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Abstract. Embodied AI (E-AI) in the form of intelligent surgical robotics
and other agents is calling for data platforms to facilitate its development
and deployment. In this work, we present a cross-platform multimodal
data recording and streaming software, MUTUAL, successfully deployed
on two clinical studies, along with its ROS 2 distributed adaptation,
MUTUAL-ROS 2. We describe and compare the two implementations of
MUTUAL through their recording performance under different settings.
MUTUAL offers robust recording performance at target configurations
for multiple modalities, including video, audio, and live expert commen-
tary. While this recording performance is not matched by MUTUAL-
ROS 2, we demonstrate its advantages related to real-time streaming
capabilities for AI inference and more horizontal scalability, key aspects
for E-AI systems in the operating room. Our findings demonstrate that
the baseline MUTUAL is well-suited for data curation and offline analy-
sis, whereas MUTUAL-ROS 2, should match the recording reliability of
the baseline system under a fully distributed manner where modalities
are handled independently by edge computing devices. These insights
are critical for advancing the integration of E-AI in surgical practice,
ensuring that data infrastructure can support both robust recording and
real-time processing needs.
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1 Introduction

While Artificial Intelligence (AI) has traditionally operated within the digital
realm, only recently have new methodologies been proposed to enable agents to
interact within a physical environment. Embodied AI (E-AI), supported by the
integration of sensors and actuators, allows digital systems to perceive, manip-
ulate, and learn from the physical world [26,32]. Learning through interactions
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within an environment, known as embodied cognition [25,32], has garnered in-
creasing interest over the years. This interest has shifted the field from conven-
tional AI, which primarily relies on offline datasets and static environments [3],
to artificial general intelligence, where AI can adapt to and overcome environ-
mental changes [5]. E-AI holds significant promise for automating tasks prone
to human error [5] and adapting to unforeseen events.

Surgery has seen early forms of E-AI through Robotic-Assisted Surgery
(RAS) [17,20,30], meeting three out of the four paradigms of E-AI [25]: per-
ception, action, and memory, while lacking continuous learning. RAS has been
used to automate tasks of varying complexity, from simple gestures such as
knot-tying [29] to entire procedures like knee arthroplasty [14]. Despite these
advancements, we argue that surgeons will remain the core agents in the oper-
ating room (OR), with E-AI systems enhancing the precision of their technical
skills and supporting their situational awareness and decision-making abilities
(non-technical skills) to ensure a holistic approach to surgical practice. However,
substantial integration of E-AI in the OR is still limited due to the lack of tools
necessary to capture the environmental characteristics of the OR [27].

Capturing a holistic scene of the OR is a challenging endeavor [18]. The
OR is a highly complex and dynamic environment, and introducing additional
recording and streaming technologies can be disruptive [28]. Furthermore, do-
main expert knowledge is seldom captured during interventions in the OR and is
typically limited to manual annotations provided retrospectively, which leads to
the loss of valuable information. Moreover, while there has been a push to diver-
sify the modalities captured in the OR, video and imaging remain the primary
data sources for AI applications. A multimodal approach to data is expected to
increase the understanding of an environment by processing different sources of
information similarly to human cognition.

To enable the meaningful development of E-AI, we propose a distributed
multimodal surgical data platform, MUTUAL, for sensing and inference in the
OR. Our contributions are as follows: 1) two multimodal platforms for efficient
recording of data and distributed inference, 2) integration of real-time expert
knowledge and annotations, and 3) comparative evaluation of both platforms
and their demonstration on two clinical scenarios. Code and tutorial can be
found on https://github.com/JK-rez/MUTUAL.git.

2 Related Work

Few platforms have been deployed and trialled in the OR to capture multimodal
intraoperative surgical data, including the OR Black Box®, which continuously
captures and synchronises several sources of intraoperative data [9], and the
Multi-sensing AI Environment for Surgical Task and Role Optimisation (MAE-
STRO) [24]. The OR Black Box® includes panoramic cameras, microphones, and
anaesthesia monitors. In contrast, the MAESTRO platform integrates a wider
array of modalities, such as depth cameras, laparoscopic cameras, eye trackers,
and several wearable physiological sensors and functional neuroimaging sensors.

https://github.com/JK-rez/MUTUAL.git
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These platforms support various downstream tasks, including measuring surgeon
cognitive workload [8], automatic surgical check-listing [24], resource optimisa-
tion, and education [7]. Despite their advancements, these platforms face sig-
nificant challenges in the context of E-AI. As surgical data recording becomes
increasingly common, the variety and volume of recordings will escalate, necessi-
tating robust connectivity, high Input/Output bandwidth, and abundant storage
space for recording platforms. Additionally, if storage devices are not closely inte-
grated with high-performance computing devices, transferring data for training
E-AI becomes inefficient. The MAESTRO platform employs the Lab Stream-
ing Layer (LSL) [1] for real-time data streaming. However, LSL is standalone
software that only natively supports a limited set of recording devices and lacks
integration with common E-AI systems, including robotic systems. Moreover,
no multimodal surgical data platform has been rigorously assessed for surgical
recording and streaming performance, which is a critical gap given the complex
requirements of multimodal data handling.

Performance assessment for multimodal data recording and streaming sys-
tems is inherently complex. While substantial work exists in other domains, such
as smart city Internet of Things, where platforms like FIWARE undergo load
testing and scalability assessments [2], similar efforts are absent in the surgical
domain. FIWARE’s testing metrics include CPU and RAM usage, highlighting
the need for analogous performance metrics in surgical data systems.

Few studies evaluate inference performance and resource consumption of AI
models developed for surgical applications [15]. With the AI research commu-
nity’s focus on faster inference through methods including model optimisation
such as pruning [22], hardware acceleration [4,10,19], and framework optimi-
sation [12], there remains a lack of exploration into efficiently deploying AI,
particularly E-AI, in the OR. Considerable research explores leveraging E-AI in
surgical robotic systems [6,13,31] and virtual assistants [11,21]. For integrating
a data platform with E-AI, the Robot Operating System 2 (ROS 2) [16] has
been widely adopted across various domains. This widespread adoption moti-
vates us to design our platform in ROS 2 to address the integration challenges
and enhance the capabilities of surgical data platforms for E-AI applications.

In summary, a multimodal surgical data platform that supports a wide range
of customisable devices, is performance-tested, and is distributed to enable close
integration with E-AI is needed.

3 Methods

We propose MUTUAL (Multimodal Surgical Data Platform), a multi-process
cross-platform software utilising open-source Software Development Kits (SDKs),
FFmpeg and Shell scripts to capture multimodal surgical data. We also intro-
duce MUTUAL-ROS 2 which extends MUTUAL for more native support for
E-AI applications using ROS 2. A Graphical User Interface (GUI) is designed
to facilitate the acquisition of expert knowledge alongside the data captured by
these two platforms.
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Table 1. Summary of modalities used in our study. While all modalities are included
in the endoscopic study (eTPS), only the first two modalities are included in the RAS
skills assessment scenario. When using MUTUAL-ROS 2 data is stored in rosbag files.

Modality Manufacturer Resolution
@(Hz)

Storage Captured Content

ZED 2i StereoLabs 1080p*2 @15 SVO RGB-D and body tracking
RealSense Intel 480p*2 @15 bag RGB-D and hand pose
Force Sensor ATI @ 15 txt Forces/torque (pantoms)
IMU MBIENTLAB @ 10 txt Hand movement
PTZ Panasonic 1080p @30 AVI Overall and hands view
Endoscope Karl Storz 1080p @30 AVI Endoscopic video
OR Audio Sennheise N/A @48∗103 WAV Conversations
Expert Audio HyperX N/A @48∗103 WAV Expert commentary
Annotations N/A N/A txt OSATS and comments

Data Modalities and Equipment: We demonstrate the performance of our
proposed platform across multiple and diverse modalities (Table 1) captured
simultaneously. These modalities are illustrative inputs that an agent would po-
tentially need access to capture the knowledge of the environment at a given
time. These modalities can be connected to laptops or edge computing devices
in the OR and/or in a Control Room, a room adjacent to the OR used for mon-
itoring surgical interventions by other clinical team members or by the surgical
team during tele-operated interventions.

3.1 Multi-modal Platform Overview:

MUTUAL (baseline): A Shell script is used to launch and manage the record-
ing (Fig. 1). This script calls each of the device’s SDKs as a separate process
while recording their process IDs (PIDs). SDKs were modified to wait in an
endless loop once all respective initialisation steps are performed. Every device
has varying initialisation times after launch, allowing devices to “wait” for one
another, is one way to ensure small differences in synchronisation. The Shell
scripts check that all devices are initialised and ready to record before allowing
the generation of the starting criterion through a terminal or Secure Shell (SSH)
command. Once recording has started, the Shell script monitors device connec-
tivity and error handling using the PIDs. The file sizes are also checked to make
sure data is stored throughout. Error-catching protocols are incorporated in case
a device fails due to a killed process or due to a file not increasing in size. Ignore
the error, restart the concerned process, or intervene on the device are some of
the options a user could consider. Recording are also contained in an endless
loop, waiting for a stop criterion that will kill all processes and clean temporary
files. A Python script is used to launch and manage all FFmpeg recordings in
the control room. Once recording is triggered, a Python subprocess call will send
a start criterion through an SSH command to the managing Shell script via the
orchestration server. This allows for relatively synchronised recording between
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Fig. 1. Overview of MUTUAL and MUTUAL-ROS 2.

the two laptops used in the eTPS study. See section 3.2. Once a stop button
is clicked on the GUI, Python will kill all FFmpeg processes and send a stop
criterion to the managing Shell script through the orchestration server. See sup-
plementary material for overview of recording workflow.

MUTUAL-ROS 2: MUTUAL was adapted to ROS 2 to investigate meth-
ods for further minimising start/stop latency, increasing horizontal scalability,
adopting a unified storage format (rosbag2), and enabling real-time streaming
for deploying E-AI applications. The building blocks of MUTUAL-ROS 2 are
illustrated in Fig. 1. Using the publisher and subscriber mechanism to interact
with data sources, we can leave the data publishers running and subscribe to
them for any applications on any devices connected to the ROS 2 network.

Expert Knowledge Acquisition and Input Orchestration GUI: A bot-
tleneck towards the translation of AI models into the OR has been a lack of
annotations [18]. Allowing for real-time annotations during a procedure removes
much of the process’s friction and facilitates the creation of quality datasets.
Through the clinically tailored GUI, clinicians can start and stop recording, an-
notate workflow, assign skill levels (OSATS scores [23]), and write comments on
how the procedure is being performed (see supplementary material).
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Table 2. Start and stop latency and size of recording comparisons between platforms
for the four assessed modalities running simultaneously, measured on the laptop.

Metrics Baseline ROS 2 (Local) ROS 2 (Networked)
Start/Stop Latency (ms) 639 142 1211
Size of Recording (10 min)(GB) 53 97 3.6

3.2 Experimental Design:

MUTUAL has been deployed for two real-world surgical data studies (Fig. 1 top)
requiring multimodal data: 1) a study for endoscopic Transsphenoidal Pituitary
Surgery (eTPS) using phantom models in a mock OR at St Thomas’ Hospital,
London, UK, and 2) a study for surgical skills assessment for RAS at Guy’s
Hospital, London, UK. The GUI was developed using the open-source version
of PySimpleGUI. In our study, MUTUAL consists of two laptops (one in the
mock OR and one in the control room interconnected through an orchestration
server), whereas MUTUAL-ROS 2 consists of a laptop and an edge computing
device. The performance metrics evaluated include CPU and RAM usage, start
and stop latency, recording size, as well as sampling frequency. We record data
from the first four modalities simultaneously, using the specification outlined in
Table 1, running the experiment for ten minutes. The four chosen modalities are
the ones deployed in the OR for the eTPS study as they are the most likely to be
integrated into an edge computing device. All experiments are carried out with
a laptop (CPU: i7-11800H @ 2.30G, RAM: 16 GB DDR4-3200) and a Nvidia
Jetson Orin Nano 8GB developer kit to control the number of variables. The
ROS 2 network router is the TP-Link BE9300 Tri-Band Router.

We compare the performance of MUTUAL and MUTUAL-ROS 2 platforms
against a group of metrics. We monitor only the subscriber nodes that save in-
coming data into ROS 2 bags in the MUTUAL-ROS 2. The subscriber nodes
in MUTUAL-ROS 2 offer the closest functionality to MUTUAL, and therefore,
they are the only monitored processes. Additionally, the subscriber nodes on the
laptop are initialised with either a local (laptop) or networked (Jetson) pub-
lisher to account for potential bandwidth limitations caused by either network
conditions or ROS 2 middleware implementation. We refer to the two setups as
"Local Sub" and "Networked Sub", respectively.

4 Results

We demonstrate the modalities captured during our experiments during two
clinical scenarios, i.e. eTPS and RAS skills assessment in Fig. 2. Under such
clinical scenarios, MUTUAL can maintain the configured recording resolution
throughout multiple one-hour recording sessions per day. The GUI used during
the eTPS study allowed for annotations (workflow and OSATS scores), recording
of commentary, and recording orchestration, giving full control to the clinical
expert (see Supplemental material).
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Fig. 2. Sample data captured during eTPS and RAS skills assessment studies.

Fig. 3. CPU&RAM usage when recording four modalities on a laptop over 10 min-
utes. CPU usage (%) is expressed in per core capacity. Baseline: MUTUAL; Local
Sub: MUTUAL-ROS 2 where publishers and subscribers are on the same machine;
Networked Sub: MUTUAL-ROS 2 where publishers and subscribers are on different
machines.

In relation to the comparison between MUTUAL and MUTUAL-ROS 2 over
ten minutes, the ROS 2 Local Sub setup consumes the most resources (CPU and
RAM usage) while the ROS 2 Networked Sub setup consumes the least resources;
the difference between their median value is approximately 60% (Fig. 3). With
the Networked Sub setup, the frequency of recording drops, especially for video
modalities, where the recording frequency is approximately halved (see Table 3).
MUTUAL is able to maintain the configured recording frequency over the 10-
minute period as expected. Furthermore, we observe that when running the Local
Sub setup on the Jetson, the recording frequency increases compared to running
the same setup on the laptop. As shown in Table 3, the recording frequency
more than tripled for the RealSense device. The decrease in recording frequency
with the Networked Sub setup is also reflected in the size of the recording, as
illustrated in Table 2. The Local Sub configuration resulted in larger storage
consumption even at a lower recording frequency compared to MUTUAL. With
the Networked Sub configuration, it also takes more than eight times longer
to discover all the topics for subscription and recording. As shown in Table 2,
MUTUAL-ROS 2 with Local Sub setup offers the lowest start/stop latency.
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Table 3. Recording frequencies in Hz.

Modality @(Hz) Baseline Local Sub
(Laptop/Jetson)

Networked Sub

ZED Cam Video @15 15 3.2 / 5.5 1.0
RealSense Cam Video @15 15 3.2 / 11.3 1.0
Force Sensor @15 15 14.9 / 15 14.5
IMU @10 10 9.9 / 9.9 9.6

5 Discussion

Capturing heterogeneous annotated surgical data is critical for developing E-AI
methodologies into the OR. Furthermore, ensuring the real-time streaming of
this data will facilitate large-scale integration of E-AI. Our proposed platform
addresses both of these components effectively. Through our proposed platforms,
we showcase how varied modalities can be seamlessly integrated into one to
capture a holistic view of the OR. The designed GUI allowed clinical expertise to
be captured in real-time, through clinical context via comments, audio recording
and OSATS, data which has historically been lacking in the field. Even when
AI models will eventually avoid manual annotations, expert knowledge could be
used in real-time to validate such predictions.

MUTUAL was deployed successfully in two different environments. During
the eTPS study, 24 one-hour data samples were recorded, whereas during the
robotic-assisted training, 50 ten-minute samples were recorded. The platform
setup took less than an hour in each scenario, and no modifications to the training
setup were needed for deployment during RAS training.

MUTUAL baseline’s performance meets the target configuration under the
clinical use cases and the experiments. This makes it suitable for recording and
dataset curation applications. Still, it lacks the streaming capability or horizontal
scalability of MUTUAL-ROS 2, both of which are essential for deploying E-
AI applications effectively in the OR. Although the framerate performance of
MUTUAL-ROS 2 does not meet the configured recording criteria, it meets the
inference rate for many currently AI models running inference on video at 1Hz.
Moreover, when running only one modality per device using the Jetson edge
computing device, the framerate performance can reach the recording criteria
with performance similar to MUTUAL, demonstrating the value of distributed
inference. Lastly, MUTUAL does not provide a unified storage format and the
same level of start/stop synchronisation achieved by the Local Sub version of
MUTUAL-ROS 2.

Despite its competitive performance, our platform can still be further im-
proved. Plug-and-play capabilities are needed for the platform, since a techni-
cian is still required to be present for device set up and initialisation. Moreover,
the GUI is procedure-specific and requires expertise for adapting it to different
clinical scenarios. Last, although the streaming performance of MUTUAL-ROS
2 has not been tested for inference we demonstrate how our platform can support
edge computing devices in a distributed manner.
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6 Conclusion

In this work, we propose two multimodal platforms, MUTUAL and MUTUAL-
ROS 2, that are evaluated on two real-world clinical scenarios and compared
against resource consumption, start/stop synchronisation, storage, and frequency.
Both platforms provide a step towards holistic sensing and inference in the OR,
empowering the development and deployment of E-AI, especially robotic E-AI
applications. Through careful design choices, the platform allows seamless inte-
gration in varied environments and should allow increased data capture at the
feature and expert knowledge levels.
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