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Abstract

Let (G, H) be one of the equal rank reductive dual pairs (Mp2n, O2n+1) or (Un, Un)

over a nonarchimedean local field of characteristic zero. It is well-known that the

theta correspondence establishes a bijection between certain subsets, say Ĝθ and Ĥθ ,

of the tempered duals of G and H . We prove that this bijection arises from an equiv-

alence between the categories of representations of two C∗-algebras whose spectra

are Ĝθ and Ĥθ . This equivalence is implemented by the induction functor associated

to a Morita equivalence bimodule (in the sense of Rieffel) which we construct using

the oscillator representation. As an immediate corollary, we deduce that the bijec-

tion is functorial and continuous with respect to weak inclusion. We derive further

consequences regarding the transfer of characters and preservation of formal degrees.
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1 Introduction

In this paper, we cast a new light onto equal rank tempered local theta correspondence

by approaching it via the framework of the representation theory of C∗-algebras. As a

result, we discover some fundamental new features and obtain conceptual new proofs

for several known facts.

Local theta correspondence, founded by Roger Howe in the mid 1970’s, is a major

theme in the theory of automorphic forms and representation theory. In a nutshell, local

theta correspondence establishes a bijection between certain sets of smooth irreducible

representations of reductive groups G and H which form a dual pair, that is, G and

H sit inside a large enough symplectic group in such a way that they form each

others’ centralisers. Roughly speaking, this bijection is obtained by considering how

the so-called oscillator representation of the ambient symplectic group decomposes

as a G × H -representation. When the two groups have “the same size”, the local

theta correspondence enjoys several attractive properties, in particular, it preserves
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temperedness. It is this tempered correspondence in the equal rank case that will be

the first ingredient of our paper.

The second ingredient of our paper is the notion of strong Morita equivalence

for C∗-algebras introduced by Mark Rieffel, again, in the mid 1970’s, as part of his

C∗-algebraic generalisation of Mackey’s theory of induced representations of locally

compact groups. Given two C∗-algebras A and B, roughly put, an equivalence A-B-

bimodule X is an A-B-bimodule which is equipped with an A-valued inner product and

a B-valued inner product such that these inner products satisfy certain compatibility

and continuity conditions. If such a bimodule exists, then A and B are said to be

strongly Morita equivalent. This is an equivalence relation.

Given a representation π of B realized on a Hilbert space V and an equivalence

A-B-bimodule X , one can “induce” it to a representation IndB
A(X , π) of A captured

on the Hilbert space X ⊗B V obtained by interior tensor product (this process is

sometimes called Rieffel induction). This association is functorial and has an inverse

implemented by the dual module of X , thus leading to an equivalence of categories

of representations of A and B. It identifies the lattices of two-sided closed ideals of A

and B and furthermore, preserves weak containment and direct integrals.

1.1 Description of themain result

We bring together the two themes above in the case where (G, H) is an equal rank

dual pair of the form (Mp2n, O2n+1) or (Un, Un) over a nonarchimedean local field

of characteristic zero. In this case, the theta correspondence π �→ θ(π) establishes

a bijection between certain subsets of the tempered duals of G and H . Let us name

these subsets Ĝθ and Ĥθ .

We consider the reduced C∗-algebras associated to the groups G and H . These

are algebras of operators, going back to Irving Segal, which are obtained from the

convolution action of the L1-algebra of a locally compact Hausdorff group on its L2-

space. As such, these C∗-algebras are directly related to tempered representations.

We exhibit ideals C∗
θ (G) and C∗

θ (H) of the reduced C∗-algebras of G and H whose

spectra are homeomorphic to Ĝθ and Ĥθ respectively.

We proceed to show that the (smooth) oscillator representation of G×H provides a

natural bimodule for the reduced C∗-algebras of G and H and that this bimodule can be

promoted to an equivalence C∗
θ (G)-C∗

θ (H)-bimodule in the sense above. Remarkably,

the crucial compatibility property between the C∗
θ (G)-valued and C∗

θ (H)-valued inner

products turns out to be precisely the so-called local Rallis inner product formula of

Gan and Ichino [9].

We call the equivalence C∗
θ (G)-C∗

θ (H)-bimodule above the oscillator bimodule and

denote it �. The key point is that given an irreducible representation of C∗
θ (H), which

is the same as an element of Ĥθ , the induced representation Ind
C∗

θ (G)

C∗
θ (H)

(�, π) of C∗
θ (G)

is the (integrated form) of the G-representation θ(π∗) where π∗ is the contragradient

of π . In fact, Ind
C∗

θ (G)

C∗
θ (H)

(�, π) is precisely the (integrated form) of the G-representation

obtained from π via the influential “averaging of matrix coefficients” construction of

Jian-Shu Li introduced in [25] in the so-called stable range case (roughly speaking,
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when G is at least twice the size of H ). In the equal rank cases, it is known that Li’s

construction, hence ours, agrees with θ(π∗).

1.2 At this point, we can point out some immediate implications on theta correspon-

dence that seem to be previously unknown to the best of our knowledge. We see that

the tempered theta correspondence, in the equal rank set-up, is simply the restriction of

an equivalence of categories of representations of two C∗-algebras to the irreducible

objects. As such it is functorial. Moreover, as it is implemented by an equivalence

bimodule, it enjoys various properties, such as the preservation of weak containment.

In particular, the tempered theta correspondence is a homeomorphism between Ĝθ

and Ĥθ .

1.3 The oscillator bimodule interpolates the oscillator representation of one group with

the regular representation of the other group. This immediately implies that Ĝθ lies in

the support of the oscillator representation viewed as a G-representation. In fact, we

show with an elementary analysis that the latter is precisely the closure of the former.

This also follows from a Plancherel decomposition result of Sakellaridis [38].

1.4 As discussed in [35], strong Morita equivalence is intimately related to the so-called

generalized commutation relations. Our oscillator bimodule construction immediately

implies, via Theorem 1.9 of [35], that G and H generate each others’ commutants

(in the sense of von Neumann) inside the algebra of bounded linear operators of the

Hilbert space carrying the oscillator representation. In [20, Thm. 6.1], Howe proves

this for general real dual pairs.

1.5 The oscillator bimodule � can be viewed as generalization of the Heisenberg mod-

ule of Rieffel which plays an important role in the theory of non-commutative tori and

also features in Gabor analysis. Let W be a symplectic vector space. Given a closed

subgroup Ŵ of W , Rieffel shows in [37] that the (twisted) C∗-algebras associated to Ŵ

and its dual/annihilator group Ŵ⊥ are strongly Morita equivalent. The equivalence is

implemented by the Heisenberg module based on the (projective) Heisenberg repre-

sentation of W . The critical compatibility condition for the two operator valued inner

products on the bimodule reduces to the Poisson transformation in this case.

In the local theta correspondence set-up, we operate inside the symplectic group

Sp(W ) with the roles of Ŵ,Ŵ⊥ played by the equal rank dual pair (G, H). Accordingly

we consider not the Heisenberg representation but the more complicated oscillator

representation. In this sense, the local Rallis inner product formula of Gan and Ichino

that we used in our proof of the aforementioned compatibility property can be viewed

as a non-commutative analogue of the Poisson transform.

1.6 Applications

After promoting the equal rank tempered theta correspondence to a categorical equiv-

alence, we move on to illustrate the fact that an equivalence bimodule allows the

transfer of information between the two sides. We do this with two applications that
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are attractive in the simplicity of their statements and the elementary nature of their

short proofs.

1.6.1 Explicit transfer of characters

Let us continue with the set-up of the above section. If π is a tempered irreducible

representation of H , the character of π is the tempered distribution on H , that is, the

continuous linear functional

ch(π) : S(H) → C

on Harish-Chandra’s Schwartz algebra S(H) of H given by the trace

ch(π)(ϕ) := tr π(ϕ).

The oscillator bimodule forms a connection between parts of the Schwartz algebras

of G and H , and as such gives a meaningful way of expressing the character one

representation in terms of that of its theta lift. An elementary half-a-page long argument

based on a concrete representation of the oscillator bimodule � as a space of operators

gives us the following.

Corollary 1.6.2 Let π be a tempered irreducible representation of H that enters the

theta correspondence. Let S denote the Fréchet space carrying the smooth oscillator

representation of G×H. Given x, y ∈ S, let 〈x, y〉
H

∈ S(H) and G〈x, y〉 ∈ S(G) be

the matrix coefficient functions defined below in (5.2.2) and (5.3.2). We have

ch(θ(π))(G〈x, y〉) = ch(π)(〈y, x〉
H
).

The inner products G〈·, ·〉 and 〈·, ·〉
H

span ideals in the Schwartz algebras of G and

H respectively and the above result explicitly relates the two characters when they are

restricted to these ideals. To extend the above transfer formula beyond these ideals,

various convergence issues in the theory of operators on Hilbert C∗-modules need to

be addressed. We do not pursue this.1.

Investigations on the question of how characters of representations relate, if at all,

under the theta correspondence go back to the late 1980s. Notably, Przebinda studied

the stable range case2 over the reals (e.g. [32, 33]). For a more recent result in this

direction, see [28] which treats real cases in which one group is compact and [27]

which adapts earlier works of Przebinda to the non-archimedean stable range setting.

Our result in the non-archimedean equal rank case has been announced by Wee Teck

Gan in a few talks in the recent years (see [12, 13]). Gan’s proof seems to be different

from ours, although both make essential use of matrix coefficients. Our proof is a

simple and direct consequence of the Hilbert C∗-module point of view that we take

in this paper.

1 In the case of the ortho-symplectic pair, if one works with SO(V ) instead of O(V ), it is likely that our

construction still goes through and in this case the ideal would be the whole Schwartz algebra of SO(V ).

2 He also proposed an explicit formula which is conjectured to hold beyond the stable range case.
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1.6.3 Preservation of formal degrees

It is well-known (see [8]) that the local theta correspondence takes discrete series

representations to discrete series representations in the setting of equal rank pairs.

Recall that the formal degree of a discrete series representation π of, say, H is the

positive real number deg(π) such that

∫

H

〈v, π(h)(v′)〉〈w,π(h)(w′)〉ds =
1

deg(π)
〈v,w〉〈v′, w′〉

for all v, v′, w,w′ ∈ Vπ . It depends on the chosen Haar measure on H .

Using a cohomological argument mixed with some known facts regarding the trans-

fer of trace maps under equivalence bimodules, we obtain the following.

Corollary 1.6.4 Let π be a discrete series representation of H which enters the theta

correspondence. Then

deg(π) = deg(θ(π)).

The Haar measures used in the above result are the ones that we use for the proof

the compatibility property (Prop. 5.4.1) of the oscillator bimodule. The key point of

the proof is that discrete series give generators of K0 of the reduced group C∗-algebra

and one can access their formal degrees using the canonical trace. The canonical trace

is given by the orbital integral associated to the trivial conjugacy class. We did not

pursue this as we did not need it, but one could also explicitly transfer traces arising

for orbital integrals of other conjugacy classes.

Although the above result on preservation of formal degrees result is not new (Gan

and Ichino proved it in [9]), we think that our proof is of interest as a simple application

of K -theory, which is now readily available. This demonstrates the usefulness of the

oscillator bimodule approach for the study of theta correspondence.

1.7 Remarks

(1) Our approach also applies to the stable range case which was mentioned earlier.

This case will be treated in a future paper. It should be possible to treat the almost

equal rank cases as well.

(2) We should point out that an equivalence of categories in the naive sense does

not hold at the level of full smooth (as opposed to tempered) equal rank theta

correspondence; this was explained to us by Dipendra Prasad who recently has been

pursuing the idea of interpreting the full smooth equal rank theta correspondence

as a ‘derived equivalence’, see [31].

(3) As pointed out to us by Wee Teck Gan, our C∗-algebraic approach to theta corre-

spondence could be interpreted to lie within the general C∗-algebraic framework

for symplectic quantization theory [24] developed by Klaas Landsman in the

1990’s, see [14].
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2 The local theta correspondence

Let F be a non-archimedean local field of characteristic 0. Let E be F or a quadratic

extension of F . Put ε = ±1 and set

ε0 =

{
ε, if E = F,

0, if E �= F .

Following the conventions of [10], we set

W = Wn = a − ε-Hermitian space over E of dimension n,

V = Vm = a ε-Hermitian space over E of dimension m.

We define the associated groups as follows:

G = G(W ) =

{
Mp(W ), if W is symplectic and dim(V ) is odd,

the isometry group of W , otherwise.

Here Mp(W ) is metaplectic group: the unique nonsplit double cover of Sp(W ). We

define H = H(V ) similarly by switching the roles of W and V . If E = F and ε = 1,

then G = Sp(W ) or Mp(W ) depending on the parity of the dimension of V . If E = F

and ε = −1, then G = O(W ). If E �= F , then G = U (W ).

2.1 The Heisenberg representation

Let W denote the space W ⊗ V equipped with the symplectic form

trE/F ((·, ·)W (·, ·)V ) .

The Heisenberg group H(W) is defined as W ⊕ F with the multiplication rule

(w, t)·(w′, t ′) := (w + w′, t + t ′ + 1
2
〈w,w′〉).

We fix a non-trivial unitary character χ : F → C1. By the Stone-von Neumann

Theorem, there exists, up to unitary equivalence, a unique irreducible unitary repre-

sentation of H(W) with central character χ . We denote this representation by ρχ .

2.1.1 The oscillator representation

The group Sp(W) of isometries of the symplectic space W acts on the Heisenberg

group H(W) as automorphisms via the rule g·(w, t) := (gw, t). Let Mp(W) denote

the group satisfying the exact sequence

1 → C
1 → Mp(W) → Sp(W) → 1.
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There is a unique, up to equivalence, unitary representation ωχ of Mp(W) on the

Hilbert space of ρχ satisfying the covariance property

ωχ (ḡ)ρχ (h)ωχ (ḡ−1) = ρχ (g·h) (2.1.1)

for all h ∈ H(W) and g ∈ Sp(W) with lift ḡ ∈ Mp(W). This representation is called

the oscillator representation.

2.2 Splitting

Consider the natural map G × H → Sp(W). With the aid of a pair of auxillary

characters χV , χW of E× (see [9, 3.3]), we can construct a splitting ι

Mp(W)

G×H

ι

Sp(W)

We pull-back the local oscillator representation ωχ of Mp(W) to G×H via this

splitting. We will mainly consider the underlying smooth representation and denote it

simply by ω, suppressing its dependency on χ, χV , χW for convenience.

2.3 The Theta lift

Given a smooth representation (π, Vπ ) of H (always assumed to be of finite length),

the maximal π -isotypic quotient of (ω, Vω) has the form

π ⊗ �(π)

for some smooth representation �(π) = �W ,V (π) of G, known as the big theta lift

of π . Alternatively, we can describe �(π) as the representation ω ⊗ 1 of G on the

space of H -coinvariants

(Vω ⊗ Vπ∗)H , (2.3.1)

where (π∗, Vπ∗) is the contragradient of π . The maximal semisimple quotient of �(π)

is denoted by θ(π) = θW ,V (π) and is called the small theta lift of π .

In the case H = Mp(W ), we call π genuine if it does not factor through Sp(W ).

If π is not genuine, it is easy to see that its big theta lift is zero. We now state the

fundamental result for local theta correspondence theory.

Theorem 2.3.1 (Howe Duality) If �(π) is non-zero then it has a unique irreducible

quotient, so that θ(π) is irreducible. Moreover, if θ(π) ≃ θ(π ′) is non-zero then

π ≃ π ′.
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This was originally conjectured by Howe [19] and proven by him [20] in the

archimedean setting. In our nonarchimedean set-up, it was proven by Waldspurger

[43] when the residue characteristic p was not equal to 2. Much later, Gan and Takeda

[10] proved this for all p.

2.4 Equal rank correspondence

We will now specialize the discussion to equal rank pairs (G, H), that is, pairs for

which we have m = n + ε0. Precisely, these are

(Mp2k, O2k+1), (O2k+1, Mp2k), (Uk, Uk).

Theorem 2.4.1 Assume that m = n + ε0. Let π be a tempered irreducible repre-

sentation of H. If �(π) is not zero, then it is irreducible (thus �(π) = θ(π)) and

tempered.

Proof This can be found in [11]: see their Thm 1.2 and Lemma 4.1. ⊓⊔

In passing, we mention that the non-vanishing of the above theta lifts has an elegant

characterisation in terms of the standard ε-factors (see [9, Thm. 11.1]).

2.5 Li’s form

Let (π, Vπ )3 be a tempered irreducible representation of H . Following Li [25], one

introduces a sesquilinear form (·, ·)π on Vω ⊗ Vπ as follows

(φ ⊗ v, φ′ ⊗ v′)π :=

∫

H

〈φ,ω(h)(φ′)〉〈v, π(h)(v′)〉dh (2.5.1)

The defining integral is well-known to be absolutely convergent in our equal rank case;

see [25, Cor. 3.2]. One can also conclude its convergence from that of the doubling

zeta integral at s = 0, see [9, Lemma 9.5 (ii)].

Using the fact that H is unimodular, it is easy to see that this form is Hermitian and

G-invariant with respect to the natural action ω ⊗ 1 of G. Let N denote the radical of

(·, ·)π , namely

N := { ∈ Vω ⊗ Vπ | (,�)π = 0 ∀� ∈ Vω ⊗ Vπ } .

Then N is stabilised by G and thus the quotient

(Vω ⊗ Vπ ) /N (2.5.2)

carries a unitary G-representation that we will denote by L(π).

3 When we do not need to be precise about the carrier space Vπ of a representation (π, Vπ ), we will

suppress it from the notation.
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A straightforward calculation shows that the subspace spanned by elements of the

form

 − (ω ⊗ π)(h)()

with  ∈ Vω ⊗ Vπ and h ∈ H lies inside the radical N . Therefore we have an

projection

V�(π∗) ≃ (Vω ⊗ Vπ )H ։ VL(π).

2.6 The next result is well-known to specialists. In fact, most of it can be found in the

literature, alas not completely and not in the way we want. So we give a quick proof.

Proposition 2.6.1 Assume that m = n + ε0. Let π be a tempered irreducible repre-

sentation of H. We have

L(π) ≃ θ(π∗).

Moreover, if the form (·, ·)π is non-zero, then

(·, ·)π ≥ 0.

Proof Recall from Theorem 2.4.1 that �(π∗) = θ(π∗). Assume that (·, ·)π , and hence

L(π), is non-zero. Since π , and hence π∗, is tempered, by Thm. 2.4.1, we know that

�(π∗) is either zero or is irreducible. Therefore L(π) being a nonzero quotient of

�(π∗) immediately implies that L(π) ≃ �(π∗).

Now assume that (·, ·)π is zero. We will show that �(π∗) is zero. This is proven4

in [17, Prop. B.4.1] for the unitary pairs. Their proof adapts easily to the meta-

plectic/orthogonal pairs as well; indeed, this is essentially done in [9, Prop. 16.1.3

(iii)] which treats both cases simultaneously. In [9, Prop. 16.1.3 (iii)], the authors

consider only discrete series π but the proof still works if π is tempered as we indi-

cate now. The first thing to point out is that, in the notation of [9], the submodule

R(V , χW ) ⊕ R(V ′, χW ) equals all of the degenerate principal series I H
P (0, χV ) (see

[9, Prop. 7.2.(i)], compare with [17, Prop. B.3.2]). As mentioned above, the doubling

zeta integral Z is convergent at s = 0. It is also well-known (see [9, Thm. 9.1.(iii)])

that Z is non-trivial on I H
P (0, χV ). Our assumption that (·, ·)π is zero on VωV ,W

⊗ Vπ

implies that Z is zero on the submodule R(V , χW ), therefore it is non-zero on the

complement R(V ′, χW ). This implies that (·, ·)π is non-zero on VωV ′,W
⊗ Vπ . From

the previous paragraph, it follows then that �V ′,W (π∗) is nonzero. Now the theta

dichotomy principle (see [9, Cor. 9.2]) tells us that �V ,W (π∗) is zero as claimed.

For the second claim, assume again that (·, ·)π is non-zero. Non-negativity of (·, ·)π
follows immediately from Thm A.5 of [17]. One sets the groups G and H in the

statement of Thm. A.5 to be equal to our G. Similarly, one sets the representations

πH and πG in the statement of Thm. A.5 to be equal to our ω and π respectively. The

4 They work with HomU (V )(ω ⊗ π, 1). Note that HomU (V )(ω ⊗ π, 1) ≃ Hom((ω ⊗ π)U (V ) , 1) ≃

Hom(�(π∗), 1).



Equal rank local theta correspondence as a strong Morita equivalence Page 11 of 43    72 

hypothesis (i) of Thm. A.5 is automatically satisfied since in the non-archimedean

set-up all smooth vectors are K -finite, and hypothesis (ii) is also satisfied thanks

to the fast decay of the matrix coefficients of the oscillator representation that we

alluded to above, see Lemma 5.1.1 below. Now non-negativity of (·, ·)π is precisely

the conclusion of Thm. A.5. One could also directly refer to [38, Prop. 3.3.1] for

non-negativity. ⊓⊔

3 Some ∗-algebras associated to groups

In this section we discuss various topological algebras associated to a locally compact

group. One of those algebras will be the reduced C∗-algebra C∗
r (G), whose spectrum

coincides with the tempered dual of G. Another one will be the Schwartz algebra S(G)

is a dense subalgebra C∗
r (G) consisting of functions on G and it is more susceptible

to the explicit constructions and calculations that we present in Sect. 4.

3.1 C
∗-algebras of groups

given a locally compact Hausdorff topological group G, we let L1(G) denote the

Banach ∗-algebra of integrable functions. It is well-known that there is a bijection

between unitary representations of G and non-degenerate ∗-representations of L1(G):

given a (strongly continuous) unitary representation π : G → U (Vπ ) of G on a Hilbert

space Vπ , we obtain a ∗-representation of L1(G) (still denoted π ) by integrating

π( f ) :=

∫

G

f (s)π(s)ds, (3.1.1)

where f ∈ L1(G).

Let (π, Vπ ) be a unitary representation of G. We denote the C∗-algebra generated5

by the image of L1(G) under the ∗-representation π : L1(G) → L(Vπ ) by

C∗
π (G).

It is called the C∗-algebra of G associated to π . One of the most important examples

is when we take π to be the regular representation of G on L2(G); in that case C∗
π (G)

is the so-called reduced C∗-algebra of G and it has the established notation

C∗
r (G).

Recall that the spectrum of L1(G) is in bijection with the unitary dual Ĝ of G.

As is well-known, Ĝ comes equipped with a topology that is typically described via

uniform approximation of matrix coefficients on compacta. On the other hand, there is

a natural topology on the spectrum of C∗
π (G) (see Sect. 4.3.5 for a brief discussion). It

can be shown that the above bijection gives a homeomorphism between the spectrum of

5 This is the closure of the image of L1(G) with respect to the operator norm.
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C∗
π (G) and the support of π , denoted supp(π), that is, the subset of Ĝ whose elements

are the representations which are weakly contained in π . A special case of this is the

well-known fact that the spectrum of C∗
r (G) is homeomorphic to the “reduced dual”,

that is, the support of the regular representation of G:

Ĉ∗
r (G)

homeom.
←−−−→ Ĝred. (3.1.2)

3.2 Schwartz algebra

Given a connected reductive linear algebraic group G over F (which, we recall, is

non-archimedean), let us put G = G(F). We fix a minimal parabolic subgroup P

and a “good”6 maximal compact subgroup K so that G = P K . Consider the smooth

normalized induced representation I G
P (1) of the trivial representation of P to G. Let

eK denote the unique vector in I G
P (1) such that eK (k) = 1 for all k ∈ K . We define

Harish-Chandra’s function as the diagonal matrix coefficient of vK :

�(g) := 〈I G
P (1)(g)eK , eK 〉, g ∈ G.

It is well-known that � is a positive, K -biinvariant function that satisfies �(g) =

�(g−1) (see [44, Section II.1]).

We say that a continuous function f : G → C is rapidly decreasing if for all

n > 0 we have

vn( f ) := sup
g∈G

| f (g)| �(g)−1(1 + log ‖g‖)n < ∞, (3.2.1)

where ‖·‖ is the standard norm on G arising from a good choice of embedding ι :

G →֒ GLm(F) where m is the F-rank of G (see, e.g. [9, p. 544]). The space S(G) of

all rapidly decreasing, uniformly locally constant7 functions on G is an algebra under

convolution and it is called the (Harish-Chandra) Schwartz algebra of G.

Given a compact open subgroup K , let S(G//K ) denote the subspace of functions

in S(G) which are constant on the double cosets of K . Then the space S(G//K ) is

a nuclear, unital Fréchet ∗-algebra under convolution, with the topology given by the

seminorms vn in (3.2.1). We have that

S(G) =
⋃

K

S(G//K )

where K ranges over compact open subgroups of G (the right hand side is a vector

space direct limit). We equip S(G) with the direct limit topology. Let C∞
c (G//K )

denote the subspace of functions in S(G//K ) that are compactly supported. Then

C∞
c (G//K ) is a unital convolution algebra that acts on L2(G), again via convolution.

6 Rougly put, it needs to be the stabilizer of a well-chosen vertex in the building associated to G. See [9,

p. 544]

7 A function is uniformly locally constant if it is B bi-invariant for a compact open subgroup B.
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If we denote by C∗
r (G//K ) the C∗-algebra generated by C∞

c (G//K ) inside L(L2(G)),

then

C∗
r (G) = lim

−→
C∗

r (G//K ),

where the right hand side a direct limit of the C*-subalgebras C∗
r (G//K ) partially

ordered by inclusion.

We single out some properties of S(G) that will be of importance to us. A unitary

representation π of G is called tempered if for any smooth vectors v, v′ ∈ π , there

exists a constant d such that we have

|〈π(g)(v), v′〉| ≤ d �(g)

for all g ∈ G (see [2, Eq. 2.2.3]).

It is well-known that tempered representations of G are precisely those that are

weakly contained in the regular representation of G so that the tempered dual Ĝ temp

of G is the same as the reduced dual Ĝred that we discussed earlier. However, it is

standard to use the terminology tempered dual in the setting of reductive groups.

Theorem 3.2.1 The Schwartz algebra S(G) enjoys the following properties.

(1) If π is a tempered representation and π∞ its associated smooth representation,

then the G-action on π∞ integrates to an action of S(G).

(2) If K is a compact open subgroup of G, then S(G//K ) is a dense ∗-subalgebra

of C∗
r (G//K ), in particular the inclusion S(G) → C∗

r (G) is continuous and has

dense range;

(3) If an element of S(G//K ) is invertible in C∗
r (G//K ), then it is already invertible

in S(G//K );

Proof The first claim is classical. It follows from the factorization S(G) =

C∞
c (G)⋆S(G) (see [2, (2.1.1) and (2.2.7)]). The other two claims are due to Vignéras

[42, Prop. 13]8. An alternative proof is given in [4, Lemma 2] for G = GLm(F). ⊓⊔

3.3 Metaplectic and orthogonal groups

The definition of the Schwartz algebra can be adapted to the non-linear group9 Mp(W )

and the disconnected O(V ) in a straightforward way. For Mp(W ), we pull-back the

Harish-Chandra function � and the standard norm ‖·‖ from Sp(W ) to Mp(W ). For

O(V ), noting that O(V ) ≃ SO(V ) × {±1}, we extend the � and ‖·‖ from SO(V )

to O(V ) by declaring that �(−g) = �(g) and ‖−g‖ = ‖g‖. Then in both cases, �

continues to enjoy the usual properties and 1+ log ‖·‖ still defines a length function10.

8 It was discovered in [40, p. 9] that Prop. 13 of [42] appears to be false in general. However, it is true in

the special case where the scale function σ is such that σ − 1 is a length function, which is precisely the

case for us.

9 While Mp(W ) is not linear like Sp(W ), it still is an “ℓ-group” like Sp(W ): i.e. it is a Hausdorff topological

group with a basis of neighborhoods of the identity consisting of compact open subgroups.

10 A length function on a group G is a continuous function L : G → [0, ∞] such that L(e) = 1,

L(g−1) = L(g) and L(gh) ≤ L(g) + L(h) for all g, h ∈ G.
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The definition of the Schwartz algebra now applies. A careful treatment for the case

of the metaplectic group can be found in [26, Section 2.3].

Thm. 3.2.1 stays valid when G is Mp(W ) or O(V ). The first part of Thm. 3.2.1

is clear (see [26, Section 2.3] for the metaplectic case). For the third part, the key

properties that are needed for Vignéras’ results to apply are

(i) given a compact open subgroup K of G, the double coset space K\G/K has

polynomial growth [42, p. 237] with respect to the scale σ := L − 1 = log ‖·‖,

(this is required for results in [42, Section 6])

(ii) �σ−r ∈ L2(G) for large enough r > 0. (required in order to be able to apply [42,

Thm. 20], see [42, Lem. 27 and Prop. 28])

It is easy to see that these conditions are both satisfied for the cases of G = Mp(W )

and G = O(V ). For example, let K be a compact open subgroup of Mp(W ). Then if

B ′ is the image of K (again compact open) in Sp(W ) under the covering map, then

the natural map K\Mp(W )/K → K ′\Sp(W )/K ′ has fibers of size at most 2, and

it follows that polynomial growth of the latter implies the same for the former. This

addresses item (i). For item (ii), we simply observe that the integral over Mp(W ) is

twice that over Sp(W ). Similar reasoning applies to the case of O(V ).

4 StrongMorita equivalence

In this section, we give an exposition of the notion of strong Morita equivalence for

C∗-algebras. A Morita equivalence between C∗-algebras A and B induces a bijection

between their Hilbert space representations. Good references for the C∗-theory include

[23, 34].

Using the C∗-algebras C∗
r (H) and C∗

r (G), we will exploit this in the context of

local theta correspondence. However, as the matrix coefficients of the oscillator rep-

resentation live in the Schwartz algebras S(G) and S(H) in the equal rank set-up, our

constructions naturally start at the level of these algebras.

4.1 Local subalgebras of C∗-algebras

Let A be a complex ∗-algebra. The spectrum of a ∈ A is the set

σA(a) := {λ ∈ C : a − λ is not invertible in A}.

If A is nonunital, its unitisation is the space

A
+ := A ⊕ C,

equipped with coordinatewise addition and multiplication

(a, λ) · (b, μ) := (ab + λb + μa, λμ).
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For nonunital algebras, we define σA(a) := σA+((a, 0)). An element a ∈ A is positive

if a = a∗ and σA(a) ⊂ R≥0.

If A0 ⊂ A is a ∗-subalgebra we say that A0 is spectral invariant in A if for all

a ∈ A0 we have

σA0
(a) = σA(a).

A Fréchet ∗-algebra admits holomorphic functional calculus ([29, Lemma 1.3]):

if a ∈ A, U ⊂ C an open set containing σA(a) and f : U → C a holomorphic

function, then we can define an element f (a) ∈ A via

f (a) :=

∫

C

f (λ)(a − λ)−1dλ ∈ A,

where C is a simple closed curve in U enclosing σ(a). Now suppose that A is a

C∗-algebra and A ⊂ A a ∗-subalgebra. We say that A is stable under holomor-

phic functional calculus in A if for all a ∈ A and f a holomorphic function on

neighbourhood of σA(a), we have f (a) ∈ A.

Definition 4.1.1 (cf. [39]) Let A be a C∗-algebra and A ⊂ A a dense ∗-subalgebra.

We say that A is local in A if A is stable under holomorphic functional calculus, and

spectral invariant if for all a ∈ A we have σA+(a) = σA+(a).

Lemma 4.1.2 (cf. Lemma 1.2 in [39]) Suppose that A is a Fréchet ∗-algebra, A a C∗-

algebra and i : A → A a continuous injective ∗-homomorphism with dense range.

Then i(A) ⊂ A is local if and only if i(A) is spectral invariant in A.

In the above situation we identify A with its image i(A) and simply say that A ⊂ A

is local.

Proposition 4.1.3 Let F be a non-archimedean local field of characteristic 0. Let G

be either the F-points of a connected reductive group, or be Mp(W ) or O(W ) where

W is over F. Then S(G) ⊂ C∗
r (G) is local.

Proof Since S(G) ⊂ C∗
r (G) is dense, it remains to show spectral invariance. Since

S(G) ⊂ C∗
r (G) and as both algebras are nonunital, we have

σC∗
r (G)(a) ⊂ σS(G)(a).

We have argued in Sect. 3.2 that for any compact open subgroup K of G, if an element

of S(G//K ) is invertible in C∗
r (G//K ), then it is already invertible in S(G//K ) (see

Theorem 3.2.1(iii)). It follows from the definitions then that S(G//K ) is local in

C∗
r (G//K ) and hence spectral invariant by Lemma 4.1.2.

For a C∗-subalgebras B ⊂ A with B unital and A nonunital, we have for b ∈ B

that σA(b) = σA(b) ∪ {0} = σB(b) ∪ {0} (see [3, II.6.7]). Now let a ∈ S(G) =⋃
K S(G//K ), so a ∈ S(G//K ) for some K . Since C∗

r (G) and S(G) are nonunital,

whereas S(G//K ) and C∗
r (G//K ) are unital, we find

σS(G)(a) ⊂ σS(G//K )(a) ∪ {0} = σC∗
r (G//K )(a) ∪ {0} = σC∗

r (G)(a).
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We deduce that σC∗
r (G)(a) = σS(G)(a) as desired. Now if f is holomorphic on σ(a)

and a ∈ S(G//K ) then f (a) ∈ S(G//K ) ⊂ S(G), proving that S(G) ⊂ C∗
r (G) is

local. ⊓⊔

4.2 Inner product modules

Let B be a C∗-algebra and B ⊂ B a ∗-subalgebra. A (complex) vector space X is

called a right inner product B-module if X is a right B-module and it is equipped

with a B-valued positive-definite Hermitian form that is compatible with the right

X -module structure. More precisely, there is a sesquilinear map

〈·, ·〉
B

: X × X → B,

satisfying the following properties:

(1) 〈x, y〉
B

∗ = 〈y, x〉
B

for all x, y ∈ X ,

(2) 〈x, yb〉
B

= 〈x, y〉
B

b for all x, y ∈ X and b ∈ B,

(3) 〈x, x〉
B

is a positive element of B for every x ∈ X .

Observe that when B = C, the Hilbert module X is simply a Hilbert space11.

The span of the set {〈x, y〉
B

| x, y ∈ X } is an ideal of B. We call X full if this ideal

is dense in the ambient C∗-algebra B. The inner product module X is nondegenerate

if

〈x, x〉
B

= 0 ⇔ x = 0.

We define left inner product modules in a similar way using left linear inner products.

If X is an inner product B-module, then

‖x‖2 :=

∥∥∥〈x, x〉
B

∥∥∥
B

, (4.2.1)

defines a norm on X .

In the above, making the particular choice B = B, we arrive at the following

definition.

Definition 4.2.1 Let B be a C∗-algebra. An inner product B-module X is a Hilbert

C∗-module if X is complete with respect to the norm (4.2.1).

If B ⊂ B is a dense ∗-subalgebra and X a nondegenerate inner product B-module,

then the completion X of X in the norm (4.2.1) is a Hilbert C∗-module over B ([34,

Lemma 2.16]). In the sequel we will construct inner product modules over the Schwartz

algebra S(G) of a topological group G. Since S(G) ⊂ C∗
r (G) is dense, such modules

admit a completion as Hilbert C∗-modules over C∗
r (G).

11 All Hilbert spaces in this paper will be right Hilbert spaces.
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Definition 4.2.2 Let A ⊂ A and B ⊂ B be dense ∗-subalgebras and X a right inner

product B-module. We say that X is an (A,B)-correspondence if X is a left A-module

such that

〈ax, y〉B = 〈x, a∗y〉B, ∀x, y ∈ X , a ∈ A.

In case A = A, B = B and X is an (A, B)-correspondence that is a Hilbert C∗-module

over B, we say that X is a C∗-correspondence for (A, B).

Given a Hilbert C∗-module over a C∗-algebra B, its algebra of adjointable operators

is the space

End∗(X) :=
{
T : X → X : ∃ T ∗ : X → X ∀x, y ∈ X 〈T x, y〉 = 〈x, T ∗y〉

}
.

Elements of End∗(X) are automatically bounded and right B-linear (that is T is linear

and T (xb) = T (x)b for all x ∈ X and b ∈ B). In fact End∗(X) forms a C∗-algebra

in the operator norm it derives from the norm on X . Thus, for a C∗-correspondence

X , we in fact have a ∗-homomorphism A → End∗(X) between C∗-algebras.

Let X be an (A,B)-correspondence for dense subalgebras A ⊂ A and B ⊂ B.

We have discussed above that X can be completed to a right Hilbert B-module X .

We will now see that if A is a local subalgebra of A, then X can be promoted to a

C∗-correspondence for (A, B).

Proposition 4.2.3 Let A ⊂ A and B ⊂ B be dense subalgebras and X an (A,B)-

correspondence. If A is local, then for all x ∈ X and a ∈ A the inequality

〈ax, ax〉
B

≤ ‖a‖2
A〈x, x〉

B
, (4.2.2)

holds true in the C∗-algebra B.

Proof Let ε > 0 and for a ∈ A and x ∈ X consider

(‖a‖2
A + ε)〈x, x〉

B
− 〈a · x, a · x〉

B
= 〈(‖a‖2

A + ε − a∗a)x, x〉B (4.2.3)

and observe that by spectral invariance the element ‖a‖2
A + ε − a∗a ∈ A+ is positive

invertible, and thus has spectrum contained in [ε, M] for some M > 0. Since the

square-root function on [ε, M] extends uniquely to a holomorphic function on an

open neighbourhood of [ε, M], we have that (‖a‖2
A + ε − a∗a)1/2 ∈ A+, and thus

that (‖a‖2
A + ε − a∗a)1/2x ∈ X . We find that

〈(‖a‖2
A + ε − a∗a)x, x〉B = 〈(‖a‖2

A + ε − a∗a)1/2x, (‖a‖2
A + ε − a∗a)1/2x〉B ≥ 0,

and therefore by (4.2.3)

〈ax, ax〉
B

≤ ‖a‖2
A〈x, x〉

B
+ ε〈x, x〉

B
. (4.2.4)

Since (4.2.4) holds for all ε > 0, we conclude that (4.2.2) holds as desired. ⊓⊔
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Remark 4.2.4 Inequality (4.2.2) is one of the defining properties of a pre-imprimitivity

bimodule, see [34, Definition 3.9].

Remark 4.2.5 In the proof of Prop. 4.2.3, we have used the locality of the Schwartz

algebra S(G) inside C∗
r (G) (see Prop. 4.1.3). We will use this result again later for

our second application in Sect. 8 where we use the fact that locality implies that the

inclusion of S(G) into C∗
r (G) induces an isomorphism in K -theory.

Corollary 4.2.6 Let A ⊂ A and B ⊂ B be dense ∗-subalgebras, X an (A,B)-

correspondence and

N :=
{

x ∈ X : 〈x, x〉
B

= 0
}

,

the radical of X . Assume that A is local. Then X /N can be completed into a C∗-

correspondence for (A, B).

Proof By Proposition 4.2.3, A maps N into itself, so X /N becomes a nondegenerate

(A,B)- correspondence. Let X denote its completion as a right Hilbert C∗-module

over B. Then applying Proposition 4.2.3 once more, we deduce that the action of A

on X /N is bounded with respect to the C∗-module norm on X /N , and thus extends

to an action of A on X by adjointable operators. Since A ⊂ A is dense in the C∗-norm

on A, another application of Proposition 4.2.3 shows that the left A-module structure

extends to a left A-module structure satisfying 〈ax, y〉 = 〈x, a∗y〉 for all a ∈ A and

x, y ∈ X . Hence X is a C∗-correspondence for (A, B). ⊓⊔

4.3 Induction of representations of C∗-algebras

For C∗-correspondences over a pair of C∗-algebras (A, B) there is a far reaching

theory of induced representations. Due to the Gelfand-Naimark-Segal theorem, a C∗-

algebra usually admits numerous Hilbert space representations. A C∗-correspondence

for (A, B) allows one to construct a representation of A given a representation of B.

In the case of group C∗-algebras, this gives a functorial correspondence between the

associated group representations.

4.3.1 The interior tensor product

Let A and B be C∗-algebras and X a C∗-correspondence for (A, B). Then we can

“induce” representations of B to A via X via the following tensor product construction.

Proposition 4.3.2 [23, Proposition 4.5] Let X be a C∗-correspondence for (A, B) and

π : B → L(Vπ ) a representation of B on a Hilbert space Vπ . Consider X ⊗alg Vπ

the algebraic tensor product of vector spaces. The right sesquilinear form

(x ⊗ v, x ′ ⊗ v′) := 〈v, π(〈x, x ′〉
B
)v′〉

Vπ
(4.3.1)
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is positive and its radical

Nπ :=
{
ξ ∈ X ⊗alg Vπ | (ξ, ξ) = 0

}

is equal to the balancing subspace spanned by elements of the form

xb ⊗ v − x ⊗ π(b)(v) (x ∈ X , v ∈ Vπ , b ∈ B).

The completion of (X ⊗alg Vπ )/Nπ with respect to the inner product (4.3.1) is a

Hilbert space that we denote by X ⊗B Vπ and is commonly called is the internal

tensor product of X and Vπ over B.

Proof The proof of positivity is based on the fact that for x1, · · · , xn ∈ X the matrix

ε := π(〈xi , x j )B)i j ∈ Mn(L(V )) is a positive operator on V n , so that for ξ =∑n
i=1 xi ⊗ vi we have

(ξ, ξ) = (v, ε · v) ≥ 0, v :=

⎛
⎜⎝

v1

...

vn

⎞
⎟⎠ ∈ V n .

The fact that the radical coincides with the balancing subspace uses positivity of the

matrix ε and the fact the Mn(B) is again a C∗-algebra, so we can extract square

roots. ⊓⊔

It can then be shown that the action

a(x ⊗ v) := ax ⊗ v

of A on the space X ⊗alg Vπ gives rise to representation of A on the Hilbert space

X ⊗B Vπ which we will denote

IndA
B(X , π),

and refer to as the A-representation induced from π via X .

4.3.3 Functoriality of induction

The induction procedure that we described above is functorial (see [34, Prop. 2.69]).

Proposition 4.3.4 Let A, B be two C∗-algebras and let X be a C∗-correspondence

for (A, B). Assume that the action of A on X is non-degenerate (i.e. A·X = X). Then

the map

π �→ IndA
B(X , π)
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is a functor from the category of non-degenerate representations of B with bounded

intertwining operators to the corresponding category of A, which at the level of mor-

phisms takes the form T �→ 1 ⊗ T .

It follows that induction respects unitary equivalence and direct sums.

4.3.5 Continuity of induction

Let C be a C∗-algebra. Given a ∗-representation π and a set of representations S of

C , we say that π is weakly contained in S (denoted π ≺ S) if

ker(π) ⊃
⋂

σ∈S

ker(σ ). (4.3.2)

Let Rep(C) denote the collection12 of equivalence classes of all ∗-representations

of C . This space comes equipped with a second-countable topology, due to Fell, that

is characterized as follows: a net {Ti } of elements of Rep(C) converges to T if and

only if T is weakly contained in every subnet of {Ti }.

Let Ĉ denote the subset of irreducible elements of Rep(C). We call Ĉ the spectrum

of C . Relativized to Ĉ , closure in Fell topology agrees with weak closure: a subset

S ⊂ Ĉ is closed if and only if S = {π ∈ Ĉ | π ≺ S}. In this case, the topology agrees

with the pull-back of the hull-kernel topology on the space of primitive ideals of C .

See [7] for a discussion of these topologies.

We have the following continuity result (see [34, Prop. 2.72])

Proposition 4.3.6 Let A, B be two C∗-algebras and let X be a C∗-correspondence

for (A, B). Then the map

π �→ IndA
B(X , π)

is continuous with respect to the Fell topologies on Rep(B) and on Rep(A).

4.4 Equivalence bimodules

Definition 4.4.1 Let A ⊂ A and B ⊂ B be local subalgebras and X an algebraic

(A,B)-bimodule in the usual sense that the two actions commute. We call X an inner

product bimodule if

(1) X is a left inner product A-module and a right inner product B-module,

(2) for all x, y ∈ X , a ∈ A and b ∈ B, we have

〈a·x, y〉
B

= 〈x, a∗·y〉
B

A〈x ·b, y〉 = A〈x, y·b∗〉, (4.4.1)

(3) for all x, y, z ∈ X , we have

A〈x, y〉·z = x ·〈y, z〉
B
. (4.4.2)

12 In order to ensure that the collection is a set, we actually fix a cardinal ℵ and consider ∗-representations

on Hilbert spaces of cardinality ≤ ℵ. For us, considering separable Hilbert spaces will suffice.
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4.4.2 Strong Morita equivalence of C∗-algebras

Given an inner product bimodule X for local subalgebras A ⊂ A and B ⊂ B, we

obtain a norm on X for each of the inner products. The following is well-known (see

e.g. [34, Prop. 3.11]). We give the short proof here for the convenience of the reader.

Proposition 4.4.3 Let A ⊂ A and B ⊂ B be local subalgebras and X an (A,B) inner

product bimodule. Then the norms

‖x‖A := ‖A〈x, x〉‖
1/2
A , ‖x‖B := ‖〈x, x〉B‖

1/2
B , (4.4.3)

on X are equal.

Proof Using Definition 4.4.1 and the Cauchy-Schwartz inequality for Hilbert C∗-

modules, we have

∥∥∥〈x, x〉
B

∥∥∥
2

B
=

∥∥∥〈x, x〉
B
〈x, x〉

B

∥∥∥
B

=

∥∥∥〈x, x ·〈x, x〉
B
〉
B

∥∥∥
B

=

∥∥∥〈x, A〈x, x〉·x〉
B

∥∥∥
B

≤

∥∥∥〈x, x〉
B

∥∥∥
1/2

B

∥∥∥〈A〈x, x〉·x, A〈x, x〉·x〉
B

∥∥∥
1/2

B
,

for all x ∈ X . Applying Proposition 4.2.3 to the second factor in the last term, we

conclude that

∥∥∥〈x, x〉
B

∥∥∥
2

B
≤

∥∥∥〈x, x〉
B

∥∥∥
1/2

B
‖A〈x, x〉‖A

∥∥∥〈x, x〉
B

∥∥∥
1/2

B
.

Cancelling a factor of

∥∥∥〈x, x〉
B

∥∥∥
B

gives us

∥∥∥〈x, x〉
B

∥∥∥
B

≤ ‖A〈x, x〉‖A. Swapping the

roles of A and B, we obtain the opposite inequality and obtain the desired equality of

norms. ⊓⊔

Definition 4.4.4 Let A and B be C∗-algebras. A Hilbert C∗-bimodule for (A, B) is

an inner product bimodule that is complete in the norms

‖x‖2
A = ‖A〈x, x〉‖A = ‖x‖2

B = ‖〈x, x〉
B
‖B .

A Hilbert C∗-bimodule for (A, B) is a (Morita) equivalence bimodule if both inner

products are full. Two C∗-algebras A and B are called strongly Morita equivalent if

there exists an (A, B) Morita equivalence bimodule X .

While for unital C∗-algebras A and B, this notion coincides with classical Morita

equivalence as rings, in general, it is stronger than the classical notion (hence the

name).

4.5 We have the notion of “dual” of an (A,B)-inner product bimodule. This is a

(B,A)-inner product bimodule which is defined as follows.
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Definition 4.5.1 Let X be an (A,B)-inner product bimodule and X ∗ its conjugate

vector space. By definition, we have an anti-linear bijection β : X → X ∗ such that

β(λ·x) = λ·β(x) for every x ∈ X and λ ∈ C a complex scalar. The dual module of

X is X ∗ equipped with the following (B,A)-inner product bimodule structure

b·β(x) := β(xb∗), B〈β(x), β(y)〉 := 〈x, y〉
B
,

β(x)·a := β(a∗x), 〈β(x), β(y)〉
A

:= A〈x, y〉.

4.6 If X is an (A, B)-equivalence bimodule, then the dual module X∗ is a (B, A)-

equivalence bimodule. In fact there are isomorphisms of interior tensor products

X ⊗B X∗ ≃ A, X∗ ⊗A X ≃ B,

as (A, A) and (B, B) C∗-bimodules, respectively.

It follows that the induction functors associated to X and to X∗ are inverses to each

other and therefore, by Prop. 4.3.6, they implement a homeomorphism between the

spectra of A and B. In particular, the categories of representations of A and B are

equivalent.

4.7 Given a two-sided closed ideal J of B, the space X J given by the closure of the

linear span of all x ·b with x ∈ X and b ∈ J forms an (I , J )-equivalence bimodule

where I is the two-sided closed ideal of A given by the closure of the linear span of

all A〈x ·b, y〉 with x, y ∈ X and b ∈ J . We will view this association as an induction

of ideals implemented by X and accordingly denote I by

IndA
B(X , J ).

It is well-known (see [34, Props. 3.24 and 3.25]) that the map J �→ IndA
B(X , J )

sets up a bijection between the two-sided closed ideals of B and A which respects

inclusion of ideals (thus, it identifies the lattices of ideals of B and A). Moreover, the

induction of ideals is compatible with the induction of representations, that is, if π is

a representation of B, then

IndA
B(X , ker(π)) = ker(IndA

B(X , π)).

4.8 Lastly, we observe that any Hilbert C∗-bimodule induces a Morita equivalence

between certain associated C∗-algebras. Suppose that X is a Hilbert C∗-bimodule for

(A, B). The sets

IX = A〈X , X〉 := span {A〈x, y〉 : x, y ∈ X} ⊂ A,

JX = 〈X , X〉B := span {〈x, y〉B : x, y ∈ X} ⊂ B,

form closed two-sided ideals (in particular, C∗-subalgebras) of A and B respectively.

Since X is an (A, B) Hilbert C∗-bimodule and the inner products in fact take their

values in the ideals IX ⊂ A and JX ⊂ B, we can view X as Hilbert C∗-bimodule over



Equal rank local theta correspondence as a strong Morita equivalence Page 23 of 43    72 

(IX , JX ). By construction, the inner products are now full so X is a Morita equivalence

bimodule for (IX , JX ). We now summarise our findings for future reference.

Proposition 4.8.1 Let A and B be C∗-algebras and A ⊂ A and B ⊂ B local subalge-

bras. Suppose that X is a nondegenerate (A,B) inner product bimodule and denote by

X the completion of X in the norm (4.4.3). Then X is an (A, B) Hilbert C∗-bimodule

and hence a Morita equivalence bimodule for the pair of ideals (IX , JX ).

5 The oscillator bimodule

We consider the smooth oscillator representation ω of G × H realized on the space of

smooth vectors that will denote by S. In this section we will equip S with the structure

of an (S(G),S(H)) inner product bimodule in the sense of Definition 4.4.1. We will

then use Proposition 4.8.1 to complete S into a C∗-bimodule for (C∗
r (G), C∗

r (H)).

5.1 Matrix coefficients

Matrix coefficients of the oscillator representation are critical to our construction. So

we start by recording a well-known fast decay property that our equal rank case enjoys.

Proposition 5.1.1 For all x, y ∈ S, the matrix coefficient functions

g �→ 〈x, ω(g)(y)〉, h �→ 〈x, ω(h)(y)〉,

belong to the Schwartz algebras S(G),S(H) of G and H respectively.

Proof This is well-known to the experts. It follows from the matrix coefficient esti-

mates of Li (see Cor. 3.4 and proof of Thm 3.2 in [25]). See also Prop. 3.1.1 of [38]

(where G2 denotes the “smaller” group of the dual pair and hence applies to both

groups in our equal rank case). The same observation is made in [21, Lemma 7.4] for

the case of real unitary groups. ⊓⊔

Observe that in particular, the oscillator representation, when restricted to G or H ,

is tempered (see Sect. 3.2).

5.2 Right inner product module structure

We equip S with a right S(H)-module structure as follows: for x ∈ S

x ·b :=

∫

H

b(h)ω(h−1)(x) dh, b ∈ S(H). (5.2.1)

Note that x ·b is well-defined and belongs to S since ω is tempered as an H -

representation (see Prop. 5.1.1). Next, we equip S with an S(H)-valued sesquilinear

map

〈x, y〉H (h) := 〈x, ω(h)(y)〉, x, y ∈ S, h ∈ H (5.2.2)
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The form 〈·, ·〉H is Hermitian: for all h ∈ H and x, y ∈ S, we have

〈x, y〉
H

∗(h) = 〈x, y〉
H
(h−1) = 〈x, ω(h−1)(y)〉 = 〈ω(h)(x), y〉 = 〈y, x〉

H
(h).

It is routine to check that the form 〈·, ·〉H is compatible with the right S(H)-module

structure given above, that is,

〈x, y·b〉
H

= 〈x, y〉
H

b.

Proposition 5.2.1 Equipped with the right module structure (5.2.1) and the form

(5.2.2), the space S becomes a nondegenerate right inner product module over S(H).

Proof We just need to prove that the form 〈·, ·〉
H

is positive definite, that is, for any x ∈

S, we have 〈x, x〉
H

≥ 0 as an element of the C∗-algebra C∗
r (H) and that 〈x, x〉

H
= 0

only when x = 0.

To show the former, it is enough to exhibit an injective representation � of C∗
r (H)

with the property that �(〈ϕ, ϕ〉
H
) is a positive operator for every ϕ ∈ S. If we prove

that π(〈ϕ, ϕ〉
H
) is a positive operator for every π in the spectrum of C∗

r (H), then we

will be done by considering the representation

� =
⊕

π∈Ĉ∗
r (H)

π

which is injective since for every a ∈ C∗
r (H), there is an irreducible representation π

such that ‖a‖ = ‖π(a)‖ (see e.g. [34, Thm. A.14]). Therefore it suffices to prove that

π(〈x, x〉
H
) ≥ 0

as an operator on Vπ for every π in the spectrum of C∗
r (H).

Let x, x ′ ∈ S and consider the operator π(〈x, x ′〉
H
) on Vπ . This operator is deter-

mined by the bilinear form

〈
v, π(〈x, x ′〉

H
)(v′)

〉

for v, v′ ∈ Vπ . We unfold the left hand side

〈
v, π(〈x, x ′〉

H
)(v′)

〉
=

〈
v,

∫

H

〈x, x ′〉
H
(h)πh(v′)dh

〉

=

∫

H

〈x, x ′〉
H
(h)〈v, πh(v′)〉dh

=

∫

H

〈x, ω(h)(x ′)〉〈v, πh(v′)〉dh

= (x⊗v, x ′⊗v′)π
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where (·, ·)π is the Hermitian form on S ⊗ Vπ (see 2.5.1). The latter is non-negative

thanks to Prop. 2.6.1. Therefore, we conclude that for x ∈ S and v ∈ Vπ we have

〈
v, π(〈x, x〉H )v

〉
=

(
x⊗v, x⊗v

)
π

≥ 0

which implies that 〈x, x〉H ≥ 0 in C∗
r (H).

Finally, to show definiteness, suppose 〈x, x〉H = 0, so that

〈ω(h)x, x〉 = 0, ∀h ∈ H .

Then in particular, for h = e we find that 〈x, x〉 = 0, so that x = 0 in the oscillator

representation. Since S injects into the oscillator representation, we conclude that

x = 0 in S. ⊓⊔

5.3 Left inner product module structure

We will show that � can also be obtained by equipping S with a left S(G) inner product

module structure. As before, we first equip S with a left S(G)-module structure: for

x ∈ S

a·x := ω(a)(x) =

∫

G

a(g)ω(g)(x) dg, a ∈ S(G). (5.3.1)

Notice that a·x is well-defined and belongs to S since ω, as a G-representation, is

tempered (as evidenced by Prop. 5.1.1). Next, we equip S with an S(G)-valued left

linear form

G〈x, y〉(g) := 〈ω(g)(y), x〉, x, y ∈ S, g ∈ G (5.3.2)

It is straightforward to check that this S(G)-valued form is Hermitian and compatible

with the left S(G)-module structure given above.

Proposition 5.3.1 Equipped with the left module structure (5.3.1) and the form (5.3.2),

the space S becomes a nondegenerate left inner product module over S(G).

Proof We just need to prove that the form G〈·, ·〉 is positive definite. As discussed in

the proof of Prop. 5.2.1, it suffices to prove that π(G〈x, x〉) is positive as an operator

on Vπ for every π in the spectrum of C∗
r (G).

Given v ∈ Vπ , calculations as in said proof show that
〈
v, π(G〈x, x〉)(v)

〉
equals

(x ⊗ v, x ⊗ v)π in the notation of Sect. 2.5. Positivity again follows from Prop. 2.6.1.

⊓⊔

5.4 Key compatibility property

In fact S is an inner product bimodule for (S(G),S(H)) in the sense of Definition

4.4.1. We will prove the following compatibility between the two inner products: for
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x, y, z ∈ S

G〈x, y〉·z = x ·〈y, z〉
H

(5.4.1)

A convenient reformulation is as follows, for x, y, z, u ∈ S,

〈
G〈x, y〉·z, u

〉
=

〈
x ·〈y, z〉

H
, u

〉

Unfolding two sides, we obtain

〈
G〈x, y〉·z, u

〉
=

〈∫

G
G〈x, y〉(g) ω(g)(z)dg, u

〉
=

∫

G

〈x, ω(g)(y)〉〈u, ω(g)(z)〉dg

and

〈
x ·〈y, z〉

H
, u

〉
=

〈∫

H

〈y, z〉
H
(h) ω(h−1)(x)dh, u

〉
=

∫

H

〈y, ω(h)(z)〉〈x, ω(h)(u)〉dh

Thus we arrive at the formulation

∫

G

〈x, ω(g)(y)〉〈u, ω(g)(z)〉dg =

∫

H

〈x, ω(h)(u)〉〈y, ω(h)(z)〉dh. (5.4.2)

We will now prove the above equality holds once we scale the Haar measures on

G and H appropriately.

Proposition 5.4.1 The Haar measures on G and H may be chosen in such a way that

Equation (5.4.2), and hence (5.4.1), hold for any x, y, z ∈ S.

Proof Let (ω, S) denote the complex conjugate representation of (ω, S). Consider the

maps

PG , PH : S ⊗ S ⊗ S ⊗ S → C,

given by

PG

(
x ⊗ z̄ ⊗ y ⊗ ū

)
:=

∫

G

〈x, ω(g)(y)〉〈u, ω(g)(z)〉dg,

PH

(
x ⊗ z̄ ⊗ y ⊗ ū

)
:=

∫

H

〈x, ω(h)(u)〉〈y, ω(h)(z)〉dh.

Straight-forward calculations show that

PG , PH ∈ HomH×(G×G)

(
(ω ⊗ ω) ⊗ (ω ⊗ ω) , 1

)

where we consider ω ⊗ ω with the diagonal action of H and with the natural action

of G × G.
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Now let W = W + (−W ) where −W denotes the space W with the form −〈·, ·〉W .

We have an oscillator representation ω of H ×G(W) which satisfies13 (see [9, Section

4]))

ω ⊗ (ω ⊗ χV ) ≃ ω

as G×G-representations. Here we embed G(W )×G(−W ) in G(W) and identify

G(−W ) = G(W ).

In Section 17 of [9], Gan and Ichino introduce two forms

I, E ∈ HomH×(G×G)(ω ⊗ ω ⊗ χ̄V ⊗ χV , 1).

Note that the roles of G and H in their Section 17 have to be swapped, as we did in

the previous display and below, in order to make it compatible with ours.

Remarkably, our forms PG and PH are essentially equal to the forms I and E of

Gan and Ichino. To see this, observe that for x, y, z, u ∈ S, we have

I(x ⊗ z, y ⊗ u) =

∫

G

〈ω(g)(x), y〉〈ω(g)(z), u〉dg

=

∫

G

〈x, ω(g−1)(y)〉〈z, ω(g−1)(u)〉dg

=

∫

G

〈x, ω(g)(y)〉〈z, ω(g)(u)〉dg

= PG(x ⊗ u ⊗ y ⊗ z)

(for the first equality, see the middle of page 593 of [9], plug in g = g′ = e and swap

G with H ). Moreover, we have (plugging in g = g′ = e, and swapping G with H , in

line 7 of p 594 of [9]):

E(x ⊗ z, y ⊗ u) =

∫

H

Fx⊗z̄(i(h, 1))Fy⊗ū(i(h, 1))dh

where by definition (see top of page 587 of [9]) we have

Fφ⊗ψ̄ (i(h, 1)) = 〈ω(h)(φ), ψ〉, h ∈ H , φ, ψ ∈ S.

So plugging this in, we have

E(x ⊗ z, y ⊗ u) =

∫

H

〈ω(h)(x), z〉〈ω(h)(y), u〉dh

=

∫

H

〈x, ω(h−1)(z)〉〈y, ω(h−1)(u)〉dh

13 Recall that χV is one of the two auxillary characters of E× that we fixed at the very beginning to make

sure that the oscillator representation can be pulled back to G × H .



   72 Page 28 of 43 B. Mesland, M. H. ¸ Sengün

=

∫

H

〈x, ω(h)(z)〉〈y, ω(h)(u)〉dh

= PH (x ⊗ u ⊗ y ⊗ z).

Gan and Ichino prove ([9, Thm. 17.2]) that the space HomG×H×H (ω⊗ω⊗χ̄V ⊗χV , 1)

is one dimensional, so that I and E are proportional. The proportionality constant C

depends on the choice of Haar measures on G and H . For a specific choice of Haar

measures ([9, Section 20.1], Gan and Ichino calculate that C = 1 in the unitary/unitary

case, and in the metaplectic/orthogonal case, C = 2 or C = 1/2 depending on ε (see

[9, Thm. 20.1]). Scaling the Haar measure they use by a factor of 1/2 or 2, we make

C = 1 in the metaplectic/orthogonal case. This gives us

PG(x ⊗ u ⊗ y ⊗ z) = I(x ⊗ z, y ⊗ u) = E(x ⊗ z, y ⊗ u) = PG(x ⊗ u ⊗ y ⊗ z)

as desired. ⊓⊔

For the remainder of the paper, we fix our Haar measures as in the proof of Prop.

5.4.1. Putting together Propositions 5.2.1, 5.3.1, 5.4.1 and 4.8.1 gives us the following.

Theorem 5.4.2 The space S is a nondegenerate inner product bimodule for (S(G),S(H)).

Its C∗-module completion is a Hilbert C∗-bimodule for (C∗
r (G), C∗

r (H)).

We will denote this Hilbert C∗-module by � and will call it the oscillator bimodule

as an homage to Rieffel’s Heisenberg module.

6 The �-subalgebras and induced representations

6.1 Truncation

We will now apply the final statement of Proposition 4.8.1 to make � into an equiv-

alence bimodule for the ideals C∗
θ (G) ⊂ C∗

r (G) and C∗
θ (H) ⊂ C∗

r (H) generated by

the span of the left- and right inner products, respectively. We will then analyse their

spectra in terms of the local theta correspondence.

6.1.1 Truncate C∗

r (H)

As mentioned in Sect. 4.2, the linear span of the range of the form 〈·, ·〉
H

is a two-sided

ideal of S(H). Let us denote this linear span by 〈S, S〉
H

. Consider its C∗-closure

C∗
θ (H) := 〈S, S〉

H

C∗
r (H)

. (6.1.1)

Thus C∗
θ (H) is closed two-sided ideal of C∗

r (H).

Proposition 6.1.2 The spectrum of C∗
θ (H) can be identified with the set of tempered

irreducible representations π of H for which θ(π) �= 0.
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Proof Basic theory tells us that the spectrum of C∗
θ (H) is simply the subset of the

spectrum of C∗
r (H) made precisely of those elements which do not vanish on C∗

θ (H).

Let π be a tempered irreducible representation of H (in other words, an element of

the spectrum of C∗
r (H)). Observe that π vanishes on C∗

θ (H) if and only if it vanishes

on the range of 〈·, ·〉
H

, thanks to density of the latter in the former. Let x, x ′ ∈ S. Then

π(〈x, x ′〉
H
) is the zero operator on Vπ if and only if

〈
v, π(〈x, x ′〉

H
)(v′)

〉
= 0

for all v, v′ ∈ Vπ . As seen in the proof of Prop. 5.2.1, we have

〈
v, π(〈x, x ′〉

H
)(v′)

〉
= (x⊗v, x ′⊗v′)π

where (·, ·)π is the Hermitian form on S⊗ Vπ (see 2.5.1). Therefore, we conclude that

π vanishes on C∗
θ (H) if and only the form (·, ·)π , hence L(π) is zero. However, by

Prop. 2.6.1, L(π) is isomorphic to θ(π∗) = �(π∗). The claim now follows from the

fact that �(π∗) is non-zero if and only if �(π) is non-zero, an immediate corollary

of Lemma 6.1 of [9]. ⊓⊔

6.1.3 Truncate C∗

r (G)

The linear span of the range of G〈S, S〉 is a two-sided ideal of S(G). Consider its

C∗-closure

C∗
θ (G) := G〈S, S〉

C∗
r (G)

. (6.1.2)

Then C∗
θ (G) is a closed two-sided ideal of C∗

r (G), and hence is a C∗-subalgebra.

Proposition 6.1.4 The spectrum of C∗
θ (G) can be identified with tempered irreducible

(necessarily genuine) representations π of G for which θ(π) �= 0.

Proof The proof is the same as that of Prop. 6.1.2. Given tempered irreducible repre-

sentation π of G, x, x ′ ∈ S and v, v′ ∈ π , we observe that

〈
v, π(G〈x, x ′〉)(v′)

〉
=

∫

G

〈ωg(x), x ′〉〈v, πg(v
′)〉dg =

∫

G

〈x, ωg(x ′)〉〈v, πg(v
′)〉dg.

(6.1.3)

This is the conjugate of the Hermitian form (·, ·)π on S⊗Vπ (see 2.5.1) where π is the

conjugate representation on Vπ . Therefore, we conclude that π vanishes on C∗
θ (G) if

and only if (·, ·)π , hence (·, ·)π , is zero. The claim now follows from Prop. 2.6.1 as

explained in the proof of Prop. 6.1.2. ⊓⊔
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6.2 The induced G-representation

Consider the action of G on S via the oscillator representation. As the action of G and

H commute, the G-action preserves the C∗
θ (H)-valued inner product 〈·, ·〉

H
on S, that

is

〈ω(g)x, ω(g)y〉H = 〈x, y〉H , x, y ∈ S.

It follows that ‖ω(g)‖End∗(�) = 1, so ω(g) can be extended to a unitary operator on

all of �.

Now, given an irreducible representation of C∗
θ (H), in other words, a tempered

irreducible representation (π, Vπ ) of H with θ(π) �= 0, consider � ⊗C∗
θ (H) Vπ =

� ⊗C∗
r (H) Vπ . Following the previous paragraph, G acts on � ⊗C∗

θ (H) Vπ via the

formula

g · (x ⊗ v) := ω(g)(x) ⊗ v

where g ∈ G, x ∈ � and v ∈ Vπ . Recall from Sect. 4.3 that the space � ⊗C∗
θ (H) Vπ

comes equipped with a positive Hermitian form

(
x ⊗ v, x ′ ⊗ v′

)
:=

〈
v, π(〈x, x ′〉

B
)(v′)

〉
Vπ

.

As the action of G commutes with that of C∗
θ (H) on �, the above form and also its

radical are preserved under the action of G and we obtain a unitary representation of

G on the Hilbert space � ⊗C∗
θ (H) Vπ which we will denote

IndG
H (�, π).

Proposition 6.2.1 The unitary representation IndG
H (�, π) of G is precisely the unita-

rization of θ(π∗).

Proof By Prop. 2.6.1, we can replace θ(π∗) by L(π). Consider the map

Z : S ⊗ V ∞
π −→ � ⊗C∗

θ (H) Vπ

given by

x ⊗ v �→ x ⊗C∗
θ (H) v

where we view S as a dense subspace of �.

As we have already observed in the proof of Prop. 6.1.2, we have

(
x ⊗ v, x ′ ⊗ v′

)
π

=

∫

H

〈ω(h)(x), x ′〉〈π(h)(v), v′〉Vπ dh =
〈
v, π(〈x, x ′〉

B
)(v′)

〉
Vπ

.
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Thus the map Z preserves the forms on the two sides. Therefore, the kernel of Z is

precisely the radical N of (·, ·)π , so that Z descends to a linear embedding

(
S ⊗ V ∞

π

)
/N →֒ � ⊗C∗

θ (H) Vπ .

Recall from Sect. 2.5.1 that the left hand side is precisely L(π) and that the G-action

on L(π) is defined solely via the action of G on S via the oscillator representation.

Therefore the map Z gives us the desired injective G-intertwiner. ⊓⊔

We summarize our results.

Theorem 6.2.2 The oscillator bimodule � is an equivalence (C∗
θ (G), C∗

θ (H))-

bimodule. Moreover, the associated induction map

π �→ Ind
C∗

θ (G)

C∗
θ (H)

(�, π)

captures the tempered local theta correspondence in the sense that if π is a tempered

irreducible representation of H then Ind
C∗

θ (G)

C∗
θ (H)

(�, π) is (the integrated form of) the

unitarization of θ(π∗).

Proof The Morita equivalence statement follows from Prop. 4.8.1 and Thm. 5.4.2. For

the induction part, let π be a tempered irreducible representation of H . Recall that π

belongs to the spectrum of C∗
θ (H) (i.e. π restricted to C∗

θ (H) is not zero) if and only

if θ(π) �= 0. If θ(π) = 0 then π(C∗
θ (H)) = 0 and hence Ind

C∗
θ (G)

C∗
θ (H)

(�, π) = 0. So

we can assume that θ(π) �= 0. We have seen in Prop. 6.2.1 that the G-representation

IndG
H (�, π) is the unitarization of θ(π∗). It is clear that the C∗

θ (G)-representation

Ind
C∗

θ (G)

C∗
θ (H)

(�, π) is nothing but the integrated form of IndG
H (�, π). Therefore, the

induction of representations of C∗
θ (H) to C∗

θ (G) implemented via � captures the

local theta correspondence as claimed. ⊓⊔

6.3 Functoriality

The induction of representations implemented by � establishes an equivalence

between the categories of representations of the ideal C∗
θ (G) of C∗

r (G) and of the

ideal C∗
θ (H) of C∗

r (H). Recall that the spectra of C∗
θ (G) and C∗

θ (H) capture those

tempered irreducible representations of G and H which enter the theta correspon-

dence and that the induction map, once restricted to the irreducible representations,

captures the theta correspondence. Therefore it follows from Sect. 4.3.3 that the theta

correspondence is functorial.

6.4 Continuity

The C∗-algebras C∗
θ (G) and C∗

θ (H) are strongly Morita equivalent and thus, by Section

4.6, their spectra are homeomorphic. In other words, tempered theta correspondence

is a homeomorphism with respect to the Fell topologies on each side.
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6.5 Support of the oscillator representation

In this section, we make some elementary observations regarding the role played by

the oscillator representation in our picture of the theta correspondence. Recall that the

oscillator representation in the equal rank case is tempered both as a G-representation

and as an H -representation. We first show that the induction functor associated to the

oscillator bimodule, when viewed as a (C∗
r (G), C∗

r (H))-correspondence, sends the

regular representation of H to the oscillator representation (viewed as a representation

of G). Using this, we show that C∗
θ (G) sits as an “essential ideal” (definition below)

in C∗
ω(G). Next we prove that the closure of the set of tempered representations that

enter the theta correspondence equals the support of the oscillator representation.

Proposition 6.5.1 Denote by (ω, Vω) the oscillator representation and by (ρ, L2(H))

the left regular representation of H. The map

U� : S ⊗alg
S(H) → S

x ⊗ f �→ x · f ,

induces a G-equivariant unitary isomorphism

U� : � ⊗C∗
r (H) L2(H) → Vω.

Proof The map U� has dense range since the unit element of H acts as the identity

operator on Vω and thus for any approximate unit un ∈ C∗
r (H) and x ∈ S the sequence

x · un converges to x in norm in Vω. It thus suffices to show that U� is an isometry.

This is established by the following calculation.

〈U�(x ⊗ f ),U�(y ⊗ g)〉 = 〈x · f , y · g〉 =

∫

H

∫

H

〈ω(s) f (s−1)x, ω(t)g(t−1)y〉dsdt

=

∫

H

∫

H

〈 f (s−1)x, ω(t)g(t−1s−1)y〉dsdt

=

∫

H

∫

H

〈 f (s)x, ω(t)g(t−1s)y〉dsdt

=

∫

H

∫

H

f (s)〈x, ω(t)y〉g(t−1s)dsdt

=

∫

H

∫

H

f (s)〈x, ω(t)y〉(ρ(t)g)(s)dsdt

=

∫

H

f (s)ρ(〈x, y〉�)g(s)dsdt = 〈 f , ρ(〈x, y〉�)g〉L2(H).

The G-equivariance now follows since U�(gx ⊗ f ) = (gx) · f = g(x · f ) =

g(U�(x ⊗ f )). ⊓⊔

In accordance with the notation we introduced in Sect. 3.1, let C∗
ω(G) denote the

image of C∗(G) under the oscillator representation ω. Recall that for an ideal I ⊂ A



Equal rank local theta correspondence as a strong Morita equivalence Page 33 of 43    72 

in a C∗-algebra its annihilator is the set

I ⊥ := {a ∈ A : ∀x ∈ I ax = 0} ,

and the ideal I is essential if I ⊥ = 0.

Corollary 6.5.2 Denote by L� : C∗
r (G) → End∗(�) the ∗-homomorphism deter-

mined by the left module action. We have ker L� = ker ω and C∗
θ (G) embeds into

C∗
ω(G) as a closed two sided essential ideal. In particular the support of ω contains

Ĉ∗
θ (G).

Proof The regular representation of H is faithful, so the unitary U� from Proposition

6.5.1 induces an injection

J� : End∗(�) → B(� ⊗C∗
r (H) L2(H)) ≃ B(Vω).

As U� is G-equivairant, J� satisfies

(J� ◦ L�)(C∗
r (G)) = ω(C∗

r (G)) = C∗
ω(G),

and since J� is injective we find that ker L� = ker ω. Furthermore, � carries a left

C∗
θ (G)-valued inner product, and thus J� ◦ L� restricts to an injection C∗

θ (G) →

C∗
ω(G). In particular ker ω ∩ C∗

θ (G) = 0 and ker ω ⊂ C∗
θ (G)⊥, where the latter

denotes the annihilator of C∗
θ (G).

For b ∈ C∗
r (G) and x ∈ S we have bx ∈ � ∩ Vω since b can be approximated in

norm by a sequence bn ∈ S(H), so that bn x → bx in both Vω and �. For b ∈ C∗
θ (G)⊥

and x ∈ S we have

0 = b∗
G〈x, x〉b = G〈bx, bx〉.

Since the left C∗
r (G)-valued inner product is nondegenerate we find that bx = 0 ∈

Vω ∩ � and since S is dense in Vω we have b ∈ ker ω. The statement follows. ⊓⊔

Recall that the closure of Ĉ∗
θ (G) in the tempered dual of G is the set of those

irreducible representations of G which are weakly contained in Ĉ∗
θ (G).

Lemma 6.5.3 The oscillator representation ω is contained in the closure of Ĉ∗
θ (G).

Proof We need to show that (see (4.3.2))

⋂

π∈Ĉ∗
θ (G)

ker π ⊂ ker ω.

Let b ∈
⋂

π∈Ĉ∗
θ (G)

ker π , x ∈ S and consider b · x ∈ �∩ Vω. Then for all π ∈ Ĉ∗
θ (G)

we have

π(G〈b · x, b · x〉) = π(b∗)π(G〈x, x〉)π(b) = 0,
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so it follows that G〈b · x, b · x〉 = 0 ∈ C∗
θ (G). Therefore b · x = 0 for all x ∈ S, that

is b ∈ ker ω. ⊓⊔

Corollary 6.5.4 The closure of Ĉ∗
θ (G) in the tempered dual of G is equal to the support

of the oscillator representation ω.

Proof Note that the support of ω is simply the closure of the singleton {ω}. Thus

Lemma 6.5.3 gives us that the support of ω is contained in the closure of Ĉ∗
θ (G). The

converse containment is given by Corollary 6.5.2. ⊓⊔

The above corollary is known; it follows alternatively from Thm. 3.0.2 of Sakellar-

idis’ paper [38] (see his Remark 3.0.3).

7 Application: transfer of characters

7.1 Let π be an irreducible representation of C∗
θ (H). For convenience, let us tem-

porarily introduce the notations,

Ind(π) := Ind
C∗

θ (G)

C∗
θ (H)

(�, π), VInd(π) := � ⊗C∗
θ (H) Vπ .

Consider the map

T : � → L(Vπ , VInd(π)), T (x)(v) := x ⊗ v

for x ∈ � and v ∈ Vπ . The map T is linear and satisfies14 (see e.g. [45, Lemma 2.6])

T (a·x ·b) = Ind(π)(a) T (x) π(b)

for all a ∈ C∗
θ (G) and b ∈ C∗

θ (H). Moreover, for x, y ∈ T and w,w′ ∈ Vπ , we have

〈T (x)(w′), y ⊗ w〉
VInd(π)

= 〈x ⊗ w′, y ⊗ w〉
VInd(π)

= 〈w′, π(〈x, y〉
H
)(w)〉

Vπ

so that

T (x)∗(y ⊗ w) = π(〈x, y〉
H
)(w).

Moreover,

T (x)∗T (y) = π(〈x, y〉
H
), T (y)T (x)∗ = Ind(π)(G〈y, x〉). (7.1.1)

To see the latter, observe that

T (y)T (x)∗(z ⊗ w) = y ⊗ π(〈x, z〉
H
))(w)

14 We are essentially considering the C∗-counterpart of HomG×H (ω, π⊗θ(π∗)). The intertwiner space

HomG×H (ω, π⊗θ(π)) is one dimensional as a consequence of Howe duality (see [15, p.138 Remark

(iii)]).
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= y·〈x, z〉
H

⊗ w

= G〈y, x〉·z ⊗ w

= Ind(π)(G〈y, x〉)(z ⊗ w).

7.2 Recall that the elements 〈x, y〉
H

and G〈y, x〉 lie in the Schwartz algebras of H

and G respectively. As both π and Ind(π) are tempered, the operators π(〈x, y〉
H
) and

Ind(π)(G〈y, x〉) are of trace class.

Lemma 7.2.1 Let x, y ∈ S. We have

tr π(〈x, y〉
H
) = tr Ind(π)(G〈x, y〉).

Proof The case where x = y can be found in [1, Cor. 5]: it follows directly from

(7.1.1) together with the fact that the traces of the operators SS∗ and S∗S are the same

for any S ∈ L(Vπ , VInd(π)). For the case x �= y, one uses the polarization identity

4〈x, y〉
H

=

3∑

k=0

ik〈x + ik y, x + ik y〉
H

to reduce to the case where x = y. ⊓⊔

Now recall that θ(π) = Ind(π∗) so that for every x, y ∈ S, we have

tr π∗(〈x, y〉
H
) = tr θ(π)(G〈x, y〉).

Observing that π∗(〈x, y〉
H
) = π(〈x, y〉

H
) = π(〈y, x〉

H
), we obtain the following

corollary where we use the terminology of Sect. 1.6.1.

Corollary 7.2.2 Let π be a tempered irreducible representation of H that enters the

theta correspondence. Given x, y ∈ S, let 〈x, y〉
H

∈ S(H) and G〈x, y〉 ∈ S(G) be

the matrix coefficient functions defined earlier in (5.2.2) and (5.3.2). We have

ch(θ(π))(G〈x, y〉) = ch(π)(〈y, x〉
H
).

The above result has been recently announced by Wee Teck Gan [12, 13]. While

his proof seems different than ours, it can be said that it philosophically agrees with

ours in that matrix coefficients of the oscillator representation play a central role.

8 Application: preservation of formal degrees

In the equal rank local theta correspondence, discrete series representations are sent to

discrete series representations, see [8]. In this section, we will reprove a well-known

result of Gan and Ichino about the preservation of formal degrees of discrete series.

The main point of interest will be our method which will feature K -theory and transfer

of trace maps.
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Let (G, H) be an equal rank dual pair as in Sect. 2. We will assume in this section

that in the metaplectic-orthogonal case, H denotes the orthogonal group O(V ).

Recall that an irreducible unitary representation of H is called discrete series if its

matrix coefficients lie in L2(H)15. The formal degree of a discrete series representation

π of, say, H is the positive real number deg(π) such that

∫

H

〈v, π(h)(v′)〉〈w,π(h)(w′)〉dh =
1

deg(π)
〈v,w〉〈v′, w′〉

for all v, v′, w,w′ ∈ Vπ (see e.g. [6, 14.3.3]). Note that the formal degree depends

on the chosen Haar measure dh. Gan and Ichino proved in [9] there exists a choice of

Haar measures on G and on H such that for every discrete series representation π of

H which enters the theta correspondence, we have

deg(π) = deg(θ(π)). (8.0.1)

8.1 K-theory

Given a unital complex algebra C , one defines the abelian group K0(C) as the group

of (formal differences of) Murray-von Neumann equivalence classes of idempotents

in

M∞(C) := lim
−→

n

Mn(C).

When C is a C∗-algebra, we can alternatively describe K0(C) using (homotopy classes

of) projections instead of idempotents. For a non-unital complex algebra C , one defines

K0(C) as the kernel of map

K0(C
+) → K0(C) ≃ Z

induced by the natural map C+ → C where C+ is the unitisation of C . Note that K0

of a C∗-algebra is a naturally ordered group.

8.2 Discrete series and K-theory

Let π be a discrete series representation of H such that θ(π) �= 0, so that π belongs

to the spectrum of C∗
θ (H). In order to show that π defines an element in K∗(C

∗
θ (H)),

we need the following lemma.

Lemma 8.2.1 The singleton {π} is a clopen (closed and open) subset of the spectrum

of C∗
θ (H).

15 Recall that H has compact centre, hence square integrability modulo the centre equals square integrability

in the above sense.
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Proof As H is a reductive p-adic (separable) group, it is liminal16. This implies (see

[6, 9.5.3]) that {π} is closed in the unitary dual of H , which in turn implies closedness

in the spectrum of C∗
θ (H). It remains to prove that {π} is also open.

It is a well-known fact (see [6, 18.4.2]) that if π is integrable17, then {π} is open

in the tempered dual of H (and hence in the spectrum of C∗
θ (H)). To argue that

{π} is open for a non-integrable discrete series representation π , we will appeal to

Harish-Chandra’s work.

In case (G, H) is a unitary dual pair, H is a connected reductive p-adic group

with compact center. The Plancherel formula of Harish-Chandra ([16, 44]) gives a

description of the connected components of the tempered dual Ĥtemp of H and it

follows this description that each {π} forms a connected component of Ĥtemp (i.e. it

is clopen) for every discrete series representation18. Since the topology of Ĉ∗
θ (H) is

simply the subspace topology inherited from Ĥtemp, the point {π} is clopen in Ĉ∗
θ (H)

as well.

Let us now consider the case (G, H) = (Mp2n, O2n+1), so that H = O(V ) with

V odd dimensional. We have O(V ) ≃ SO(V )×{±1}. The restriction map gives us a

2-to-1 surjection from the tempered dual of O(V ) to that of SO(V ). Restriction of π

to SO(V ), say σ , is again a discrete series representation and the Plancherel formula

argument above tells us that {σ } is clopen in the tempered dual of SO(V ). As the

restriction map is continuous ([7, Lemma 1.11]), the preimage of {σ } is clopen in the

tempered dual of O(V ). It is well-known ([8, Prop. 6.3]) that in this preimage, which

has size two, only π enters the theta correspondence. Therefore this preimage, which

is clopen, intersects the spectrum of C∗
θ (H) only in the singleton {π} giving us the

claim. ⊓⊔

The fact that {π} is a clopen subset of the spectrum of C∗
θ (H) implies that the closed

two-sided ideal ker(π) (here π is restricted to C∗
θ (H)) is complemented (see [41]):

C∗
θ (H) ≃ ker(π) ⊕ Jπ ,

where Jπ is the closed two-sided ideal

Jπ :=
⋂

σ∈Ĉ∗
θ (H)

σ �=π

ker(σ ),

and the sum is a direct sum of C∗-algebras.

As the group H is liminal (see proof of Lemma 8.2.1), π : C∗
r (H) → K(Vπ ) is

surjective. Since its restriction to C∗
θ (H) is non-zero and K(Vπ ) is simple, we conclude

16 This means that π(a) is a compact operator for every a ∈ C∗(H) and for every irreducible unitary

representation π of H .

17 This is the case for “most” discrete series.

18 Note that compactness of the center is important here; indeed, when the center is noncompact, one can

place discrete series in continuous families by twisting them with suitable characters of the center. This is

already visible in the case of GL(2, R).
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that π : C∗
θ (H) → K(Vπ ) is still surjective. It follows that

Jπ ≃ C∗
θ (H)/ker(π) ≃ K(Vπ ).

As Jπ is a direct summand, the injection Jπ →֒ C∗
θ (H) leads to an injection

ι : K0(Jπ ) → K0(C
∗
θ (H)).

Since K0(K(Vπ )) is isomorphic to Z as an ordered abelian group19, we conclude

that there is a copy of Z in K0(C
∗
θ (H)) that is contributed by π . We fix the positive

generator [π ] of K0(Jπ ) ≃ Z and call it the class associated to π viewing it inside

K0(C
∗
θ (H)).

We have proven the following.

Lemma 8.2.2 The discrete series representation π defines a class [π ] ∈ K0(C
∗
θ (H))

of infinite order.

Now, we can use the oscillator bimodule to induce ideals as well (see Section

4.7), leading to an isomorphism of the lattices of ideal of A and B. Consider the

discrete series representation θ(π∗) of G. As we have shown (see Sect. 6.4) that the

theta correspondence induces a homeomorphism between the spectra of C∗
θ (G) and

C∗
θ (H), we deduce that {θ(π∗)} is isolated in Ĉ∗

θ (G). It follows from the previous

paragraph that we have a direct sum of C∗-algebras

C∗
θ (G) ≃ ker(θ(π∗)) ⊕ Jθ(π∗)

with

Jθ(π∗) :=
⋂

σ∈Ĉ∗
θ (G)

σ �=θ(π∗)

ker(σ ).

As the induction of ideals is compatible with the induction of representations, for any

σ ∈ Ĉ∗
θ (H), we have

Ind
C∗

θ (G)

C∗
θ (H)

(�, ker(σ )) = ker( Ind
C∗

θ (G)

C∗
θ (H)

(�, σ )).

It follows that

Ind(�, ker(π)) = ker(θ(π∗)), Ind(�, Jπ ) = Jθ(π∗). (8.2.1)

A (C, D)-equivalence bimodule X gives rise to an isomorphism of K -groups (see,

for example, Prop. 2.4 and the paragraph following that in [36] for the unital case):

�X : K0(C)
≃

−−→ K0(D)

19 The isomorphism is canonical, sending the class of an idempotent to its trace.
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as ordered groups. Assuming the set-up of the above paragraph, �π := �Jπ is a

(Jθ(π∗), Jπ )-equivalence bimodule. We are led to following commutative diagram

K0(Jθ(π∗))

��π≃

ι
K0(C

∗
θ (G))

��≃

K0(Jπ )
ι

K0(C
∗
θ (H))

(8.2.2)

Lemma 8.2.3 Let π be a discrete series representation of H such that θ(π) �= 0. Then

the class of θ(π∗) in K0(C
∗
θ (G)) is taken to the class of π in K0(C

∗
θ (H)) under the

map ��.

Proof As ��π
is an isomorphism of ordered groups, it takes [θ(π∗)] to [π ]. Our claim

now follows from the commutativity of diagram (8.2.2). ⊓⊔

8.3 Traces

Let C be a C∗-algebra and let C+ denote its cone of positive elements. By a trace on

C , we mean a linear map χ : C+ → [0,∞] such that χ(0) = 0 and χ(cc∗) = χ(c∗c)

for all c ∈ C . If χ takes finite values, then it is called bounded. In this case, χ can

be extended to a linear functional on C (since C+ spans C) satisfying the usual trace

property: χ(cd) = χ(dc) for all c, d ∈ C .

We will be mainly interested unbounded traces. We say that χ is densely defined if

its domain {c ∈ C+ | χ(c) < ∞} is dense in C+. The canonical trace τH on C∗
r (H)

is a densely defined, unbounded trace that is determined uniquely by the property

τH ( f ) = f (e) for any f ∈ S(H).

Upon restriction, one obtains a linear map τH : S(H) → C that satisfies the usual

trace property. The map τH on the algebra S(H) induces20 a linear functional, denoted

τ ∗
H , on K0(S(H)). It follows from Thm. 3.2.1 (ii) that S(H) is spectral invariant in

C∗
r (H), which in turn implies that the inclusion i : S(H) → C∗

r (H) induces an

isomorphism i∗ : K0(S(H))
∼
−→ K0(C

∗
r (H)) in K -theory. Thus we obtain a linear

map

τ ∗
H : K0(C

∗
r (H)) → C.

They key fact is that (see e.g. [22, Section 2.3]) if π is a discrete series representation

of H then

τ ∗
H ([π ]) = deg(π). (8.3.1)

It is worth mentioning that τ ∗
H vanishes on all other classes which do not correspond

to discrete series representations.

20 One can extend the trace to Mn(S(H)) in the obvious way and this will give a well-defined map on the

classes of projections.
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8.4 Transfer of traces

Given a densely defined trace χ on C∗
θ (H), one can construct, using the oscillator

bimodule, a densely defined trace χ̂ on C∗
θ (G) which satisfies

χ̂ (G〈x, x〉) = χ(〈x, x〉
H
)

for all x ∈ � (see [36, Section 2] for bounded traces over unital algebras, and [30,

Section 1, Prop. 1.3.11] for the densely defined case, see also [5, Section 2.1] for the

case of ‘lower semi-continuous’ traces which our canonical traces are examples of).

For the canonical trace, we have

τ̂H (G〈x, x〉) = τH (〈x, x〉
H
) = 〈x, x〉 = τG(G〈x, x〉) (8.4.1)

for all x ∈ S. Therefore τ̂H equals the canonical trace τG on C∗
θ (G).

We have the following cohomological aspect of the transfer of traces. Restrict

τG , τH to C∗
θ (G) and C∗

θ (H) respectively, and restrict τ ∗
G, τ ∗

H to K0(C
∗
θ (G)) and

K0(C
∗
θ (H)) respectively.

Lemma 8.4.1 The pull-back map τ ∗
H ◦ �� : K0(C

∗
θ (G)) → C agrees with the map

τ̂ ∗
H : K0(C

∗
θ (G)) → C associated to the transfer τ̂H of τH from C∗

θ (H) to C∗
θ (G).

Proof For bounded traces on unital algebras, this is already noted by Rieffel in Prop.

2.5 of [36]. More generally, this is recorded by Pierrot in Cor. 1.3.12 of [30]: to see

this, just set his A to be our C∗
θ (H) and his E to be our � so that his K(E) becomes

isomorphic our C∗
θ (G). ⊓⊔

Corollary 8.4.2 Let π be a discrete series representation of H such that θ(π) is non-

zero. With the Haar measures for G and H chosen as discussed in Prop 5.4.1, the

formal degree of θ(π) equals that of π .

Proof Consider the pull-back τ ∗
H ◦ �� : K0(C

∗
θ (G)) → C. We have

(τ ∗
H ◦ ��)([θ(π∗)]) = τ ∗

H ([π ]) (8.4.2)

using Lemma 8.2.3. By Lemma 8.4.1, the map τ ∗
H ◦�� equals the map K0(C

∗
θ (G)) →

C that is induced by the transfer τ̂H of τH to C∗
θ (G). By (8.4.1), we have τ̂H = τG ;

thus

τ ∗
G([θ(π∗)]) = τ̂ ∗

H ([θ(π∗)]) = (τ ∗
H ◦ ��)([θ(π∗)]). (8.4.3)

Recall from (8.3.1) that τ ∗
H ([π ]) equals deg(π) and that τ ∗

G([θ(π∗)]) equals

deg(θ(π∗)). Thus, combining (8.4.2) and (8.4.3), we deduce that the degree of θ(π∗)

equals that of π . The claim follows since π∗ and π have the same degree. ⊓⊔

We point out the Haar measures used above are the ones that we employed during

the proof of Prop. 5.4.1.
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Remark 8.4.3 Here we only dealt with the canonical trace as we were interested in

the formal degrees. Once could however consider the transfer of traces given orbital

integrals (see e.g. [18]) associated to conjugacy classes other than the trivial element

(which gives the canonical trace).
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