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A BAC-NOMA Design for 6G umMTC with Hybrid
SIC: Convex Optimization or Learning-based?

Shiyu Jiao, Ximing Xie, Kaidi Wang, Member, IEEE, and Zhiguo Ding, Fellow, IEEE

Abstract—This paper presents a new backscattering commu-
nication (BackCom)-assisted non-orthogonal multiple access
(BAC-NOMA) transmission scheme for device-to-device (D2D)
communications. This scheme facilitates energy and spectrum
cooperation between BackCom devices and cellular down-
link users in 6G ultra-massive machine-type communications
(umMTC) scenarios. Given its quasi-uplink nature, the hybrid
successive interference cancellation (SIC) is applied to further
improve performance. The data rate of BackCom devices with
high quality of service (QoS) requirements is maximized by
jointly optimizing backscatter coefficients and the beamforming
vector. The use of hybrid SIC and BackCom yields two
non-concave sub-problems involving transcendental functions.
To address this problem, this paper designs and compares
convex optimization-based and unsupervised deep learning-
based algorithms. In the convex optimization, the closed-form
backscatter coefficients of the first sub-problem are obtained,
and then semi-definite relaxation (SDR) is utilized to design
the beamforming vector. On the other hand, the second sub-
problem is approximated by using a combination of sequential
convex approximation (SCA) and SDR. For unsupervised
deep learning-based optimization, a loss function is properly
designed to satisfy constraints. Computer simulations show the
following instructive results: i) the superiority of the hybrid
SIC strategy; ii) the distinct sensitivities and efficacies of these
two algorithms in response to varying parameters; iii) the
superior robustness of the unsupervised deep learning-based
optimization.

Index Terms—Non-orthogonal multiple access (NOMA),
backscatter communications(BackCom), hybrid SIC, convex
optimization, unsupervised deep learning

I. Introduction

Ultra-massive machine type communications (umMTC)
is proposed based on mMTC of the fifth-generation (5G)
era and has been viewed as one of the key communication
scenarios to be realized by the envisioned sixth-generation
(6G) mobile networks [1]. The umMTC scenario is ex-
pected to serve various devices with different quality of
services (QoS), such as wearable devices, high-definition
(HD) cameras, smart homes, environment sensors and
so on [2]–[4]. However, limited by spectrum and energy,
deploying an Internet of Everything (IoE) consisting of
an extremely large number of devices faces enormous
challenges, which motivate researchers to work on various
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novel schemes. For enhancing spectrum utilization, non-
orthogonal multiple access (NOMA) has been widely
used in various wireless communication networks due to
its higher spectrum efficiency compared to traditional
orthogonal multiple access (OMA). Different from OMA,
NOMA allows users non-orthogonally utilize time, fre-
quency and coding but with different power levels [5]. For
example, if devices are appended in conventional OMA
networks, each of the devices is allocated with a solely
occupied resource block regardless of its QoS requirement,
which is a spectral inefficient scheme and not helpful to
construct 6G umMTC. On the other hand, if different
QoS-required devices are added to legacy networks with
NOMA protocol, these devices can be admitted to the
same channel with legacy users [6], [7], which can construct
a high spectral efficiency and umMTC-helpful scheme.
In NOMA, users are split in the power domain, where
superposition coding is used in transmitters and successive
interference cancellation (SIC) is used in receivers to
remove interferences. Therefore, optimal power allocation
for NOMA systems with individual QoS constraints1 is
very important [8]. For uplink NOMA, there are generally
two types of SIC, including channel state information
(CSI)-based SIC and QoS-based SIC [9]. CSI-based SIC is
an intuitive decoding strategy which decides the decoding
order on the basis of users’ channel conditions but it can
not provide performance gain when NOMA users’ channel
quality is similar. QoS-based SIC, as the name implies,
implements SIC according to users’ QoS requirements, for
example, in cognitive-radio NOMA networks, the primary
user’s signal can be decoded first by guaranteeing the QoS
threshold [10]. However, it has the risk of decoding failure
when the first decoded signal can not meet its target
rate. The proposal of hybrid SIC not only conquers those
shortcomings [9] but also guides the selection of decoding
order. The key idea of hybrid SIC is to dynamically select
the optimal decoding order that achieves the maximum
data rate. For instance, consider a two-user uplink NOMA
scenario where a secondary user is admitted to share the
same resource block with a primary user. If the CSI-based
SIC is used, the signal of the user having a higher channel
gain will be decoded first, which yields two decoding
orders. If the QoS-based SIC is used, the primary user’s
QoS is preferentially guaranteed. In particular, if the
primary user’s signal can be successfully decoded first after

1The reflection coefficients optimization problem in this study is
indeed an optimal power allocation for NOMA systems.
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the secondary user is added (i.e., decoding the primary
user’s signal under the secondary user’s interference),
the decoding order will be decoding the primary user’s
signal first and then the secondary user’s signal. In
this case, hybrid SIC can improve system performance
by dynamically selecting the decoding order in different
scenarios.

Energy limitation is another issue besides spectrum
utilization. For the purpose of saving energy or pro-
longing battery life, a variety of schemes that enable
energy cooperation have been proposed, such as, wireless
power transfer (WPT) and backscattering communication
(BackCom) [11]. The key idea of WPT is to harvest
the energy of the radio frequency (RF) sent by a power
station or other non-energy-constrained devices, where
the harvested energy is utilized to transmit signals. In
[12], the energy consumption problem in Machine-to-
Machine communications with multiple access and non-
linear energy harvesting for IoT, in which an energy
effective resource allocation algorithm has been proposed.
BackCom was first proposed in [13]. It has also been
regarded as a mature and efficient technology to realize
energy cooperation in 6G [14]. The key idea of BackCom
is to utilize the signal sent by non-energy-constrained
devices to activate the circuit of BackCom devices (BDs),
and then BDs will re-modulate their signals and reflect
them [15]–[17]. In the future 6G networks, BackCom
has been regarded as a promising technique for various
applications, especially for green communications and
the Internet of things (IoT), due to its advantages of
high energy efficiency and spectrum friendly [18]–[20].
Therefore, BAC-NOMA is a wise combination that can
simultaneously enhance spectrum and energy efficiency.

A. Related Works
BAC-NOMA is a wise combination that can simul-

taneously realize spectrum and energy cooperation and
thus attracts a large number of researchers. In [21],
the minimum throughput among all BDs is maximized
by jointly optimizing backscatter time durations and
power reflection coefficients, where multiple BDs and a
backscatter receiver are considered. The energy efficiency
of a green network is maximized for a Backcom-enabled
intelligent reflection surface (IRS)-NOMA network [22]
by jointly optimizing the phase shifts of IRS and power
allocation of the base station (BS). In this system, a BD,
two downlink users and an IRS are considered, where
the BackCom is employed as the secondary transmission
of a downlink user, and the IRS is deployed to assist
another downlink user. The authors in [23] maximized the
energy efficiency of a BackCom-enabled two-user NOMA
downlink network, subject to users’ QoS requirements.
In this work, a Dinkelbach-based algorithm is applied to
iteratively optimize the power allocation of the BS and the
reflection coefficient of the BD. [24] analyzed the outage
probability of a simple downlink BAC-NOMA network
over the Nakagami fading channel, where a downlink user

is served simultaneously by the BS and the BD. [25]
highlighted the benefits of utilizing BAC-NOMA in legacy
orthogonal frequency division multiple access (OFDMA)-
based and spatial division multiple access (SDMA)-based
networks, where the reflection coefficients of the two
schemes are both optimized for the fair comparison.

B. Motivations and Contributions
Although BAC-NOMA has been extensively investi-

gated, research in this area that can support 6G umMTC
is still rare, which motivates us to propose a novel and
easy-to-implement 2 BackCom-based scheme for legacy
cellular networks that can realize spectrum and energy co-
operation. Therefore, this paper considers the deployment
of BAC-NOMA-enabled device-to-device (D2D) commu-
nications to legacy OMA networks. Specifically, two BDs
and a data fusion center are admitted to share the same
resource block with a legacy OMA downlink user. With the
help of optimizations, the QoS of the legacy OMA user can
be guaranteed while the spectrum and energy cooperation
can also be realized. The quasi-uplink characteristic of
BackCom-based D2D communications inspires us to use
hybrid SIC to further improve its performance. How-
ever, several challenges are also introduced, for example,
BackCom brings the transcendental function and hybrid
SIC discretizes the optimization problem, which makes
the original problem non-concave and complicated. To
decompose the original problem, two subproblems are
derived. For the first subproblem, the optimal solution
can be achieved by using convex optimization. However,
the second one can only be solved by applying approx-
imation. This further motivates us to use the learning-
based algorithm and compare it with conventional convex
optimization.

This paper aims to maximize the high QoS required
BD’s data rate and explore the differences between the
unsupervised deep learning-based optimization and con-
vex optimization in solving problems corresponding to
different decoding orders. The main contributions of this
paper are summarized as follows:

• A novel BAC-NOMA D2D transmission scheme is
proposed, where hybrid SIC is applied for D2D
communication. This scheme can realize energy and
spectrum cooperation with legacy OMA users and is
easy to implement in legacy OMA networks. The data
rate of a high data rate required BD is maximized by
guaranteeing the low data rate required BD’s and the
legacy OMA user’s QoS.

2The term “easy-to-implementation” implies that comparing in-
tegrating more devices by using the conventional OMA scheme,
employing the proposed BAC-NOMA-based scheme is less complex
and incurs lower overhead. If more devices are integrated into the
legacy OMA system with the OMA scheme, new devices will carve up
the OMA user’s resource block, consequently causing a substantial
reduction in the QoS for the legacy OMA users. Moreover, the
original communication system needs to be re-designed, for example,
the signal processing flow, the protocol and resource scheduling. In
contrast, the deployment of extra devices via our proposed scheme
only requires the BS to execute the proposed algorithm based on the
global CSI.
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• To efficiently address the non-concave problem, it is
divided into two sub-problems according to different
decoding orders. For the first sub-problem, after prov-
ing the monotonicity of the transcendental objective
function, the coupling between variables is avoided by
deriving the optimal closed-form backscattering coef-
ficients. Subsequently, semi-definite relaxation (SDR)
is utilized to optimize its beamforming vector. For
the second sub-problem, the method of solving the
first subproblem is no longer available, and hence the
successive convex approximation (SCA) and SDR are
employed for the joint beamforming and reflection
coefficient design. Meanwhile, the optimality of the
two sub-problem is analyzed.

• Unsupervised deep learning is applied to solve the
problem, where the loss function is dexterously de-
signed. The constraints can be guaranteed by the
penalty term in the loss function. This method is
broadly applicable to many optimization problems.

• Simulations demonstrate the following fascinating
findings: 1) convex optimization and unsupervised
deep learning-based optimization have different sensi-
tivities to different parameters; 2) unsupervised deep
learning-based optimization is more robust than con-
vex optimization when channels are outdated. This
provides guidance for the selection of optimization
methods in real-world design.

C. Organisation

The rest of this paper is organized as follows. Section
II describes the system model and formulates it as an
optimization problem with hybrid SIC. In section III,
the problem is solved by using convex optimization. In
section IV, unsupervised deep learning-based optimization
is discussed. Section V demonstrates simulation results
and compares the corresponding performances of the two
optimization paths. Finally, the conclusion is provided in
section VI.

II. System Model and Problem Formulation

This paper proposes a communication scenario with one
BS, two BackCom transmitters denoted by B1 and B2,
one data fusion centre denoted by Br and a legacy OMA
downlink user U0, where B1 is assumed to be a high data
rate required device while B2 only requires low data rate.
This is a common scenario in 6G networks [26]–[28]. For
example, B1 is a high-definition (HD) that is uploading
videos and B2 is a healthcare wearable device that needs
a stable low data rate. Assume that the BDs have been
admitted to share the same communication resources with

U0
3. In this network, the BS is equipped with M antennas

while two BDs and the downlink user are equipped with
a signal antenna. Because BDs B1 and B2 transmit their
own data simultaneously on the same spectrum to Br,
it can be viewed as an uplink BAC-NOMA scenario. For
BAC-NOMA, BDs’ circuit will be excited by the signal
sent from the BS, i.e., x0 = ω0s0, where s0 is the desired
signal of U0, satisfying E{|s0|2} = 1, where {·} denotes
the expectation operation, and ω0 ∈ CM×1 is the corre-
sponding beamforming vector. According to the ambient
BackCom’s principle, BDs will modulate and reflect their
own information over the incident signal x0. Therefore,
the BackCom signal reflected by Bn, ∀n ∈ {1, 2} can be
represented as xn = hH

n ω0s0sn, where hn ∈ CM×1 denotes
the channel from the BS to Bn and sn is the transmit
signal of Bn, also satisfying E{|sn|2} = 1, ∀n ∈ {1, 2}. Due
to the spectrum sharing mechanism, the admitted BAC-
NOMA transmission and the legacy downlink transmission
will mutually interfere with each other. Therefore, the
received signal at Br is given by

yBr
=

2∑
n=1

√
ηngnh

H
n ω0s0sn︸ ︷︷ ︸

desired signal

+ hH
Bω0s0︸ ︷︷ ︸

interference

+nB , (1)

where ηn is Bn’s BackCom reflection coefficient, gn de-
notes the channel gain between Br and Bn, hB ∈ CM×1

denotes the channel vector from the BS to Br and nB

denotes the noise which follows CN (0, σ2) distribution.
For U0, its received signal is given as follows

y0 = hH
0 ω0s0︸ ︷︷ ︸

desired signal

+

2∑
n=1

√
ηngn,0h

H
n ω0s0sn︸ ︷︷ ︸

interference

+n0, (2)

where h0 ∈ CM×1 is the channel vector between the BS
and U0 and gn,0 is the channel between Bn and U0. Since
sn is unknown at U0, the second term of (2) is treated
as interference. On the other hand, due to the double
fading effect, the direct link signal is much stronger than
the backscatter link signal, a proper decoding order at
Br and U0 is employed to decode s0 first and then the
BackCom signals [29]. By this principle, U0’s data rate is
given by

R0 = log

(
1 +

|hH
0 ω0|2∑2

n=1 ηn|gn,0|2|hH
n ω0|2 + σ2

)
. (3)

3The proposed system and its corresponding algorithms can be
readily expanded to the multi-user multi-BD scenario in which BDs
and legacy OMA users are pre-grouped. However, it’s important
to note that grouping an excessive number of BDs with a single
OMA user is not practical due to two key reasons: 1) The BDs and
OMA user sharing the same resource block in a NOMA setup will
cause significant interference for the OMA user. This necessitates
the BS performing an extensive number of SIC to ensure the QoS of
the OMA user. 2) As the number of BDs increases, the number of
potential SIC decoding sequences and corresponding optimization
problems also increases in a factorial manner, requiring the BS
to solve these optimization problems simultaneously, which yields
extremely high complexity. Both factors contribute to considerable
latency.



4

Unlike U0, Br needs to perform SIC to remove inter-
ferences and decode the desired signal. To remove the
interference, Br needs to decode s0 first and remove it.
The data rate of s0 observed at Br is given by

R0→B = log

(
1 +

|hH
Bω0|2∑2

n=1 ηn|gn|2|hH
n ω0|2 + σ2

)
. (4)

In the next stage, Br will still perform SIC to decode its
desired signal (i.e.,s1 and s2). In this case, the transmission
between Br and BDs can be viewed as an uplink NOMA
scenario, and hence the hybrid SIC strategy [9] can be
utilized to further improve the performance. According to
the hybrid SIC strategy, the following two decoding orders
need to be considered:
1) SIC decoding order 1: If s1 is decoded first, B1’s

achievable rate is given by

R
(1)
1 = log2

(
1 +

η1|g1|2|hH
1 ω0|2|s0|2

η2|g2|2|hH
2 ω0|2|s0|2 + σ2

)
. (5)

After implementing SIC, B2’s achievable rate is given
by

R
(1)
2 = log2

(
1 +

η2|g2|2|hH
2 ω0|2|s0|2

σ2

)
. (6)

2) SIC decoding order 2: If s2 is decoded first, the
achievable rate of B1 and B2 can be respectively
represented as

R
(2)
1 = log2

(
1 +

η1|g1|2|hH
1 ω0|2|s0|2

σ2

)
, (7)

and

R
(2)
2 = log2

(
1 +

η2|g2|2|hH
2 ω0|2|s0|2

η1|g1|2|hH
1 ω0|2|s0|2 + σ2

)
, (8)

where the superscript denotes the decoding order case
while the subscript indicates the BDs’ index. In BackCom,
the signal s0 is perfectly known at Br according to (4).
Subsequently, s0 can be viewed as the fast-fading chan-
nel component when Br is decoding sn [30]. Therefore,
optimizing the average data rate (i.e., the expectation
of the uplink data rate with respect to |s0|2) is a more
appropriate choice, as discussed in [16]. The average data
rate of B1 of the SIC decoding order 1 can be represented
by

R̄
(1)
1 = Es0{R

(1)
1 } =

∫ ∞

0

R
(1)
1 (|s0|2)f|s0|2(x)dx, (9)

where f|s0|2(x) is the probability density function (pdf)
of |s0|2. The average data rate of B1 and B2 for other
cases can be obtained in the same way. Assume that s0
and sn both follow complex Gaussian distribution with
zero mean and unit variance, their envelope will follow
the exponential distribution, and hence the pdf of |s0|2

is f|s0|2(x) = e−x. With some algebraic manipulation,
R̄

(1)
1 ,R̄(1)

2 ,R̄(2)
1 and R̄

(2)
2 can be derived as follows:

R̄
(1)
1 = log2(e)[
−e

σ2∑2
n=1 ηn|gn|2|hH

n ω0|2 Ei

(
− σ2∑2

n=1 ηn|gn|2|hH
n ω0|2

)

+e
σ2

η2|g2|2|hH
2 ω0|2 Ei

(
− σ2

η2|g2|2|hH
2 ω0|2

)]
,

(10)

R̄
(1)
2 = − log2(e)e

σ2

η2|g2|2|hH
2 ω0|2 Ei

(
− σ2

η2|g2|2|hH
2 ω0|2

)
,

(11)

R̄
(2)
1 = − log2(e)e

σ2

η1|g1|2|hH
1 ω0|2 Ei

(
− σ2

η1|g1|2|hH
1 ω0|2

)
,

(12)
R̄

(2)
2 = log2(e)[
−e

σ2∑2
n=1 ηn|gn|2|hH

n ω0|2 Ei

(
− σ2∑2

n=1 ηn|gn|2|hH
n ω0|2

)

+e
σ2

η1|g1|2|hH
1 ω0|2 Ei

(
− σ2

η1|g1|2|hH
1 ω0|2

)]
,

(13)
where Ei(x) ≜

∫ x

−∞( 1u )e
u du, x ≤ 0 denotes an expo-

nential integral function [31]. Since B1 demands a high
data rate, this paper aims to maximize B1’s uplink data
rate while guaranteeing the QoS of the legacy cellular
user U0 and the low data rate required BD B2.4 By using
hybrid SIC, the optimization problem can be formulated
as follows:

P1: max
{ηn,ω0,un}

2∑
n=1

unR̄
(n)
1 (14a)

s.t.
2∑

n=1

unR̄
(n)
2 ≥ R2,t (14b)

min{R0, R0→B} ≥ R0,t, (14c)
0 ≤ ηn ≤ 1, n = 1, 2 (14d)
|ω0|2 ≤ Pt, (14e)

2∑
n=1

un = 1. (14f)

where R2,t and R0,t denote the target rate of B2 and
U0, Pt represents maximum transmit power of the BS,
respectively. un, n = 1, 2 is a binary variable which
controls the decoding order selection.{

u1 = 1, u2 = 0, if s1 is decoded first
u1 = 0, u2 = 1, if s2 is decoded first (15)

4While the algorithmic description may initially appear to priori-
tize the rate maximization of User B1, it is important to note that
the optimization framework is inherently designed to consider the
performance requirements of both users. This is achieved through
carefully structured constraints to ensure that user B2’s QoS is not
compromised. The balance of data rates and service quality between
B1 and B2 is a fundamental characteristic of our proposed approach.
Note that weight sum rate maximization can also provide a flexible
trade-off between B1 and B2, but this framework does not meet the
needs of the considered system.
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(14b) is to guarantee B2’s QoS and (14c) is to guarantee
U0’s QoS and the implementation of SIC. (14e) is the
power constraint of the BS. (14f) indicates that only one
decoding order can be selected.

The problem P1 is non-convex and can be viewed as a
discrete problem. In order to solve the problem effectively,
it is divided into two sub-problems according to two
different decoding orders and solved in a parallel manner
at the BS. Based on the solutions, the BS can decide
which decoding order should be selected and inform it
to Br through the control channel. Note that the BS
has sufficient energy and computing resources in practical
communication systems, thus the proposed scheme is
possible to be realized. To efficiently solve the problem
P1, it is decomposed as follows:
1) For the first case, SIC decoding order 1 is selected

(i.e., B1’s signal is decoded first) which derives the
problem P2 as follows:

P2: max
{η1,η2,ω0}

R̄
(1)
1 (16a)

s.t. R̄
(1)
2 ≥ R2,t, (16b)

(14c), (14d) and (14e). (16c)

2) For the second case, SIC decoding order 2 is selected
(i.e., B2’s signal is decoded first) which derives the
problem P3 as follows:

P3: max
{η1,η2,ω0}

R̄
(2)
1 (17a)

s.t. R̄
(2)
2 ≥ R2,t, (17b)

(14c), (14d) and (14e). (17c)

III. Convex Optimization-based Algorithm Design

A. Optimal Solution for SIC Decoding Order 1

At first glance, these two questions might seem remark-
ably similar, but in reality, they are substantially different
and cannot be addressed by the same approach, especially
for applying convex optimization. The reasons are briefly
described as follows. The objective function of P2 (i.e.
(18a)) is monotonically decreasing with respect to η2, as
proved in Lemma 1, while the objective function of P3
(i.e., (22a)) is monotonically increasing with respect to η1
and even does not include η2. On the other hand, P2 and
P3 have different convexity. R̄(1)

2 is a concave function of
η2 [25] while R̄

(2)
2 is a convex function of η2, which means

(18b) is a convex set but (22b) is not. Different convex
properties and monotonicity prevent them from being
solved by the same method. Assisted by the monotonicity
analysis, the closed-form expression of η2 and η2 in P2
can be derived, and then the beamforming vector ω0

can be solved by using SDR. However, P3 can only be
solved by a SCA and SDR-based alternating algorithm. A
more detailed discussion is provided in the following two

subsections. Attention is initially drawn to the decoding
order 1, designated as P2.

P2: max
{η1,η2,ω0}

R̄
(1)
1 (18a)

s.t. R̄
(1)
2 ≥ R2,t, (18b)

min{R0, R0→B} ≥ R0,t, (18c)
0 ≤ ηn ≤ 1, n = 1, 2, (18d)
|ω0|2 ≤ Pt, (18e)

Lemma 1. f(x) ≜ −e
1

a+xEi(− 1
a+x ) + e

1
xEi(− 1

x ), a ≥
0, x ≥ 0 is a monotonically decreasing function of x.

Proof. Please refer to Appendix A.

In this quasi-uplink BAC-NOMA, with the decoding
order 1, the QoS constraint of B2 is still indispensable
even if it can enjoy no-interference decoding. The rea-
soning behind this is articulated as follows: According to
Lemma 1, it can be deduced that (10) is a monotonically
decreasing function of η2, which implies that R̄

(1)
1 can

reach its maximum value when η2 approaches its lower
limit. In other words, if the QoS of B2 is not assured, B1

could reach its maximum data rate by preventing B2 from
backscattering its signal (i.e., η2 = 0), which is impractical
in real-world scenarios. This assertion can be further
manifested in the proof of the following proposition.

Proposition 1. For given ω0, the optimal reflection co-
efficient of B1 and B2 of problem P2 can be expressed
as {

η∗1 = min{b1, b2, 1},
η∗2 = β

|g2|2|hH
2 ω0|2

,
(19)

where b1 =
|hH

0 ω0|2−γ0,t(
|g2,k|2

|g2|2
β+σ2)

γ0,t|g1,k|2|hH
1 ω0|2

, b2 =

|hH
Bω0|2−γ0,t(β+σ2)

γ0,t|g1|2|hH
1 ω0|2

and β is obtained by solving

−e
σ2

β Ei(−σ2

β ) = ln(2)R2,t.

Proof. Please refer to Appendix B.

By substituting η∗2 and η∗1 , P2 can be rewritten as
follows:

P2-1:max
{ω0}

η∗1 |g1|2|hH
1 ω0|2 (20a)

s.t. 0 ≤ min{b1, b2, 1}, (20b)
β

|g2|2|hH
2 ω0|2

≤ 1, (20c)

|ω0|2 ≤ Pt. (20d)

Considering the constraint (20b), the following three cases
need to be discussed:
1) η∗1 = b1, b1 ≤ b2 and 0 ≤ b1 ≤ 1.
2) η∗1 = b2, b2 ≤ b1 and 0 ≤ b2 ≤ 1.
3) η∗1 = 1, 1 ≤ b1 and 1 ≤ b2.

Based on the above cases, three optimization problems can
be derived. Note that all the three cases can be solved in a
similar way, and then case 1 is described as an example. By
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using the SDR technique to ignore the rank one constraint
[32], P2-1 can be recast as

P2-2:max
{W }

Tr(H0W ) (21a)

s.t. Tr(H0W )|g1|2 − Tr(HBW )|g1,k|2 + a ≤ 0, (21b)
Tr(H0W )− γ0,t|g1,k|2Tr(H1W ) + b ≤ 0, (21c)
Tr(H0W )− b ≥ 0, (21d)
β − |g2|2Tr(H2W ) ≤ 0, (21e)
Tr(W ) ≤ Pt, (21f)
W ⪰ 0, (21g)

where H0 = h0h
H
0 and W = ω0ω

H
0 are two rank

one symmetric positive semidefinite (PSD) matrix, a =

γ0,t(β(|g1,k|2 − |g1|2|g2,k|2
|g2|2 ) + σ2(|g1,k|2 − |g1|2)) and b =

γ0,t(
|g2,k|2
|g2|2 β + σ2). P2-2 is a semidefinite programming

(SDP) and can be solved by convex optimization tools.
Afterward, ω0 can be reconstructed by applying Gaussian
randomization procedure if rank(W ) ̸= 1 [32] or by
eigenvalue decomposition (EVD) if rank(W ) = 1. Finally,
the solution corresponding to the maximum R̄

(1)
1 is chosen

as the optimal solution of P2.

B. Suboptimal Solution for SIC Decoding Order 2

Recall the problem related to the second decoding order:

P3: max
{η1,η2,ω0}

R̄
(2)
1 (22a)

s.t. R̄
(2)
2 ≥ R2,t, (22b)

(14c), (14d) and (14e). (22c)

P3 is a non-concave problem even when SDR is applied,
because a convex function R̄

(2)
2 (ηn,W ) greater than or

equal to zero is not a convex set, i.e., (22b) is not convex.
Additionally, due to the more complicated transcendental
function in (22b), the approach employed to derive closed-
form solutions for η1 and η2 with respect to ω0 in P2 is
no longer applicable to P3. Therefore, SDR is combined
with SCA to iteratively approximate (22b). A detailed
discussion for solving P3 is provided in the following.

First, backscattering coefficient optimization is studied.
Denote [η1, η2]

T by η, (11) and (13) can be rewritten as:

R̄
(2)
1 = − log2(e)

[
−e

σ2

ηT B Ei

(
− σ2

ηTB

)]
, (23)

and

R̄
(2)
2 =− log2(e)

[
e

σ2

ηT AEi

(
− σ2

ηTA

)
+e

σ2

ηT B Ei

(
− σ2

ηTB

)]
,

(24)
where A = [|g1|2|hH

1 ω0|2, |g2|2|hH
2 ω0|2]T =

[|g1|2Tr(H1W ), |g2|2Tr(H2W )]T and B =
[|g1|2|hH

1 ω0|2, 0]T = [|g1|2Tr(H1W ), 0]T . By defining
R̄

(2)
2 (η) ≜ f(η) and applying the fact that

f( 1x ) = −e
1
xEi(− 1

x ) is a monotonically increasing
function of x, for a given W , P3 can be recast as follows:

P3-1:max
{η}

ηTB (25a)

s.t. f(η0) + (η − η0)f
′(η0) ≥ R2,t ln(2), (25b)

Tr(H0W )− γ0,t(η
TC + σ2) ≥ 0, (25c)

Tr(HBW )− γ0,t(η
TA+ σ2) ≥ 0, (25d)

0 ⪯ η ⪯ 1, (25e)

where C = [|g1,k|2Tr(H1W ), |g2,k|2Tr(H2W )]T and
f ′(η0) represents the first-order derivative of f(η) at η0.
After the first-order Taylor expansion, (25b) becomes a
linear function of η, greater than or equal to zero, which
is a convex set. P3-1 is a linear programming (LP) and
can be solved by convex optimization tools.

Subsequently, the SDR and SCA are used to design the
beamforming of the BS. With the given η, P3 can be
reduced to

P3-2:max
{W }

η1|g1|2Tr(H1W ) (26a)

s.t. f(W0) + Tr((W −W0)f
′(W0)) ≥ R2,t ln(2),

(26b)
(25c) and (25d), (26c)
Tr(W ) ≤ Pt, (26d)
W ⪰ 0, (26e)

where f ′(W0) is the first-order derivative of f(W ) at W0.
P3-2 is a concave optimization problem with respect to
W . As a result, P3 can be resolved by alternatively solving
P3-1 and P3-2. In the end, the same as P2-2, Gaussian
randomization or EVD can be applied to retrieve the
beamforming vector ω0. Thus far, the variables η and
ω0 of problem P3 have been solved independently. For the
purpose of iteritive optimization, the alternating operation
of these two algorithms is needed to be conducted.

The maximum data rate of B1 with its corresponding
optimal decoding order and solution can be obtained
by simultaneously solving P2 and P3 and selecting the
optimum one. The proposed convex optimization-based
algorithm with the hybrid SIC strategy is presented in
Algorithm 1.

In simulations, almost all experiments can meet the
rank-one constraint even if SDR is used, which drives the
exploration of when the optimality of the obtained SDR
solution can be established.

Proposition 2. With the randomly generated complex-
valued channels, the obtained solution of P2 is optimal
when (20b) is strictly satisfied and the obtained W of
P3-2 via SDR can satisfy the rank-one constrain when
(26c) is strictly satisfied.

Proof. Please refer to Appendix C.

Remark 1. The solution of P1 is optimal if P2’s solution
is selected as well as Proposition 2 can be met, otherwise,
it is suboptimal. The reason is as follows: the solution of
P3 is still suboptimal even if the obtained beamforming
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Algorithm 1 Convex optimization with hybird SIC
1: Calculate: β in Proposition 1.
2: Solve P2 and select the optimal solution:

argmax
η
(1)
1 ,η

(1)
2 ,ω

(2)
0

{R(1)
1 }

3: if Rank(W (1)
0 ) = 1 then

4: Perform EVD to recover ω
(1)
0 .

5: else
6: Perform Gaussian Randomization to recover ω

(1)
0 .

7: end if
8: Initialize: ϵ = 0.0001, j = 0, η(2)

0 and W
(2)
0

9: while R̄
(2)(j+1)
1 − R̄

(2)(j)
1 > ϵ do

10: Update W
(2)(j)
0 by solving P3-2.

11: Update η
(2)(j)
0 by solving P3-1.

12: j = j + 1
13: end while
14: if Rank(W (2)

0 ) = 1 then
15: Perform EVD to recover ω

(2)
0 .

16: else
17: Perform Gaussian Randomization to recover ω

(2)
0 .

18: end if
19: Output: η∗1 , η∗2 ,ω∗

0 = argmax{max {R(1)
1 , R

(2)
1 }}

vector of P3-2 in each iteration via SDR can meet the
rank-one constraint because the non-convex constraint
(22b) is approximated by the first-order Taylor expansion.
Although the solution of P3 is suboptimal, the probability
of choosing the solution of P3 is still not low (see the sim-
ulation part). This further demonstrates the superiority
of the hybrid SIC strategy.C. Complexity and Convergence Analysis

The complexity analysis of Algorithm 1 should start
with solving P2 and P3 respectively. In fact, solving P2
requires solving three SDPs with the same form as P2-
2. The complexity of solving the SDP using the interior
point method is given by O(max{m,n}4.5

√
n log ( 1ϵ )) [32],

where n represents the problem size and m denotes the
number of constraints, and hence the total complexity
of solving P2 is O(3max{m,n}4.5

√
n log ( 1ϵ )). On the

other hand, solving P3 requires alternatively solving an
LP (i.e., P3-1) and an SDP (i.e. P3-2). The complexity
of solving the LP using the interior point method is
given by O((n + m)3.5) [33]. Moreover, the complexity
of implementing EVD is O(n3). Therefore, the total com-
plexity of Algorithm 1 is O(3max{m,n}4.5

√
n log ( 1ϵ ) +

Iiter(max{m,n}4.5
√
n log ( 1ϵ ) + (n+m)3.5) + 2n3), where

Iiter is the number of iteration for solving P3.
Denote Y ({ηl,ωl

0}) the value of the objective function
of P3 in the l-th iteration. For P3-2, with a given
beamforming vector, the following equation can be derived

Y ({ηl,ωl
0}) = Yη({ηl,ωl

0})
≤ Yη({ηl+1,ωl

0})
≤ Y ({ηl+1,ωl

0}).
(27)

where Yη represents the value of (25a). The first equality
can hold due to the fact that the first-order Taylor
expansions are tight at the given local point. The second

inequality can hold because P3-1 is optimized. The third
inequality can hold since the objective function’s value
of Problem P3-1 serves as a lower bound on that of
P3. Consequently, it can be inferred that the objective
function of P3-1 is non-decreasing with each iteration.
The similar analysis can be adapted to P3-2

Y ({ηl+1,ωl
0}) = Yω0

({ηl+1,ωl
0})

≤ Yω0
({ηl+1,ωl+1

0 })
≤ Y ({ηl+1,ωl+1

0 }).
(28)

According to (27) and (28), the following inequality can
be obtained:

Y ({ηl,ωl
0}) ≤ Y ({ηl,ωl

0}). (29)

Given the fact that the data rate of B1 must be a finite
positive value, the convergence of the proposed algorithm
can be guaranteed.

IV. Unsupervised Deep Learning-based Algorithms
Design

This section investigates the application of unsupervised
deep learning to jointly optimize the reflection coefficients
and the beamforming vector. The primary motivations for
using learning-based method are as follows: i) as discussed
in the last section, convex optimization does not offer a
universal algorithm to address both Problems P2 and P3,
and there is a significant difference in the complexity of
the proposed algorithms; ii) convex optimization only finds
as suboptimal solution to P3; iii) learning-based methods
are widely used and proven to be effective in dealing with
complex, high-dimensional and non-linear optimization
problems in the field of wireless communications [34]–[36].
Deep learning-based methods are generally divided into
three broad categories: supervised deep learning, unsu-
pervised deep learning and deep reinforcement learning.
Supervised learning needs labelled data to train. For
optimization problems, labels are optimal solutions and
hence supervised deep learning can only be implemented
by using the solutions of algorithm 1 to train, which
means that the output solutions of supervised learning
will not be better than algorithm 1. Therefore, it is
difficult to compare the proposed convex optimization-
based algorithm with the supervised deep learning-based
method. In contrast, unsupervised deep learning with
proper deep neural network (DNN) and loss function
design can be directly used to solve optimization problems.
On the other hand, implementing deep reinforcement
learning can be more complex and resource-intensive
compared to unsupervised learning, especially in terms
of algorithm design, tuning, and computational resources.
In summary, for this system, unsupervised deep learning
can offer a more straightforward and resource-efficient
approach. In this section, both P2 and P3 are addressed
using unsupervised deep learning, employing identical
DNN architectures, loss function design, and training
datasets. Moreover, it is worth highlighting the difference
in the dimensions of their output layers. P2 can focus on
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the optimization of only the beamforming vector, as its
reflection coefficients have been derived in closed-form,
whereas P3 necessitates the simultaneous optimization
of two reflection coefficients along with the beamforming
vector. In the following, this section will delve into three
key areas: training/validation data set generation, the
construction of deep neural networks, and the design of
loss functions.

A. Training/Validation Data Set Generation
Unlike supervised learning that requires feature-label

pairs, unsupervised learning uses features to directly train
the model. To the specific problem of this paper, the
training/validation data sets are constructed by using
randomly generated channels. For each time step, the
training/validation sample can be expressed as follows:

s(t) = {h0,hn,hB , gn, gn,0}, ∀n = 1, 2. (30)

To improve the DNN’s ability to learn the characteristics
of the training set, it is important to include a diverse
range of training examples. In a straightforward word, the
training set should be large enough and includes as many
as possible channel samples. In this paper, the Rician
channel model is selected and 50000 channel samples are
generated to train the DNN. Note that the input data must
be real numbers and hence the real part and imaginary
part of the complex channels should be separated and
aligned before being stored in the memory.

B. Deep Neural Network Construction
DNN usually includes an input layer, multiple hidden

layers and an output layer. The dimension of the input
layer depends on the size of the input data while the
dimension of the output layer is decided by the output
actions. In this paper, the dimension of the input layer for
the two SIC decoding orders should be set to 2(3M + 2).
However, the dimensions of the output layer in the two SIC
decoding orders (i.e., P2-1 and P3) are different, because
only the beamforming vector is needed to be optimized in
the first SIC decoding order case. Therefore, the dimension
of the output layer of the DNN corresponding to the SIC
decoding order 1 is set to 2M while the dimension of
the output layer of the DNN corresponding to the SIC
decoding order 2 should be set to 2M + 2. In addition,
the Relu function is selected to be the active function
and is inserted between every two adjacent layers to
introduce non-linear transformation. This can enable the
DNN to learn and represent complex patterns, alleviates
the gradient vanishing problems, activate the sparsity of
the DNN, improve the DNN’s robustness and enhance
computational efficiency. In deep learning, normalization
is a classical skill to improve the training stage as it
has the advantages of mitigating internal covariate shift,
accelerating training speed, facilitating higher learning
rate and improving model generalization. In general, there
are two types of normalizations:

Fig. 1: Structure of the constructed DNN.

• Batch normalization (BN) [37]: This method refers
to the normalization of data for each mini-batch
during training. Specifically, BN computes the mean
and standard deviation of all data within a batch
for a particular feature. This method is beneficial
in enhancing stability when training large networks,
allowing for higher learning rates, and preventing gra-
dient vanishing. However, one substantial limitation
of BN is its dependency on operating with mini-batch
data. This could pose a problem when dealing with
sequence models that require extensive contexts, such
as text, time-series data and signal.

• Layer normalization (LN) [38]: LN addresses the
issue faced by BN when handling sequence data.
LN involves normalizing a single data sample across
all features. Consequently, the operations of LN are
conducted internally within a specific layer, indepen-
dent of other samples. This implies that it calculates
the mean and standard deviation for each sample
individually. This design makes LN particularly ad-
vantageous when handling sequence data of variable
lengths. Furthermore, LN is not dependent on batch
size, and hence the large batch size is allowed to
further enhance the training speed by using CUDA.

Considering that the training model is not large and
the input data samples (channels) are sequences and are
mutually independent, LN is utilized in this paper to
improve the training performance. According to [38], LN
should be deployed after the normalization but before the
non-linearity to give each neuron its own adaptive bias and
gain, which helps to stabilize the hidden state dynamics in
recurrent networks. The constructed deep neural network
is shown in Fig. 1.

C. Loss Function Design for Constrained Problems
For the applications of unsupervised learning to solve

constrained optimization problems, it is crucial that design
a loss function properly and wisely, because the output
of the DNN must satisfy all the constraints. The loss
function design of this paper is inspired by the Lagrange
dual function in Karush-Kuhn-Tucker (KKT) conditions
of an optimization problem. The problem P2 is taken as an
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example to describe our loss function design philosophy.
The Lagrange dual function of P2 can be expressed as

L(η1, η2,ω0,λ) = −R̄
(1)
1 − λ1(R̄

(1)
2 −R2,t)− λ2(R0 −R0,t)

− λ3(R0→B −R0,t)− λ4η1 − λ5η2

+ λ6(η1 − 1) + λ7(η2 − 1) + λ8(|ω0|2 − Pt),
(31)

where λ is Lagrange multipliers. According to the com-
plementary slackness of KKT conditions, the terms with
Lagrange multipliers must be zero if (31) achieves its min-
imum value. Consequently, the loss function is formulated
as an integrated version of the objective functions and
constraints by employing a penalty strategy. Specifically,
the penalty function is designed by utilizing the degree
of deviation of the output from the feasible region, which
can be expressed as follows:

Pi(x
(t)) =

{
µiCi(x(t))νi , if Ci(x(t)) > 0 ,
0, otherwise, (32)

where x(t) represent the output of DNN variables in t-
th step, µi > 0 and νi > 0 are called penalty factors
and Ci(x(t)) represents the function that corresponding
to the i-th constraint. Note that the constraint should
be organized into a uniform form (i.e., Ci(x(t)) ≤ 0)
to guarantee the validity of penalty functions. In fact,
the total power constraint can be always satisfied by
normalizing the output beamforming vector in each time
step by using (33), and hence it does not need to be
included in the loss function as punishment.

ω
∗(t)
0 =

√
Pt

ω
(t)
0

|ω(t)
0 |2

. (33)

By following the above discussion, the loss functions
corresponding to the two decoding orders are given by

L1(ω
(t)
0 ) = −F1(ω

(t)
0 ) +

∑
i

P1,i(ω
(t)
0 ) (34)

and
L2(η

(t)
1 , η

(t)
2 ,ω

(t)
0 ) =−F2(η

(t)
1 , η

(t)
2 ,ω

(t)
0 )

+
∑
i

P2,i(η
(t)
1 , η

(t)
2 ,ω

(t)
0 ), (35)

where{
F1(ω

(t)
0 ) = η∗1 |g1|2|hH

1 ω
(t)
0 |2,

F2(η
(t)
1 , η

(t)
2 ,ω

(t)
0 ) = R̄

(2)
2 (η

(t)
1 , η

(t)
2 ,ω

(t)
0 ).

(36)

A mini-batch typically acts as the training dataset for each
epoch to improve the training speed and accuracy. Under
this mechanism, the network should minimize the mean
of the loss functions over the mini-batch. The average loss
function is given as follows:

L̄ =
1

B

B∑
t=1

L(x(t)), (37)

where B represents the size of a mini-batch. The unsu-
pervised deep learning-based optimization is summarised
Algorithm 2.

Algorithm 2 Unsupervised deep learning-based optimiza-
tion

1: Initialize: Two deep networks according to Fig. 1.
2: Initialize: Generate training set and by (30) with size

50000 and 10000.
3: Initialize: Size if mini-batch B = 64 and Learning rate

α = 0.0001.
4: Loss Function Design
5: Normalize the output beamforming vector by (33).
6: Map the output η(2)1 and η

(2)
2 to (0, 1] by using Sigmoid

function.
7: Calculate the loss by (34) and (35).
8: Training Stage
9: for Epoch = 1:10000 do

10: Randomly select training sets with size B.
11: Update the weights and bias of the two DNNs by

respectively minimizing (34) and (35) with the form
of (37), where Adam optimizer is applied.

12: end for
13: Validation Stage
14: Input: {h0,hn,hb, gn, gn,0}, ∀n = 1, 2 in the validation

set.
15: if P(1)

i (x) ̸= 0, ∀i then
16: η

(1)∗
1 , η

(1)∗
2 ,ω

(1)∗
0 = argmax{R(1)

1 }
17: else
18: The output for decoding order 1 is infeasible, R(1)

1 =
0.

19: end if
20: if P(2)

i (x) ̸= 0, ∀i then
21: η

(2)∗
1 , η

(2)∗
2 ,ω

(2)∗
0 = argmax{R(2)

1 }
22: else
23: The output for decoding order 1 is infeasible, R(2)

1 =
0.

24: end if
25: Output: η∗1 , η∗2 ,ω∗

0 = argmax{max {R(1)
1 , R

(2)
1 }}.

Remark 2. Note that the outputs (i.e., optimization
variables) of the two DNNs are different. For SIC decoding
order 1, we can apply P2-1 to design its loss function
and optimize ω0 only, as two reflection coefficients can be
obtained by their closed-form expressions. Furthermore,
the partial closed-form-based loss function design not
only avoids the discussion of P2-1 being divided, but
also improves the optimality of the output solution of
unsupervised deep learning, which will be illustrated in
the simulation part. For SIC decoding order 2, we directly
use the original form of the problem to design its loss
function, as any ensuing analysis for approximation is
unlikely to yield practical guidance for the implementation
of unsupervised deep learning.

Remark 3. The penalty factors hold significant influence
over the pace and precision of the training process, given
its impact on the gradient of the loss function. An overly
large penalty factor allows the training results to quickly
meet the constraint conditions, but it is challenging to
provide an optimal solution. Conversely, an excessively
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TABLE I: Hyperparameters.
Hyperparameters Value

Noise power -94dBm/Hz
Location of BS (0 m, 0 m)

Locations of B1, B2 and U0 xi, yi ∈ [3m, 15m]
Path loss coefficient 2.5

Number of neurons of the input layer, 256
Number of neurons of the hidden layer 1 512
Number of neurons of the hidden layer 2 256

Size of training set 50000
Size of validation set 10000

Number of epochs 10000
Size of mini-batch 64

Learning rate 0.0001

small penalty factor slows down the speed at which the
output reaches the feasible region. Thus, finding proper
penalty factors is very important but challenging.

Remark 4. The feasibility of the output solution from
DNN needs to be checked. There are two ways to check
the feasibility of the solution. One is to judge whether the
output of the DNN can make all penalty (i.e., Pi(x)) terms
of the loss function zero. The other one is to substitute
the output of the DNN into the constraints of the original
problem and check whether they are all satisfied. Please
note that the former is used in the pseudocode of algorithm
2, which corresponds to our simulations.

V. Simulation Results
In this section, computer simulations are provided to

demonstrate the superiority of the proposed BAC-NOMA
scheme with hybrid SIC. The time division multiple
access (TDMA) scheme is included as a benchmark, where
backscatter coefficients and beamforming vectors are also
optimized for fair comparison. All hyperparameters related
to convex optimization and unsupervised learning-based
optimization are listed in table I. Rician fading channel
model is utilized and the path loss is also taken into
account. For simplicity notation, c1 denotes the case of SIC
decoding order 1, c2 denotes the case of SIC decoding order
2 and H-SIC denotes the case of hybrid SIC decoding.

Fig. 2 illustrates the trend of B1’s average data rate
variation in relation to the BS’s transmission power
on various SIC decoding schemes, algorithms and MA
schemes. In this simulation, the number of antennas is
M = 8, and the minimum target rate of U0 and B2

are 2 bps/Hz and 1 bps/Hz, respectively. As observed,
the hybrid SIC decoding strategy consistently delivers
superior performance compared to fixed SIC decoding,
regardless of the algorithm chosen. In the case of hybrid
SIC, the convex optimization-based algorithm slightly
outperforms the unsupervised learning-based algorithm,
the gap can also be observed in the case of c1. This
improvement originates from the optimal solution with
closed-form reflection coefficients presented in c1. Con-
versely, the use of unsupervised deep learning for the
case of c2 can provide superior performance compared
to the use of convex optimization (i.e., the proposed SCA
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Fig. 2: B1’s average data rate versus the transmit power
of the BS.
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Fig. 3: B1’s average data rate versus the transmit power
of the BS with different antennas and channel error.

and SDR-based alternating method), which reveals that
the unsupervised deep learning can better fit the optimal
solution for this non-concave problem. On the other hand,
BAC-NOMA significantly outperforms BAC-TDMA.

Fig. 3 shows the impact of the number of antennas
and the channel errors on B1’s data rate, where the
target rates of B1 and U0 are the same as the last
simulation. The channel errors indicated that the obtained
CSI are outdated. Specifically, the channel employed for
optimization and training lags behind the real channel at
the time of transmission. As can be seen, the outdated
channels degrade B1’s data rate. However, different from
that when CSI is perfect, unsupervised deep learning
shows superior robustness compared to convex optimiza-
tion when channels are outdated. Further exploration of
the impact of outdated channels will be shown in a later
simulation. It can also be observed in this figure that more
antennas can provide higher performance gain.
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Fig. 4: The impact of the minimum target rate of U0. M
= 8, Pt = 10 dBm and R2,t = 1 bps/Hz.

The impact of the minimum target rate of U0 on B1’s
data rate performance and SIC decoding order selecting
are shown in Fig. 4(a) and Fig. 4(b), where the obtained
CSI are perfect. B1’s data rate is decreasing with the
increase of U0’s target rate. When the target rate of U0

is small, hybrid SIC with unsupervised deep learning out-
performs that with convex optimization, whereas convex
optimization shows better performance when U0’s target
rate is large. For the fixed SIC decoding order, in most
cases, convex optimization proves to be more suitable for
c1, while unsupervised deep learning is more appropriate
for c2. This trend shown in Fig. 4(a) can correspond
to the decoding order selection probabilities shown in
Fig. 4(b). As the target rate of U0 increases, the data
rate of B1 undergoes a sharp decline when unsupervised
deep learning is applied, especially for c2. However, this
drop can be mitigated by employing convex optimization.
Corresponding to Fig. 4(b), the probability of choosing
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Fig. 5: The impact of the minimum target rate of B2. M
= 8, Pt = 10 dBm and R0,t = 2 bps/Hz.

c1 rises sharply if unsupervised deep learning is used,
while the use of convex optimization only leads to a slight
increase in the probability of choosing c1.

Fig. 5(a) and Fig. 5(b) respectively demonstrate the
impact of the minimum target rate of B2 on B1’s data rate
performance and SIC decoding order selecting. Comparing
the impact of the minimum target rate of U0 on B1’s data
rate as shown in Fig. 4(a), Fig. 5(a) shows a completely
opposite trend. For hybrid SIC, convex optimization out-
performs unsupervised deep learning when B2’s minimum
target rate is low (i.e., from 0.5 bps/Hz to 1.5 bps/Hz),
which is reversed after B2’s minimum target rate is greater
than 1.5 bps/Hz. Consistent with previous simulations,
c1 with convex optimization is always better than that
with unsupervised deep learning, which shows again the
superiority of the closed-form optimal solution. With the
increased minimum target rate of B2, B1’s data rate
degradation of c1 is more severe than that of c2 in
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Fig. 6: The impact of channel errors. M = 8, Pt = 10
dBm, R0,t = 2 bps/Hz and R2,t = 1 bps/Hz.

the case that unsupervised deep learning is used. This
corresponds to the results of Fig. 5(b) that with the
increasing minimum target rate of B2 the probability
of choosing c1 is decreased. However, in the case that
applying convex optimation, the speed of B1’s data rate
reduction is similar in c1 and c2. Therefore, it is important
to choose different algorithms for different R0,t and R2,t

setups.
In Fig. 6(a), the scenario that channels are outdated is

investigated. Unsupervised deep learning exhibits signif-
icant superiority compared to convex optimization when
overcoming the adverse effects brought by outdated chan-
nels. For c1, the performance degradation induced by
channel errors is tolerable. However, for c2, such degra-
dation is catastrophic, especially for the use of convex
optimization. Moreover, Fig. 6(a) further underscores the
superior performance of the hybrid SIC strategy compared
to the fixed SIC decoding order. For the decoding order

selection probability, owing to c1’s superior robustness
compared to c2, the likelihood of choosing c1 predictably
rises with the increase of channel errors, regardless of the
algorithm employed.

The reasons that unsupervised deep learning outper-
forms convex optimization under outdated CSI can be
analyzed from two perspectives as follows. From the
qualitative point of view, in environments with perfect
CSI, convex optimization excels due to its ability to utilize
accurate and complete information for optimal solutions.
However, its performance decreases with outdated CSI,
as it relies heavily on data accuracy. Conversely, deep
learning models adapt well to uncertainties, maintaining
effectiveness even with imperfect CSI. From an optimality
point of view, convex optimization provides an optimal
solution (the solution of P2) or a near-optimal solution
(the solution of P3) based on the current input. When the
input CSI is outdated, convex optimization will offer the
optimal solution corresponding to the outdated channel,
which is impossible to be the optimal solution under the
real channel. However, the unsupervised deep learning-
based approach usually provides a suboptimal solution.
When the input CSI is outdated, the output solution
from DNN is still suboptimal to the outdated CSI but
more importantly, is possibly optimal to the real CSI.
Therefore, the long-term average data rate that the unsu-
pervised learning-based algorithm provided outperforms
that provided by the convex optimization.

In all simulations, it can be observed that hybrid SIC
always provide the best performance compared with the
other two fixed decoding orders (i.e., c1 and c1), regardless
of which algorithm is used. This benefits from the fact that
hybrid SIC always chooses the optimal decoding order.

Fig. 7(a) shows the convergence of random 5 exper-
iments under the same hyperparameter setup (M = 8,
Pt = 0dBm, R0,t = 2 bps/Hz and R2,t = 1 bps/Hz). As
can be observed, the proposed algorithm can converge to a
stable state in about 7 iterations. Please note that these 5
experiments converged on different but similar values. Due
to scale reasons, they seem to overlap. Fig. 7(b) examines
the convergence of the loss function for the two DNNs. As
can be observed, c1 is converged with 1000 epochs while
c2 needs about 2000 epochs. Additionally, the difference
between the initial loss value and converged loss values
for c1 is less pronounced than that for c2. The above
two advantages of c1 benefit from the simplification of
the problem by introducing the closed-form solution of
η1 and η2. Therefore, it can be concluded that convex
optimization can significantly help the training efficiency
of unsupervised deep learning.

VI. Conclusion

In this paper, a novel BAC-NOMA D2D transmission
scheme with hybrid SIC has been proposed to enable
6G umMTC networks. The data rate of the high QoS
demanding device has been maximized by jointly op-
timizing their reflection coefficients and designing the
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Fig. 7: Convergence illustration.

beamforming vector. Two subproblems have been formu-
lated because of the use of hybrid SIC. With the convex
optimization path, for the first decoding order, the closed-
form reflection coefficients have been derived and the
beamforming vector is optimized by using SDR, while the
second decoding order is optimized alternatively by the
algorithm combining SCA and SDR. For the unsupervised
deep learning path, the loss function is wisely designed
under the inspiration of the Lagrange function, where
constraints can be guaranteed by penalty terms. In simula-
tions, curve charts have shown the perspective advantages
of convex optimization and unsupervised deep learning-
based optimization with different QoS requirements and
channel errors, which provides guidance for the selection
of optimization methods. Moreover, those bar charts can
provide guidance for establishing the optimal decoding
order in practical works. The design of user pairing
algorithms for multi-user scenarios is also a promising

research direction.

Appendix A
Proof of Lemma 1

Proving f(x) is a monotonically decreasing function of x
is equivalent to proving df(x)

dx is non-positive when x ≥ 0.
With the knowledge of dEi(− 1

x )

dx = − e−
1
x

x [16], [31], the
first order derivative of f(x) is given by

df(x)

dx
=

e
1

a+x

(a+ x)2
Ei(−

1

a+ x
)+

1

a+ x
−

(
e

1
x

x2
Ei(−

1

x
) +

1

x

)
.

(38)
Defining a new function that g(x) ≜ e

1
x

x2 Ei(− 1
x )+

1
x . Note

that (38) can be recast to df(x)
dx = g(a+x)−g(x), ∀a, x ≥ 0.

Hence, to prove (38) is non-positive with non-negative x,
it is sufficient to prove g(x) is a monotonically decreasing
function of x. Because the monotonically decreasing of
g(x) implies that g(a + x) − g(x) ≤ 0 can always hold,
which guarantees the non-positivity of df(x)

dx . The first
order derivative of g(x) can be derived as follows

dg(x)

x
= − 1

x4

(
e

1
x (1 + 2x)Ei(−

1

x
) + x+ x2

)
. (39)

Similarly, proving h(x) ≜ e
1
x (1 + 2x)Ei(− 1

x ) + x+ x2 ≥ 0
is equivalent to proving (39) is non-positive when x ≥ 0.
To show h(x) is non-negative, the following function of x
is defined

H(x) = Ei(−
1

x
) +

x

1 + 2x
e−

1
x +

x2

1 + 2x
e−

1
x . (40)

It is noted that proving H(x) ≥ 0 is equivalent to showing
the non-negativity of h(x). The first derivative of H(x) is
given by
dH(x)

dx
= e−

1
x

(
− 1

x
+

2x2 + 2x+ 1

(1 + 2x)2
+

1 + x

(1 + 2x)x

)
= e−

1
x

2x2

(1 + 2x)2
≥ 0.

(41)

(41) means H(x) is a monotonically increasing function of
x. The lower bound of H(x) can be obtained by following
the approximation of Ei(x) ≈ ex

x when x → −∞ [31].
Hence, H(x) ≥ H(0) = 0 can be obtained, which implies
df(x)
dx is a monotonically decreasing function with respect

to x, and the lemma is proved.

Appendix B
Proof of Proposition 1

By defining a constant β such that −e
σ2

β Ei(−σ2

β ) =
ln(2)R2,t, (18b) can be recast as follows:

−e
σ2

η2|g2|2|hH
2 ω0|2 Ei

(
− σ2

η2|g2|2|hH
2 ω0|2

)
≥ −e

σ2

β Ei(−
σ2

β
),

(42)
where β can be determined through the resolution of
the transcendental function, achievable with software
utilities like Matlab’s vpasolve function. Given that f(x) =
−e

1
xEi(− 1

x ), x ≥ 0 is a monotonically increasing function
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of x as demonstrated in [16], one of the lower bounds of
x can be derived as:

β

|g2|2|hH
2 ω0|2

≤ η2. (43)

According to (14c), two of the upper bounds of x can also
be obtained as: η2 ≤ |hH

0 ω0|2−γ0,tη1|g1,k|2|hH
1 ω0|2

γ0,t|g2,k|2|hH
2 ω0|2

,

η2 ≤ |hH
Bω0|2−γ0,tη1|g1|2|hH

1 ω0|2

γ0,t|g2|2|hH
2 ω0|2

,
(44)

where γ0,t = 2R0,t − 1. Given that (10) is a monotonically
decreasing function of η2 (i.e., Lemma 1), (18a) can achieve
its maximum value if η2 is located at its lower bound.
Therefore, the optimal reflection coefficient of B2 can be
given by the following closed-form expression:

η∗2 =
β

|g2|2|hH
2 ω0|2

. (45)

For the case that (45) does not satisfy (44) the lower
bound of η2 will be 0 (i.e., B2 does not transmit signal)
and hence the problem becomes infeasible.

By substituting η∗2 into P2, (18a) can be rewritten as
follows:

R̄
(1)
1 =− log2(e)e

σ2

η1|g1|2|hH
1 ω0|2+β

× Ei

(
− σ2

η1|g1|2|hH
1 ω0|2 + β

)
−R2,t,

(46)

and (14c) can be recast as follows:

η1 ≤
|hH

0 ω0|2 − γ0,t(
|g2,k|2
|g2|2 β + σ2)

γ0,t|g1,k|2|hH
1 ω0|2

, (47)

η1 ≤ |hH
Bω0|2 − γ0,t(β + σ2)

γ0,t|g1|2|hH
1 ω0|2

. (48)

As for η1, (46) is an increasing function of it, and
hence the maximum value of (46) can be reached when
η1 is located at its upper bound. By defining b1 =
|hH

0 ω0|2−γ0,t(
|g2,k|2

|g2|2
β+σ2)

γ0,t|g1,k|2|hH
1 ω0|2

and b2 =
|hH

Bω0|2−γ0,t(β+σ2)

γ0,t|g1|2|hH
1 ω0|2

, the
closed-form optimal η1 is given by

η∗1 = min{b1, b2, 1}. (49)

The proposition is proved.

C Proof of Proposition 2
Without loss of generality, P2-2 is considered as an

example. The proof for other problems can be derived in
the similar way. After neglecting the rank-one constraint,
the Lagrange function of P2-2 is given by
L(W , λi,λ) = −Tr(H0W ) + λ1(Tr(H0W )|g1|2

− Tr(HBW )|g1,k|2 + a) + λ2(Tr(H0W )− γ0,t|g1|2

× Tr(H1W )− γ0,t(
|g2,k|2

|g2|2
β + σ2)) + λ3(b− Tr(H0W ))

+ λ4(β − |g2|2Tr(H2W )) + λ5(Tr(W )− Pt)− Tr(λW ),
(50)

where λi and λ are Lagrange multipliers. Without the
rank-one constraint, P2-2 is a concave problem and the
Karush-Kuhn-Tucker (KKT) can be satisfied. According
to the stationarity and complementary slackness, the
following two equations are given by

λ = λ5I + (λ1|g1|2 + λ2)H0 −∆, (51)

and
λW = 0, (52)

where ∆ = λ1HB |g1,k|2+λ2H1+(λ3+1)H0+λ4H2. Given
the inherent randomness of channels, the probability that
the channel-determined matrix ∆ possesses two or more
identical eigenvalues approaches zero. Denote the first
two maximum eigenvalues of ∆ by δ1 and δ2, δ1 > δ2.
According to slackness complementary, if (20b) is strictly
satisfied in case 1), λ1 and λ2 are both zero and hence
the second term of (51) is 0, which leads to the following
discussion to establish the rank-one conclusion.

• If λ5 = δ1 and λ5 > δ2, the dimension of the null space
of λ is one. Further according to (52), rank(W ) = 1
can be concluded.

• If λ5 > δ1, λ is a full rank matrix and hence W = 0,
which is not reasonable in practice.

• If λ5 ≤ δ2, λ has at least one negative value and
hence λ is not a PSD matrix which contradicts with
KKT.

The proposition is proved.
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