
Λχ;n

p þ λΦχ

ffiffiffiffiffiffi
λH

p
þ λHχ

ffiffiffiffiffi
λΦ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
ΛHΦ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHλΦ

p ��
λΦχ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λΦΛχ;n

q ��
λHχ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHΛχ;n

q �r
> 0;

ð5Þ

where for simplicity we define the effective couplings

Λχ;n ≡ 1

n
λ̃χ þ λχ and ΛHΦ ≡ λHΦ þ λ̃HΦρ

2: ð6Þ

There are two variables in these conditions, n ∈ f1;…; Ng
and ρ2 ∈ ½0; 1�; see Appendix B for details. The conditions
(5) have to hold for all values of n and ρ. Notice that they
only enter the conditions through Λχ;n and ΛHΦ. If λ̃χ > 0,
Λχ;n is the smallest when n ¼ N, while if λ̃χ < 0, the
smallest Λχ;n is found for n ¼ 1. Similar considerations
apply to ΛHΦ and ρ. A detailed derivation of these
conditions can be found in Appendix B.

2. Vacuum structure

To be consistent with the current Higgs and EW
precision measurements, as the inert doublet is charged
under the EW gauge group, we consider the case that at
zero temperature both the inert Higgs and the singlets have
zero vev, say, the physical vacuum is

hfh;φ; χ1;…; χNgi ¼ fv0; 0; 0;…; 0g; ð7Þ

where v0 ¼ 246 GeV, and we require such vacuum state to
be the global minimum of the zero-temperature potential.
First, for the physical vacuum to be a minimum, one needs
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to avoid tachyonic solutions, which give constraints on the
bare mass parameters of the potential (at tree level)

μ2Φ þ λHΦ

2
v2EW ≥ 0; μ2χ ≥ 0: ð8Þ

Equation (8) does not involve the RG-generated parame-
ters, λ̃HΦ and λHχ , since it refers to the couplings at the
physical minimum.
As stated above, at tree level, any possibly existing CP

or charge-breaking extrema are saddle points lying above
the EW vacuum, which, therefore, do not put any further
constraints on the viable parameter space. To secure that
the EW vacuum is the global minimum of the tree-
level potential in the subfield space of the two CP-even
components and the singlet degrees of freedom, we find all

possible extrema of the polynomial potential (see all
possible extrema in Appendix B at tree level), and we
numerically impose the necessary conditions to establish
that for each extremum either it cannot exist or it is above
the physical one.

III. RADIATIVE CORRECTED,
FINITE-TEMPERATURE POTENTIAL

In the perturbative effective potential calculation, two
types of radiative corrections to the tree-level potential need
to be considered, i.e., the zero-temperature loop corrections
and the finite-temperature radiative corrections.
At one-loop order, the zero-temperature loop correction

can be taken into account through the Coleman-Weinberg
(CW) potential [33,34]

VCWðfM2
i ðΦ̂Þg; μRÞ ¼

1

64π2
X
i¼B;F

ð−1Þ2SiniM4
i ðΦ̂Þ

�
log

M2
i ðΦ̂Þ
μ2R

− ai

�
; ð9Þ

under the MS-renormalization scheme, and where Si ¼ 1 or 1=2 for i ¼ Bor F, respectively. The short-handed notation has
been introduced for the dynamical fields Φ̂≡ fh;φ; χ1; χ2;…; χNg. The species i is summed over all degrees of freedoms in
the plasma. The constant ai has a value of 3

2
for scalars, longitudinal gauge bosons, and fermions, while 1

2
for transverse

gauge bosons. μR is the renormalization scale, and finally M2
i ðΦ̂Þ is the field-dependent mass eigenvalue. The field-

dependent masses of all degrees of freedom in the plasma for our model are given in Appendix A. We work in the Landau
gauge [34], which introduces a gauge dependence of the EP [35–43].2
The CW potential changes the shape of the zero-temperature potential, introducing deviations from the tree-level

constraints at zero temperature that we discussed in the last section. Specifically, to accommodate the Higgs vev of 246 GeV
and a 125 GeV mass eigenstate, the parameters μ2H and λH have to be adjusted to recover the two physical conditions at
T ¼ 0. Other zero-temperature constraints, including the BFB and correct vacuum structure, also need to be adjusted
numerically, as necessary, so that they remain robust after the inclusion of loop corrections.
The leading temperature dependence is given by the thermal one-loop effective potential (see reviews, e.g., Ref. [44])

VT
1−loopðfM2

kðΦ̂Þg; TÞ ¼ T4

2π2

�X
i¼B

niJB

�
M2

i ðΦ̂Þ
T2

�
−
X
i¼F

niJF

�
M2

i ðΦ̂Þ
T2

��
; ð10Þ

where relevant notation has been introduced above, and

JB=FðyÞ ¼
Z

∞

0

dxx2 log ð1 ∓ e−
ffiffiffiffiffiffiffiffi
x2þy

p
Þ; ð11Þ

where in the thermal potential the argument y ¼
M2

i ðΦ̂Þ=T2. The JB=F functions can be evaluated numeri-
cally; see Appendix F for the details of our implementation.
To gain analytical understanding of the thermal history, a
high-temperature expansion can be used to obtain an
analytical expression for the thermal potential,

Jhigh−TB ðyÞ ¼ −
π4

45
þ π2

12
y −

π

6
y
3
2 −

1

32
y2 log

�
y
ab

�
þ � � � ;

Jhigh−TF ðyÞ ¼ 7π4

360
−
π2

24
y −

1

32
y2 log

�
y
af

�
þ � � � ; ð12Þ

2Given that we observe that the high-temperature expansion
approximation is in good qualitative agreement with the full
treatment of the temperature effects when considering the
electroweak symmetry nonrestoration analysis, we argue that
the main results of this work will not be qualitatively changed by
effects of gauge dependence. Indeed, the EW nonrestoration at
high temperatures relies on a negative thermal mass for the inert
Higgs that is governed by the leading-order term in the high-
temperature expansion, which in turn does not exhibit gauge
dependence. Indeed, Refs. [40,41] show that the gauge depend-
ence appears only in the subleading temperature-dependent terms
in the high-temperature expansion. A dedicated study of the
gauge dependence considering a numerical analysis of the full
temperature-dependent EP would be necessary to fully under-
stand the relevance of gauge-dependent effects in the analysis of
EW nonrestoration, which is beyond the scope of this work.
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where ab ¼ 16π2 expð3=2− 2γEÞ, af ¼ π2 expð3=2 − 2γEÞ,
and γE is the Euler constant. The high-temperature ex-
pansion in Eq. (12) guarantees a good convergence for
values of the argument of the JB=F functions up to 2–5,
while values are constrained to be below/about 1 without
inclusion of the logarithmic terms.
At very high temperatures and very large field values,

which are the relevant scales for the electroweak symmetry
nonrestoration or delayed restoration scenarios, perturba-
tive convergence of the fixed-order calculation becomes
compromised, for both the CW and the one-loop thermal
potential. In the following, we discuss the improvements
that we will implement to deal with both shortcomings.
As it is well understood in the literature, at finite

temperature, the self-energy of a particle receives higher-
loop corrections from daisy diagrams; e.g., see Refs. [[45],
Fig. 3(a)]. Such corrections atN -loop order contain powers
of a field- and temperature-dependent parameter α (up to a
normalization factor) [12,45–48],

αN ¼ λNi
T2N

M2N
i ðΦ̂Þ ; ð13Þ

where λi is the coupling corresponding to MiðΦ̂Þ in the
theory. At large temperatures, such contributions exhibit
severe IR divergence for some field values such that
MiðΦ̂Þ ≪ T, for example, around the origin, where
higher-loop contributions dominate and the fixed-order
calculation becomes problematic. Various treatments have
been proposed to resum higher-loop thermal contributions
and solve the associated IR problem [12,45–52]. A full
dressing daisy resummation involves adding thermal cor-
rections to the tree-level effective masses in the effective
potential. For the one-loop EP, it follows that

VCWðfM2
i ðΦ̂Þg; μ2RÞ þ VT

1−loopðfM2
i ðΦ̂Þg;TÞ →

VCWðfM2
i ðΦ̂Þ þ Π2

i g; μ2RÞ þ VT
1−loopðfM2

i ðΦ̂Þ þ Π2
i g;TÞ;

ð14Þ

where Π2
i is the squared thermal mass for the species “i.”

Such a procedure effectively resums higher-order correc-
tions from daisy diagrams.3

The squared thermal masses Π2
i are in general field and

temperature dependent and can be solved by gap equations.
At one-loop level, the gap equations read

Π2
i;gap ¼

∂2

∂Φ̂2
i

X
k

VT
1−loopðfM2

kðΦ̂Þ þ Π2
k;gapg;TÞ; ð15Þ

where the degree of freedom i appears as a background
field in the EP. A truncated treatment involves doing an
expansion of the right-hand side of the gap equation with
respect to Π2

k and truncate to a given order. To the leading
order, the truncated squared thermal mass reads

Π2
i;trunc ¼

∂2

∂Φ̂2
i

X
k

VT
1−loopðfM2

kðΦ̂Þg;TÞ: ð16Þ

If the thermal potential is evaluated to leading order in high-
temperature expansion, one obtains the well-known field-
independent form of the squared thermal masses

Π2
i;hT ¼ ciT2: ð17Þ

The ci are constant coefficients dependent on couplings
determined by the theory, and we collect the thermal mass
coefficients ci for all degrees of freedom in our model in
Appendix C. We implement the high-T thermal masses in
Eq. (17), the truncated thermal masses in Eq. (16), and the
gap thermal masses in Eq. (15) in comparison, to effec-
tively resum higher-order daisy diagrams. In Fig. 2, we
show the squared thermal mass of the scalars as a function
of the inert field values at a temperature of T ¼ 5000 GeV,
computed with the different levels of accuracy described
above, for the BM scenario B to be defined in Table I. The
high-T thermal masses should be independent of the inert
field value ϕ; however, Fig. 2 shows a small variation with
respect to the field value due to the RG improvement
implementation to be discussed below. The truncated
thermal masses have an enhanced dependence of the inert

FIG. 2. Squared thermal mass of the scalars for the BM scenario
B as a function of the inert field values at T ¼ 5000 GeV for
different thermal mass implementations. Several lines are over-
lapping: Higgs and Higgs Goldstone boson (GB) thermal masses
are degenerate when scanning the inert direction; the high-T
thermal mass for inert and inert GB are always degenerate.

3There are several relevant discussions in the literature, e.g.,
Refs. [50,51,53], pointing out different types of finite-temper-
ature contributions due to the different implementation of thermal
mass effects, including full vs partial daisy resummation, as well
as higher-order loop corrections from finite-temperature resum-
mations such as those coming from superdaisy, lollipop, and
sunset diagrams. In this study, we restrict ourselves to the full
daisy resummation approach and leave further investigation for
future work.
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field value, especially for the inert thermal mass itself, but a
more sizable variation occurs for the gap thermal masses.
The differences among thermal masses for different imple-
mentations as shown in Fig. 2 will end up, however, having
a very small impact on the results relevant for the phase
structure of the EW nonrestoration BMs.
The fixed-order EP at finite temperature, including both

the zero-temperature and thermal contributions, depends on
the scale μR at which the theory is renormalized. For
example, at one-loop order, using the high-temperature
expansion in Eq. (12), the potential has a logarithmic
dependence on the renormalization scale as

log

�
T2

μ2R

�
; ð18Þ

where the logðM2
i ðΦ̂Þ þ Π2

i Þ piece is canceled between the
CW and logarithmic term in the high-temperature expan-
sion of the thermal potential contribution. By implementing
RG improvement, where the parameters, fields, and vac-
uum energy of the potential are evaluated at the scale μR,
one would cancel the scale dependence to the order of the
calculation. As we only calculate the effective potential and
the RG improvement at one-loop order, the scale μR needs
to be chosen wisely to avoid unresummed large logarithms
from higher-order loop effects. Formally, at T ¼ 0 with a
convenient choice of the renormalization scale, the L-loop
effective potential with an RG improvement at (L þ1)-loop
order, is exact up to Lth-to-leading log order [54–56]. At
finite temperature, the choice of the renormalization scale
should vanish or minimize the unresummed logarithms

such as logN ðM2
i ðΦ̂ÞþΠ2

i
μ2R

Þ for N ≥ 2 [50,53]. Our model at

hand involves multiple degrees of freedom; therefore, there
is no single choice of the scale to make all the logarithms
negligible. In this work, we choose

μ2R ¼ MaxfM2
i ðΦ̂Þ þ ciT2; ð246 GeVÞ2g; ð19Þ

where i runs over all degrees of freedom (mass eigenstates)
in the plasma. This is a convenient choice as long as there is
no large separation between scales of the particles’ masses,
including the thermal mass contribution, as well as between

the particle masses and the temperature, as it is the case in
our study. The CW potential further includes polynomial
contributions of the radiative corrections. It also partially
accounts for multiscale particle threshold effects beyond
the one single-scale threshold taken into account through
the RG improvement. We collect the one-loop beta func-
tions and wave function renormalization factors for our
model in Appendix D and implement the RG improvement
for all numerical calculations.4

IV. MEAN FIELD ANALYSIS FOR THE
THERMAL HISTORY

This section provides an analytical understanding of the
model parameter space compatible with the desired thermal
history—the electroweak symmetry stays nonrestored in
the inert sector up to temperatures much higher than the
EW scale, whereas the agent of the electroweak symmetry
breaking changes at temperatures around the EW scale
from the inert Higgs sector to the SM one. In this work, we
do not explicitly discuss the UV scale physics completion
that may lead to electroweak symmetry restoration at even

FIG. 3. Parameter space on the NλΦχ − λHΦ plane compatible
with desired thermal histories based on a mean-field analysis.
Relevant zero-temperature constraints are also shown. Other
parameters are fixed: λΦ ¼ 0.1, NΛχ;n ¼ 2.5, λHχ ¼ 0, λ̃HΦ ¼ 0,
and μ2Φ ≥ 0 is imposed.

TABLE I. Parameter choices for the BMs A and B. The
dimensionful quantities are in units of GeV.

μ2H λH μ2Φ λΦ μ2χ λχ λHΦ λ̃HΦ

BM A 8994.45 0.119 2500 0.1 100 0.01 −0.001 0
BM B 8991.84 0.119 5800 0.1 5000 0.004 0.01 0

λΦχ λ̃χ λHχ N mh mϕ mχ

BM A −0.06 0 0 250 125 48.47 9.8
BM B −0.0375 0 0 600 125 84.58 68.87

4Notice that here the RG improvement we perform does not
involve temperature flow as has been proposed, for example, in
Refs. [57–59], where the authors treat temperature as an inde-
pendent scale that participates in the RG flow and thermal
diagrams, like daisy and superdaisy, would have been resumed
as a result.
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higher energies and hence would allow for the possibility of
EWBG. However, we will study the conditions necessary
for the suppression of the sphaleron rate as a function of the
model parameter space through the whole temperature
regime for which the electroweak symmetry is broken.
More specifically, we will explore the constraints on the
ratio between the electroweak symmetry-breaking vevs to
the temperature that may allow for such a suppressed
sphaleron rate. This will provide a framework for future
EWBG model building. If, instead, the new physics UV
completion would directly provide a source of baryon
asymmetry at the high scale, such as, for example, in the
case of leptogenesis, grand unified theory (GUT) baryo-
genesis, or Affleck-Dine baryogenesis [60], then the
requirement on the sphaleron rate could be ignored. A
discussion of possibilities for baryogenesis as well as
specific details on the sphaleron rate relevant for our model
will be presented in Sec. VI.

We summarize the above desired thermal history with
three conditions as follows

(i) C1: Nonrestoration of the electroweak symmetry.—
This is realized up to very high temperatures by
having a nontrivial inert phase: hφihighT ≠ 0;

(ii) C2: Phase transitions from the inert Higgs phase to
the SM Higgs phase.—This condition secures that
the Universe is at the SM vacuum at zero temper-
ature, while being compatible with C1.

(iii) C35: Sufficiently suppressed sphaleron rate after
EWSB.—This would allow preserving any baryon
number density that may be generated through an
EWBG mechanism at the ultraviolet.

To gain an analytical understanding of the model param-
eter space compatible with the above conditions, we use a
mean-field approximation of the finite-temperature effective
potential, where the thermal potential is evaluated up to
leading order of the high-temperature expansion

VMF
ZNþI2HDM ¼ −

1

2
ðμ2H − chT2Þh2 þ 1

2
ðμ2Φ þ cφT2Þφ2 þ 1

2
ðμ2χ þ cχT2Þχ2i

þ λH
4
h4 þ λΦ

4
φ4 þ λ̃χ

4
χ4i þ

λχ
4
ðχiχiÞ2 þ

ΛHΦ

4
φ2h2 þ λΦχ

4
φ2χ2i þ

λHχ

4
h2χ2i ; ð20Þ

where ci for i ¼ h;φ; χ are given in Eqs. (C1)–(C3). Such a
mean-field potential is a reliable approximation before
considering RG improvement and daisy resummation,
especially at high temperatures. We shall include resum-
mations in the next section for a full numerical study at high
field values and temperatures. Here, we provide an ana-
lytical study based on the mean-field potential to obtain a
coarse understanding of how the desired thermal history is
achieved within our model.
Let us first study the SM and inert Higgs sector phases of

the potential in Eq. (20). An inert phase PΦ, where only the
inert Higgs field has a nonzero field value, reads

PΦ∶hðh;φ; χ1;…; χNÞi ¼ ð0; wðTÞ; 0;…; 0Þ ð21Þ
with

wðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
μ2Φ þ cφT2

λΦ

s
: ð22Þ

At very high temperatures, T2 ≫ μ2Φ, one can approximate

wðTÞ ≈
ffiffiffiffiffiffiffiffiffi
−
cφ
λΦ

r
T: ð23Þ

Given the BFB condition that λΦ > 0, a negative thermal
mass coefficient cφ,

cφ ¼ λΦ
2
þ λHΦ þ λ̃HΦ=2

6
þ 3g2 þ g02

16
þ N

λΦχ

24
; ð24Þ

generates a nonzero inert phase at very high temperatures,
which is the key to achieve electroweak symmetry non-
restoration (or delayed restoration) in the inert sector in our
model. This provides for condition C1 in the mean-field
approximation as

C1MF → cφ < 0: ð25Þ

The main driver of a negative cφ is a negative cross quartic
between the inert and the singlet sector λΦχ, whose negative
contribution is magnified by the number of singlets N. If
the inert mass parameter μ2Φ ≥ 0, such a phase where
only the inert field has a nonzero vev would disappear
at a temperature Tr

Φ (either as a global or local minimum),
where

Tr
Φ ¼

ffiffiffiffiffiffiffiffi
μ2Φ
−cφ

s
: ð26Þ

A low restoration temperature Tr
Φ facilitates the existence

of phase transitions between the inert and SM Higgs phases
as well as the associated condition for a suppressed
sphaleron rate, which will be discussed in more detail
below. Instead, if μ2Φ < 0, this inert phase exists at zero
temperature, which puts a constraint5As discussed above, this condition is optional.
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μ2Φ > −

ffiffiffiffiffiffi
λΦ
λH

s
μ2H ð27Þ

for it to be above the EW vacuum at T ¼ 0, i.e.,
V0ð0; wð0Þ; 0;…0Þ > V0ðv0; 0; 0;…0Þ, in addition to the
condition in Eq. (8).
A SM Higgs phase PH of the potential, where only the

SM Higgs has a nonzero field value, reads

PH∶hðh;φ; χ1;…; χNÞi ¼ ðvðTÞ; 0; 0;…; 0Þ ð28Þ

with

vðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2H − chT2

λH

s
; ð29Þ

where at zero temperature it becomes the EW vacuum with
vð0Þ ¼ v0. Such a phase appears at a temperature

Tr
H ¼

ffiffiffiffiffiffi
μ2H
ch

s
: ð30Þ

Another phase that possibly exists during the thermal
history is when both the SM Higgs and the inert Higgs
fields acquire simultaneously nonzero values

PHΦ∶hðh;φ; χ1;…; χNÞi ¼ ðṽðTÞ; w̃ðTÞ; 0;…; 0Þ; ð31Þ

where

ṽðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ̃2H − c̃hT2

λ̃H

s
; w̃ðTÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−
μ̃2Φ þ c̃φT2

λ̃Φ

s
ð32Þ

with

μ̃2H ≡ μ2H þ ΛHΦ

2λΦ
μ2Φ; μ̃2Φ ≡ μ2Φ þ ΛHΦ

2λH
μ2H;

c̃h ≡ ch −
ΛHΦ

2λΦ
cφ; c̃φ ≡ cφ −

ΛHΦ

2λH
ch;

λ̃H ≡ λH −
Λ2
HΦ

4λΦ
; λ̃Φ ≡ λΦ −

Λ2
HΦ

4λH
; ð33Þ

implying that this phase is governed by the Higgs-inert
mixing coupling ΛHΦ defined in Eq. (6). An important
feature of this phase is that, given the potential in Eq. (20),
the potential difference reads

VðPHΦ;TÞ − VðPH;TÞ ∝ −ð4λΦλH − λ2HΦÞ−1
VðPHΦ;TÞ − VðPΦ;TÞ ∝ −ð4λΦλH − λ2HΦÞ−1; ð34Þ

where the proportionality coefficients are always positive
independent of the temperature. Thus, if 4λΦλH − λ2HΦ ≤ 0,

the Higgs-inert phase PHΦ is irrelevant as it is always
shallower than either the SM or inert Higgs phases. On the
contrary, if 4λΦλH − λ2HΦ ≥ 0, as long as such a Higgs-inert
phase exits, it is deeper than both the SM or inert Higgs
phases, thus becoming the global minimum.
Concentrating on the case where PHΦ is the global

minimum at a given temperature, notice that the situa-
tion 4λΦλH − λ2HΦ ≥ 0 coincides with the BFB condition if
λHΦ ≤ 0; hence, for negative/zero cross quartic, the Higgs-
inert phase will be the global minimum at finite temper-
ature. Moreover, at zero temperature, the nontachyonic
condition enforced in Eq. (8) implies μ̃2Φ ¼ m2

ϕ ≥ 0. This

yields that whenever 4λΦλH − λ2HΦ ≥ 0 → λ̃Φ ≥ 0 there is
no real solution for w̃ð0Þ in Eq. (32), as expected since the
nontachyonic solution was derived under the assumption
that the PH at T ¼ 0 is the physical vacuum. In addition,
let us recall that at very high temperatures we have
restricted our case to the inert phase PΦ being the global
minimum (no electroweak symmetry breaking in the SM
Higgs sector); hence, Eq. (32) implies that we voluntarily
enforced

c̃h ≥ 0∨c̃φ ≥ 0 ð35Þ

whenever T2 ≫ μ̃2HðΦÞ. Given the above constraints (PH and

PΦ are the global minimum at T ¼ 0 and high temper-
atures, respectively), if the phase PHΦ ever appears, in a
temperature regime T2 ∼ μ̃2HðΦÞ, it develops at a temperature

MaxfT̃r
H; T̃

r
Φg and must disappear at a lower temperature

MinfT̃r
H; T̃

r
Φg. These two characteristic restoration tem-

peratures are defined from Eq. (32) demanding that either
ṽðT̃r

HÞ ¼ 0 or w̃ðT̃r
ΦÞ ¼ 0, respectively. Observe that,

within the mean-field approximation we are considering,
from Eqs. (22), (29), and (32), it follows wðTc

HÞ ¼ w̃ðTc
HÞ

and vðTc
ΦÞ ¼ ṽðTc

ΦÞ. As a consequence, VðPHΦ; T̃r
HÞ ¼

VðPΦ; T̃r
HÞ and VðPHΦ; T̃r

ΦÞ ¼ VðPH; T̃r
ΦÞ, which implies

that the critical temperature defining the transition between
the PHΦ and PΦðPHÞ phases is given by Tc

H ¼ T̃r
H

(Tc
Φ ¼ T̃r

Φ), indicating that these transitions are second
order within the mean-field approximation. These
equalities imply that

Tc
H ¼

ffiffiffiffiffiffi
μ̃2H
c̃h

s
; Tc

Φ ¼
ffiffiffiffiffiffiffiffi
μ̃2Φ
−c̃φ

s
; ð36Þ

and their existence demands

μ̃2H
c̃h

≥ 0 ∧ μ̃2Φ
−c̃φ

≥ 0: ð37Þ

In the numerical study where we consider the full thermal
potential as well as daisy contributions, such phase tran-
sitions could be affected and become first order. However,
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they would hardly be strongly first order in the absence of
large thermal or tree-level barriers.
Other possible phases associated with the finite-

temperature potential (20) include the trivial point, which,
as long as any of the above phases exist, yields a shallower
value of the potential, as well as phases involving singlets
with nonzero field values. The latter will not be further
considered in this section as they are unlikely to participate
in the thermal history. When evaluating the thermal history
in the numerical section; however, all possible phases will
be taken into account.
After having considered the existence of all possible

phases and some of their properties, let us now concentrate
on the specifics of the phase transitions from the inert sector
to the SM Higgs sector.
First, we discuss the simpler case where the phase PHΦ

either never appears or is irrelevant. In such a case, there
should be a phase transition from PΦ to PH, as illustrated on
the middle penal of the second row in Fig. 1. Given the
potential in Eq. (20), such a transition happens at a critical
temperature,

Tc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2H þ ffiffiffiffiffiffiffiffiffiffiffiffiffi

λH=λΦ
p

μ2Φ
ch −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
λH=λΦ

p
cφ

s
; ð38Þ

at which the potential becomes degenerate VðPH;TcÞ ¼
VðPΦ;TcÞ. The condition for such a Tc to exist reads [with
help from the zero-temperature constraint (8)]

−

ffiffiffiffiffiffi
λΦ
λH

s
μ2H < μ2Φ < −

cφ
ch

μ2H; ð39Þ

and this will have a relevant impact on the allowed values of
the inert Higgs boson mass, as will be discussed later on.
As mentioned in C3, to allow for the possibility of a

EWBG after UV completion, we will look at the conditions
on the sphaleron rate at finite temperatures. The dilution of
the baryon number density after the onset of a UV-induced
EWPT responsible for the EWBG will be double exponen-
tially suppressed by the ratio of the sphaleron energy to
temperature; see the discussion in Sec. VI. Hence, suc-
cessful EWBG in the complete model will require (see,
e.g., Ref. [44])

ξðTÞ ¼ vEWðTÞ
T

≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hφðTÞi2 þ hhðTÞi2

p
T

≳ 1; ð40Þ

where φ and h are the inert and SM Higgs fields charged
under the EW gauge group. This condition should be
satisfied at any temperatures throughout the thermal history
from the creation of baryon asymmetry up to present times.
It can be shown that such a condition can be satisfied if the
phase transition PΦ to PH fulfills

Min

	
wðTcÞ
Tc

;
vðTcÞ
Tc



≳ 1: ð41Þ

This follows from the fact that as long as μ2Φ ≥ 0, as will be
implemented in our BM scenarios,

ξðTÞ ¼ wðTÞ
T

≥
wc

Tc
for T ≥ Tc; ð42Þ

ξðTÞ ¼ vðTÞ
T

≥
vc
Tc

for T ≤ Tc: ð43Þ

Next, we discuss the case where the phase PHΦ is
relevant and appears as a global minimum in the thermal
history, as illustrated on the left panel of the second row in
Fig. 1. To have a two-step phase transition near the EW
scale

PΦ → Tc
HPHΦ → Tc

ΦPH; ð44Þ

one needs

Tc
H ≥ Tc

Φ; ð45Þ

with

μ̃2H ≥ 0; c̃h ≥ 0; μ̃2Φ ≥ 0; c̃φ ≤ 0; ð46Þ

which corresponds to the condition for these two temper-
atures to exist given by Eq. (37).
Analogous to the previous case, the condition to avoid

baryon asymmetry washout in the context of a EWBG in a
UV completed theory would require

Min

	
wðTc

HÞ
Tc
H

;
vðTc

ΦÞ
Tc
Φ



≳ 1: ð47Þ

Another thing to notice in this case is the role played by the
mixing quartic λHΦ, which controls the deviation from Tc

H
to Tr

H and from Tc
Φ to Tr

Φ. The smaller the mixing quartic,
which is the region that we are mainly interested in, the
smaller the deviations are. Moreover, in the region of small
λHΦ, the phase transition pattern PΦ → PHΦ → PH is most
likely to happen due to the decoupled contributions from
the inert and SMHiggs minima to render the PHΦ minimum
in the intermediate-temperature range. This is apparent in
Fig. 3, to be discussed below.
It is also possible to have a temporary electroweak

symmetry restoration at temperatures between those sup-
porting the two EW-breaking phase structures PΦ and PH.
This is the case when Tr

Φ is higher than Tr
H, as illustrated on

the right panel of the second row in Fig. 1. Since in the
temperature range between Tr

H and Tr
Φ the system is in a

EW restoring phase, this scenario would allow for the EW
sphaleron to be active in this regime. The sphaleron will
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wash out any baryon asymmetry that could have been
generated by high-scale EWBG. At this moment, we will
mainly focus on the previous cases that are compatible with
a UV EWBG mechanism.
Another possible case is a more fine-tuned four-step

phase transition when Tc
H ≤ Tc

Φ and Tr
H ≥ Tr

Φ. This case
will require large mixing quartic and significant fine-tuning
of the parameter space. We do not further concentrate on
this case.
In Fig. 3, we show the parameter space spanned by

NλΦχ − λHΦ considering the zero-temperature constraints
discussed in Sec. II and the different thermal history possi-
bilities discussed above. The region violating condition
C1MF is shaded gray, while the regions satisfying the
thermal history patterns and the nonwashout conditions
are highlighted with light and dark orange (light and
dark maroon) for the transition pattern PΦ → PH (PΦ →
PHΦ → PH), respectively. There is no region that satisfies the
rare four-step phase transition. The conditions for the correct
zero-temperature vacuum structure are satisfied on thewhole
parameter space ifwe imposeμ2Φ; μ

2
χ ≥ 0. The region giving a

tree-level BFB potential, calculated from conditions (5), is at
the right side of the black solid lines for a different number of
singlet scalarsN. Notice that, within the mean-field approxi-
mation, the thermal history patterns, as well as the non-
washout requirements are independent on N as long as the
value of NλΦχ is kept a constant. Since both the thermal
histories and nonwashout conditions are strongly correlated
to the inertmass parameter, themass of the inert Higgs boson
is in turn also constrained. In Fig. 3, we show solid blue lines
that determine the maximal value of the inert Higgs boson
mass compatible with the corresponding phase transition
patterns for a given value ofNλΦχ and λHΦ. Higher values of
the inert Higgs boson mass can be achieved to the left of the
lines. Similar lines for the suppressed sphaleron rate con-
ditions are shown by the dotted blue lines. Other parameters
have been fixed in Fig. 3 to be λΦ ¼ 0.1, NΛχ;n ¼ 2.5 and
λHχ ¼ 0, λ̃HΦ ¼ 0. The SM Higgs sector parameters are
fixed to satisfy the Higgs vev and mass at the tree level. We
constrain the discussion to the case μ2Φ ≥ 0, which makes
conditions (41) and (47) sufficient to secure a suppressed
sphaleron rate within the mean-field approximation as
discussed above. In addition, in Fig. 3, we also show the
two benchmark points A and B,6 which will be discussed in
the full numerical study in the next section.
From Fig. 3, one notices that the region where the cross

quartic coupling between the inert and the SM Higgs
sectors almost vanishes, i.e., λHΦ ∼ 0 and hence the SM
Higgs sector is minimally perturbed, can be compatible
with the desired thermal history. Main constraints on the

parameter space come from the tension between the BFB
and desired thermal history; the more negative the cross
quartic NλΦχ , the easier the nonrestoration and the lower
the critical temperatures which yield larger EW vev to
temperature ratios ξðTÞ. A more negative cross quartic
coupling NλΦχ makes it harder for the potential to be BFB,
as shown in Eq. (5). Moreover, a larger number of singlets
in turn helps to relax the BFB condition on NλΦχ by
relaxing its lower bound while increasing the singlet
effective quartic coupling Nλχ . As mentioned above,
another constraint is on the mass of the inert Higgs boson.
The restriction on the parameter space is alleviated for a
lighter inert Higgs boson mass, especially in the region
where the cross quartic λHΦ is small. This can be easily
understood, for example, in the PΦ → PH phase transition
pattern, since a smaller inert mass parameter μ2Φ yields a
lower critical temperature Tc, as is shown in Eq. (38). A
similar argument, although more involved, applies to the
two-step phase transition. The direct correlation between a
smaller inert Higgs boson mass and a smaller inert mass
parameter μ2Φ especially holds in the region of small λHΦ, as
the one considered here. Observe, however, an inert Higgs
boson mass above half of the SM Higgs mass can be
achieved, even with λHΦ ∼ 0, as long as the number of
singlets is sufficient to be in the BFB allowed region.
The analysis in this section is based on the mean-field

approach, where we consider the leading-order high-
temperature expansion of the thermal potential. For temper-
atures well above the EW scale, however, including the RG
improvement and the daisy resummation becomes neces-
sary. In the next section, we perform a full numerical study
for two benchmark points and present the results for
different approximations.

V. NUMERICAL RESULTS ON
BENCHMARK POINTS

In this section, we explore the thermal histories of two
model benchmark points based on numerical calculation of
the finite-temperature effective potential prescriptions as
described in Sec. III. Appendix F contains the details of our
PYTHON implementation. The main result of the algorithm
is the value of the global minimum at a given temperature.
The set of all global minima at a given set of temperatures
defines the phase history we consider. A phase transition is
observed when there is a change of phase pattern (e.g., from
an inert-only-phase to an inert-SM Higgs phase) at a certain
temperature.7 In this section, we also explore the value of
the EW vev to temperature ratio ξðTÞ, which is relevant for
obtaining information on the sphaleron rate.
We define two characteristic benchmark points for our

model—benchmark A that has inert Higgs eigenstates with6BM point B has a slightly different value of NΛχ;n than the
one used in Fig. 3. However, the error of this point’s position in
the NλΦχ − λHΦ plane is within the thickness of the point drawn
in the plot.

7We leave a detailed scan of the transition using nucleation
temperatures instead of critical temperatures to later work.
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masses slightly above half of the Z boson mass and a
benchmark B that has inert Higgs eigenstates with masses
slightly above half of the SM Higgs boson mass. Inert mass
eigenstates with masses above 100 GeV can be achieved,
but they would either lead to restoration of the electroweak
symmetry at intermediate-temperature scales or would
require a number of singlet scalars of order Oð1000Þ or
more. The specific values of the model parameters and
masses are given in Table I.
We implement the RG improvement on the BFB con-

ditions of Eq. (5) and find that, at scales of the order of
105 GeV, these conditions are violated for both BMs.8

Such an energy scale is of the order of the scale at which
the SM Higgs quartic coupling becomes negative through
its SM one-loop RGE. This is expected since we consider
that the SM Higgs only interacts with the extended scalar
sector through a tiny inert-Higgs coupling, and therefore its
quartic coupling evolution should be minimally perturbed
compared to its SM behavior. The scale above gives a rough
estimate of the energy scales up to which our results can be
trusted. By minimizing the finite-temperature potential
numerically, we have checked that the potential remains
stable up to high energy scales shown below for both BMs.
We also ran the RGE of the model [see Eqs. (D1)] for BMs
A and B and found that Landau poles appear at energies
around 2.5 × 1014 and 1015 GeV, respectively—well above
the scale of validity of the theory at the one-loop RGE level.
In Figs. 4 and 5, we show the phase structure (upper

panel) and EW vev/temperature ratio (lower panel) for BMs
A and B, respectively, and for different implementations of
the finite-temperature effective potential as introduced in
Sec. III. In the phase structure plot, we are showing as a
function of the temperature the field values of the SM
Higgs (red), inert Higgs (blue), and singlet (green)9 at the
global minimum. In the vev/temperature ratio plot, we
show the value of ξðTÞ, as defined in Eq. (40), as a function
of the temperature. To showcase the uncertainties associ-
ated with different finite-temperature implementations, we
show results obtained with no daisy resummation (solid
lines); daisy resummation with high-T thermal masses, as
in Eq. (17) (dashed lines); and daisy resummation with
truncated thermal masses, as in Eq. (16) (dashed-dotted
lines). In addition, we have included the RG improvement
for all calculations and consider the uncertainties related to
the CW potential, which takes care of multi-scale issues
beyond the RG improvement. In the figures, we use the
same type of lines to represent a given finite-temperature
approximation with or without the CW contribution.

Hence, the space in between the lines shows the uncertainty
related to the CWeffects. It is apparent from the figures that
this accounts for a small effect, and we will not discuss it
any further.
In Fig. 4, for BM A, one observes that the major

uncertainty is caused by the effects of daisy resummation
and the impact of different thermal mass treatments within
the daisy resummation. However, the most important
feature of these results is that the qualitative behavior of
the phase structure, in Fig. 4 upper panel, and the EW vev-
temperature ratio affecting the sphaleron rate, in Fig. 4

FIG. 4. Phase structure (upper panel) and EW vev/temperature
ratio (lower panel) as a function of temperature, for different
finite-temperature implementations, for BM point A as defined in
Table I. The singlets never obtain a nonzero vev in the entire
temperature range. The black dotted line separates linear from
logarithmic axes scales. The red dotted line in the lower panel
marks ξ ¼ 1.

8There is a small dependence on the CW treatment that
somewhat perturbs the SM Higgs quartic coupling as is explained
in Sec. III.

9We assume all singlets have the same vev—it is either all or
none. Given that λ̃χ ¼ 0, which we chose at tree level and is
protected against the RGE, we have the SOðNÞ symmetry that we
can use to rotate in that form.
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lower panel, is not significantly modified by the different
finite-temperature treatments. In fact, BM A exhibits both
the feature of EW nonrestoration until high energies and
ξðTÞ > 1. The plots of BM A are shown up to the
temperature of 105 GeV, after which the potential becomes
unbounded from below. Observe that there is a kink below/
about 200 GeV, which is due to the phase transition pattern
from the PΦ phase to the PHΦ phase, and it is a physical
effect. In addition, there is a spike at T ∼ 110 GeV for the
daisy resummation with truncated thermal masses, which
is, however, a defect of this finite-temperature implemen-
tation. We expect this effect to be smoothed out when

implementing an improved treatment of the thermal
masses.10

In Fig. 5, we show similar results as for Fig. 4, but for a
heavier inert Higgs boson mass of the order of mh=2 that
will allow for different phenomenology. The same as BM
A, BM B exhibits both the feature of EW nonrestoration
until high energies and ξðTÞ > 1. The plots are shown up to
the temperature of T ¼ 4 × 104 GeV, after which the
potential becomes unbounded from below. For the BM
B, there is a kink above/about 100 GeV, which is due to the
phase transition from the PHΦ phase to the PH phase. In
addition, analogous to BM A, there is a spike at around
300–400 GeV for the daisy resummation with truncated
thermal masses, which we understand is the same type of
artifact as discussed above and will be cured by imple-
menting an improved treatment of the thermal masses.
As described above, using the gap equation, Eq. (15), to

derive the thermal masses is the most robust procedure.
However, solving the gap equation at every step in the
minimization of the potential is computationally extremely
expensive and is beyond the scope of this work. However,
to secure that the nonrestoration behavior at high temper-
atures survives the most precise treatment of the thermal
masses through the gap equation, we checked for several
high-temperature values all the way down close to the EW
scale that the nonrestoration behavior and ξðTÞ > 1 survive
for both BM scenarios.

VI. BARYOGENESIS AND SPHALERON
RATE SUPRESSION

In this section, we briefly discuss the possibilities
of high-scale baryogenesis scenarios based on 1) EW-
symmetry nonrestoration up to scales as high as the GUT/
Planck scale or 2) electroweak symmetry restoration
around a UV scale of the order of validity of our model
at which a new UV theory is in place. In the latter case, we
expect to build a UV theory that allows for EWBG. Hence,
in this case, we would like to explore in more detail the
sphaleron washout constraints in our BM scenarios to
preserve the created asymmetry down to zero temperature.
If the EW symmetry, through a specific UV completion,

were to remain broken well above the scale of validity of
our current model,11 possibly up to the GUT or Planck

FIG. 5. Phase structure (upper panel) and EW vev/temperature
ratio (lower panel) of BM B. Model parameters of the BM are
given in Table I. The singlets never obtain a nonzero vev in the
entire temperature range. The black and red dotted lines are as
in Fig. 4.

10This spike is a defect associated with the truncated thermal
mass calculation, where the second derivative of the thermal
potential diverges when its argument, M2=T2, is close to 0.
Indeed, such an effect does not happen for implementation with
high-T thermal masses, as the divergence does not exist for the
thermal potential within this approximation. Using the full gap
equation, where the IR divergence is cured by including the
thermal correction prior to performing the derivative, we expect
the spike artifact shown in Fig. 4’s lower panel to disappear.

11Our study is only including one-loop RGEs, but in analogy
to the SM, we expect the validity of our model to be extended to
higher energies by considering higher-order loop RGEs.
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scale, this would enable baryogenesis mechanisms with little
dependence on how the EWSB is triggered. In such a case,
the baryon asymmetry can be generated by amechanism that
creates a source of B-L ≠ 0, such as, for example, GUT
genesis, leptogenesis, or Afflect-Dine baryogenesis (see
Ref. [61] and references therein). Recall that sphaleron
processes preserveB-L, and hence an asymmetrywill subsist
once generated. However, they tend to wash out Bþ L as
long as they remain active, thereby enabling conversion of
baryon (antibaryon) number into antilepton (lepton) number.
For any specificB-L ≠ 0mechanism, therewill be additional
model-building considerations for successful baryogenesis,
including specifics of the new sources of CP violation and
out-of-equilibrium conditions. It is important to notice that
the two BMs we consider in this work imply that the
sphaleron rate is suppressed during the broken-electroweak
symmetry epoch; hence, a mechanism such as leptogenesis,
that requires active sphalerons to convert leptons into
antibaryons, will not work. Other BMs that allow for
sphalerons to become active at some intermediate energy
scale during the temporary restoration of the electroweak
symmetry, as in the lower right panel of Fig. 1, could be
studied. Exploring these new ideas for baryogenesis will be
the subject of future work.
In the case of a UV completion that induces a restoration

of the electroweak symmetry at high energy scales of the
order of the validity of our model, one can also require that
such UV theory induces a strong first-order phase transition
and enables EWBG. Although building such UV theory
will remain a topic of future work, let us briefly comment
on the various ways that we can picture such a scenario.
In our minimal model, the restoration can occur through

the RGE of the quartic couplings. Under the high-
temperature expansion, one can visualize this possibility
through the thermal coefficient cφ given in Eq. (24). If cφ,
which at lower temperatures has a negative value, were to
become positive at a given high scale through the RGEs,
this will render EW restoration at high temperatures.
For simplicity, let us consider the limit where in the IR
the mixing quartics λHΦ, λ̃HΦ, and λHχ are zero and neglect
the leading-log impact of these mixing quartics. The
running of the thermal coefficient is then determined
by the running of the linear combination of λΦ=2þ
ð3g2 þ g02Þ=16þ NλΦχ=24. In our model, the inert doublet
self-coupling λΦ generically becomes larger at higher
scales, while the mixing quartic λΦχ , whose initial value
is negative, could also increase, depending on the specific
region of parameter space. However, we checked that the
latter is not fulfilled for our BMs; hence, additional effects
will be needed to restore the electroweak symmetry in these
cases. There are indeed different ways to change the
running behavior of cφ, to allow for EW restoration. For
instance, one can consider that the inert doublet is charged
under some new spontaneously broken U(1) gauge group
with coupling g00. This will affect cφ directly by adding a

g002=16 term after crossing the scale where the new U(1) is
restored, rendering its gauge boson massless such that it
starts contributing to the thermal mass of the inert doublet.
Similarly, one can also introduce some heavy vectorlike
fermions (under SM gauge groups) that have Yukawa
couplings to the inert doublet. When above the heavy
fermion mass scale, this will add new positive contributions
to the thermal coefficient cφ by y2FNF=12, where NF is the
color factor or the specifies of new heavy fermions.
Beyond directly changing the thermal coefficient cφ above

some mass threshold scale, one can also modify the running
of the couplings contributing to cφ, by adding new gauge
and/or matter content. The minimal and simplest implemen-
tation would be to charge the χ field under some new SUðNÞ
gauge group. It directly contributes positively to the beta
function of λΦχ , which is the only source of negative
quantities in the thermal coefficient cφ, helping restore the
EWsymmetry at a higher scale.On the contrary,matter fields
interacting with the inert Higgs field seem to contribute
negatively to the beta functions of the quartics contributing to
cφ, although, as discussed below, they may be required to
secure a strong first-order phase transition. An additional
source of symmetry restoration could be to add scalar fields
that directly couple to the inert field and acquire masses at
high energies at which restoration would take place [23].
An important additional issue related to the high-energy

EWBG mechanism in the framework of delayed electro-
weak symmetry restoration is that one needs to ensure that a
strong first-order phase transition takes place at the time of
electroweak symmetry breaking. This is required by the
out-of-equilibrium condition of Sakharov. Here, it is
possible to exploit the existence of an inert fermion sector
that suppresses the strength of the inert self-coupling and
thereby enhances the strength of the phase transition.
As is clear from the above discussion, a successful UV

model of high-temperature EWBG will demand detailed
model building, which we leave for future publication. In
the following, we will concentrate on the EW nonrestora-
tion case at hand, where the SM Higgs sector is minimally
perturbed, to discuss details of the sphaleron rate.
Once the UV completion allows for the creation of the

baryon asymmetry through an EWGB mechanism at high
temperatures, one needs to evaluate the sphaleron washout
factor to preserve the asymmetry all the way down to zero
temperatures. Our model generically predicts a slowly
varying ξ ¼ vEWðTÞ=T up to high temperature as well as
a low-scale phase transition between the inert doublet and the
SM Higgs doublet phases near the weak scale. Following a
high-scale SFOPT triggered by a UV completion of the
model, the sphaleronwill become inactive quite fast after that
transition, but there will be some dependence on its rate on
the model parameters. To properly compute the washout
(dilution) of the baryon number density, one should integrate
the effects of the sphaleron rate over a large range of
temperatures (a large period of time), instead of the usual
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assumption that the washout factor is dominated near the
vicinity of the phase transition and is treated as a constant.
Specifically, the amount of sphaleron induced washout is

determined by two quantities: the product of prefactors
entering in the sphaleron rate and the energy of the sphaleron
that appears in one of the exponentials. The latter is
straightforward to compute and largely depends on the gauge
structure of the theory. We provide the necessary steps to get
the sphaleron energy [62,63] in detail in Appendix E. The
computation of the prefactors of the sphaleron rate are more
model dependent. There are two different sources of devia-
tions from the SM results. First, we have an extended scalar

sector, and the additional particles might contribute through
indirect effects in the prefactors. Second, we focus on the
inert doublet, and its quartic coupling is different than the
quartic of the SM Higgs. We therefore discuss the specifi-
cations of the prefactors from the SMvalues [64,65] in detail
in Appendix E.
The sphaleron rate can be written as

Γ
V
¼ 4πω−N trN rotT3

�
vEWðTÞ

T

�
6

κ exp ½−EsphðTÞ=T�;

ð48Þ

FIG. 6. Input values for the sphaleron decay rate in Eq. (48).N tr andN rot are taken from Ref. [64], Fig. 5; ω− is taken from Ref. [64],
Fig. 6; and κ is taken from Ref. [66], including uncertainties as explained in the text, and the energy prefactor B is computed also as
discussed in the text. All quantities are plotted against λ=g2, the ratio of the corresponding quartic to the gauge coupling.
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where the evaluation of the prefactors ω−;N tr;N rot, and κ
are explained in detail in Appendix E and in Fig. 6.
The survival rate of the baryon number density at any

given time t, after the onset of the transition at t ¼ 0, is
[40,44,67]

nBðtnowÞ
nBð0Þ

¼ exp

"
−
13nf
2

Z
tnow

0

dt
ΓðTðtÞÞ
VT3ðtÞ

�
; ð49Þ

where we consider present time, t ¼ tnow, and where nf is
the number of fermion families.
In a radiation-dominated Universe, changing the inte-

gration variable from time to temperature, the above
equation reads

nBðtnowÞ
nBðthighÞ

¼ exp

"
−
13nf
2

Z
Thigh

0

dT
ΓðTÞ
VT6

MPl

ffiffiffiffiffiffiffiffiffiffiffiffi
90

8π3g�

s #
;

ð50Þ

where MPl is the Planck mass and g� is the number of
relativistic degrees of freedom. In our case, it is g� ¼
106.75þ 4þ N for the range of temperatures under
consideration.
Based on the calculation presented above, we can define

the washout or dilution factor as fw:o: ¼ 1 − nBðtnowÞ
nBðthighÞ. In

Table II, we show the values of fw:o: for our two bench-
marks. We see that BM A has a negligible washout factor
for all choices of parameters, even for the most aggressive
assumption for the fluctuation determinant κ, which is a
factor 100 larger than the value suggested in Ref. [66]. BM
B shows subpercent or even negligible washout for the
majority of approximations. Only for the most aggressive
choice of κ, we observe values that can be as high as 70%,
which can be compensated by producing an initial asym-
metry about three times larger than the asymmetry we
observe now. If we consider the central value for κ, we see a
washout of at most 1.2%. We also note that the washout
factor governed by Eq. (50) is much less sensitive to Thigh

than to effects at temperatures close to the EW scale. This is
the case since at higher temperatures the double exponen-
tial in Eq. (50) is larger than at EW temperatures. Indeed, at

temperatures around the EW scale, there is an enhance-
ment from the inverse of the Hubble expansion rate, as
well as from the exponent proportional to exp ½−ξðTÞ�,
where ξðTÞ has its lowest values. That makes the double
exponent in Eq. (50) take its smallest values for temper-
atures close to the EW scale. Hence, at such temperatures,
the main effect of the exponential washout takes place. In
other words, the relevant contribution to the washout
factor is only at scales between the EW scale and around
500 GeV, while at high temperatures, the exponential
washout remains negligible. This holds as long as ξðTÞ
does not fall fast below 1 at high temperatures, which is
the case for our BMs. This ensures that high-temperature
EWBG could build in through a proper UV completion of
our model.

VII. PHENOMENOLOGICAL IMPLICATIONS

In this section, we discuss the general particle physics
phenomenology considerations for our model framework,
including Higgs and Z boson invisible decays, disappearing
tracks, Higgs global coupling shifts, and Higgs diphoton
coupling shifts. We note that our benchmark choices in the
previous section are explicitly set to satisfy these con-
straints. Still, the content in this section provides an
estimation of current physics constraints and future per-
spectives for this model. The constraints shall be under-
stood as applied to the parameters defined at the weak scale,
which are essentially the bare parameters we used in
defining the potential.
There are several phenomenological implications for our

benchmark scenarios. At the zero-temperature EW vacuum,
there exists an additional discrete Z2 symmetry under
which the new scalar fields Φ and χi are odd and the
SM fields are even. This renders the χi and the neutral
components of the inert doublet scalar Φ stable and
invisible once produced.
The possible existence of light scalars, Φ and χi, will

open the possibilities of the SM Higgs decaying into
invisible particles, via the generic portal couplings

L⊃ λHΦðH†HÞðΦ†ΦÞþ λ̃HΦðH†ΦÞðΦ†HÞþ λHχχ
2
i ðH†HÞ:

ð51Þ

TABLE II. Dilution factors fw:o: ¼ 1 − nBðtnowÞ=nBðthighÞ for our benchmark models as defined by the integral in
Eq. (50). The upper limit of the integration, Thigh, is taken as the highest temperatures in Figs. 4 and 5, respectively.
The three entries per cell correspond to uncertainty choices of κ as 0.01κ=κ=100κ. Top and bottom rows per BM
refer to using the CW contribution (top) or not (bottom).

No thermal mass High-T thermal mass Truncated thermal mass

BM A
< 10−16=10−16=10−14 10−11=10−9=10−7 8 × 10−11=8 × 10−9=8 × 10−7

< 10−16=4 × 10−15=4 × 10−13 2 × 10−11=2 × 10−9=2 × 10−7 10−12=10−10=10−8

BM B
9 × 10−10=9 × 10−8=9 × 10−6 4 × 10−5=4 × 10−3=0.296 7 × 10−5=7 × 10−3=0.498
4 × 10−12=4 × 10−10=4 × 10−8 2 × 10−8=2 × 10−6=2 × 10−4 10−4=0.012=0.694
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The generic Higgs decay width into new scalars via this
portal coupling is (per scalar degree of freedom)

Γðh → ssÞ ¼ λ2Hsv
2
0

32πmh

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2
s

m2
h

s
; ð52Þ

where the coupling λHs can be one of the above quartics,
λHΦ, λ̃HΦ, or λHχ, and ms can be the mass of the Φ or χ
states, respectively.
The current LHC 95% confidence level (CL) limit on

Higgs invisible decays is 11% [68] and the HL-LHC
projection is 5.6% [69]. When ms ≪ mh, the phase space
suppression is negligible, and this translates into an upper
limit for the SM–new scalars mixing quartics. The current
and future limits on the mixing quartics read

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nλ2Hχ þ 2ðλHΦ þ λ̃HΦÞ2 þ 2λ2HΦ

q
≤ 0.010ð0.007Þ ð53Þ

for the LHC (HL-LHC). In the above, by including 2λ2HΦ,
we also include the Higgs decays into a pair of the charged
states from the inert doublet.
In the absence of other mass splitting generating

interactions, e.g., λ̃HΦ being zero, one-loop SM effects
generate mass splittings between the charged and neutral
eigenstate of the inert doublet of about 360 MeV [70].
The charged state will decay back to the neutral state via
a soft charged pion, or via the three-body decay mediated
by an off-shell W boson. The typical lifetime is inde-
pendent of the inert doublet mass and is a few milli-
meters. Hence, this charged state can also be treated as
invisible at colliders. In fact, precision Z boson mea-
surements of its invisible decays exclude all inert masses
below 45 GeV, and hence we shall only consider inert
masses beyond the 45 GeV value [71].
Still, one can attempt to look for signals beyond the

missing energy at colliders. At high-energy colliders,
such as the LHC, although challenging, one can look for
the disappearing track signatures from the charged
eigenstate of the inert doublet. However, it is well known
that this channel is difficult for Higgsinos, which our
inert doublet model signature resembles most. The
current sensitivity from LHC disappearing track searches
can exclude pure Higgsinos up to 78 GeV [72]. The inert
doublet production rate from the Drell-Yan process is
roughly a factor of 4 lower than that of Higgsino
production, due to the inert charged Higgs being a scalar
rather than a fermion. Furthermore, for small mixing
quartics such as λ̃HΦ, one can arrange additional con-
tributions to the mass splitting between the neutral and
charged inert doublet states. This will make the charged
state decay promptly, and therefore the disappearing track
searches will no longer apply. Given the above, we are
entitled to ignore the disappearing track search limits and
only comply with the Large Electron-Positron Collider

(LEP) Z invisible bounds for our benchmark scenarios.
Future tests on disappearing tracks could still shed light
on our model.
Summarizing, considering direct search constraints

for our electroweak symmetry nonrestoring model, we
observe that the mixing quartics λHΦ and λHχ are
bounded by constraints on invisible SM Higgs decay
rates. This can give a strong handle for testing possible
benchmarks, but at the same time, there are models,
like our BMs, in which they happen to have negligible
values. In this sense, the more direct and inevitable probe
for our model at colliders is through the invisible Z
decays, relying only on the gauge coupling structure.
Disappearing charged track searches open a new window
of opportunity, if not undermined by parameter choices
of the various mixing quartic couplings.
There are additional Uð1Þ global symmetries in the inert

sector Φ as well as Z2 symmetries under which the singlet
fields χi are odd, that prevent direct mixings between these
states with our SM Higgs doublet. There are, however,
loop-induced corrections to the SM that can be probed
through precision observables. The leading contribution to
the electroweak precision observables (EWPO) is from the
custodial symmetry-breaking term λ̃HΦ, inducing an oper-
ator contributing to the T parameter [73]

OT ¼ 1

2
ðH†D

↔

μHÞ2; cT ¼ λ̃2HΦ

192π2μ2Φ
: ð54Þ

For an inert doublet mass scale μΦ around half the Higgs
mass, the EW precision measurement constrains the
T parameter with uncertainty 0.07 [74,75], constraining
jλ̃HΦj < 0.36 at 95% CL. Although this estimation is
subject to sizable corrections due to the fact that μΦ is
of the order the Higgs mass, this gives an estimate of the
bounds on λ̃HΦ not being very stringent coming from one-
loop suppressed effects. For our benchmarks, we simply set
λ̃HΦ to zero at tree level.
The next set of constraints comes from the Higgs boson

coupling precision measurements, through the coefficient
of the operator,

OH ¼ 1

2
ð∂μjHj2Þ2;

cH ¼ 4λ2HΦ þ 4λHΦλ̃HΦ þ λ̃2HΦ þ Nλ2Hχμ
2
Φ=μ

2
χ

192π2μ2Φ
: ð55Þ

This results in an overall reduction of the Higgs couplings
by 1=2cHv20. We note here that this EFT matching is subject
to large corrections and higher-order terms since the scales
μ2Φ and μ2χ are not far from the Higgs mass squared. On the
other hand, our nonrestoration mechanism has limited
dependence on these parameters. In particular, we have
set λ̃HΦ and λHχ to be zero in our BM scenarios, leaving
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only a shift of the Higgs couplings of about −1=2cH ¼
−λ2HΦv

2
0=ð96π2μ2ΦÞ. For an inert doublet with μΦ around

half the Higgs mass, it yields a global shift in the Higgs
couplings of around −λ2HΦ=ð6π2Þ, bounding jλHΦj < 1.1
(at 95% CL) if we were to achieve 1% Higgs coupling
precision at the HL-LHC [76]. This constraint is much
weaker when we compare it to bounds from direct invisible
Higgs decay searches discussed earlier in this section. It
could, however, be relevant for scenarios with heavy inert
masses, since the Higgs invisible decay bound no longer
applies. However, in such a case, as we shall see next, the
precision measurements on Higgs to diphoton coupling
provide a stronger constraint than the one derived
from Eq. (55).
The EW charged inert doublet also radiatively modifies

Higgs couplings to EW gauge bosons, through

OBB ¼ g02jHj2BμνBμν; cBB ¼ 2λHΦ þ λ̃HΦ

768π2μ2Φ
;

OWW ¼ g2jHj2WμνWμν; cWW ¼ 2λHΦ þ λ̃HΦ

768π2μ2Φ
;

OWB ¼ 2gg0H†τaHWa
μνBμν; cWB ¼ λ̃HΦ

384π2μ2Φ
: ð56Þ

Here, τa are the SUð2Þ generators. Consequently, the Higgs
diphoton coupling is modified by

1 − κγγ ≃ 10π2v20ðcBB þ cWW − cWBÞ; ð57Þ

where κγγ ≡ ghγγ=gSMhγγ . Because the SM Higgs to diphoton
coupling is loop induced, this provides a strong constraint
on jλHΦj to be smaller than 0.04 (at 95% CL) for a 1.9%
precision [76] on the Higgs to diphoton coupling at the
HL-LHC. The current Higgs precision uncertainty of 17%
[77] translates to a constraint on jλHΦj < 0.4 (at 95% CL).
Again, in deriving this limit, we assume that λ̃HΦ ¼ 0, μΦ
being half the Higgs mass, and ignore the deviation of the
form factor from unity from the inert doublet running in
the loop.
Beyond the above, the model also generates less con-

straining effects on EWPO (Wand Y parameter) and Higgs
self-coupling [73,78], whose current and future perspective
sensitivities can be found in Refs. [78–80]. This may
provide, in the future, further complementary information
about the model.

VIII. CONCLUSION

The exploration of electroweak phase transition
patterns leading to electroweak symmetry breaking

allows us to envision plausible paths for EWBG as
well as details of the cosmological history of our
Universe. In particular, the possibility of electroweak
symmetry nonrestoration up to high energy scales,
conceivably up to the GUT or Planck scale, or the
opportunity for delayed electroweak symmetry restora-
tion up to scales of the order of 100 TeVs opens new
windows for baryogenesis mechanisms. In this paper,
we propose a novel approach to realize new thermal
histories, by enabling the agent of EWSB to be an inert
doublet that yields electroweak symmetry nonrestoration
up to high temperatures. These possibilities allow for
diverse thermal histories with multiphase transition
patterns, involving the SM Higgs, the inert Higgs,
and the SM-inert Higgs mixing phases at finite
temperatures.
Our new approach for electroweak symmetry non-

restoration at high energies has interesting computa-
tional requirements. Since the thermal history of our
model, as defined in Sec. II, spans over large-scale
separations from the EW scale to high temperatures, in
our study, we carefully implement the effects of RGE
and thermal resummation, as detailed in Sec. III. When
considering daisy resummation, we compute thermal
masses with different approximations and observe that
they lead to similar quantitive results. In Sec. IV, we
perform an analytical study at leading order in the high-
temperature (mean-field) approximation that helps us
zoom in into the promising region of parameter space
for our numerical study. In Sec. V, we report our
numerical calculations for two benchmark points and
show that our results are robust under various treatments
of thermal resummation while including RGE effects.
Most importantly, the nonrestoration patterns can hold at
least up to high scales of the order of 105 GeV, within
the one-loop RG resumed effective potential. A UV
completion of our model could take place at higher
energy scales. In Sec. VI, we present a detailed study of
the sphaleron washout effects over a broad range of
temperatures and show that for our two benchmark
scenarios the washout rates are such that high-temper-
ature EWBG could be realized after a proper UV
completion. Observe that the crucial ingredient of our
BM scenarios is that the EW symmetry is nonrestored
from high temperatures all the way down to the
EW scale.
Most importantly, our mechanism for transmitting

broken electroweak symmetry from the SM sector to
an inert sector has a specific interesting feature: it can
work even if one decouples the two Higgs sectors in the
tree-level scalar potential, implying that the effect of the
new doublet enters our zero-temperature particle physics
tests at the electroweak-loop level. This enables the
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existence of large model parameter space compatible
with experimental constraints and at the same time calls
for new precision tests of the SM. As discussed in
Sec. VII, our model will find scrutiny at the HL-LHC
through electroweak and Higgs precision tests, invisible
decays, and searches for disappearing tracks.
At high temperatures, our model opens up to possible

UV completions that would enable various baryogenesis
mechanisms. If we go through EWBG, where a strong
first-order electroweak phase transition is necessary, it
would give rise to gravitational wave signals. The peak
frequency, instead of populating around the LISA band
(millihertz), will increase to higher frequencies, at reach
of facilities [81,82] such as BBO, DECIGO, and even
aLIGO. Moreover, the additional singlets χ in our study
can themselves go through phase transitions, further
enriching the possible thermal histories of our
Universe. Beyond all the above, one can also explore
such a relay of the EW-broken phase between the SM
Higgs and scalars under other EW representations.
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Note added.— Recently, Ref. [90] appeared and considered
a specific realization of symmetry nonrestoration in a
scenario with a two-Higgs-doublet model and one singlet
scalar. We note that the main cause for us to require more
singlet scalars is to strictly forbid the EW restoration at low
temperatures, and thereby avoid the situation as depicted in
the bottom right panel of Fig. 1. Furthermore, additional
number of scalars are needed for the theory to obey tree-
level perturbative unitarity up to the high-temperature
scales of nonrestoration. In particular, our BM scenarios
satisfy unitarity up to 1014 GeV. To the best of our

understanding, in Ref. [90], only benchmark E1 plus gray
points in Fig. 7 survive our requirement of no temporary
restoration at low temperatures, but due to perturbativity,
the validity of the model appears to be limited to scales not
far above the EW scale.12

APPENDIX A: EFFECTIVE FIELD-DEPENDENT
MASSES

In this Appendix, we list field-dependent masses of all
degrees of freedoms in the plasma, which are relevant
calculating one-loop effective potentials. The field-depen-
dent scalar mass matrix squared m2ðΦ̂Þ is defined as

m2
abðΦ̂Þ≡ δ2V

ðδΦaÞðδΦbÞ
����
Φ¼Φ̂

; ðA1Þ

where we introduced a short-handed notation Φ≡ fh;φ;
χ1; χ2;…; χNg, and a caret is used to indicate background
fields. The field-dependent gauge field mass matrix squared
is given by [34]

M2ðΦ̂Þ ¼ gagbðTaΦ̂ÞðTbΦ̂Þ; ðA2Þ

with ga the gauge coupling and Ta the generator of the
ath gauge field.13 The field-dependent fermion mass
matrix squared is mm†ðΦ̂Þ, where mðΦ̂Þ is defined in
the Lagrangian as

L ¼ Ψ̄amabðΦ̂ÞΨb þ…: ðA3Þ

All contributions to the CW potential are formally taken as
traces of the squared mass matrices, which in practice can
be diagonalized, and the potential is then evaluated for the
eigenvalues. Next, we list all field-dependent mass matrices
squared in our model.
In the space of ðh; −iffiffi

2
p ðGþ −G−Þ; 1ffiffi

2
p ðGþ þ G−Þ;−G0;

φ; −iffiffi
2

p ðϕþ − ϕ−Þ; 1ffiffi
2

p ðϕþ þ ϕ−Þ;−ϕ0; χiÞ, the symmetric

field-dependent mass matrix squared of the scalar sector
is given by

m2ðĥ; φ̂; χ̂iÞ ¼

0
BB@

M2
H M2

HΦ M2
Hχ

M2
HΦ M2

Φ M2
Φχ

M2
Hχ M2

Φχ M2
χ

1
CCA ðA4Þ

with

12We thank the authors of Ref. [90] for clarification in private
communication.

13It might have to be symmetrized.
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M2
Hðĥ; φ̂; χ̂iÞ ¼

0
BBBBBBBBBBBBBBBBBBBBBB@

−μ2H þ 3λHĥ
2 þ λHΦ

2
φ̂2

þ λ̃HΦ
2
φ̂2 þ λHχ

2

P
i
χ̂2i

−μ2H þ λHĥ
2

þ λHΦ
2
φ̂2 þ λHχ

2

P
i
χ̂2i

−μ2H þ λHĥ
2

þ λHΦ
2
φ̂2 þ λHχ

2

P
i
χ̂2i

−μ2H þ λHĥ
2 þ λHΦ

2
φ̂2

þ λ̃HΦ
2
φ̂2 þ λHχ

2

P
i
χ̂2i

1
CCCCCCCCCCCCCCCCCCCCCCA

; ðA5Þ

M2
Φðĥ; φ̂; χ̂iÞ ¼

0
BBBBBBBBBBBBBBBBBBBBBB@

μ2Φ þ 3λΦφ̂
2 þ λHΦ

2
ĥ2

þ λ̃HΦ
2
ĥ2 þ λΦχ

2

P
i
χ̂2i

μ2Φ þ λΦφ̂
2

þ λHΦ
2
ĥ2 þ λΦχ

2

P
i
χ̂2i

μ2Φ þ λΦφ̂
2

þ λHΦ
2
ĥ2 þ λΦχ

2

P
i
χ̂2i

μ2Φ þ λΦφ̂
2 þ λHΦ

2
ĥ2

þ λ̃HΦ
2
ĥ2 þ λΦχ

2

P
i
χ̂2i

1
CCCCCCCCCCCCCCCCCCCCCCA

; ðA6Þ

M2
χðĥ; φ̂; χ̂iÞ ¼

0
BBBBBBBBBBBBBBB@

3λ̃χ χ̂
2
1 þ λχð

P
i
χ̂2i þ 2χ̂21Þ 2λχχ̂1χ̂2 … 2λχχ̂1χ̂N

þ λΦχ

2
φ̂2 þ λHχ

2
ĥ2 þ μ2χ

2λχχ̂2χ̂1
. .
. . .

. ..
.

..

. . .
. . .

.
2λχχ̂N−1χ̂N

2λχχ̂N χ̂1 … 2λχχ̂N χ̂N−1 3λ̃χ χ̂
2
N þ λχð

P
i
χ̂2i þ 2χ̂2NÞ

þ λΦχ

2
φ̂2 þ λHχ

2
ĥ2 þ μ2χ

1
CCCCCCCCCCCCCCCA

;

ðA7Þ

M2
Hϕðĥ; φ̂; χ̂iÞ ¼

0
BBBBB@

ðλHΦ þ λ̃HΦÞĥ φ̂
λ̃HΦ
2
ĥ φ̂

λ̃HΦ
2
ĥ φ̂

0

1
CCCCCA; ðA8Þ
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M2
Hχðĥ; φ̂; χ̂iÞ ¼

0
BBB@

λHχ ĥχ̂1 � � � λHχ ĥχ̂N
0 � � � 0

0 � � � 0

0 � � � 0

1
CCCA; ðA9Þ

M2
ϕχðĥ; φ̂; χ̂iÞ ¼

0
BBB@

λΦχφ̂χ̂1 � � � λΦχφ̂χ̂N

0 � � � 0

0 � � � 0

0 � � � 0

1
CCCA; ðA10Þ

where cells left blank are zero, while cells represented by
dots are following the previous cells’ pattern. In addition,
we have [91,92]

m2
W ¼ g2

4
ðĥ2 þ φ̂2Þ; m2

Z ¼ g2 þ g02

4
ðĥ2 þ φ̂2Þ;

m2
t ¼

y2t
2
ĥ2: ðA11Þ

APPENDIX B: BOUNDED FROM BELOW
CONDITIONS AND ZERO-TEMPERATURE

VACUUM STRUCTURE

We show detailed derivations of BFB condition for the
potential in Eq. (1). A scalar potential, whose quartic part
can be written as the form λabφ

2
aφ

2
b, is bounded from below

if the matrix of quartic couplings λab is copositive [93]. A

symmetric matrix is strictly copositive if and only if the
associated eigenvalues to non-negative eigenvectors of all
principal submatrices are strictly positive [94].
Let us work in the basis where

H†H ¼ 1

2
h21; Φ†Φ ¼ 1

2
h22; H†Φ ¼ 1

2
h1h2ρeiη:

ðB1Þ
The parameter jρj ∈ ½0; 1� parametrizes the Cauchy
inequality 0 ≤ jH†Φj ≤ jHjjΦj. Note that the potential of
Eq. (1) is independent of η. The matrix of quartic couplings
takes the form

Mquartic ¼

0
BBBBBBBBBBBB@

λH ΛHΦ=2 λHχ=2 … … λHχ=2

ΛHΦ=2 λΦ λΦχ=2 … … λΦχ=2

λHχ=2 λΦχ=2 λ̃χ þ λχ λχ … λχ

..

. ..
.

λχ
. .
. . .

. ..
.

..

. ..
. ..

. . .
. . .

.
λχ

λHχ=2 λΦχ=2 λχ … λχ λ̃χ þ λχ

1
CCCCCCCCCCCCA
;

ðB2Þ
where for simplicity we have defined a shorthanded
notation

ΛHΦ ≡ λHϕ þ λ̃HΦρ
2: ðB3Þ

For copositivity, the principal submatrices are:
(i) Order 1:

λH > 0 λΦ > 0 λ̃χ þ λχ > 0 ðB4Þ

(ii) Order 2:

�
λH ΛHΦ=2

ΛHΦ=2 λΦ

�
⇒ ΛHΦ > −

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHλΦ

p
: ðB5Þ

Notice that if λ̃HΦ ≥ 0 the condition should be λHϕ > −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHλΦ

p
, while if λ̃HΦ < 0, the condition should be

λHϕ þ λ̃HΦ > −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHλΦ

p
,

� λΦ λΦχ=2

λΦχ=2 λ̃χ þ λχ

�
⇒ λΦχ > −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λΦðλ̃χ þ λχÞ

q
ðB6Þ

� λH λHχ=2

λHχ=2 λ̃χ þ λχ

�
⇒ λHχ > −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHðλ̃χ þ λχÞ

q
ðB7Þ

�
λ̃χ þ λχ λχ

λχ λ̃χ þ λχ

�
⇒ λ̃χ þ 2λχ > 0; ðB8Þ
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(iii) Higher order:

0
BBBBBB@

λ̃χ þ λχ λχ … λχ

λχ λ̃χ þ λχ λχ λχ

..

.
λχ

. .
.

λχ

λχ λχ λχ λ̃χ þ λχ

1
CCCCCCA

n×n

⇒ λ̃χ þ nλχ > 0 with n ¼ 3; � � �N ðB9Þ

0
BBBBBB@

λΦ λΦχ=2 … λΦχ=2

λΦχ=2 λ̃χ þ λχ λχ λχ

..

.
λχ

. .
.

λχ

λΦχ=2 λχ λχ λ̃χ þ λχ

1
CCCCCCA

ð1þnÞ×ð1þnÞ

⇒ λΦχ > −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λΦ

�
λ̃χ
n
þ λχ

�s
with n ¼ 2; � � �N ðB10Þ

0
BBBBBB@

λH λHχ=2 … λHχ=2

λHχ=2 λ̃χ þ λχ λχ λχ

..

.
λχ

. .
.

λχ

λHχ=2 λχ λχ λ̃χ þ λχ

1
CCCCCCA

ð1þnÞ×ð1þnÞ

⇒ λHχ > −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λH

�
λ̃χ
n
þ λχ

�s
with n ¼ 2; � � �N: ðB11Þ

Equation (B9) is derived when the eigenvalues of the matrix are

fλ̃χ ;…; λ̃χ ; λ̃χ þ nλχg ðB12Þ

with the corresponding eigenvectors

ff−1; 1; 0;…; 0g;…; f−1; 0;…; 0; 1g; f1;…; 1gg: ðB13Þ

Only the last eigenvalue λ̃χ þ nλχ corresponds to a positive eigenvector, and accordingly, such an eigenvalue must be
positive, yielding λ̃χ þ nλχ > 0. Equation (B10) is derived when the eigenvalues of the matrix are

fλ̃χ ;…; λ̃χ ; e1; e2g; ðB14Þ

where

e1;2 ¼
1

2

h
λΦ þ λ̃χ þ nλχ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðλΦ − λ̃χ − nλχÞ2 þ nλ2Φχ

q i
ðB15Þ

with the corresponding eigenvectors	
f0;−1; 1; 0;…; 0g;…; f0;−1; 0;…; 0; 1g;
	
e1 − ðλ̃χ þ nλχÞ

λΦχ=2
; 1;…; 1



;

	
e2 − ðλ̃χ þ nλχÞ

λΦχ=2
; 1;…; 1




: ðB16Þ

The first n − 1 eigenvectors are not positive; hence, they do not induce conditions. According to conditions (B4) and
(B9), the eigenvalue e1 is positive definite; thus, it does not induce new conditions either. Notice that for the
eigenvalue e2 the corresponding eigenvector is only positive if λΦχ < 0, in which case e2 needs to be positive, leading
to nλ2Φχ < 4λΦðλ̃χ þ nλχÞ. Combining this with the allowed range of the case λΦχ > 0, one arrives at the condition
(B10). The condition (B11) can be derived similarly.
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Lastly, the principle submatrices in the form of

0
BBBBBBBBBBBB@

λH ΛHΦ=2 λHχ=2 … … λHχ=2

ΛHΦ=2 λΦ λΦχ=2 … … λΦχ=2

λHχ=2 λΦχ=2 λ̃χ þ λχ λχ … λχ

..

. ..
.

λχ
. .
. . .

. ..
.

..

. ..
. ..

. . .
. . .

.
λχ

λHχ=2 λΦχ=2 λχ … λχ λ̃χ þ λχ

1
CCCCCCCCCCCCA

ðnþ2Þ×ðnþ2Þ

with n ¼ 1;…; N ðB17Þ

need to be copositive. The eigenvalues of such matrices are

fλ̃χ ;…; λ̃χ ; e1; e2; e3g; ðB18Þ

where e1;2;3 are roots of the cubic polynomial

−e3 þ Ae2 − Beþ C ðB19Þ

with

A ¼ λH þ λΦ þ λ̃χ þ nλχ ðB20Þ

B ¼ 1

4
½4λHλΦ − Λ2

HΦ� þ
1

4
½4λΦðλ̃χ þ nλχÞ − nλ2Φχ � þ

1

4
½4λHðλ̃χ þ nλχÞ − nλ2Hχ � ðB21Þ

C ¼ λHλΦðλ̃χ þ nλχÞ þ
1

4
nΛHΦλHχλΦχ −

1

4
Λ2
HΦðλ̃χ þ nλχÞ −

1

4
nλHλ2Φχ −

1

4
nλΦλ2Hχ : ðB22Þ

The corresponding eigenvectors read

ff0; 0;−1; 1; 0;…; 0g;…; f0; 0;−1; 0;…; 0; 1g;
fx1; y1; 1;…; 1g; fx2; y2; 1;…; 1g; fx3; y3; 1;…; 1gg; ðB23Þ

where xi and yi are given by the solution of

ðλH − eiÞxi þ
ΛHΦ

2
yi þ nλHχ=2 ¼ 0

λHχ

2
xþ λΦχ

2
yþ λ̃χ þ nλχ − ei ¼ 0: ðB24Þ

Notice that the eigenvectors of the n − 1 eigenvalues λ̃χ are nonpositive, and accordingly, they do not give any constraints on
the copositivity of the matrix. For the last three eigenvalues ei with i ¼ 1, 2, 3, the last entries of their eigenvectors are unity,
and accordingly, the positivity of the eigenvectors is determined by the sign of xi and yi. Thus, such ðnþ 2Þ × ðnþ 2Þ
matrices are copositive if and only if there is no ei < 0 with corresponding xi; yi > 0.
Now, let us use the fact that the roots fe1; e2; e3g are also eigenvalues of a 3 × 3 matrix,0

BB@
λH ΛHΦ=2

ffiffiffi
n

p
λHχ=2

ΛHΦ=2 λΦ
ffiffiffi
n

p
λΦχ=2ffiffiffi

n
p

λHχ=2
ffiffiffi
n

p
λΦχ=2 λ̃χ þ nλχ

1
CCA for n ¼ 1;…; N; ðB25Þ

with the corresponding eigenvectors being
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ffx1; y1;
ffiffiffi
n

p g; fx2; y2;
ffiffiffi
n

p g; fx3; y3;
ffiffiffi
n

p gg; ðB26Þ

where xi, yi are solved by the same conditions given in
Eq. (B24). Since the last entry of the above eigenvectors is
positive, one can immediately see that the condition of the

copositivity of such a 3 × 3 matrix is identical to the
conditions for the above ðnþ 2Þ × ðnþ 2Þ matrices; there
is no ei < 0with corresponding xi; yi > 0. The copositivity
of a 3 × 3 matrix in terms of its entries has been discussed
in the literature. The conditions are [93]

λH > 0; λΦ > 0; λ̃χ þ nλχ > 0

ΛHΦ > −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHλΦ

p
; λΦχ > −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λΦðλ̃χ=nþ λχÞ

q
; λHχ > −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHðλ̃χ=nþ λχÞ

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHλΦðλ̃χ=nþ λχÞ

q
þ ΛHΦ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ̃χ=nþ λχ

q
þ λΦχ

ffiffiffiffiffiffi
λH

p
þ λHχ

ffiffiffiffiffi
λΦ

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΛHΦ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHλΦ

p
ÞðλΦχ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λΦðλ̃χ=nþ λχÞ

q
ÞðλHχ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHðλ̃χ=nþ λχÞ

q
Þ

r
> 0: ðB27Þ

Now, we have derived the copositivity conditions for all type of principle submatrices of the quartic coupling matrix of
our two doublets + N singlets tree-level potential. Notice that we work in a generic basis including all CP-even, CP-odd,
and charged components of the doublets. The potential will be bounded from below if all the conditions are satisfied. We
define for convenience

Λχ;n ≡ 1

n
λ̃χ þ λχ ; ΛHΦ ≡ λHΦ þ λ̃HΦρ

2; ðB28Þ

with which the BFB conditions can be written as

λH > 0; λΦ > 0; Λχ;n > 0 ðB29Þ

ΛHΦ > −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHλΦ

p
; λΦχ > −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λΦΛχ;n

q
; λHχ > −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHΛχ;n

q
ðB30Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHλΦΛχ;n

q
þ ΛHΦ

ffiffiffiffiffiffiffiffi
Λχ;n

p þ λΦχ

ffiffiffiffiffiffi
λH

p
þ λHχ

ffiffiffiffiffi
λΦ

p
ðB31Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΛHΦ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHλΦ

p
ÞðλΦχ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λΦΛχ;n

q
ÞðλHχ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λHΛχ;n

q
Þ

r
> 0: ðB32Þ

For the potential to be bounded from below, these con-
ditions have to hold for all n ∈ f1;…; Ng and jρj ∈ ½0; 1�.
In practice, we check the conditions above for the boundary
values only, as these give the smallest/largest values of Λχ;n

and ΛHΦ.

In Tables III and IV, we show all possible extrema of the
zero-temperature tree-level potential for our a model. For
the extrema to be realized by the potential, the squared field
values hhi2, hφi2, and hχii2 need to be positive. For them to
be a minimum, the Hessian needs to be positive definite.

TABLE III. Tree-level potential extrema structure: CP-even neutral components. The vevs of scalar fields, the discriminant of the
quadratic function Δ, and the potential value at the respective extremum V are listed in the table.

(0,0,0) ð0; 0; χiÞ ðh; 0; 0Þ ð0;φ; 0Þ ðh; 0; χiÞ ð0;φ; χiÞ ðh;φ; 0Þ
hhi2 0 0 μ2H

λH
0 λHχμ

2
χþ2Λχ;nμ

2
H

2Δ
0 ΛHΦμ

2
Φþ2λΦμ

2
H

2Δ
hφi2 0 0 0 − μ2Φ

λΦ
0 λΦχμ

2
χ−2Λχ;nμ

2
Φ

2Δ
−ΛHΦμ

2
H−2λHμ

2
Φ

2Δ
hχii2 0 − μ2χ

nΛχ;n

0 0 −λHχμ
2
H−2λHμ

2
χ

2nΔ
λΦχμ

2
Φ−2λΦμ

2
χ

2nΔ
0

Δ � � � � � � � � � � � � λHΛχ;n − 1
4
λ2Hχ λΦΛχ;n − 1

4
λ2Φχ λHλΦ − 1

4
Λ2
HΦ

V 0 − μ4χ
4Λχ;n

− μ4H
4λH

− μ4Φ
4λΦ

− λHμ
4
χþΛχ;nμ

4
HþλHχμ

2
χμ

2
H

4Δ − λΦμ
4
χþΛχ;nμ

4
Φ−λΦχμ

2
χμ

2
Φ

4Δ − λHμ
4
ΦþλΦμ

4
HþΛHΦμ

2
Φμ

2
H

4Δ
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We require the EWminimum ðv0; 0; 0Þ to be the deepest. In
practice, especially when we include the Coleman-
Weinberg contribution, we check that the EW vacuum is
the deepest by numerical minimization.

APPENDIX C: LEADING-ORDER DAISY
COEFFICIENTS AND DETAILS ON IMPROVED

DAISY RESUMMATION TREATMENTS

As stated in the main text, at high temperatures, there will
be sizable higher-loop thermal contributions, which may

break the perturbative validity at some field values. To resum
such contributions, a naive treatment is to include a thermal
mass contribution on top of the tree-level effective mass.
Formally, the thermal mass should be calculated using the
gap equation. However, if one truncates the thermal potential
at leading order in the expansion of the thermal mass, as well
as in the leading order in the high-temperature expansion,
one would obtain analytical leading-order thermal mass
contributions to each degree of freedom. Here, we quote
such leading-order contributions of our model:

Π0;h ¼ Π0;G ¼ chT2 ¼
�
λH
2
þ λHΦ

6
þ 3g2 þ g02

16
þ y2t

4
þ λ̃HΦ

12
þ N
24

λHχ

�
T2 ðC1Þ

Π0;φ ¼ Π0;ϕ ¼ cφT2 ¼
�
λΦ
2
þ λHΦ

6
þ 3g2 þ g02

16
þ λ̃HΦ

12
þ N
24

λΦχ

�
T2 ðC2Þ

Π0;χi ¼ cχT2 ¼
�
λχ
12

ðN þ 2Þ þ λΦχ

6
þ λHχ

6
þ λ̃χ

4

�
T2: ðC3Þ

For later convenience, we define constants ci ¼ Π2
i =T

2jĥ¼φ̂¼0. The thermal masses ofW and Z are as given in Refs. [91,92],
and they only contribute to the longitudinal components:

Π0;WL
¼ 2g2T2 ðC4Þ

Π0;ZL;AL
¼ −

g2 þ g02

8
ðĥ2 þ φ̂2Þ þ ðg2 þ g02ÞT2 � Δ ðC5Þ

Δ2 ¼
�
g2 þ g02

8

�
2

ðĥ2 þ φ̂2 þ 8T2Þ2 − g2g02T2ðĥ2 þ φ̂2 þ 4T2Þ: ðC6Þ

APPENDIX D: RGEs

RG improvement is necessary to resum large log con-
tributions at large field values. To compute the RGEs, we
follow the steps discussed in Ref. [95], using the
real representation of the SUð2Þ doublets discussed in
Ref. [96]. This approach utilizes the background-field
method and super-heat-kernel expansion. Our results have

been checked in the SM limit [97] and the pure inert
two-Higgs-doublet model limit presented in Ref. [91] as
well as two independent computations. Note that the wave
function renormalizations are gauge dependent (therefore,
there is a difference compared to Ref. [97]). This is another
manifestation of the gauge dependence of vEWðTÞ that
was discussed in Refs. [35–43]. Given the Lagrangian of

TABLE IV. Tree-level potential extrema structure: CP-even neutral components (continued).

ðh;φ; χiÞ
hhi2 μ2Hð4λΦΛχ;n−λ2ΦχÞþμ2Φð2Λχ;nΛHΦ−λHχ λΦχÞþμ2χð2λΦλHχ−ΛHΦλΦχ Þ

4Δ
hφi2 −μ2Φð4λHΛχ;n−λ2HχÞ−μ2Hð2Λχ;nΛHΦ−λHχλΦχÞþμ2χð2λHλΦχ−ΛHΦλHχÞ

4Δ
hχii2 −μ2χð4λHλΦ−Λ2

HΦÞ−μ2Hð2λΦλHχ−ΛHΦλΦχÞþμ2Φð2λHλΦχ−ΛHΦλHχÞ
4nΔ

Δ λHλΦΛχ;n þ 1
4
ΛHΦλΦχλHχ − 1

4
Λχ;nΛ2

HΦ − 1
4
λHλ

2
Φχ − 1

4
λΦλ

2
Hχ

V − 1
16Δ ½μ4Hð4λΦΛχ;n − λ2ΦχÞ þ μ4Φð4λHΛχ;n − λ2HχÞ þ μ4χð4λHλΦ − Λ2

HΦÞ
þ2μ2Hμ

2
Φð2Λχ;nΛHΦ − λΦχλHχÞ þ 2μ2Hμ

2
χð2λΦλHχ − ΛHΦλΦχÞ

−2μ2Φμ2χð2λHλΦχ − ΛHΦλHχÞ�
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Eq. (1), we find the β functions, defined as
βðcÞ≡ 16π2 d

d log μR
c, to be

βðgsÞ ¼ −7g3s ðD1Þ

βðgÞ ¼ −3g3 ðD2Þ

βðg0Þ ¼ 7g03 ðD3Þ

βðμ2HÞ ¼ −4λHΦμ
2
Φ − 2λ̃HΦμ

2
Φ − μ2H

�
−12λH þ 3

2
ð3g2 þ g02Þ − 6y2t

�
− Nμ2χλHχ ðD4Þ

βðμ2ΦÞ ¼ −4λHΦμ
2
H − 2λ̃HΦμ

2
H − μ2Φ

�
−12λΦ þ 3

2
ð3g2 þ g02Þ

�
− Nμ2χλΦχ ðD5Þ

βðμ2χÞ ¼ 4μ2ΦλΦχ þ 6λ̃χμ
2
χ − 4μ2HλHχ þ 2ðN þ 2Þμ2χλχ ðD6Þ

βðλHÞ ¼ 2λ2HΦ þ 2λHΦλ̃HΦ þ λ̃2HΦ þ 24λ2H − 3λHð3g2 þ g02Þ

þ 3

8
ð3g4 þ 2g2g02 þ g04Þ þ 12λHy2t − 6y4t þ

N
2
λ2Hχ ðD7Þ

βðλΦÞ ¼ 2λ2HΦ þ 2λHΦλ̃HΦ þ λ̃2HΦ þ 24λ2Φ − 3λΦð3g2 þ g02Þ

þ 3

8
ð3g4 þ 2g2g02 þ g04Þ þ N

2
λ2Φχ ðD8Þ

βðλχÞ ¼ 2λ2Φχ þ 2λ2Hχ þ 16λ2χ þ 12λ̃χλχ þ 2Nλ2χ ðD9Þ

βðλHΦÞ ¼
3

4
ð3g4 − 2g2g02 þ g04Þ þ 4λ2HΦ þ 2λ̃2HΦ þ 4λ̃HΦðλH þ λΦÞ

þ λHΦð12λΦ þ 12λH − 3ð3g2 þ g02ÞÞ þ 6λHΦy2t ðD10Þ

βðλ̃χÞ ¼ 18λ̃2χ þ 24λ̃χλχ ðD11Þ

βðλΦχÞ ¼
�
−
3

2
ð3g2 þ g02Þ þ 12λΦ þ 6λ̃χ þ 4λΦχ þ 2Nλχ þ 4λχ

�
λΦχ

þ 4λHΦλHχ þ 2λ̃HΦλHχ ðD12Þ

βðλHχÞ ¼
�
−
3

2
ð3g2 þ g02Þ þ 12λH þ 6λ̃χ þ 4λHχ þ 2Nλχ þ 4λχ þ 6y2t

�
λHχ þ 4λHΦλΦχ þ 2λ̃HΦλΦχ ðD13Þ

βðλ̃HΦÞ ¼ 3g2g02 − 3λ̃HΦð3g2 þ g02Þ þ 6λ̃HΦy2t þ 4λ̃HΦðλH þ λΦÞ þ 8λHΦλ̃HΦ þ 4λ̃2HΦ ðD14Þ

βðytÞ ¼ −8ytg2s −
9

4
ytg2 −

17

12
ytg02 þ

9

2
y3t : ðD15Þ

As mentioned in Sec. II, the couplings λ̃HΦ and λHχ are not protected by a symmetry (hypercharge breaks the custodial
symmetry of λ̃HΦ) and will run away from their initial, vanishing value. The wave function renormalizations of the scalar
fields are

γH ¼ −3g2 − g02 þ 3y2t ; ðD16Þ

γΦ ¼ −3g2 − g02; ðD17Þ

γχ ¼ 0: ðD18Þ
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APPENDIX E: DETAILS ON THE SPHALERON
RATE CALCULATION

In this Appendix, we give some details on calculating the
sphaleron rate across a large range of temperatures, which
would prove essential in evaluating the baryon asymmetry
in a model with UV EWBG. The sphaleron rate per unit
volume is [64,65]

Γ
V
¼ ω−

2π
N trðNVÞrot

�
αwT
4π

�
3

α−63 κ exp ½−EsphðTÞ=T�:

ðE1Þ

This rate depends on the profile functions of the sphaleron
solution that can be obtained by solving the equations of
motion for the SU(2) and U(1) gauge bosons and Higgs
doublets [62,63]. In the limit of neglecting the U(1) gauge
coupling, g0 ¼ 0, a spherically symmetric ansatz gives a
system of differential equations that can be numerically
solved, for example, using the Newton-Kantorovich
method as done in Ref. [98]. Given the uncertainties of
the thermal potential calculation, we use the values of λ=g2

as shown in Fig. 6, where g ¼ gðμRÞ is the SU(2) gauge
coupling, and we consider λ ¼ λHðμRÞ when we are in the
phase PH and λ ¼ λΦðμRÞ when we are in the phases PΦ or
PHΦ. This is justified by the fact that the sphaleron solution
depends on the SUð2Þ structure of the theory, and our
model mostly has either the SM Higgs or the inert Higgs
taking a vev.
The sphaleron energy is then given by EsphðTÞ ¼

EsphðT ¼ 0Þ vEWðTÞ
vEWðT¼0Þ ¼ 4π

g BvEWðTÞ, where the energy pre-

factor B can be obtained by performing the volume integral
of the stress-energy tensor using the previously obtained
profile functions. Our choice of B as a function of λ=g2 is
shown in Fig. 6, which is consistent with Ref. [44].
N tr andN rot are the normalization of the zero-frequency

translation and rotation modes [64]. They can be computed
from small fluctuations around the sphaleron solution. The
resulting formula depends again on the profile functions
and can therefore be either computed numerically or read
off from Ref. [64], Fig. 5. We pursue the latter and show the
values we use in Fig. 6.
ω− is the frequency of the unstable mode [64,99]. It can

be found as a negative eigenvalue of a system of equations
that also depends on the profile functions. We use the
values of Ref. [64], Fig. 6, directly and show them in our
Fig. 6 [Note that this plot shows ω2

− in units of ðgvÞ2].
κ is the fluctuation determinant. A first numerical

evaluation was given in Ref. [65] and later improved in
Refs. [66,100–102]. We use the values given in Ref. [66]
and assume a rather large uncertainty of ½0.01κ; 100κ�
to also partially parametrize uncertainties in the other
prefactors [98].

Finally, Vrot ¼ 8π2 is the volume of the rotation group,
αw ¼ g2=4π2 is the weak coupling constant, and α3 ¼
αw=ðgξðTÞÞ is the weak coupling in the three-dimensional
high-temperature effective theory.

APPENDIX F: DETAILS ON THE NUMERICAL
IMPLEMENTATION

Here, we discuss our numerical implementation of the
effective potential discussed and thermal calculation in
Sec. III. We wrote the main code in PYTHON, which is
available at https://gitlab.com/claudius-krause/ew_nr. We
have a second, independent implementation of the code
using Mathematica [83], which we extensively cross-
checked against the PYTHON code.
When including the Coleman-Weinberg potential, we

shift the numerical values of μ2H and λH so that the full
potential satisfies

δV
δh

����
ĥ¼v0

¼ 0 and
δ2V
ðδhÞ2

����
ĥ¼v0

¼ m2
h ðF1Þ

at T ¼ 0. These values are then used throughout the
computation, including inside the RGEs.
The finite-temperature potential [defined in Eq. (10)] can

be evaluated numerically for each point y ¼ M2=T2 (which
is slow), or a precomputed look-up table and subsequent
spline interpolation can be used. In the benchmark points
discussed in the main text, we use a modified version of the
spline implementation of CosmoTransitions [88].
Compared to the original implementation, we extended
the precomputed grid of exact evaluations of the JB=FðyÞ-
functions to include more points in the negative y direction
and rewrote the exact evaluation of JB=FðyÞ to reduce
numerical noise. The corresponding files are also included
in the GitLab repository.
Daisy corrections beyond the high-T approximation

require the second derivative of the thermal potential. We
use a numerical, finite-difference derivative based on nine
points chosen symmetrically around the desired functional
argument, with a step size that increases with large field
values or temperatures. We checked that this choice gives a
stable value for the derivative for various temperatures and
field configurations. Automatic differentiation (AD), as is
nowadays widely used in the machine-learning community
[103], would greatly improve the computation of the
derivatives. However, implementation of AD in the compu-
tation of the effective potential as we do it here would be
beyond the scope of this work. In practice, we include the
following daisy approximations in the truncated full dressing
scheme of [51]: vanishing thermal masses, i.e., no Daisy
correction; leading-order thermal masses in the high-T
expansion, i.e., the formulas given in Eqs. (C1)–(C3);
field-dependent thermal masses in the definition of
Eq. (16); and the thermal masses as defined by the gap
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equation (15). Note that in the latter two approaches we do
not include the Coleman-Weinberg contribution, to properly
have the limit ΠiðT ¼ 0Þ ¼ 0.
To reduce the dimension of field space that we have to

scan, we assume that all χi acquire a vev simultaneously.
This is justified as long as λ̃χ ¼ 0 because then the χ sector
exhibits an additional SOðNÞ symmetry that allows us to
rotate them freely into each other. Because of this enhanced
symmetry, the condition λ̃χ ¼ 0 is also conserved under
the RGE.
We use the renormalization scale that we discussed in

Eq. (19), which is given by the largest square root of
the absolute values of the eigenvalues of the bosonic mass
matrix including thermal masses in the high-temperature
approximation [Eqs. (C1)–(C3)] or the EW scale v0 ¼
246 GeV, whichever is larger. Since the mass matrix at a
given point in field space itself also depends on the
renormalization scale via the couplings, we have to solve
Eq. (19) numerically. We use Brent’s method [104], as
implemented in SciPy [85] for this purpose. Note that we
do not include the wave function renormalization factors

of Eq. (D16) at this point, as this would be numerically
more complicated. Instead, we compute these factors at
the end, after the minimization of the potential, and
rescale the minima positions accordingly. We checked
that even at large scales around 100 TeV the factors are
at most around 1.05 for the Higgs and at least 0.92 for
the inert scalar, so the feedback effect we neglect is, in
fact, small.
A given potential is then numerically minimized. To

ensure that we found the global minimum instead of a local
one, we use eight different initial guesses in field space,
which cover all possible directions in the three-dimensional
space spanned by the Higgs, the inert, and the singlets.
As field value, we choose 1.5 (2.5) times the current
temperature for BM A (B), as we expect the minimum to
grow with temperature in the nonrestoring phase. At T ¼ 0,
we use the tree-level extrema that we list in Appendix B.
We require that at T ¼ 0 we are in the EW minimum with
hhi ¼ 246 GeV and hφi ¼ hχii ¼ 0; otherwise, either the
BFB (minimum at large field values) or the T ¼ 0 vacuum
structure would not be satisfied.
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