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Abstract

This paper proposes a robust formation control scheme for networked multi-tilt tricopter UAVs utilizing the Negative Imaginary
(NI) and Positive Real (PR) theory. A Sliding Mode Control (SMC) scheme is designed for a multi-tilt tricopter to ensure
stable hovering at a desired height. Then, a modified Subspace-based system identification algorithm is devised to identify
a six-by-six NI model of the inner-loop-SMC-controlled tricopter in the continuous-time domain by exploiting the Laguerre
filter. A two-loop formation control scheme has been developed for networked multi-tilt tricopters where the inner loop of
each tricopter applies the SMC scheme, and the outer loop implements a distributed output feedback controller that satisfies
the ‘mixed’ Strictly NI (SNI) + Strictly PR (SPR) system properties. Subsequently, we have established the robustness of the
proposed scheme against NI/PR-type uncertainties and sudden loss of agents. The eigenvalue loci (also known as characteristic
loci) technique is used instead of the Lyapunov-based approach to prove the asymptotic stability of the formation control
scheme. An in-depth simulation case study was performed on a group of six inner-loop-SMC-controlled multi-tilt tricopters
connected via a network to achieve a formation control mission, even in the presence of uncertainties.

Key words: Negative Imaginary (NI) systems, Positive Real (PR) systems, multi-tilt tricopter, subspace-based system
identification, formation control, characteristic loci, Sliding mode control, uncertainty, loss of agents.

1 Introduction

Cooperative control of multirotor Unmanned Aerial Ve-
hicles (UAVs) has gained significant attention both from
academia and industry due to the improved reliability
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and efficiency it offers, leading to a vast number of ap-
plications [25] including search and rescue [33], pipeline
inspection and surveillance [35] among others. This at-
tention has led to more efficient configurations and inno-
vations in size, flight range, airframe configuration and
other factors. The reader can refer to [27] for an ex-
haustive review of multirotor UAVs. An innovative plat-
form with significant properties is a multi-tilt tricopter
[13] with three rotors which can independently tilt, of-
fering greater agility and flexibility. In contrast to the
more common quadrotor [17] where trajectory tracking
is achieved by manipulating the attitude, the multi-tilt
tricopter considered in this work can achieve simultane-
ous independent attitude and trajectory tracking (com-
plete 6-DOF control), due to its airframe configuration.
In other words, it is possible to translate in the lateral
and longitudinal directions without changing the atti-
tude, thereby overcoming the limitation of quadrotors.
This serves as our justification and motivation for in-
vestigating the cooperative control of the multi-tilt tri-
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copter rather than the quadcopter, thus creating more
possibilities when performing specialised and more com-
plex tasks. One of the most investigated coordination
problems of multi-agent systems (MASs) is the forma-
tion control problem, with the key concern being the
development of control strategies to achieve group for-
mation control. Several approaches [10], [40], [42] have
been proposed to solve the formation control problem,
including the more recent Negative Imaginary (NI) ap-
proach [44, 36, 38, 12]. NI theory was initially inspired
by the ‘positive position feedback control’ of highly res-
onant systems [18]. It initially drew attention as a con-
trol technique for vibration control of flexible structures
[3, 45, 20], large space structures and robotic manipula-
tors [23], and later saw applications in nano-positioning
[28], vehicle platooning [5], train platooning [19] and co-
operative control of two-wheeled mobile robots [36]. The
critical feature driving this growth is its simple inter-
nal stability condition that is, a necessary and sufficient
condition for the internal stability of a positive feed-
back interconnection of NI and SNI systems M(s) and
N(s), is λmax[N(0)M(0)] < 1 [18], [16], which is a con-
dition that depends on the loop gain at zero frequency
only. NI theory has been utilised in [38] and [39] to de-
sign a consensus-based formation control framework for
a multi-vehicle system together with an obstacle detec-
tion and avoidance algorithm. They have utilised the re-
sults of [44] and [43] to develop a particular consensus
and formation control framework for heterogeneous au-
tonomous vehicles facilitating time-invariant switching.

Motivated by the results above and applications and
to improve the formation control of multi-agent UAVs,
this paper develops a leader-following formation con-
trol scheme for a network of multi-tricopter systems.
The idea of utilising the NI-SNI closed-loop stability re-
sult to develop a cooperative control scheme for the tri-
copter stems from the fact that a particular class of UAV
systems can be modelled as a group of networked sin-
gle/double integrator agents (typically by feedback lin-
earisation), which inherently satisfies the NI property
with poles at the origin. It has also been shown in [38]
and [39] that linearized dynamics of the inner-loop of a
class of UAVs (closed-loop dynamics) exhibit the neg-
ative imaginary property. Consequently, a cooperative
control scheme can be deployed as the outer-loop con-
troller. The main contributions of this paper are as fol-
lows: (1) We derive the nonlinear model of a multi-tilt
tricopter using force and torque kinematics and dynam-
ics too. Although the feedback linearization technique
yields single or double integrator systems, as previously
mentioned, it lacks the accuracy of the system model
as it relies on the nonlinearity-cancellation by introduc-
ing an inverse nonlinear function. Hence, we use slid-
ing mode control laws to linearize the inner loop of the
multi-tilt tricopter UAV without sacrificing much of its
original properties and, at the same time, stabilising
the system. Thus, we obtain an SMC-controlled closed-
loop system with six inputs and outputs corresponding

to the tricopter’s Cartesian positions and attitude. (2)
To characterize the inner-loop-SMC-controlled as an NI
system, we develop a closed-loop system identification
algorithm that guarantees that the resultant model is
NI. The algorithm exploits the classic subspace method
but in continuous time by use of the Laguerre filter [8] in
the identification process, and its advantages and sim-
plicity are highlighted. (3) The proposed identification
algorithm is then applied to find NI models for all six
channels of the inner-loop-SMC-controlled multi-tilt tri-
copter. The frequency responses of the identified mod-
els are used to verify whether the models exhibit the NI
property. (4) A closed-loop stability result is developed
for networked NI/SNI systems using a ‘mixed’ Strictly
Negative Imaginary (SNI) plus Strictly Positive Real
(SPR) controller in a negative feedback interconnection.
(5) An ‘output feedback distributed SNI+SPR control’
law is proposed for achieving robust cooperative con-
trol combining leader-following consensus and formation
control principles. Rather than the Lyapunov method,
we use a new method to prove the convergence of the
control problem, which encompasses formation control
and cooperative tracking, exploiting the characteristics
of the characteristic loci of networked NI and SNI sys-
tems. The term ‘mixed’ with respect to the NI+SPR
controller implies that for some of the channels of the
tricopter, the controller is SNI, while for others, the con-
troller is SPR. (6) Finally, a simulation case study in-
volving a group of six inner-loop-SMC-controlled multi-
tilt tricopter agents is provided to demonstrate the use-
fulness and effectiveness of the proposed scheme.

Notation: R≥0 and R>0 denote respectively the sets of
all non-negative and all positive real numbers. In ∈
Rn×n denotes the identity matrix of dimension n × n,
diag{a, b, c} represents a diagonal matrix with diagonal
entries a, b, c. ae, ab and al

n

denote a vector a given rel-
ative to the earth (inertial), body and local frame n re-
spectively. Rm×n denotes the set of all proper, real, ra-
tional transfer function matrices, and RH m×n

∞ denotes
the set of all proper, real, rational and asymptotically
stable transfer function matrices, both of dimensions
(m×n). For a transfer function matrixM(s),M(jω)∗ =
M(−jω)> and M(s)∗ = M(s̄)> where s̄ denotes the
complex conjugate of s. The frequency response real-
Hermitian and imaginary-Hermitian parts of M(s) are
given by 1

2 [M(jω) +M(jω)∗] and 1
2j [M(jω)−M(jω)∗]

respectively. A ⊗ B indicates the Kronecker product of
two matrices A and B.

2 Preliminaries and problem formulation

This section serves the purpose of building a solid techni-
cal background for developing the main results of this pa-
per and reveals the problem statement. The frequently-
used terminologies related to coordinate rotations, alge-
braic graph theory, basics of NI and PR systems theory,
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and the concept of multi-agent NI systems have been
provided.

2.1 Coordinate rotations

The transformation of a vector from the inertial to body
frame following the (z, y, x) Euler rotation sequence [37]
is encoded in the rotation matrix

Rb
e(η) =


cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ

cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 , (1)

where η = [φ θ ψ]>, cφ , cosφ and sφ , sinφ.

The reverse transformation is the inverse Rb
e(η)−1 =

Rb
e(η)> = Re

b(η) from rotation matrix properties [37].
Similarly, the function which transforms the Euler angle
rates from body to inertial frame is given in [37] as,

Γ =


1 sinφ tan θ cosφ tan θ

0 cosφ − sinφ

0 sinφ sec θ cosφ sec θ

 . (2)

2.2 Algebraic graph theory

Consider a weighted and undirected graph G =
(V ,E ,A ) with a non-empty set of nodes V =
{1, 2, · · · , N}, a set of edges E ⊂ V × V and the asso-
ciated adjacency matrix A = [aij ] ∈ RN×N . An edge
rooted at the ith node and ended at the jth node is
denoted by (i, j), which means information can flow
from the ith node to the jth node. aij is the weight of
edge (j, i) and aij > 0 if (j, i) ∈ E . The jth node is
called a neighbour of the ith node if (j, i) ∈ E . The in-
degree matrix is defined as D = diag{di} ∈ RN×N with

di =
∑N
j=1 aij . The Laplacian matrix L ∈ RN×N of G

is defined as L = D −A . If the ith agent is connected
to the leader (considered as the target or root node la-
belled with ‘0’), an edge (0, i) is said to exist between
them with a pinning gain gi > 0.

2.3 Negative Imaginary and Positive Real theory

We will now recall the definitions of NI and SNI systems.

Definition 1 (NI System) [23, 16] Let M(s) be the
real, rational and proper transfer function matrix of a
finite-dimensional and square system M with no RHP
poles. Then, M(s) is said to be NI if

• j[M(jω)−M(jω)∗] ≥ 0 ∀ω ∈ (0,∞) except the values
of ω where s = jω is a pole of M(s);

• If s = jω0 with ω0 ∈ (0,∞) is a pole of M(s), then it is
at most a simple pole and the residue matrix lim

s→jω0

(s−

jω0)jM(s) is Hermitian and positive semidefinite;
• If s = 0 is a pole ofM(s), then lim

s→0
skM(s) = 0 ∀k ≥ 3

and lim
s→0

s2M(s) is Hermitian and positive semidefi-

nite.

Definition 2 (SNI System) [18, 16] Let M(s) be the
real, rational and proper transfer function matrix of
a finite-dimensional, square and causal system. Then,
M(s) is said to be SNI if M(s) has no poles in {s ∈ C :
<[s] ≥ 0} and j[M(jω)−M(jω)∗] > 0 ∀ω ∈ (0,∞).

Below, we present the state-space characterization (NI
lemma) of the class of NI systems without poles at the
origin.

Lemma 1 (NI lemma) [23, 16] Let (A,B,C,D) be a
minimal state-space realization of a real, rational proper
transfer function matrix M(s) with no poles in {s ∈ C :
<[s] > 0}. Then, M(s) is NI without any pole at the
origin if and only if det[A] 6= 0, D = D> and there exists
a real matrix P = P> > 0 such that

AP + PA> ≤ 0 and B +APC> = 0. (3)

We will now recall the definition of Strictly Positive Real
(SPR) systems.

Definition 3 (SPR system) Let G be a finite-
dimensional, square, LTI system with G(s) ∈ RH m×m

∞ .
Let [G(s) +G∼(s)] have full normal rank m. Then, G(s)
is said to be an SPR system if

G(jω) +G(jω)∗ > 0 ∀ω ∈ R. (4)

Ultimately, we would like to propose a new class of LTI
systems that exhibits a ‘mixed’ SNI and SPR prop-
erty. Originally, [30] proposed the notion of ‘mixed’
NI+Finite-gain system property and later, [7] defined
a class of ‘mixed’ NI+Finite-gain+Passive systems
along the direction of [30]. According to [30] and [7],
a system is called ‘mixed’ SNI+SPR if it exhibits SNI
property in some frequency intervals and SPR prop-

erty in others. For example, G1(s) = (s+1)
(s+6)(s2+4s+8) ,

G2(s) = s+1
(s2+8s+32) , G3(s) = s+1

(s+10)3 , etc. How-

ever, this ‘mixed’ property can be defined in another
sense. A decoupled multivariable system with a di-
agonal transfer function matrix can be designated as
a ‘mixed’ SNI+SPR system if it comprises a mix-
ture of SNI and SPR transfer function elements, e.g.,
G4(s) = diag{ 1

s+1 ,
1

s2+s+1 ,
s+2

s2+8s+20}. In this paper,
we have designed a ‘dynamic output feedback formation

3



0j 

j 

0j 

j 

0 



R

0



>
>



Fig. 1. Nyquist D-contour in the s-plane.

control scheme’ utilising this ‘mixed’ SNI+SPR system
property (refer to Section 5 and Section 7).

Definition 4 (‘Mixed’ SNI+SPR property) Let G
be a square, LTI system with a diagonal transfer function
matrix G(s) = diag{g1(s), g2(s), · · · , gm(s)}. Let k be a
positive integer and 0 < k < m. Then, the system G is
said to have ‘mixed’ SNI+SPR property if k number of
constituent transfer function elements are SNI and the
remaining (m− r) number of elements are SPR.

2.4 Characteristic loci theory

Similar to a Nyquist plot, the characteristic loci ρi(s) for
i ∈ {1, 2, . . . , n} of a transfer function matrix G(s) is a
conformal mapping of the function det[G(s)] in a com-
plex plane, known as the characteristic loci plane, when
s traverses along the s-plane D-contour in the clockwise
direction as shown in Fig. 1. For complete details of the
characteristic loci theory, please see [2] and [24].

Theorem 1 [2], [24] The negative feedback interconnec-
tion of a plant M(s) and a controller K(s) is asymp-
totically stable if and only if the net sum of the criti-
cal point (−1 + j0) encirclements of all the character-
istic loci ρi(jw) of the loop transfer function M(s)K(s)
for i ∈ {1, 2, . . . , n} is counter-clockwise and equal to
the number of RHP zeros of the open-loop characteristic
polynomial.

2.5 Multi-agent NI and SNI systems

This paper exploits multi-agent NI (also called dis-
tributed NI property) theory to develop a new coop-
erative control methodology for a group of networked
(via an undirected graph) inner-loop-SMC-controlled
(refer to Section 3) multi-tilt tricopters that exhibit the
distributed NI property.

Assumption 1 The communication topology of N ho-
mogeneous agents is described by an undirected and con-
nected graph G . A root node (leader or target) always

exists that sends a reference trajectory to the follower
agent(s).

We will now review some fundamental properties of
multi-agent NI systems. [44] first established that a
homogeneous network of NI (or SNI) agents that satis-
fies Assumption 1, given by M̄(s) = (L + G) ⊗M(s),
retains the NI (or SNI) property and M̄(0) > 0 (or <
0) ⇔ M(0) > 0 (or < 0). Recently, [12] has derived an
important property of a multi-agent NI system exploit-
ing the results of [4]. It shows that all the characteristic
loci λi(jω) of a homogeneous multi-agent NI (or SNI)
system lie in the union of the third and fourth quadrants
of the complex plane (also known as the characteristic
loci plane, discussed in Subsection 2.4). The following
mathematical notation will be adopted: the phase angle
contribution of each of the characteristic loci, denoted by
φi(λi(jω)), lies in the range [−π, 0] ∀ω ≥ 0 (for NI sys-
tems) and respectively in the range (−π, 0) ∀ω ∈ (0,∞)
(for SNI systems). This resembles the Nyquist interpre-
tation of SISO NI and SNI transfer functions.

2.6 Problem formulation

Given a multi-agent system (e.g. a multi-UAV system)
with N agents connected via a communication graph G
that satisfies Assumption 1 and modelled as a group of
networked agents with identical dynamics, the control
problem is to design a two-loop distributed formation
control scheme (Fig. 9) such that all agents converge to
the state trajectory of the leader node and the agents
asymptotically reach the desired static formation. That
is, lim

t→∞
(xi(t)− x0(t)) = 0, ∀i ∈ {1, 2, . . . , N}, where x0

is the state of the leader node and xi is the state of each
individual agent.

3 Multi-tilt tricopter modelling

This section presents the model of the tricopter UAV un-
der consideration. Note that a similar model is proposed
in [13], [11]. The model linearization using the sliding
mode control technique in closed-loop is also discussed.

3.1 Forces and moments

The multi-tilt tricopter as depicted in Fig. 2 is considered
to be a rigid-body with mass m and centre of mass G
where (Xe, Y e, Ze) denotes the earth (inertial) frame
and (Xb, Y b, Zb) denotes the body frame with its origin
at G. The total force acting on the UAV Fbt ∈ R3 is the
sum of the force produced by the rotors Fbm and the force
due to gravity Feg = [0 0 mg]>, where g is the gravity
constant. The forces and drag torques produced by each
rotor are assumed to be proportional to the square of
the angular speeds ωi [32] such that fi = ktω

2
i and τi =

kdω
2
i , i ∈ {1, 2, 3} where fi, τi denote the forces and drag

4
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Fig. 2. The coordinate systems associated with a multi-tilt
tricopter and the forces and torques acting on it.

torques respectively, and kt, kd denote the thrust and
drag torque constants respectively. From Fig. 2, the 3D
force produced by the ith rotor in its local frame is given

as f l
i

i = [0 − ktω2
i sinαi − ktω2

i cosαi]
>, i ∈ {1, 2, 3}.

The body frame forces for each rotor f bi are obtained

by pre-multiplying the local frame forces f l
i

i with (1)
noting that first and second rotors need to be rotated
1200 clockwise (ψ = 2π/3) and 1200 counter-clockwise
(ψ = −2π/3) respectively, both about the yaw axis, to
align the local frames with the body frame. Note that

f l
3

3 = f b3 as the third rotor is already aligned to the body
frame. Thus, the total force from the three rotors in body
coordinates is given by Fbm =

∑3
i=1 f

b
i = ktΨtΩ where

Ω = [ω2
1sα1

ω2
2sα2

ω2
3sα3

ω2
1cα1

ω2
2cα2

ω2
3cα3

]T and

Ψt =


-
√

3
2

√
3

2 0 0 0 0

1
2

1
2 -1 0 0 0

0 0 0 -1 -1 -1

 . (5)

Using Fig. 2, let Goi =
[
Goix Goiy Goiz

]>
be the vec-

tor of the ith rotor’s distance from the centre of mass
and (O1, O2, O3) be the application points of f1,f2,f3

respectively, with l1 =
√

3
2 l0 and l2 = 1

2 l0 where l0 is the
arm length. Then, the total moments from the rotors
in the body frame is Tb

r =
∑3
i=1(Goi × f

b
i ) = ktΨdΩ

where

Ψd =


0 0 0 -l1 l1 0

0 0 0 l2 l2 -l0

l0 l0 l0 0 0 0

 . (6)

The drag torque of each rotor acts opposite to the ith

rotor’s spin direction and is expressed as

τ l
i

d,i = [0 − kdω2
i sinαi − kdω2

i cosαi]
> ∀i ∈ {1, 2, 3}

and in body frame as τ bd,i obtained by pre-multiplying

the local frame forces τ l
i

d,i with (1) like the case of rotor
forces such that the total moments due to drag from the
three rotors is Tb

d =
∑3
i=1 τ

b
d,i = kdΨtΩ ∀i ∈ {1, 2, 3}.

Consequently, the total moments acting on the tricopter

is Tb
m = Tb

r+Tb
d = (ktΨd+kdΨt)Ω ∈ R3. By vertically

stacking the force from the rotors Fbm with the total

moments produced by the rotors Tb
m, the relationship

between the control inputs and actuator outputs (the
control allocation or mixer as depicted in Fig. 3) can be
expressed as U = MΩ where

M =



−
√

3
2 kt

√
3

2 kt 0 0 0 0

1
2kt

1
2kt −kt 0 0 0

0 0 0 −kt −kt −kt
−
√

3
2 kd

√
3

2 kd 0 −
√

3
2 ktl0

√
3

2 ktl0 0

1
2kd

1
2kd −kd

1
2ktl0

1
2ktl0 −ktl0

ktl0 ktl0 ktl0 −kd −kd −kd


and U =

[
Fbm Tb

m

]>
.

3.2 Rigid-body model

Let ξe and ωb be the 3D positions and angular velocities
respectively. The translational dynamics of a multi-tilt
tricopter are given by (obtained by applying the Newton-
Euler methods [37])

ξ̈
e

=
[
Rb
e(η)>Fbm + Feg

]
/m. (7)

Similarly, the rotational dynamics can be derived as (fol-
lowing the techniques reported in [29])

η̇ = Γωb, (8)

where Γ is defined in (2). The angular acceleration vector
is given by [37]

ω̇b = J−1
[
(−ωb × Jωb) + Tb

t

]
(9)

where J , diag{Jx, Jy, Jz} is the inertia matrix. At a
steady hovering condition where the attitude angles and
their rates are close to zero (commonly known as small-
angle approximation in the literature, that is, if the vari-
ation of θ is assumed small, then sin(θ) ≈ θ, cos(θ) ≈ 1

and θ̇ ≈ 0), the equations of motion of the tricopter
(7), (8) and (9) reduce to a double integrator dynamics
which inherently satisfies the NI property. This is one of
the motivations for applying NI theory to the tricopter
system. Note that the small-angle-approximation-based
modelling technique yields similar results to a feedback-
linearized model (of a trirotor or quadrotor). However,
the latter may fail because it relies on cancelling the
plant nonlinearities by multiplying them by their inverse
terms. Mathematically derived inverses may not exactly
match the dynamics due to inaccuracies in the real-time
parameter identification process or parameter variation.
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3.3 Tricopter hovering control using SMC

Nonlinear 
Dynamics of 
the Tricopter

SMC for Altitude 
and Attitude control

SMC for 
Longitudinal and 
Lateral control Mixer

mF

mT

dξ

dη

 ,ξ η

, , ,  ξ ξ η η 

zF

, , ,  ξ ξ η η 

Fig. 3. A Sliding Mode Control scheme for the multi-tilt
tricopter used to ensure stable hovering.

Assuming that the variation of the angles φ and θ are
small, we have Γ ≈ I3 from (2), which implies η̈ = ω̇b

from (8). Upon expanding, (9) yields

φ̈ =
[
(Jy − Jz)θ̇ψ̇ + τφ

]
/Jx, (10)

θ̈ =
[
(Jz − Jx)φ̇ψ̇ + τθ

]
/Jy, (11)

ψ̈ =
[
(Ix− Iy)φ̇θ̇ + τψ

]
/Jz. (12)

The approximation Γ = I3 is typically used in the liter-
ature [31], [15], [6], etc., to obtain a simplified yet rea-
sonably accurate model without sacrificing the crucial
system properties.

We first consider the roll dynamics (10) and aim to de-
sign an SMC law for it. Exploiting the classical SMC
theory [14], we choose an attractive sliding surface s̃φ =

ėφ+λφeφ where eφ , φ−φd and λφ > 0. We shall select

the control law so that ˙̃sφ = −kφ sgn(s̃φ) with kφ > 0

such that s̃φ ˙̃sφ ≤ 0. A standard Lyapunov candidate
function Vφ = 1

2 s̃
2
φ > 0 for all s̃φ 6= 0 is taken to analyse

the stability of the sliding surface. We then calculate V̇φ
as

V̇φ = s̃φ ˙̃sφ = s̃φ(−kφ sgn(s̃φ)) = −kφ|s̃φ| ≤ 0 (13)

where

sgn(s̃) ,
|s̃|
s̃

=


−1 s̃ < 0,

0 s̃ = 0,

1 s̃ > 0.

Using the relation s̃φ ˙̃sφ = −kφ|s̃φ|, we can readily find

s̃φ
( 1

Jx

[
(Jy−Jz)θ̇ψ̇+ τφ

]
− φ̈d+λφėφ

)
= −kφ|s̃φ| (14)

by substituting the expression of φ̈ from (10). It gives

τφ = Jx
(
−kφ sgn(s̃φ) + φ̈d−λφėφ

)
− (Jy − Jz)φ̇ψ̇ , uφ.

(15)

Since Vφ > 0 ∀s̃φ 6= 0 and V̇φ ≤ 0, V̇φ = 0 only when
s̃φ = 0, that is, ėφ + λφeφ = 0. Therefore, the error
dynamics ėφ is asymptotically stable [14] as λφ > 0. It
implies lim

t→∞
φ(t) = φd under the action of τφ. Following

Table 1
Summary of tricopter parameters

Parameter Value

l0 0.33 m

m 1.448 kg

kt 1.084× 10−5 kg-m

kd 1.726× 10−7 kg-m2

Jx 1.035× 10−1 kg-m2

Jy 1.03× 10−1 kg-m2

Jz 1.709× 10−1 kg-m2

the above procedure, we can choose another two sliding
surfaces s̃θ = ėθ + λθeθ where eθ , θ − θd and s̃ψ =

ėψ + λψeψ where eψ , ψ − ψd and obtain

τθ = Jy
(
−kθ sgn(s̃θ) + θ̈d − λθ ėθ

)
− (Jz − Jx)θ̇ ψ̇ , uθ

(16)
for controlling the pitch motion and

τψ = Jz
(
−kψ sgn(s̃ψ) + ψ̈d−λψ ėψ

)
− (Jx−Jy)φ̇ θ̇ , uψ

(17)
for controlling the yaw motion.

We make the following assumptions for the translational
dynamics (7). During vertical motion, ΣFz 6= 0, ΣFx =
ΣFy = 0; during longitudinal motion, ΣFy = 0, ΣFx 6=
0, ΣFz 6= 0; and during lateral motion, ΣFy 6= 0, ΣFx =
0,ΣFz 6= 0. Along the translational axes, Fz 6= 0 be-
cause the vertical thrust is required to hold the altitude.
Expanding (7) and imposing these simplifying assump-
tions, we get

ẍ =
[
(cθcψ)Fx + (cφsθcψ + sφsψ)Fz

]
/m, (18)

ÿ =
[
(sφsθsψ + cφcψ)Fy

+ (cφsθsψ − sφcψ)Fz
]
/m, (19)

z̈ = g +
[
(cφcθ)Fz

]
/m. (20)

Similar to the attitude control cases, we choose s̃x =
ėx + λxex , s̃y = ėy + λyey, s̃z = ėz + λzez with λx > 0,
λy > 0, λz > 0 and we get the sliding-mode control laws
for the x, y and z motions:

Fx =
[
m
(
−kx sgn(s̃x) + ẍd − λxėx

)
− Fz(cφsθcψ + sφsψ)

]
/cφcψ , ux, (21)

Fy =
[
m
(
−ky sgn(s̃y) + ÿd − λy ėy

)
− Fz(cφsθsψ

− sφcψ)
]
/(sφsθsψ + cφcψ) , uy, (22)

Fz =
[
m
(
−kz sgn(s̃z)− g + z̈d − λz ėz

)]
/cφcθ , uz. (23)

Fig. 3 shows a schematic of the proposed SMC scheme
for controlling attitude (η) and position (ξ) of a multi-
tilt tricopter. For simulation purposes, λx = λy = λz =
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1.4, λφ = λθ = λψ = 1.3, kx = ky = 1, kz = 1.5 and
kφ = kθ = kψ = 2.5 are taken and the tricopter parame-
ter values are listed in Table 1. Fig. 4 and Fig. 5 show the
responses of the multi-tilt tricopter to a commanded (or
reference) spiral trajectory with zero attitude change.
Note that the tricopter under consideration can achieve
independent x and y motions (6-DOF) without chang-
ing its attitude due to its airframe configuration.

−1 −0.5 0
0.5 1−1
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0
0.5
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0
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z
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Fig. 4. Tricopter response to a spiral trajectory with SMC.
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Fig. 5. Attitude profile exhibited during the simulation.

4 Subspace-based closed-loop system identifi-
cation of a tricopter in the time-domain

This subsection focuses on developing a subspace-based
closed-loop system identification technique in the con-
tinuous time domain to identify a linear model of the
tricopter under a stable hovering condition achieved by
the SMC scheme shown in Fig. 3. This technique also en-
sures that the identified linear model is NI by embedding
the NI constraints [AP +PA> ≤ 0 and B+APC> = 0
from Lemma 1] within the system identification algo-
rithm. The idea has been inspired by [38] and [39], which
showed that a quadcopter in a stable hovering condition,
achieved under the action of a forward-path PID con-
troller, exhibits NI properties. This work has first imple-
mented an inner-loop SMC scheme (see Fig. 3 and Fig. 9)
on the tricopter to ensure stable hovering. The sliding
surface was chosen as s̃ = ė+λe for each of the six chan-
nels as described in Section 3.3. The map from [ξTd ηTd ]T

to [ξT ηT ]T in Fig. 3 should be close to unity at low
frequencies under the action of the inner-loop SMC con-
troller. However, at mid-to-high frequencies, noise will
drive the inner loop away from the sliding surface, re-
sulting in a lack of perfect tracking. Since the output will
nonetheless still broadly follow the input with some ad-
ditional phase lag, we expect the closed-loop dynamics
from [ξTd ηTd ]T to [ξT ηT ]T in Fig. 3 to have NI proper-
ties.

4.1 Subspace-based closed-loop system identification in
the continuous time domain

Since we need a system identification technique to iden-
tify an NI model of a multi-tilt tricopter, as described
above, the NI constraints (3) given in Lemma 1 must to
be imposed. These constraints are defined in the time
domain via state-space matrices, which says subspace-
based system identification can be a good choice. How-
ever, subspace-based system identification is generally
performed in the discrete-time domain. If we transform
conditions (3) to discrete-time equivalents, as done in
[22] for instance, conditions (3) become non-convex and
are no longer LMIs, making the identification process
more complex and less intuitive. To overcome this is-
sue, we propose a continuous-time version of the existing
subspace-based system identification technique utilizing
the ideas of [9], [26] and [8]. It is worth noting that the
proposed system identification technique is implemented
on the inner-loop-SMC-controlled tricopter. Open-loop
system identification is too difficult in the current situ-
ation because the tricopters are open-loop unstable.

Consider a minimal state-space realization (A,B,C,D)
of a SISO, real, rational, proper transfer function M(s)
where A ∈ Rn×n, B ∈ Rn×1, C ∈ R1×n, D ∈ R1×1,
x(t) ∈ Rn, u(t) ∈ R and y(t) ∈ R for all t ≥ 0. For
a continuous-time LTI system, the output y(t) can be
expressed as 1

y(t) = L −1[Y (s)] = L −1
[{
C(sI −A)−1B +D

}
U(s)

]
= C

∫ t

0

eA(t−τ)Bu(τ) dτ +Du(t). (24)

For a strictly-proper (D = 0) system, (24) can be rear-

ranged as y(t) = C
{∫ t

0
eA(t−τ)u(τ) dτ

}
B since the sys-

tem M(s) is SISO.

The proposed system identification process is described
below through three main steps. The estimated A, B
and C matrices will be denoted by Â, B̂ and Ĉ.

Step 1: The Laguerre Filter algorithm in [8] is used to gen-
erate filtered input-output data sets from experi-
mentally observed data sets;

1 The notation L −1(·) stands for the Laplace inverse.
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Step 2: The error-in-variables family of subspace algo-
rithms [26] is used to estimate the Â and Ĉ matrices
of the system relying on the filtered input-output
data sets generated in Step 1;

Step 3: The column vector B̂ is constructed by solving the
least squares optimization problem (27) which uses

the estimated Â and Ĉ matrices (from Step 2).

The readers are referred to [26] and [8] to review the es-

timation algorithm (for finding Â and Ĉ), which we have
utilised in Steps 1 and 2. In this paper, Step 3 is mod-
ified by embedding the NI constraints (from Lemma 1)
to enforce the NI property of the identified model.

For a SISO channel of a strictly proper LTI system,
if we pack the measured input-output time-series data
in u = [u(t1), u(t2), · · · , u(tN )]> ∈ RN×1 and
y = [y(t1), y(t2), · · · , y(tN )]> ∈ RN×1 where N data
points have been collected in the time interval [0, tN ],
we can express y as

y(t1)

y(t2)
...

y(tN )

 =


Ĉ
{∫ t1

0
eÂ(t1−τ)u(τ) dτ

}
B̂

Ĉ
{∫ t2

0
eÂ(t2−τ)u(τ) dτ

}
B̂

...

Ĉ
{∫ tN

0
eÂ(tN−τ)u(τ) dτ

}
B̂

 , (25)

which can be expressed in a vector-matrix form as
y = ΦB̂ where Φ ∈ RN×n and B̂ ∈ Rn×1. The ma-
trix Φ is known for a known input function u(t) over
all t ∈ [0, tN ]. However, since Φ involves integrals and
our measured input contains discrete-time data points
{u(t1), u(t2), · · · , u(tN )}, we can use a numerical in-
tegration technique such as a first-order approximation
of an integral (or Trapezoidal rule, or Simpson’s rule,
etc.) to calculate Φ.

Finally, imposing the NI constraint B̂ = −ÂP Ĉ> from
(3) into y = ΦB̂, we have

y = −ΦÂP Ĉ> (26)

where P = P> > 0 is the unknown matrix variable to
be determined. Equation (26) can be solved for P > 0

satisfying ÂP + PÂ> ≤ 0 via the following constrained
least-squares minimization problem:

min
P

∥∥∥Φ>y + Φ>ΦÂP Ĉ>
∥∥∥2

(27)

subject to

ÂP + PÂ> ≤ 0 and P = P> > 0,

using techniques in [21]. The objective function in (27)
is quadratic in P , and the constraints are affine in P .
Thus, it is a convex optimization problem that can be

conveniently solved using commercially available SDP
solver packages (e.g. CVX, SeDuMi, Yalmip, etc.). Once

P is obtained, B̂ is computed as B̂ = −ÂP Ĉ>.

4.2 System identification of an inner-loop-SMC-
controlled tricopter enforcing NI property

In this subsection, the linearized multi-tilt tricopter from
Section 3.3 with six inputs (xd, yd, zd, φd, θd, ψd) and
their respective outputs is considered as the closed-loop
system to be identified. The input-output data is ob-
tained by exciting each channel with a square wave and
measuring the corresponding output signal. The con-
tinuous time identification algorithm described in Sec-
tion 4.1 is then used to identify a model for each channel.
The Laguerre filter gain p for each channel was heuristi-
cally chosen as 0.55, 0.45, 0.34, 0.35, 0.4 and 0.45 respec-
tively, and by inspecting the singular values in the iden-
tification process, the model order was chosen as n = 2
for all channels, yielding the following SISO NI transfer
functions for the respective channels:

m1(s) =
X(s)

Xd(s)
=

2.3662× 10−5s+ 3.515× 10−5

s2 + 0.006301s+ 4.357× 10−5
, (28)

m2(s) =
Y (s)

Yd(s)
=

2.659× 10−14s+ 2.714× 10−5

s2 + 0.006625s+ 3.682× 10−5
, (29)

m3(s) =
Z(s)

Zd(s)
=

8.769× 10−14s+ 2.38× 10−5

s2 + 0.006368s+ 3.067× 10−5
, (30)

m4(s) =
Φ(s)

Φd(s)
=

6.114× 10−17s+ 4.827× 10−5

s2 + 0.01231s+ 5.206× 10−5
, (31)

m5(s) =
Θ(s)

Θd(s)
=

7.62× 10−14s+ 5.676× 10−5

s2 + 0.01357s+ 5.849× 10−5
, (32)

m6(s) =
Ψ(s)

Ψd(s)
=

1.419× 10−14s+ 1.49× 10−4

s2 + 0.003192s+ 1.325× 10−4
, (33)

where X(s), Y (s), Z(s), Φ(s), Θ(s) and Ψ(s) denote
the Laplace transform of the real-time physical variables
x(t), y(t), z(t), φ(t), θ(t) and ψ(t) respectively. Equa-
tions (28)–(33) together represent the inner-loop-SMC-
controlled dynamics of the multi-tilt tricopter in the
closed loop with six inputs and six outputs. Figures 6–
8 show the frequency response validation of the identi-
fied models together with a comparison of these models
with the classic subspace identification algorithm [41]
and [21]. In Figures 6–8, unconstrained refers to the clas-
sic subspace algorithm [41] while constrained refers to
our proposed continuous-time algorithm, which solves
the constrained optimization problem (27) and guaran-
tees that the identified model is NI. It is evident from
Figures 6–8 that the identified models for each chan-
nel using the proposed algorithm have a phase in the
range [−π, 0], which is required for a negative imaginary
system. Furthermore, it can also be observed from Fig-
ures 6–8 that for all channels except roll and yaw, the
proposed algorithm (constrained) yields better fits with
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the validation data compared to the classic subspace al-
gorithm (unconstrained).
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5 A distributed two-loop formation control
scheme for networked multi-tilt tricopters

Fig. 9. A two-loop formation control scheme for networked
multi-tilt tricopters using an inner-loop cascaded SMC block
and outer-loop distributed ‘mixed’ SNI+SPR control law.

Fig. 10. The outer-loop formation control scheme for a group
of networked inner-loop-SMC-controlled tricopter agents
M(s) (being SNI) utilising a distributed output feedback
‘mixed’ SNI+SPR controller K(s) with K(0) > 0.

This section lays down the foundational results which
underpin the main contributions of this paper that will
be developed in the subsequent sections. Here, we will
establish that a network of inner-loop-SMC-controlled
agents can be made closed-loop stable via a distributed
‘mixed’ SNI+SPR controller depending only on the
sign definiteness of the DC-gain matrix of the con-
troller transfer function. This result will be invoked
later to develop a leader-following formation control
scheme (shown in Fig. 10) for networked inner-loop-
SMC-controlled multi-tilt tricopter agents.

5.1 Closed-loop stability of networked stable NI/SNI
system with a ‘mixed’ SNI+SPR controller

In this subsection, we will first establish (in Lemma 2)
that a network of inner-loop-SMC-controlled multi-tilt
tricopter agentsM(s) = diag{m1(s),m2(s), . . . ,mm(s)}
as derived in (28))–(33), being stable NI/SNI with
M(0) > 0, connected via an undirected graph, can be
stabilized in a negative feedback loop shown in Fig. 10
by a distributed ‘mixed’ SNI+SPR controller K(s)
having K(0) > 0. The terminology ‘mixed’ SNI+SPR
controller signifies that the elements of K(s) exhibit
either purely SNI property, purely SPR property, or a
mixture of SNI and SPR properties. In other words,
some elements of K(s) may be SNI, some may be SPR,
while the rest satisfy SNI and SPR properties. Theo-
rem 2 is the main contribution of this section, which
proves that a group of networked multi-tilt tricopter
agents achieves a predefined time-invariant or time-
varying formation under the application of a distributed
‘mixed’ SNI+SPR controller K(s), described before
when K(0) > 0. Lemma 2 is an essential technical
prerequisite result, which will be invoked for proving
Theorem 2. The proof of Lemma 2 significantly relies
on the Characteristic loci theory [2], [24] and has been
done taking the inspiration from [4] and [12].

Lemma 2 Consider a network ofN identical and decou-
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pled NI/SNI systems M(s) ∈ RH m×m
∞ with M(0) > 0.

Let the graph G be associated with a network satisfy-
ing Assumption 1. Then, there exists a finite range of
σ ∈ (0, σ?] for which the negative feedback interconnec-
tion of [LG ⊗ σK(s)] andM(s) shown in Fig. 11 remains
asymptotically stable where K(s) ∈ RH m×m

∞ is a de-
coupled, ‘mixed’ SNI+SPR system satisfying K(0) > 0.

Proof. In this proof, the notation ρi(s) is used to repre-
sent the characteristic loci of the networked loop transfer
function matrix [LG⊗K(s)M(s)]. To apply the charac-
teristic loci technique, we will define the following two
sets of the complex variable s

Ω±j = {s| s = jω, ω ∈ (−∞,∞)},

ΩR = {s| s = Rejθ, R ∈ R>0, R→ +∞, −π
2
≤ θ ≤ π

2
},

along the s-plane D-contour shown in Fig. 12b.
The negative feedback interconnection of M(s) and
[LG ⊗K(s)], as shown in Fig. 11, remains asymptot-
ically stable if none of the characteristic loci ρi(jω)
encircles the critical point (− 1

σ + j0) for any σ ∈ (0, σ?]
via Theorem 1. We will now establish via the follow-
ing two parts (Parts I and II) that all the charac-
teristic loci ρi(s) remain confined within the Green-
coloured region portrayed in Fig. 12a. Before start-
ing the proof, we note that both M(s) ∈ RH m×m

∞
and K(s) ∈ RH m×m

∞ have decoupled structures,
that is, M(s) = diag{m1(s),m2(s), · · · ,mm(s)} and
K(s) = diag{k1(s), k2(s), · · · , km(s)}. Since M(s) is
stable NI/SNI and K(s) is ‘mixed’ SNI+SPR respec-
tively, ∠mi(jω) ∈ [−π, 0] and ∠ki(jω) ∈ (−π, π2 ) ∀ω ∈
(0,∞) and ∀i ∈ {1, 2, . . . ,m}. Also, ∠mi(0) = 0
and ∠ki(0) = 0 ∀i since M(0) = M(0)> > 0 and
K(0) = K(0)> > 0 via supposition and due to satisfy-
ing the stable NI/SNI properties. We also assume that
[M(s)−M∼(s)] has full normal rank.

Fig. 11. A rearranged block diagram of the scheme shown in
Fig. 10 required for closed-loop stability analysis.

Part I: When s ∈ Ω±j [i.e. when ω ∈ (−∞,∞)]

Let λi [LG ⊗K(jω)M(jω)] = λi [LG] |ki(jω)||mi(jω)|
ej(φi+ψi) at each ω ∈ (0,∞) and ∀i ∈ {1, 2, . . . , Nm}.
Since M(s) is stable NI and K(s) is ‘mixed’ SNI+SPR,
ψi(ω) ∈ [−π, 0] and φi(ω) ∈ (−π, π2 ) ∀ω ∈ (0,∞) and
hence, ∠ρi(jω) = (φi(ω) + ψi(ω)) ∈ (−2π, 0] ∀ω ∈
(0,∞) ∀i. Similarly, ∀ω ∈ (−∞, 0), ∠ρi(jω) ∈
(−2π, 0]. At ω = 0, we have λi

[
LG ⊗ K(0)M(0)

]
=

λi [LG] |ki(0)||mi(0)|∠0 as K(0) > 0 and M(0) > 0.
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Fig. 12. (a) All the characteristic loci ρi(jω) of
LG ⊗ K(s)M(s) remain inside the Green coloured region
for any σ ∈ (0, σ?] and ∀ω ∈ R ∪ {∞}. (− 1

σ? + j0) denotes
the worst-case critical point (i.e. when σ = σ?); (b) Nyquist
D-contour in the s-plane without any pole on the jω axis.

Therefore, the zero-frequency points ρi(j0−) and
ρi(j0+) lie on the positive real axis of the characteris-
tic loci plane, and they coincide as K(s)M(s) does not
have any pole(s) at the origin. Thus, when s ∈ Ω±j , the
angle contribution ∠ρi(jω) of each ρi(jω) belongs to
the range [−2π, 0] ∀ω ∈ R. Most importantly, there is
no infinite crossover on the negative or positive real axis
as K(s)M(s) does not have any pole at s = 0. However,
the characteristic loci ρi(s) may intersect the negative
real axis one or multiple times at finite distances since
the intercept, given by λi [LG] |ki(jω)||mi(jω)|, remains
finite at all ω ∈ R. These two arguments together imply
that there always exists a finite range (0, σ?] of the pa-
rameter σ for which the critical point (− 1

σ + j0) is never
encircled by any ρi(jω). The fact has been graphically
demonstrated in Fig. 12a. It shows that all ρi(jω) stay
within the Green coloured region such that the critical
point (− 1

σ + j0) is never encircled for any σ ∈ (0, σ?].

Part II: When s ∈ ΩR Similar to the zero-frequency
points ρi(j0−) and ρi(j0+), the infinite frequency
points ρi(+j∞) and ρi(−j∞) can be expressed as
λi [LG ⊗K(∞)M(∞)] = λi [LG] |ki(∞)||mi(∞)|
∠ (φi(∞) + ψi(∞)) ∀i ∈ {1, 2, . . . , Nm}. Since the
eigenvalues of K(∞)M(∞) are always real numbers
(positive/negative/zero), λi [LG] > 0 ∀i and neither of
K(s) and M(s) contains a pole at the origin, ρi(+j∞)
and ρi(−j∞) coincide and lie either at the origin or on
the real axis at finite distances from the origin. Com-
bining all these arguments, we can conclude that there
always exists a finite range (0, σ?] of the gain parameter
σ for which none of the characteristic loci ρi(jω) encir-
cles the critical point (− 1

σ + j0) for the entire frequency
range ω ∈ R ∪ {∞} [this has been demonstrated in
Fig. 12a, which shows that all ρi(s) remain within the
Green coloured region and the worst-case critical point
(− 1

σ? + j0) also lies outside the Green coloured region].

Parts I and II together prove that all the characteristic
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loci ρi(s) of the loop transfer function [LG ⊗K(s)M(s)]
remain within the Green coloured region shown in
Fig. 12a and hence, none of the characteristic loci ρi(s)
encircles the critical point (− 1

σ + j0) for any σ ∈ (0, σ?].
This proves the asymptotic stability of the negative
feedback closed-loop system shown in Fig. 11 exploiting
Theorem 1.

Note that the same proof readily specialises to the cases
when M(s) belongs to the SNI class for which the full
normal rank condition (i.e. [M(s)−M∼(s)] has full nor-
mal rank) is inherently satisfied. Hence, the entire proof
is done. �

5.2 Formation control protocol design using a ‘mixed’
SNI and SPR system property

Fig. 13. An equivalent block diagram of the formation con-
trol scheme shown in Fig. 10 for inner-loop-SMC-controlled
networked tricopter agents. Note LG = (L + G).

This subsection presents the key contribution of this
paper. NI and PR theories have been exploited to de-
sign a simple yet effective formation control scheme
as depicted in Fig. 10 for a class of UAVs that can
be modelled as (or transformed into) a network of
linearized dynamics. Although the formation con-
trol scheme developed in this section is meant for
tricopter UAVs, it is also well-suited for other UAV
configurations (e.g. quadcopter). In Theorem 2 and
subsequent parts, the inner-loop-SMC-controlled dy-
namics of a multi-tilt tricopter is represented by
M(s) = diag{m1(s),m2(s), . . . ,m6(s)} ∈ RH 6×6

∞ with
M(0) > 0, as derived in (28)–(33).

Theorem 2 Consider a network of N identical inner-
loop-SMC-controlled, multi-tilt tricopter agents M(s) ∈
RH m×m

∞ , connected via the topology G that satisfies

Assumption 1. Let h(t) =
[
h>1 h

>
2 , . . . ,h

>
N

]>
∈ RNm

be the desired formation configuration vector and
r̄ = 1Nr ∈ RNm be the formation reference vector. Let
K(s) ∈ RH m×m

∞ be a decoupled, ‘mixed’ SNI+SPR
controller satisfying K(0) > 0. Then, there always exists
a finite σ? > 0 such that for any σ ∈ (0, σ?] the tricopter
agents achieve the desired formation with respect to r(t)
and h(t) by the following distributed dynamic output
feedback control law (according to the scheme shown in

Fig. 10)

ui = σK(s)

N∑
j=1

aij
(
(yj−hj)−(yi−hi)

)
+gi(r+hi−yi)

(35)
∀i ∈ {1, 2, . . . , N}.

Proof: We begin this proof by noting that the inner-
loop-SMC-controlled model M(s) ∈ RH m×m

∞ of the
multi-tilt tricopter, derived in (28)–(33), satisfies the
SNI property with M(0) > 0. The proposed formation
control scheme for networked multi-tilt tricopter agents
is shown in Fig. 10. An equivalent block diagram of
Fig. 10 has been drawn in Fig. 13 to assist the proof of
Theorem 2. We denote LG = L + G. The proof builds
on Lemma 2, which establishes the asymptotic stabil-
ity of negative feedback closed-loop interconnection of a
networked stable NI/SNI plant (LG ⊗M(s)) and a de-
coupled ‘mixed’ SNI+SPR controller (IN ⊗ σK(s)) ex-
ploiting the characteristic loci technique (Theorem 1).

In Fig. 13, the Green dotted box represents the dis-
tributed ‘mixed’ SNI+SPR controller LG ⊗ σK(s). For
the proof, the network part (i.e. LG = L + G) has
been decoupled from the plant and attached with the
controller block. Now, the negative feedback intercon-
nection of the inner-loop-SMC-controlled multi-tilt tri-
copter system M̄(s) = diag{M(s), M(s), · · · ,M(s)}
and the networked controller LG ⊗ σK(s), as shown
in Fig. 13, is asymptotically stable for a finite range
of σ ∈ (0, σ?] via Lemma 2 as Fig. 11 is equivalent to
Fig. 13. The asymptotic stability of the networked loop
(i.e. the formation control scheme) ensures that the for-
mation tracking error will asymptotically decay to zero,
that is, lim

t→∞
e(t) = 0 or lim

t→∞
r(t) + h(t)−y(t) = 0. This

part readily follows from Theorem 1 of [34] and [44].
Hence, we can conclude that the group of inner-loop-
SMC-controlled multi-tilt tricopter agents will achieve
the desired formation specified by r and h under the ac-
tion of the distributed ‘mixed’ SNI+SPR output feed-
back control protocol (35) following the scheme shown
in Fig. 10 [equivalently Fig. 13]. �

Remark 1 The negative feedback consensus-seeking
scheme developed for inner-loop-SMC-controlled tri-
copter agents may be easily modified to cater to single
and double-integrator agents. In that respect, the re-
sults presented in [11] and [12] where tricopters were
feedback-linearized to single/double integrator systems
can be captured by our scheme. However, it has been
investigated that in the case of single integrator agents,
if a negative feedback consensus scheme is used, then
the requirement of an SNI controller can be relaxed to a
stable NI (as opposed to an SNI) controller. This reduces
the conservatism of the proposed consensus scheme and,
hence, is worth detailed analysis.
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Remark 2 It is worth noting that different from [12],
our SNI+SPR controller is more generalized since it sup-
ports any NI system, including single and double inte-
grator systems and their combinations. Also, the authors
in [12] have considered the SISO case while proposing
a cooperative control law, while we have considered the
MIMO case, which also encompasses SISO systems. Fur-
thermore, our SNI+SPR control law offers better tran-
sient performance than the SNI-only control law of [12]
due to the inclusion of a phase lead (a zero) in the closed
loop system, made possible by the strictly passive part
of the controller. The inclusion of the passive part also
means that our SNI+SPR control law is part of a wider
set of controller transfer functions as the Nyquist plot lies
not only below the real axis but within the first, third and
fourth quadrants, providing a larger family of controller
transfer functions compared to the SNI-only control law
of [12].

It is also worth noting that the proposed scheme (The-
orem 2) can be readily extended to take up a group for-
mation control problem, allowing multiple leaders.

6 Robustness and fault-tolerance properties

6.1 Robustness to model uncertainty

Fig. 14. A formation control scheme for inner-loop-SMC-con-
trolled tricopter agents with a class of IM-type uncertainty
δi ∈ U ∀i.

This subsection examines the robustness of the NI-
based leader-following consensus scheme developed for
distributed double integrator agents. This study is par-
ticularly motivated by the fact that many practical
robotic systems can be feedback linearized into dou-
ble integrator dynamics along with uncertain parts
appearing in a multiplicative or an additive struc-
ture. We now declare a particular class of uncertainties
∆(s) = diag{δ1(s), δ2(s), · · · , δm(s)} where δi(s) be-
longs to a set U defined below:

U =
{
δ(s) ∈ RH ∞ : −π ≤ ∠δ(jω) ≤ π

2
∀ω ∈ R≥0

and δ(0) > 0
}
. (36)

Note that the uncertainties are not restricted to the NI
class. Theorem 3 given below will establish that the NI-

based distributed leader-following consensus scheme of-
fers robustness against U-type uncertainties when they
appear with double integrator dynamics.

Theorem 3 Consider a network of N identical multi-
tilt tricopters having an uncertain inner-loop-SMC-
controlled model given by M∆(s) = M(s)[I + ∆(s)] ∈
RH m×m

∞ where M(s) is the nominal model (stable
NI/SNI) and ∆(s) = diag{δ1(s), δ2(s), · · · , δm(s)} with
δi ∈ U ∀i. The interaction topology G satisfies As-

sumption 1. Let h(t) =
[
h>1 h

>
2 , · · · ,h

>
N

]>
∈ RNm

be the desired formation configuration vector and
r̄ = 1Nr ∈ RNm be the formation reference vector. Let
K(s) ∈ RH m×m

∞ be a decoupled, ‘mixed’ SNI+SPR
controller satisfying K(0) > 0. Then, there always exists
a finite σ? > 0 such that for any (0, σ?], the tricopter
agents achieve the desired formation with respect to r(t)
and h(t) by the distributed ‘mixed’ SNI+SPR output
feedback control law (35) following the scheme shown in
Fig. 14.

Proof. We will first establish the asymptotic stability
of the formation control scheme (shown in Fig. 14) in
the presence of a class input-multiplicative-type (IM-
type) uncertainty ∆(s) = diag{δ1(s), δ2(s), · · · , δm(s)}
where δi(s) ∈ U ∀i ∈ {1, 2, . . . ,m}. It is guaranteed that
none of the eigenvalue loci ρi(jω) of

[
LG⊗K(s)M∆(s)

]
,

where M∆(s) = M(s)[I+ ∆(s)], encircles the worst-case

critical point ( 1
σ? + j0) for any δ(s) ∈ U. Let M(s) be

stable NI—the proof proceeds along the similar track of
the proof of Theorem 2.

Part I: When s ∈ Ω±j [i.e. when ω ∈ (−∞,∞)]

Let λi [LG ⊗K(jω)M∆(jω)] = λi [LG] |ki(jω)||mi(jω)
[1 + δi(jω)]|ej(φi(ω)+ψi(ω)+νi(ω)) at each ω ∈ (0,∞)
and ∀i ∈ {1, 2, . . . , Nm}. Note φi(ω) ∈ [−π, 0] as
M(s) is stable NI, ψi(ω) ∈ (−π, π2 ) as K(s) is ‘mixed’
SNI+SPR and νi(ω) ∈ [−π, π2 ] for all ω ∈ R≥0.
At ω = 0, φi(0) = ψi(0) = νi(0) = 0. Therefore,
(φi(ω) + ψi(ω) + νi(ω)) ∈ [−π, π] ∀ω ∈ R≥0. Simi-
larly, ∀ω ∈ (−∞, 0), (φi(ω) + ψi(ω) + νi(ω)) ∈ [−π, π].
It implies that the zero-frequency points ρi(j0−) and
ρi(j0+) coincide and lie on the positive real axis for
any δ ∈ U since K(s)M∆(s) does not have any pole(s)
at s = 0. Thus, when s ∈ Ω±j , the angle contri-
bution ∠ρi(jω) of each ρi(jω) belongs to the range
[−π, π] ∀ω ∈ R. Most importantly, there is no infi-
nite crossover on the negative or positive real axis as
K(s)M∆(s) does not have any pole at s = 0. However,
ρi(s) may intersect the negative real axis one or mul-
tiple times at finite distances since the intercept, given
by λi [LG] |ki(jω)||mi(jω) [1 + δi(jω)]|, remains finite
at all ω ∈ R and ∀i ∈ {1, 2, . . . , Nm}. These two argu-
ments together imply that there always exists a finite
range of σ ∈ (0, σ?] such that the worst-case critical
point (− 1

σ? + j0) is never encircled by any ρi(jω). The
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Fig. 15. (a) All the characteristic loci ρi(jω) of
LG ⊗ K(s)M∆(s) remain inside the Cyan-coloured region
for the full class of δ ∈ U ; (b) The figure shows that the set
of critical points approaches (−∞+ j0) when σi → 0. Note
that σi ∈ [0, σ?i ]. This interprets the fault tolerance property.

fact has been graphically demonstrated in Fig. 15a. It
shows that all ρi(jω) stay within the Cyan-coloured
region for any IM-type uncertainties δ(s) ∈ U.

Part II: When s ∈ ΩR Similar to the zero-frequency
points ρi(j0−) and ρi(j0+), the infinite frequency
points ρi(+j∞) and ρi(−j∞) can be expressed as
λi [LG ⊗K(∞)M∆(∞)] = λi [LG] |ki(∞)||mi(∞)[1 +
δi(∞)]|∠ (φi(∞) + ψi(∞) + νi(∞)) ∀i ∈ {1, 2, . . . , Nm}.
Since the eigenvalues of K(∞)M∆(∞) are always real
numbers (positive/negative/zero) and K(s)M∆(s) does
not contain any poles at s = 0 for any δ ∈ U, ρi(+j∞)
and ρi(−j∞) coincide and lie either at the origin or on
the positive/negative real axis at finite distances from
the origin.

Combining Part I and Part II, we can conclude that there
always exists a finite range of σ ∈ (0, σ?] such that none
of the characteristic loci ρi(jω) encircles the worst-case
critical point (− 1

σ? + j0) for any uncertainty δ(s) ∈ U.
This is graphically interpreted through Fig. 15a, which
shows that all ρi(s) remain inside the Cyan-coloured re-
gion for all δ(s) ∈ U. Hence, asymptotic stability of the
formation control scheme is ensured via Theorem 1 even
in the presence of the class of the IM-type uncertain-
ties δ ∈ U. After this, it remains to be shown that the
formation tracking error decays to zero – which readily
follows from [34, Theorem 1] and [44], as mentioned also
in the proof of Theorem 2.

The above proof can be easily specialised to the cases
where M(s) is SNI. Now, the proof is fully done. �

Remark 3 Although Theorem 3 has been derived for U-
type uncertainties in an input-multiplicative (IM) config-
uration, it can be readily established the scheme (Fig. 14)
can also accommodate the cases when δ(s) ∈ U appears
in the output-multiplicative or additive form. The same
lines of proof of Theorem 3 remain applicable with little
modifications and re-adjustments.

Remark 4 In contrast to the Lyapunov stability ap-
proach used in most MAS-based formation control
schemes, the proposed methodology relies on the eigen-
value loci technique to prove the asymptotic convergence
of the consensus-tracking error. The proposed scheme i)
reduces mathematical complexity, offering a straightfor-
ward implementation, ii) removes the need to search for
an appropriate Lyapunov function, iii) removes some of
the overly restrictive assumptions on the dynamics of
the underlying systems and the communication graph to
satisfy the formation feasibility condition and iv) does
not involve any nonlinear terms in the distributed control
law that result in discontinuous control action accompa-
nied by chattering problems. The proposed scheme also
exhibits robustness to a class of stable (including NI and
PR-type) uncertainties when appearing in a multiplica-
tive/additive form and fault tolerance to a sudden loss
of agents.

6.2 Fault tolerance to a sudden loss of agents

This subsection examines the fault tolerance property of
the proposed formation control scheme in the event of
a sudden loss of agents due to hardware or communica-
tion failures. Exploiting the notion of decentralised in-
tegral controllability of NI/SNI systems [4] and inspired
by a similar development in the case of single integra-
tor MASs in [12], we will now show that how the overall
closed-loop stability can be maintained when some of
the agents go out of the network. During the controller
design, the effect of the loss of an agent can be consid-
ered by making the gain of that particular control loop
zero (i.e. σi = 0), which implies that the faulty loop is
temporarily deactivated (i.e. the defective agent is ex-
cluded from the network). This is done autonomously by
the decision-making unit in situations when i) an agent
does not communicate with its neighbours continuously
for a few seconds (decided w.r.t. the speed of the net-
work), and ii) an agent sends an alarm signal to indi-
cate a hardware failure. In the second case, the inner-
loop SMC block helps the faulty UAV to descend and
land safely. After the faulty agents are excluded from
the network, the decision-making unit executes an au-
tonomous reconfiguration, taking the healthy and active
agents. Therefore, a new Laplacian matrix with a re-
duced dimension is formed, and the distributed ‘mixed’
SNI+SPR output feedback control law, proposed in (37),
drives the agents to achieve a new formation surround-
ing the leader/target/virtual target and keep tracking
the same. The following proposition gives the problem
formulation and offers the theoretical proof.

Proposition 1 Under the assumptions and conditions
of Theorem 3, the formation control scheme given in
Fig. 14 retains the closed-loop asymptotic stability in the
event of a sudden loss of agents under the action of the
following distributed ‘mixed’ SNI+SPR output feedback
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control law

ui = σiK(s)

N∑
j=1

aij
(
(yj−hj)−(yi−hi)

)
+gi(r+hi−yi)

(37)
∀i ∈ {1, 2, . . . , N}.

In such cases, after an autonomous reconfiguration of
the network, the remaining active agents attain a new
formation and keep tracking the target by the designed
control law (37).

Proof. The proof essentially builds on Theorem 3 and
Theorem 2. The notations and symbols used in this
proof are already introduced. Note the slight modifica-
tion in the control law in (37) compared to (35). Sep-
arate controller gains σi for i ∈ {1, 2, . . . , N} are used
instead of a common σ. Let σi ∈ [0, σ?i ] and σ? =
max{σ?1 , σ?2 , · · · , σ?N}.

Theorem 3 can be readily applied to establish the asymp-
totic stability of the negative feedback formation con-
trol scheme given in Fig. 14 for any σi ∈ (0, σ?]. We
will now show that the closed-loop stability is preserved
even when σi = 0 for some i ∈ {1, 2, . . . , N}. This is
equivalent to fulfilling the requirement that none of the
eigenvalue loci ρi(jω) of

[
LG ⊗ K(s)M∆(s)

]
encircles

the critical point (− 1
σi

+ j0) for any σi ∈ [0, σ?], partic-
ularly when σi = 0 for some i. Fig. 15b portrays the lo-
cus of the critical points starting from (− 1

σ? + j0) up to
(−∞+ j0) when σi varies in the range [0, σ?]. Note that
the critical point (− 1

σi
+ j0) reaches (−∞ + j0) when

σi = 0, which corresponds to a faulty situation of the
ith agent. Fig. 15b nicely depicts that the full set of the
critical points (− 1

σi
+j0) for σi ∈ [0, σ?] remains outside

the Pink-coloured region in Fig. 15b. This, hence ensures
that even though the ith critical point lies at (−∞+ j0),
it will not be encircled by the eigenvalue loci ρi(jω).

Under a faulty situation, the decision-making unit
overwrites the σi values (of the faulty agents) to zero,
which indicates that the faulty agents have been ex-
cluded from the network without impairing the stability
of the overall network. The inner-loop controller will
then help the faulty UAV safely reach the ground. In
the meantime, the decision-making unit will also ini-
tiate an autonomous network reconfiguration, taking
the healthy/active agents. This will give rise to a new
topology with fewer agents. However, the bidirectional
communication topology will be maintained. Hence, the
new Laplacian matrix will retain the same properties
as before. Finally, the agents will achieve a formation
surrounding the given target/leader by the same dis-
tributed control law (37) following the same principle
derived in Theorem 3 and keep tracking the target. This
completes the proof. �

7 Case study and Matlab simulation results

This section presents the formation control design for a
network of six multi-tilt tricopter agents using the results
developed in Section 5. These six agents have identical
NI dynamics based on the inner-loop-SMC-controlled
model identified in Subsection 4.2. MATLAB simulation
results are presented to show the effectiveness of the
proposed scheme.

7.1 Formation control of a group of multi-tilt tricopters
in the ideal case

10

32

54 6

Fig. 16. A bidirected interaction topology.

For this case study, we consider a group of six multi-tilt
tricopter UAVs, and the control objective is to achieve a
desired formation and escort a leader or target to its des-
tination. Each of the six agents has identical LTI state-
space dynamics described by,

ẋi = Axi +Bui and yi = Cxi ∀i ∈ {1, 2, . . . , 6},

where xi =
[
ẋi xi ẏi yi żi zi φ̇i φi θ̇i θi ψ̇i ψi

]>
,

ui =
[
xdi ydi zdi φdi θdi ψdi

]>
, yi =

[
xi yi zi φi θi ψi

]>
and the matrices A,B,C are given as

A =


-63 -56 0 0 0 0 0 0 0 0 0 0
78 0 0 0 0 0 0 0 0 0 0 0
0 0 -66 -47 0 0 0 0 0 0 0 0
0 0 78 0 0 0 0 0 0 0 0 0
0 0 0 0 -64 -39 0 0 0 0 0 0
0 0 0 0 78 0 0 0 0 0 0 0
0 0 0 0 0 0 -123 -67 0 0 0 0
0 0 0 0 0 0 78 0 0 0 0 0
0 0 0 0 0 0 0 0 -136 -75 0 0
0 0 0 0 0 0 0 0 78 0 0 0
0 0 0 0 0 0 0 0 0 0 -32 -85
0 0 0 0 0 0 0 0 0 0 156 0

× 10-4,

B =


625 0 0 0 0 0
0 0 0 0 0 0
0 625 0 0 0 0
0 0 0 0 0 0
0 0 625 0 0 0
0 0 0 0 0 0
0 0 0 625 0 0
0 0 0 0 0 0
0 0 0 0 625 0
0 0 0 0 0 0
0 0 0 0 0 1250

× 10-4 and

C =

 4 720 0 0 0 0 0 0 0 0 0 0
0 0 0 556 0 0 0 0 0 0 0 0
0 0 0 0 0 487 0 0 0 0 0 0
0 0 0 0 0 0 0 989 0 0 0 0
0 0 0 0 0 0 0 0 0 1162 0 0
0 0 0 0 0 0 0 0 0 0 0 763

× 10-4.

The above model represents the inner-loop-SMC-
controlled multi-tilt tricopter systemM(s) = diag{mj(s)} ∈
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RH 6×6
∞ ∀j ∈ {1, 2, . . . , 6} using (28)–(33), with m in-

puts and outputs, which was identified in Subsection 4.2,
and satisfies the NI property. It can also be easily ver-
ified that (A,B,C) is stabilizable and detectable. The
undirected interaction topology among the six vehicles
is given in Fig. 16, where the leader agent or target
(labelled ‘0’) provides the formation reference signal. It
follows from Fig. 16 that the Laplacian of the network is

L =



2 -1 -1 0 0 0

-1 4 -1 -1 -1 0

-1 -1 4 0 -1 -1

0 -1 0 2 -1 0

0 -1 -1 -1 4 -1

0 0 -1 0 -1 2


, (38)

and since only the first agent is connected to the leader,
an edge (0, 1) exists between them with a pinning gain
g1 = 1 while gi = 0 for i ∈ {2, . . . , 6}.

We choose a high-gain SNI controller k1(s) = 107

(s+ρ1) to

stabilize the x position and a set of high-gain SPR con-

trollers of the form kj(s) = 8×107(s+2)
(s+ρj) ∀j ∈ {2, 3, . . . , 6}

for the rest of the channels with ρ =
[
ρ1, ρ2, . . . , ρ6

]
=[

15, 100, 80, 90, 95, 49
]
. Consequently, the ‘mixed’

SNI+SPR controller is given as K(s) = diag{kj} ∀j ∈
{1, 2, . . . , 6} with σ = 1, and it is trivial to show
that K(0) > 0 as required. As depicted in Fig. 13,
the group formation reference which achieves the de-
sired formation is given as (r + h) ∈ R36 where

r̄ =
[
r> r>, . . . , r>

]> ∈ R36 is the formation reference

and h =
[
h>1 h>2 , . . . ,h

>
6

]> ∈ R36 is the formation
configuration. The reference for the leader or root node

is selected as r0 =
[
4 3 2 0 0 0

]> ∀t < 10s and r0 =[
−1 5 3.2 0 0 0

]> ∀t ≥ 10s.

The formation configuration for the followers was chosen
as

hi =



γ cos
( (i+1)π

3

)
γ sin

( (i+1)π
3

)
0

γ sin
( (i+1)π

3

)
γ cos

( (i+1)π
3

)
0


∀t < 10s

Fig. 17. Group formation of six tricopter agents with
SNI+SPR controllers with formation configuration switched
from diamond to triangle after 10 seconds.

and

hi =



βi cos
( (2i+1)π

6

)
βi sin

( (2i+1)π
6

)
0

0

0

0


∀t ≥ 10s

∀i ∈ {1, 2, . . . , 6} where γ = 2.0 m is the radius of the
formation, βi = γ ∀i ∈ {1, 3, 5} and βi = γ/2 ∀i ∈
{2, 4, 6}. Initially, with t < 10s, the follower agents track
a diamond formation bordering the leader agent, while
for t ≥ 10s, the follower agents track a triangle forma-
tion with respect to the formation configuration hi, tak-
ing into account a change in the leader reference r at
t = 10s. Fig. 17 shows that the six multi-tilt tricopter
agents achieve leader-following consensus and formation
tracking as t→∞. Note that if h = 0, the entire scheme
in Fig. 13 reduces to a consensus problem. It, there-
fore, follows that the SNI+SPR controller inherently
achieves consensus tracking. When the leader reference
and demanded group formation changes at t = 10s, the
SNI+SPR control scheme maintains the stability of the
entire network. It ensures that the six multi-tilt tricopter
agents track the newly demanded triangle formation.

Figures 18–20 show the responses of the positions
xi, yi, zi ∀i ∈ {1, 2, . . . , 6} to the demanded references.
For the six follower agents, the actual positions track
the demanded leader within 5 seconds before and after
the period t ≥ 0, corresponding to a change in the de-
manded group formation. Similarly, Figures 21–23 show
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Fig. 18. x position responses.
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Fig. 19. y position responses.
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Fig. 20. altitude z responses.
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Fig. 21. roll attitude responses.
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Fig. 22. Pitch attitude responses.
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Fig. 23. Yaw attitude responses.

that the attitudes of the six multi-tilt tricopter agents
track the target attitude. Considering Figures 21–23,
it is also worth noting that for t < 10s, the motion of
the multi-tilt tricopter agents occurs with a change in
attitude, implying simultaneous position and attitude
control, which is an advantage of the tricopter under
consideration due to its airframe configuration. For
t > 10s, the case where the tricopter agents translate to
track the leader or target without a change in attitude
is evident, indicating the ability of the tricopter under
consideration to achieve simultaneous independent atti-
tude and trajectory control, extending the limits of the
classic tricopter [1] and other commonly used multirotor
UAVs such as quadcopters.

7.2 Formation control of a group of multi-tilt tricopters
with Uncertainty

The same team of six multi-tilt tricopters is simulated
following the scheme in Fig. 14, considering an IM-type
uncertainty δi = 1

s2+s+1 ∀i ∈ {1, 2, . . . , 6} in each of the

six axes. We denote ∆i = diag{δi} and ∆ = diag{∆i}.
Fig. 24 reveals that the NI-based cooperative control
scheme has satisfactorily achieved formation control for
all six agents, even in the presence of uncertainties. Al-
though there is a performance degradation, still, it can
be regarded as the robustness of the proposed scheme.
We also tested the near-worst-case scenario by consider-
ing uncertainties in all six axes of the multi-tilt tricopter.
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Fig. 24. Formation control achieved in the presence of IM–
type uncertainty in each axis of the multi-tilt tricopter UAVs.

7.3 Formation control of a group of multi-tilt tricopters
with faulty agents

To show the fault tolerance properties of the proposed
scheme, we use the control law in (37) where the inte-
gral gain σi = 1 for i = {1, 2, 3, 5, 6} and σ4 = 0 indi-
cating a fault in vehicle 4. The fault is introduced after
10 seconds, and the proposed scheme can deactivate the
faulty vehicle within a short period and reconfigure the
network to use only the remaining five agents to achieve
an alternative formation as in Fig. 25.

8 Conclusion

This paper has exploited ‘a blend of NI and PR theory’
to design a robust formation control scheme for a group
of multi-tilt tricopter agents. We have also developed a
closed-loop system identification technique in the con-
tinuous time domain and imposed NI constraints to ob-
tain an NI model. First, we derived a complete nonlinear
kinematic and dynamic model of a multi-tilt tricopter.
A sliding mode control (SMC) scheme was designed to
achieve stable hovering. The identification algorithm was
then run on the SMC-controlled tricopter hovering at a
certain height, and a second-order NI model was iden-
tified in the closed loop for each of the six channels
(x, y, z, φ, θ, ψ). After that, a distributed output feed-
back formation control scheme was developed for a group
of SMC-controlled tricopter agents (whose closed-loop
dynamics satisfy the NI property) exploiting a ‘mixed’
SNI+SPR control law. This two-loop control strategy

Fig. 25. Multi-tilt tricopter agents with a fault on vehicle 4

helps to achieve the target position and attitude of the
tricopters, independent of each other. The theoretical
proof relies on the characteristic loci technique instead of
the Lyapunov stability approach commonly used in the
cooperative control literature. MATLAB simulation re-
sults showed decent performance and robustness to NI-
type uncertainties. Group formation control problems
and obstacle avoidance aspects can be considered in the
future.
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