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The density profiles of dark matter halos are typically modeled using empirical formulas fitted to the
density profiles of relaxed halo populations. We present a neural network model that is trained to learn the
mapping from the raw density field containing each halo to the dark matter density profile. We show that
the model recovers the widely used Navarro-Frenk-White profile out to the virial radius and can
additionally describe the variability in the outer profile of the halos. The neural network architecture
consists of a supervised encoder-decoder framework, which first compresses the density inputs into a low-
dimensional latent representation, and then outputs ρðrÞ for any desired value of radius r. The latent
representation contains all the information used by the model to predict the density profiles. This allows us
to interpret the latent representation by quantifying the mutual information between the representation and
the halos’ ground-truth density profiles. A two-dimensional representation is sufficient to accurately model
the density profiles up to the virial radius; however, a three-dimensional representation is required to
describe the outer profiles beyond the virial radius. The additional dimension in the representation contains
information about the infalling material in the outer profiles of dark matter halos, thus discovering the
splashback boundary of halos without prior knowledge of the halos’ dynamical history.
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I. INTRODUCTION

In the standard cosmological model, dark matter accu-
mulates in stable, virialized “halos”, which form the
building blocks of cosmic large-scale structure and wherein
galaxy formation takes place. The density structure of dark
matter halos contains key information about cosmology
and the nature of dark matter [1–3]. High-resolution
N-body simulations reveal that the spherically averaged
density of these halos declines with radius from ρ ∝ r−1 in
the inner regions to ρ ∝ r−3 in the outskirts [4,5]. This

functional form provides a good fit to halos over two
decades in radius for a large range of halo masses and for
several different cosmological models [6]. Density profiles
with similar forms have been shown to arise even in the
absence of hierarchical growth, for example from hot dark
matter initial conditions or even from spherical collapse
[7–10]. This suggests that universal density profiles are a
generic feature of gravitational collapse.
The physical origin of this near-universal shape is still

not well understood. Many attempts at providing an
explanation from first principles have been put forward,
for example invoking the role of mergers [11,12], adiabatic
invariants [13], or the generation of entropy [14] as being
responsible for halo structural similarity. The lack of a
consensus on the origin of self-similar density profiles
means that the modeling of profiles relies on empirically
found fitting formulas [4,5,15]. These are tested on the
density profiles of selected, dynamically relaxed halo
populations. Theoretical efforts have focused on the
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connection between the free parameters of the fitting
functions and halo properties such as their formation time,
their mass accretion histories, as well as the fitting function
parameters’ dependence on cosmology [16–18].
We present a novel approach for learning the mapping

from the raw density field containing each halo to the dark
matter density profile. The goal is to recover the indepen-
dent set of components needed to describe the profiles.
Here, we investigate whether neural networks can be used
to discover such components from unprocessed raw data.
We design a supervised encoder-decoder architecture that
compresses the information in the 3D density field con-
taining dark matter halos into a compact low-dimensional
latent representation. The latent representation and any
given value of radius r are then mapped to the spherically
averaged density ρðrÞ. The compression step and the
subsequent prediction step are both implemented by neural
networks. This architecture allows us to extract knowledge
about the underlying physics from the neural network:
the representation contains all the information used by the
neural network to predict the density at any radius r of the
profile. Therefore, interpreting the representation reveals
what components are required for modeling the density
profiles of dark matter halos. Our network architecture was
inspired by SciNet [19], a neural network able to rediscover
the known parameters in various 1D toy examples. Here,
we consider a complex real-world scenario which deals
with 3D inputs and where the physically relevant quantities
are not known a priori.
A key aspect of our work is the ability to interpret the

latent representation discovered by the neural network. To
do so, we require that each latent component captures
different, independent factors of variation in the profiles.
This requirement reflects the idea that physically relevant
parameters describe aspects of the system that can be varied
independently. This property is formally known as disen-
tanglement in the context of representation learning [20].
Discovering disentangled representations of the data has
attracted attention, as they offer a number of advantages,
including interpretability [21–25]. However, there is cur-
rently no general consensus on the correct measure of
disentanglement: different proposed metrics impose differ-
ent implicit assumptions which may not generalize to
complex real-world scenarios [26,27]. In this work, we
use the information-theoretic metric of mutual information
between the different latent components to assess the
degree of disentanglement. Mutual information has been
used to measure the entanglement between the latent
parameters and the known ground-truth latent factors
[25], or between the latent variables and the observed data
in the context of generative adversarial networks [28].
Our machine-learning framework is designed to predict

halo profiles starting from the full information about the
inner structure of halos given by the 3D density field
around the center of the halo. This presents a generalization

over existing analytic fitting formulas, which are instead
fitted on preprocessed information about the halos’ inner
structure, i.e., the spherically averaged density profiles
themselves. Thus, our machine-learning framework is not
limited to spherically averaged densities, but can be
adapted to predict other halo observables. In this work,
we focus on spherically averaged density profiles as a first
application, which allows us to test our model against
widely used existing analytic profiles.
In a variety of problems in physics, interpretable

machine-learning frameworks have been used to discover
relations within the data that can be interpreted with respect
to the underlying physics of the system [19,29–32]. Most of
these methods require prior knowledge of the system of
interest, for example a priori knowledge of the relevant
variables or the underlying dimensionality. Recently, [33]
adopted a similar architecture to SciNet in an unsupervised
setting, where a neural network is trained to find a low-
dimensional representation of stellar spectra. Similar to our
work, they used mutual information for interpretability;
however, their use of mutual information was limited to
identifying potential correlations between the latent repre-
sentation and previously known parameters. They found
that two of the latent components discovered by the neural
network resemble known stellar physics parameters but do
not provide interpretations of the four remaining relevant
latent components. Our work takes mutual information one
step forward in the context of interpretability: we not only
use it to formalize the concept of disentanglement but also
to interpret the discovered latent representation without the
need to compare to known parameters. We additionally
compute the mutual information between the latent repre-
sentation and the parameters of existing density profile
fitting formulas for comparison.
We present an overview of the neural network frame-

work in Sec. II and provide details on the trained data and
the neural network model in Secs. III and IV, respectively.
We show the predictive performance of our trained model
in Sec. V and then move to interpreting the latent repre-
sentation in Sec. VI. We draw our final conclusions in
Sec. VII.

II. OVERVIEW OF THE MODEL

We adopt an encoder-decoder framework designed for
the purpose of knowledge extraction: we wish to gain new
insights from a deep learning model by extracting infor-
mation about the underlying physics of the problem of
interest from its latent parameters and its outputs. A
schematic illustration of our framework is shown in the
top panel of Fig. 1.
The encoder compresses the 3D input into a lower-

dimensional latent representation via a 3D deep convolu-
tional neural network (CNN). The representation consists
of an L-dimensional Gaussian distribution; the encoder
returns the means and variances of each latent component.
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This means that each halo has a range of possible
representations described by the multivariate Gaussian
latent distribution. The decoder then maps a single reali-
zation of the representation and an additional input given
by the log-radius logðrÞ to the output ρðrÞ. We denote the
additional input to the decoder—the log-radius logðrÞ—as
the query. This query was chosen because it is the argument
of the function we aim to learn, ρðrÞ. Our encoder-decoder
architecture closely resembles that of variational autoen-
coders, except that our setting is supervised, whereas
standard variational autoencoders are unsupervised. We
refer to our model as an interpretable variational encoder
(IVE), since it adopts elements of variational autoencoders,
while its supervised nature allows for interpretability. The
IVE resembles the design of SciNet, but with enhanced
elements of interpretability provided by the mutual infor-
mation measure, allowing the framework to generalize to
scenarios where the physically relevant quantities are not
known a priori.

Unsupervised variational autoencoders are encoder-
decoder models trained to first compress the input data
into a latent representation, and then reconstruct the input
data from the representation. The latent representation must
therefore capture all the information required to reconstruct
the input data completely. Here, our goal is not to
reconstruct the entire input data but rather a processed
version of it. Therefore, unlike in unsupervised variational
autoencoders, the latent representation need not describe
the input data completely; it only needs to capture the
information necessary to predict the spherically averaged
density profile. This is achieved through the query: it
induces the latent space to retain the information used by
the IVE to predict ρðrÞ for any given value of r, by
construction. The presence of the logðrÞ query therefore
plays a crucial role in enabling interpretability. Without it,
the information about the density profile would be spread
throughout the parameters of the whole encoder, thus losing
the ability to interpret the model.

FIG. 1. The IVE consists of an encoder compressing the 3D density field containing each halo into a low-dimensional latent
representation, followed by a decoder mapping the latent representation and a given value of r to the spherically averaged density ρðrÞ.
In this illustration, the latent space is two dimensional; however, the dimensionality of the latent space can be increased to any arbitrary
value. The latent representation only retains the information required by the model to predict the halo density profiles, allowing us to
interpret the representation as independent factors of variability in the density profiles. The decoder plays a role similar to an analytic
fitting formula, which takes as input a set of halo-specific parameters and returns ρðrÞ for any given r. The encoder is equivalent to the
parameter fitting procedure, in that they return those halo-specific parameters used by the analytic formula (decoder). However, the
inputs to the encoder and the fitting procedure are fundamentally different: the former extracts information directly from the 3D density
field containing the halo, whereas the latter uses processed information of that field, i.e., the spherically averaged density profiles
themselves. The latter data processing is a step motivated by human intuition and physical frameworks such as the secondary infall
model [34].
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For the IVE to produce interpretable representations, we
further constrain it to satisfy certain desired properties. We
require that the latent components be statistically indepen-
dent from each other, reflecting the idea that physically
relevant parameters describe independent factors of varia-
tion in a system. Under this independence assumption, the
network is then encouraged to choose a representation that
stores different relevant factors in different latents. We
implement these requirements in the loss function (see
Sec. IV), as done when disentangling standard variational
autoencoders [21,35].
Figure 1 compares the IVE model with standard analytic

fitting formulas such as the Navarro-Frenk-White (NFW)
profile [5]. The decoder of the IVE plays a similar role to
the analytic NFW formula: these both take as input a set of
halo-specific parameters and return the ρðrÞ for any given r.
The encoder is the equivalent of a χ2-fitting procedure in
that both return the best-fit parameters for a given halo. A
fundamental difference between the two methods lies in
their respective inputs: the IVE is provided with the raw 3D
density field containing the halo, whereas the analytic
profile is fitted on preprocessed information about the halo
structure, i.e., the spherically averaged density profiles
themselves. Therefore, our work is not limited to spheri-
cally averaged densities but can be broadly applied to other
halo properties.
In summary, the IVE consists of an encoder mapping the

3D density field containing each halo to a latent repre-
sentation, followed by a decoder mapping the latent
representation and a given value of r to the spherically
averaged density ρðrÞ. Our architecture is both interpret-
able and explainable, which we define as follows.
Interpretability concerns the ability to produce outputs that
help us understand the inner workings of machine-learning
models and how the models reach their final predictions;
this is achieved using the information-theoretic metric of
mutual information. Explainability denotes the ability to
map the interpretations onto existing knowledge in the
relevant science domain; this is achieved by evaluating
the mutual information between the latent variables and the
halos’ density profiles. This directly reveals the information
content of each latent variable in relation to the halos’
density profiles (see Sec. VI).

A. Probing different radial ranges with two IVEs

Our goal is to use neural networks to discover the
independent degrees of freedom in dark matter density
profiles over a wide range of radii. In particular, we wish to
probe the typical radial range covered by existing analytic
fitting formulas, as well as regions out to larger radii where
the halo joins into the surrounding large-scale structure.
Existing analytic formulas are typically only fitted to the
density profiles up to the halo boundary, for example
defined as the radius which encloses a mean density that is
200 times the mean matter density of the Universe, r200 m.

On the other hand, halo outskirts have gained recent interest
as they are sensitive to the halos’ mass accretion rate, as
well as being sensitive to the nature of dark matter, dark
energy, and modified gravity theories [36,37].
Whether or not the IVE model can accurately predict the

density profile over the desired range of radii crucially
depends on the scales probed by the 3D input data. In other
words, the IVE must have access to the 3D density field at
scale r in order to infer the spherically averaged density
ρðrÞ. The inputs are given by the density field within a
cubic sub-box of the simulation centered on the halo; the
scales that are accessible to the IVE are therefore set by the
volume and resolution of the sub-box.
Due to memory limitations of current state-of-the-art

GPUs, we were unable to generate input sub-boxes with
high enough resolution and large enough volume for the
IVE to fit density profiles over the entire radial range. To
overcome this technical limitation, we trained two inde-
pendent IVE models: the first one is used to model the
density profile up to the halo boundary (rmax ¼ r200 m) and
the second to model profiles beyond the halo boundary
(rmax ¼ 2r200 m). We refer to the first model as IVEvirial and
the second as IVEinfall. The IVEvirial model provides a
benchmark to compare to existing analytic models, such as
the NFW and Einasto profiles, that are also valid only
within the boundary of the halo. The IVEinfall model instead
is used to uncover features of the less explored outer profile
of halos.

III. THE SIMULATED DATA

A. The simulations

We generated the training data from four dark-matter-
only N-body simulations produced with GADGET-4 [38],
each consisting of a box of size L ¼ 50 Mpc h−1 and N ¼
5123 simulation particles evolving from z ¼ 99 to z ¼ 0.
We made use of pynbody [39] to analyze the information
contained in the simulation snapshots. The simulations
adopt a Planck ΛCDM cosmological model [40]. Each
simulation is based on a different realization of a Gaussian
random field drawn from the initial power spectrum of
density fluctuations, generated using Genetic [41]. The
softening length is ϵ ¼ 1 kpc h−1.
Dark matter halos were identified at z ¼ 0 using the

SUBFIND halo finder [38,42], a friends-of-friends method
with a linking length of 0.2, with the additional requirement
that particles in a halo be gravitationally bound. We
restricted our analysis to halos within the mass range
logðM=M⊙Þ ∈ ½11; 13� in order to fully resolve the inner
profile of the lowest-mass halos and not be affected by
small-number statistics at the high-mass end.

B. Density profile outputs

We used the z ¼ 0 snapshot of the simulations to assign
to each halo its ground-truth density profile. We used the
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halo finder to identify the centers of the halos in the
simulation. For every halo, we computed its density profile
by evaluating the density within 24 bins in radius, loga-
rithmically spaced in the range r ∈ ½3ϵ; 2r200 m�, where ϵ is
the softening length. The density ρðrÞ is computed using all
particles at distance r from the halo center, not just those
belonging to the halo according to the halo finder. The
lower radial bound, rmin ¼ 3ϵ, is the smallest scale one can
trust before reaching scales that are affected by the
gravitational softening of the simulation. The upper radial
bound, rmax ¼ 2r200 m was chosen in order to probe the
outer profile of the halo beyond the virial radius. From the
density profiles, we then assigned to each halo a set of
query-ground truth pairs as follows. The queries are given
by the centers of every ith radial bin, logðriÞ; the ground-
truth labels are given by log½ρðriÞ=ρ̄m�, where ρðriÞ is the
density evaluated at query ri and ρ̄m is the mean matter
density of the Universe.
In contrast to rmin, which is fixed for all halos in the

simulation, the upper bound set by r200 m naturally varies
for every halo. This implies that the set of query values
changes for every halo, meaning that the algorithm must
also learn about which physical scales are relevant for any
given halo.
The outputs of the IVEvirial and IVEinfall models differ by

the choice of radial bins used for training. For the IVEvirial
model, we restricted the outputs to the first 21 bins up to
rmax ¼ r200 m. For the IVEinfall model, we used all bins up
to rmax ¼ 2r200 m, except for the innermost one.

C. 3D density field inputs

The inputs are generated from the 3D density field, ρðxÞ,
at z ¼ 0. For each halo, the input is given by
log½ρðxÞ=ρ̄m þ 1� in a cubic subregion of the full simu-
lation of size Lsub-box and resolution Nsub-box, centered on
the halo center. All halos, independently of their size and
mass, have input sub-boxes of the same size and resolution.
The density field was constructed from the position of
particles in the simulation using a smoothed-particle hydro-
dynamics procedure, and evaluated at each voxel of the
cubic sub-box.
The inputs of the IVEvirial and IVEinfall models differ by the

size and resolution of the sub-boxes. For the IVEvirial model,
we chose aN ¼ 1313 sub-box of sizeLsub-box ¼ 0.4 Mpc=h.
This choice ensures that the inputs have access to the relevant
scales: the voxel size, l ∼ 3 kpc=h, matches the smallest
radial value of the profile, and the sub-box size is 2× larger
than the virial radius of 87% of halos. The remaining 13% of
halos have a larger virial radius up to r200 m ∼ Lsub-box.
However, the density on these large scales is highly corre-
lated with that at r ¼ r200 m; we therefore expect the
algorithm to be able to make sensible predictions up to
thevirial scale of the largest halos even if its largest accessible
scale is lower than the latter. For the IVEinfall model, we chose
a N ¼ 1313 sub-box of size Lsub-box ¼ 0.6 Mpc=h. In this

case, we restricted our halo population to halos with r200 m ≤
150 kpc=h so that the input sub-box is 2× larger than the
largest scale of interest in the profile, i.e., rmax ¼ 2r200 m, for
all halos.

IV. THE INTERPRETABLE
VARIATIONAL ENCODER

The IVE architecture has two main components: the
encoder, mapping the 3D input sub-boxes to a latent
representation, and the decoder, mapping the latent repre-
sentation and the query r to the output ρðrÞ.
The encoder is a 3D CNN that consists of a series of

convolutional layers, in which the algorithm learns to
extract relevant features from the input data. Feature
extraction in CNNs is hierarchical: the first layers learn
local, low-level features, which are then combined by
subsequent layers into more global, higher-level features.
Features are extracted by performing convolutions between
the input and a number of kernels in every layer, such that
each kernel learns to detect a specific type of feature present
in the input. We used five convolutional layers, with 16, 16,
32, 32, 32 kernels for the five convolutional layers,
respectively, all of size 3 × 3 × 3. All convolutional layers
are followed by a nonlinear leaky rectified linear unit
(Leaky ReLU) [43] activation function and a subsequent
max-pooling layer. The pooling layer decreases the reso-
lution of the 3D outputs of the convolutional layer, by
taking the maximum value in small (2 × 2 × 2) regions. In
summary, the encoder of the IVE consists of a model with
parameters ϕ (weights and biases) mapping the inputs x to a
multivariate distribution in the latent space pϕðzjxÞ. We
assume that it is possible to achieve such a mapping using a
latent representation where each latent component zi
follows a Gaussian distribution that is independent of
the others, i.e., pϕðzjxÞ ¼

Q
L
i¼1N ðμiðxÞ; σiðxÞÞ, where L

is the dimensionality of the latent space. Under these
assumptions, the encoder maps the inputs x to the vectors
μ ¼ μi;…; μL and σ ¼ σi;…; σL.
The decoder of the IVE consists of another neural

network model, consisting of three fully connected layers.
A fully connected layer is made of a number of neurons,
such that every neuron in one layer is connected to every
neuron in adjacent layers. Each neuron follows
y ¼ hðwxþ bÞ, where x are the inputs, y is the output,
h is the nonlinear activation function, and w, b are trainable
parameters known as weights and biases. Mathematically,
the decoder consists of a model with parameters θ mapping
a latent vector z, sampled from pϕðzjxÞ,1 and a value of the
query logðrÞ to a single predicted estimate for log½ρpredðrÞ�.
Given many different realizations of z ∼ pϕðzjxÞ, one

1In practice, the latent vector z is generated using the
reparametrization trick, i.e., zi ¼ μi þ σiϵi where ϵi ∼N ð0; 1Þ,
in order to preserve differentiability throughout the whole
network.
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obtains a distribution of possible values for log½ρpredðrÞ� as
a function of r.

A. The loss function

Training the IVE requires solving an optimization
problem. The parameters of the encoder and decoder, ϕ
and θ, are optimized to minimize a loss function which
measures how close the predictions, ρpredicted, are to their
respective ground truths, ρtrue, for the training data. The loss
function is also designed to maximize the degree of
independence of the latent variables; this is necessary in
order to achieve our goal of a disentangled latent repre-
sentation. These requirements can be obtained with the
following loss function [21],

L ¼ Lpredðρtrue; ρpredÞ þ βDKL½pϕðzjxÞ; qðzÞ�; ð1Þ

where the first term measures the predictive accuracy of the
model and the second is the Kullback-Leibler (KL)
divergence [44] between the latent distribution returned
by the encoder pϕðzjxÞ and a prior distribution over the
latent variables qðzÞ. The parameter β weights the KL
divergence term with respect to the predictive term, and
must be carefully optimized. We took the predictive term to
be the mean squared error loss,

Lpred ¼
1

N

XN
i¼1

ðlog10 ρi;true − log10 ρi;predÞ2; ð2Þ

where N is the training set size. Assuming a set of
independent unit Gaussian distributions as the prior over
the latent variables qðzÞ, the KL divergence term takes the
closed form,

DKLðN ðμz;σzÞ;N ð0;1ÞÞ ¼ −
1

2

XL
i¼1

½1þ 2 logσi − μ2i − σ2i �;

ð3Þ

where L is the dimensionality of the latent space.
The role of the KL term in the loss function is to promote

independence between the latents [21]. This encourages the
model to find a disentangled latent space, where indepen-
dent factors of variation in the density profiles are captured
by different, independent latents. Here, independence is
intended in terms of both linearly and nonlinearly uncorre-
lated variables. Hence, linear correlation measures such as
the Pearson correlation coefficient are insufficient. We
therefore evaluate the degree of disentanglement in terms
of mutual information: the amount of shared information
across the latents should be negligible if these describe
independent factors of variation in the density profiles.
Compressing the information in the input data into a

disentangled low-dimensional latent representation can be

thought of as a nonlinear principal component analysis
(PCA). PCA is a dimensionality-reduction technique to
linear transform a set of correlated variables into linearly
uncorrelated components. The components describe lin-
early uncorrelated factors of variability of the data set and
dimensionality reduction is achieved by discarding com-
ponents which describe negligible variability of the data.
The encoder plays the role of a nonlinear PCA: it performs
a nonlinear transformation of the input data into disen-
tangled components. The degree of disentanglement of the
latent space therefore crucially affects our ability to
interpret the latent space in terms of independent factors
of variability in the density profiles.

B. Training the IVE model

The training set consists of ∼6000 halos per simulation
for a total of three simulations, whereas the validation set
consists of a random subset of 2000 halos from an
independent simulation. The test set is given by all halos
(also ∼6000) from an independent simulation not used for
training. We trained and validated the model in alternate
radial bins of the profile, except the first and last radial bins
that are used for both training and validating. This was done
to ensure the model would not overfit to local fluctuations
in the density profile but only learn global features of the
dataset. The training set was subdivided into batches, each
made of 64 halos. Batches were fed to the network one at a
time, such that the model updates its parameters at every
batch iteration.
Training was done using the AMSGrad optimizer [45], a

variant of the widely used Adam optimizer [46], with a
learning rate of 5 × 10−3. We calibrated the parameter β in
the loss function of Eq. (1) using cross validation over a
grid of six values in the range ½10−1; 10−4�. Our aim was to
select a value of β that yielded both good predictive
accuracy and a latent space with maximum disentangle-
ment, defined as minimal mutual information between the
different latents. Small values of β prioritize the mean
squared error term over the KL divergence term, yielding
accurate predictions albeit an entangled latent space. Large
values of β instead yield a more disentangled latent space,
at the expense of a degradation in the accuracy of the
predictions. To select the best model, we tracked the values
of the total loss function, the mean squared error and the
KL divergence at every epoch during training. We started
with an initial low value of β so that the model first
prioritized yielding the highest possible predictive accu-
racy; as the mean squared error stopped decreasing, we then
gradually increased β to promote a more disentangled latent
space without significantly degrading the predictive per-
formance. All models were run on 4 Nvidia A100 40 GB
GPUs. The total training time of the IVEinfall model with a
3D latent space is ∼12 hours on 4 Nvidia A100 GPUs.
Once the model is trained, the density profile of a single
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halo can be obtained in ∼0.0076 seconds from the 3D raw
density field.

V. PREDICTING THE DENSITY PROFILE
OF HALOS

Figure 2 shows examples of fits to the density profiles of
one high-mass (upper panel), one midmass (middle panel),
and one low-mass (lower panel) halo made by various
models. The black points show the ground-truth density
profiles from the simulations; the two colored bands are the
profiles predicted by the IVEvirial and IVEinfall models. The
IVEinfall model is only trained on lower-mass halos (see
Sec. III C), thus we show predictions from that model only
in the middle and lower panels. The IVE predictions are
given by the range of predicted profiles given 100 random
realizations drawn from the latent distributions. These three
halo examples are representative of the diversity in the
density profiles of our halo population: the profiles cover
different dynamical ranges in radius, the upper-panel halo
reaches a much larger inner density compared to the other
two, and the outer profile of the lower-panel halo flattens
out at large radii compared to the sharper decrease in the
outskirts of the middle-panel halo.
We compare the IVE models to the most widely used

analytic fitting formulas for the density profiles of halos.
The first model is the isotropic NFW profile [5], a two-
parameter functional form given by

ρðrÞ ¼ ρs
r=rsð1þ r=rsÞ2

; ð4Þ

where rs and ρs are the scale radius, defined as the radius at
which d ln ρ=d ln r ¼ −2, and the characteristic density,
respectively. The second is the Einasto density profile [15]

ρðrÞ ¼ ρs exp

�
−2
α

��
r
rs

�
α

− 1

��
; ð5Þ

where the additional parameter α is a shape parameter that
regulates a smoother, more gradual transition between the
two profile slopes compared to NFW. We consider the case
where we fix α ¼ 0.16, the best-fitting value found in
previous literature for the mass range of halos we consider
[47], and the case where we let α vary for every halo. We
fitted NFW and Einasto formulas to the each halo’s profile
over the same radial bins used to train and validate the VAE
model, by minimizing the expression:

Ψ2 ¼ 1

Nbin

XNbin

i¼1

½log10 ρsim;i − log10 ρfit;i�2; ð6Þ

where log10 ρsim;i and log10 ρfit;i are the simulation’s
ground-truth data and the fitted density profile in radial

FIG. 2. Three examples of fits to the density profiles of one
high-mass (upper panel), one midmass (middle panel), and one
low-mass (lower panel) halo in the mass range considered. The
IVE outputs a distribution of predicted density profiles given
different random realizations of the latent representation. The
NFW fit is also shown for comparison. For lower mass halos, we
also show the predictions of the IVEinfall model, trained to predict
profiles out to large radii in the outskirts of halos.
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bin i. This expression minimizes the rms deviation between
the halos’ binned ρðrÞ and the NFW profile, assigning
equal weight to each bin. The solid lines in Fig. 2 show the
fits to the NFW profile for the three halo examples for
comparison. The IVEs and NFW predictions both yield a
good fit to the halo’s density profiles. This demonstrates the
ability of the IVE models to capture the diversity in the
density profiles of our halo population, given a compact
latent representation.
We compare the predictions of the IVE models, trained

with different latent dimensionalities, and those of the
analytic models in Fig. 3. We show the mean and 90% con-
fidence interval of the residuals log½ρpredicted=ρtruth�, in every
radial bin of the profile used for testing. Each radial bin
corresponds to a different value of r for different halos; we
therefore define reff to be the median of the distribution of
radius values within each bin. We use this quantity through-
out the paper. The different colors show the residuals of IVE
models with different choices of latent space dimensionality;
the grey bands shows the residuals of theNFWmodel and the
Einasto model with fixed α. The top panel shows the IVEvirial
case. We find that increasing the latent dimensionality to
more than two parameters yields no significant improvement
in the predictions. On the other hand, an IVE with
1-dimensional latent space yields larger error bars than all
other models, especially in the innermost and outermost

radial bins. This implies that a two-parameter model is
sufficient to capture the diversity of the density profiles of
individual halos within the virial radius. Moreover, since the
performance of the 2D (or more) IVE is consistent with that
of existing well-knownmodels such as the NFWand Einasto
profiles, we conclude that our models contain sufficient
predictive accuracy to yield meaningful interpretations of
their latent representations.
The bottom panel shows the IVEinfall case. Here, a 2D

latent space model yields larger residuals in both the inner
profile and the region close to the virial radius. As we
increase the latent space to three parameters, the model
reduces the scatter close to the virial boundary of the halo,
and reduces the bias in the predictions of the inner profile.
Further increasing the latent space dimensionality to four
parameters does not yield significant improvement. This
demonstrates that one additional parameter is required to
model halo density profiles up to the halo outskirts,
compared to the number of parameters required to describe
profiles within r200 m.

2

VI. INTERPRETING THE LATENT
REPRESENTATION

The information contained within the input sub-box of
every halo in the test set is compressed into L latent
Gaussian distributions by the encoder. The decoder draws
samples from these latent distributions to produce density
profile predictions for the halos. The latent distributions
therefore contain the necessary information to predict the
density profile of a given halo. We quantified the informa-
tion contained within the IVE latent variables about the
ground-truth density profiles by estimating the mutual
information between the two quantities, as follows.

A. Estimating mutual information

Our goal is to evaluate the mutual information between
each latent and the ground-truth density as a function of r.
To do so, we required two quantities: (i) the distribution of
possible latent realizations over all halos, (ii) the distribu-
tion of ground-truth density values ρðrÞ as a function of r.
We estimated quantity (i) as follows. Each halo’s latent

representation is defined by μj;α and σ2j;α, the mean and
variance of the jth latent Gaussian distribution for halo α.
We drew one sample from each halo’s latent distribution,
zj;α ∼N ðμj;α; σj;αÞ, which in turn yielded a set of latent
variables zj ¼ fzj;αgMα¼1 for all M halos. We turned the
discrete distribution constructed from zj into a continuous
probability density function using a kernel density estima-
tion (KDE) method [48]. A KDE is a nonparametric
approach to estimate the probability density distribution

FIG. 3. Mean and 90% confidence interval of the residuals,
log½ρpredicted=ρtruth�, for the IVEvirial and IVEinfall models, trained
using different choices of latent dimensionality. The light and
dark grey bands shows the NFW and Einasto residuals, respec-
tively. Upper panel: models trained up to the halo boundary
require a 2D latent space to yield accurate predictions that are
consistent with analytic models. Lower panel: modeling the
density profiles out to large radii requires a third parameter to
model the component of infalling material in the outskirts
of halos.

2We note that IVEinfall mildly increases the size of the residuals
in the innermost region of the profiles, when compared to the
NFW and Einasto cases.
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from a discrete set of samples. Each data point is replaced
with a kernel of a set width and the density estimator is
given by the sum over all kernels. For the case of the M
discrete values of latent samples zj, its kernel density
estimate is given by

pðzjÞ ¼
1

M

XM
α¼1

K

�
zj − zj;α

b

�
; ð7Þ

where K is the kernel, which we take to be a Gaussian of
the form KðxÞ ∝ expð−x2=2Þ, and b is a free parameter
known as the bandwidth, which determines the width of the
kernel. The bandwidth is a free parameter which must be
tuned to the distribution at hand: if too small, the density
estimate will be undersmoothed and noisy; if too large, the
density estimate will be oversmoothed and may wash out
important features of the underlying structure. To estimate
quantity (ii), we took the set of halo ground-truth densities
ti ¼ flog½ρi;αðrÞ�gMα¼1 in radial bin i for all M halos. As
before, we turned the discrete sampling distribution con-
structed from ti into a continuous probability density
function, pðtiÞ, using a KDE as in Eq. (7).
Finally, the mutual information (MI) between latent j

and the ground-truth density in radial bin i is given by

MIðti; zjÞ ¼
Z
ti

Z
zj

pðti; zjÞ log
�
pðti; zjÞ
pðtiÞpðzjÞ

�
dtidzj; ð8Þ

where pðti; zjÞ is the joint probability density function
between ti and zj. This was computed using a 2D KDE
method, similar to the 1D probability density functions
pðtiÞ and pðzjÞ. The limits of integration are the minimum
and maximum values of ti and zj, respectively.

B. MI between latents and halo profiles

Figure 4 shows the mutual information between the
latent variables and the ground-truth density in every radial
bin, for the IVEinfall model with a 3D latent space. Each
curve represents the mutual information between one latent
zj and the distribution of log½ρiðrÞ� in each radial bin i. The
solid lines show the mutual information when adopting a
bandwidth of 0.2 for the KDE fit; the bands show the scatter
in the mutual information estimate when adopting band-
widths of 0.1 (upper band limit) and 0.3 (lower band limit).
These choice of bandwidths were made to cover a large
bandwidth range, from small values that undersmooth the
distributions to large values where the distributions are
oversmoothed. These scales are set by the dynamic range of
values covered by the distributions: a bandwidth of 0.1
yields a multimodal distribution function with large num-
bers of peaks, whereas one of 0.3 yields a single-peaked
distribution function. This demonstrates that our results are
insensitive to the specific choice of bandwidth in the KDE
in Eq. (7). Each panel shows the results for the IVEinfall
model with different latent dimensionality.
Latent A encodes similar information about the density

profiles in all models: it accounts for the largest component

FIG. 4. Mutual information between each latent variable and the ground-truth log½ρiðrÞ=ρ̄m� in every ith radial bin. The three panels
show the results for the IVEinfall model with latent dimensionality 2, 3, and 4. The solid lines show the mutual information when
adopting a bandwidth of 0.2; the bands show the scatter in the mutual information estimate when adopting bandwidths of 0.1 (upper
band limit) and 0.3 (lower band limit). These values of bandwidths cover sufficient range to undersmooth and oversmooth the
distributions, thus demonstrating that our results are insensitive to the specific bandwidth choice.

DISCOVERING THE BUILDING BLOCKS OF DARK MATTER … PHYS. REV. D 105, 103533 (2022)

103533-9



of variability in the profiles within the virial radius. In
particular, its mutual information with ρðrÞ peaks at scales
r ∼ 0.3r200 m. Latent B contains information about the outer
profile beyond r200 m. Two components are not sufficient to
correctly model the full diversity of halos, as seen in Fig. 3.
A third latent (latent C) must be included to account for
additional variability in the density profiles on scales
approaching r200 m. This is consistent with the finding in
the bottom panel of Fig. 3, showing an improvement in the
residuals of the predictions on similar scales when going
from the 2D to the 3D latent space models. On the other
hand, the addition of a fourth latent variable has very little
effect on the predictivity of the model; this result is also
reflected in the fact that the fourth latent has negligible
mutual information with the ground-truth density field at all
radii. These results also explain why a two-parameter
model is sufficient to accurately model the profiles within
r200 m (upper panel of Fig. 3); the third component is only
needed to describe the halo profile outskirts. We further
confirmed this result by estimating the mutual information
between the IVEvirial latents and the ground truth density
profiles; using a three-dimensional latent space, we found
two latents encoding the same information as latent A and
latent C in Fig. 4 and a third latent encoding no significant
information about the profiles.
We also measured the mutual information between the

latents themselves, to test whether any information about
the halo profiles is shared amongst the latents. We find that
the mutual information between latents is Oð10−2Þ nats,
confirming that the IVE has found a disentangled latent
representation of halo density profiles, such that each latent
captures different, independent factors of variation in the
profiles.

We further investigated the information content of the
latent representation discovered by the 3D latent space
IVEinfall for individual examples. Given the latent distri-
butions returned by the encoder for any given halo, we
systematically varied the value of one latent, while keeping
the others fixed to the mean of their respective Gaussian
distributions. This allowed us to directly probe how the
predicted density profile varies as its latents vary one at a
time. Figure 5 shows the variation in the predicted density
profile of a halo as we systematically change the values of
latents A, B, or C independently, each time keeping the
other two fixed. Latents A, B, and C describe the
normalization of the whole profile, the shape of the outer
profile, and the shape of the profile out to r200 m, respec-
tively. The shape of the outer profile at the transition
between orbiting and infalling material into the halo is
determined by the splashback radius, i.e., the location
where particles reach the apocenter of their first orbit
[49–52]. Therefore, the variability in the outer profile
captured by latent C can be thought as variability in the
location of the splashback radius of the halos. This implies
that the IVEinfall was able to discover the splashback feature
in dark matter halos, without prior knowledge of the halos’
dynamical history.
Varying one latent at a time (Fig. 5) provides us with a

different, but related, perspective on the information con-
tent of the latent representation compared to the mutual
information measure (Fig. 4). The former shows how the
predicted profiles depend on any given latent, conditioned
on fixed values of the other latents; the mutual information
reveals a more global dependency between latents and
ground truths, sensitive to variations in the profiles from
all factors simultaneously. For example, the mutual

FIG. 5. Variations in the predicted density profile of a given halo when systematically varying the value of one latent, while keeping
the others fixed. Each panel from left to right varies latent A, B, or C, respectively, as defined in Fig. 4. The first latent describes the
normalization of the profile; the second the shape of the outer profile component; the third the steepness, or shape, of the profile within
r200 m. These independent aspects of the halos’ density profiles were discovered automatically by the IVE during training.
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information of latent Awith ρðrÞ peaks at r ∼ 0.3r200 m and
decreases rapidly as we move towards the outskirts (Fig. 4),
despite capturing information about the normalization of
the profile which affects the profile at all radii equally
(Fig. 5). This indicates that the variability in the inner
profile is dominated by the variability in the normalization,
whereas the outskirts of the profiles are dominated by other
factors—e.g., infalling material captured by latent B. The
two techniques together—quantifying the mutual informa-
tion and scanning through the latents one at a time—
provide complementary ways to interpret the latent space.

C. Comparing latent and analytic representations

We next compare the information stored within the latent
representation to that stored in the parameters of the NFW
profile, by computing their mutual information as shown in
Fig. 6. The NFW profile, written as a function of the scale
radius rs and the characteristic radius ρs as in Eq. (4), can
be reexpressed in terms of the virial radius r200 m and the
concentration c ¼ r200 m=rs. Latent A contains a large
mutual information with r200 m: indeed, both parameters
are responsible for the normalization of the profile as
corroborated in Figs. 4 and 5. Latent C shares information
with concentration: both of these describe the shape of the
profile. However, the amount of shared information
between concentration and latent C is not as high as that
between latent A and r200 m. This suggests that latent C and
concentration affect the shape of the profiles differently.
The outer profile is not well-modeled by the NFW profile
and therefore most of the information captured by latent B
is not present in the NFW parameters; however, there is a
weak amount of shared correlation between latent B and

r200 m since we expect the outer profile to also depend on
the size of the halo.

VII. CONCLUSIONS

We have presented an interpretable encoder-decoder
framework, capable of predicting the spherically averaged
density profiles of halos given the raw 3D density field
containing each halo. Our goal is to disentangle the
independent degrees of freedom in cosmological dark
matter halo density profiles. Our model consists of an
encoder mapping the density field containing each halo
to a low-dimensional latent representation, followed by a
decoder mapping the latent representation and an input
value of r to the spherically averaged density ρðrÞ. This
architecturewas specifically designed to extract the building
blocks of dark matter halo density profiles from the neural
network: all the information used by the model to predict
density profiles is stored in the representation, and the size of
this representation is small compared to the total number of
parameters in the network. We interpret the latent repre-
sentation by quantifying the mutual information between
each latent dimension and the halos’ density profiles.
We find that a two-dimensional representation is suffi-

cient to accurately model the density profiles up to the virial
radius; however, a three-dimensional representation is
required to describe the outer profiles beyond the virial
radius. We show that the machine-learning model, using the
full 3D density field containing the halo as input, discovers
similar quantities to those used by the well-known NFW
profile. One latent component describes the overall nor-
malization of the profiles, and the second the steepness of
the profile within the virial radius. The third latent contains
information about the infalling material in the outskirts of
dark matter halos. Therefore, the machine-learning model
discovers the splashback boundary of halos without prior
knowledge about the halos’ dynamical histories.
The IVE provides us with an alternative compact para-

metrization of halo density profiles. This can be particularly
useful for studies of the transition between orbiting and
infalling material into the halo, including the location of the
splashback radius. The outer profile is difficult to model
analytically due to its intrinsically dynamical nature
[49,50,53]. In addition to providing an alternative “fitting”
function for halo density profiles, our result that three
parameters (and not more) are needed to describe profiles
beyond the virial radius can also inform future theoretical
studies on the origin of density profiles from first principles.
Our approach presents a generalization over existing

analytic fitting formulas, such as the NFW and Einasto
profiles, which are typically fitted to preprocessed
information about the halos’ structure, i.e., the spherically
averaged density profiles themselves. Thus, our machine-
learning framework is not limited to spherically averaged
densities, but straightforwardly generalizes to other halo
observables that target for example halo triaxality or

FIG. 6. Mutual information between the latent parameters
learnt by IVEinfall and the two parameters adopted by the
NFW model. Latent A contains a large amount of shared
information with r200 m, since both parameters describe the
normalization of the profile. Latent C shares some information
with concentration, as these both describe the profile shape. Most
of the information captured by latent B is not present in the NFW
parameters. However, there is some shared correlation with
r200 m, which is expected since the outer profile should also
depend on the size of the halo.
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substructures. Our IVE framework can also be used to
study the impact of baryonic physics on the dark matter
halos’ density profiles by training the model using hydro-
dynamical simulations. Moreover, the machine-learning
model is trained to predict the density profile of any
individual halo found in a ΛCDM simulated universe;
on the other hand, existing fitting formulas are typically
fitted to the stacked profiles of populations of relaxed halos.
This work makes progress toward designing interpret-

able machine-learning frameworks for extracting new
knowledge about the underlying physics of cosmological
structure formation. In particular, the IVE architecture
allows one to automatically generate a compact model,
captured within a disentangled latent representation, that
retains all the information in the input data needed to
predict a given property of interest. Mutual information
then provides a principled quantitative interpretability
measure to relate this compact representation to physical
factors underlying the mapping. This framework is broadly
applicable to other problems in cosmological structure
formation, such as modelling the halo mass function, the
void size function or the void density profile.
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