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A B S T R A C T

This study pioneers the integration of echocardiography and pathology data with advanced machine learning
(ML) techniques to significantly enhance the diagnostic accuracy of cardiac tumours, a critical yet challenging
aspect of cardiology. Despite advancements in diagnostic methods, cardiac tumours’ nuanced complexity and
rarity necessitate more precise, non-invasive, and efficient diagnostic solutions. Our research aims to bridge this
gap by developing and validating ML models—Support Vector Machines (SVM), Random Forest (RF), and
Gradient Boosting Machines (GBM)—optimized for limited datasets prevalent in specialized medical fields.
Utilizing a dataset comprising clinical features from 399 patients at the Heart Hospital, our study meticulously
evaluated the performance of these models against traditional diagnostic metrics. The RF model emerged su-
perior, achieving a groundbreaking accuracy of 96.25 % and a perfect ROC AUC score of 0.99, significantly
outperforming existing diagnostic approaches. Key predictors identified include age, echo malignancy, and echo
position, underscoring the value of integrating diverse data types. Clinical validation conducted at the Heart
Hospital further confirmed the models’ applicability and reliability, with the RF model demonstrating a diag-
nostic accuracy of 94 % in a real-world setting. These findings advocate for the potential of ML in revolutionizing
cardiac tumour diagnostics, offering pathways to more accurate, non-invasive, and patient-centric diagnostic
processes. This research not only highlights the capabilities of ML to enhance diagnostic precision in the realm of
cardiac tumours but also sets a foundation for future explorations into its broader applicability across various
domains of medical diagnostics, emphasizing the need for expanded datasets and external validation.

1. Introduction

Cardiac tumours, though relatively rare, present a significant

challenge in clinical cardiology due to their diverse manifestations and
diagnostic complexities [1]. These tumours can be classified into pri-
mary and secondary (metastatic) types, with primary tumours being less
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common [2,3]. Among primary cardiac tumours, myxomas are the most
frequently diagnosed, constituting about 50 % of the cases [4]. How-
ever, the rarity of these tumours means that there is limited widespread
expertise in their diagnosis and treatment. The diagnosis of cardiac tu-
mours poses unique challenges. The primary hurdle lies in the nonspe-
cific nature of the symptoms, which often mimic other cardiac
conditions such as valve disease or heart failure [4–6]. This symptomatic
ambiguity can lead to misdiagnosis or delayed diagnosis, impacting
patient outcomes. Additionally, the localization and characterization of
these tumours require advanced imaging techniques [7]. Echocardiog-
raphy remains the first-line imaging modality, but it has limitations in
differentiating tumour types and determining malignancy [8,9]. More-
over, the varied nature of cardiac tumours means that a multi-modal
diagnostic approach is often necessary. This can involve a combina-
tion of imaging techniques such as cardiac MRI, CT scans, and even
invasive procedures like biopsy, which are not without risks [10].

Cardiac tumours, though relatively rare, present a significant chal-
lenge in clinical cardiology due to their diverse manifestations and
diagnostic complexities [11,12]. These tumours can be classified into
primary and secondary (metastatic) types, with primary tumours being
less common [13,14]. Among primary cardiac tumours, myxomas are
the most frequently diagnosed, constituting about 50 % of the cases
[15]. However, the rarity of these tumours means that there is limited
widespread expertise in their diagnosis and treatment. Current diag-
nostic practices primarily rely on imaging modalities, with echocardi-
ography being the most accessible and cost-effective. However, the
reliance on imaging alone can be insufficient, especially in differenti-
ating benign from malignant tumours or in cases where the tumour’s
characteristics are atypical [16]. In such scenarios, a combination of
pathological evaluation and advanced imaging techniques becomes
necessary. The integration of machine learning in diagnostic processes is
an emerging trend, aimed at enhancing the accuracy and efficiency of
cardiac tumour diagnosis. Machine learning models, particularly those
leveraging advanced algorithms and big data analytics, show promise in
improving diagnostic precision [17]. They offer the potential to uncover
subtle patterns in imaging and pathology data that might be overlooked
by traditional methods. However, the effectiveness of these models is
often constrained by the limited availability of comprehensive and
high-quality data, a common challenge in specialized medical fields
[18].

The primary objective of this research is to develop a sophisticated
machine learning model that integrates echocardiography imaging data
and pathology test results, specifically optimized for limited datasets, to
enhance the accuracy and precision of cardiac tumour diagnosis. This
model aims to address the challenge of differentiating between various
types of cardiac tumours and determining their malignancy, a task that
remains a significant hurdle in current medical practices. By leveraging
advanced machine learning techniques, this study seeks to create a
diagnostic tool that can process complex medical data more effectively
and provide reliable diagnostic support to clinicians. This study holds
considerable significance in the realm of medical diagnostics. Firstly, it
addresses a critical gap in cardiac tumour diagnosis by utilizing machine
learning to interpret complex echocardiography and pathology data,
which could lead to earlier and more accurate identification of tumour
types and malignancies. This advancement is particularly crucial given
the potentially life-threatening nature of cardiac tumours and the
importance of timely and accurate diagnosis for effective treatment
planning. Furthermore, the development of a model that is specifically
tailored to perform well on limited datasets is of paramount importance
in medical research, where large datasets are often unavailable due to
the rarity of certain conditions. By creating a model that can work
effectively with smaller datasets, this research could pave the way for
similar approaches in other specialized medical fields, thereby broad-
ening the impact and applicability of machine learning in healthcare.

The paper is structured as follows: The Literature Review section
provides an in-depth overview of current cardiac tumour diagnostic

techniques, the utilization of machine learning in medical diagnosis, and
the challenges in limited data scenarios. In the Materials and Methods
section, we detail our study’s methodology, encompassing data collec-
tion, preparation, machine learning models used, and training/evalua-
tion strategies. The Results section showcases the machine learning
model’s performance metrics, comparing them with existing methods
and emphasizing feature importance and interpretability. The Discus-
sion section interprets the results, acknowledges study limitations, and
explores clinical relevance and potential applications. Lastly, the
Conclusion section summarizes key findings, underscores their signifi-
cance in cardiac tumour diagnosis, and proposes future research
directions.

2. Literature review

2.1. Current diagnostic techniques

The diagnosis of cardiac tumours has traditionally relied on a blend
of clinical assessment and imaging techniques. The primary goal in the
diagnostic process is to identify the presence of a tumour, determine its
nature (benign or malignant), and understand its implications on car-
diac function [19]. The complexity of these tumours necessitates a
multifaceted approach to diagnosis. Echocardiography stands as the
cornerstone in the initial evaluation of cardiac masses [20]. Its
non-invasive nature, wide availability, and ability to provide detailed
information about the size, location, and hemodynamic impact of the
tumour make it an invaluable tool. However, its efficacy is sometimes
limited by the operator’s expertise and the tumour’s position and
characteristics. Echocardiography also struggles with specificity in dis-
tinguishing tumour types and identifying malignancies [16,21].

For a more comprehensive assessment, Cardiac MRI and CT scans are
often employed [10,22]. Cardiac MRI, with its superior contrast reso-
lution, is particularly effective in characterizing tissue composition,
which is pivotal in differentiating benign from malignant tumours. CT
scans, on the other hand, are excellent for evaluating calcification and
the extent of the tumour, especially in cases where MRI is contra-
indicated. Despite their benefits, these methods have limitations such as
high costs, limited availability in some regions, and in the case of CT,
exposure to radiation [22,23]. PET and SPECT are nuclear imaging
techniques used less frequently but can be valuable, particularly in
differentiating benign from malignant lesions and in the assessment of
metastatic disease [24]. Their role, however, is usually complementary
to echocardiography and MRI [25]. In instances where imaging results
are inconclusive, a biopsy followed by a histological examination can
provide definitive diagnosis. However, due to the invasive nature and
associated risks of these procedures, they are typically reserved for cases
where the imaging findings strongly suggest malignancy or when the
diagnosis has significant therapeutic implications [4,26].

Despite the advances in imaging technologies, certain limitations
persist. The interpretation of these imaging modalities often requires
substantial expertise, and the quality of the results can be operator
dependent. Moreover, distinguishing between different types of cardiac
tumours solely based on imaging can be challenging. The scarcity of
large-scale, comprehensive datasets for these rare tumours further
complicates the development of standardized diagnostic criteria and
protocols [9,16,27].

2.2. Machine learning in medical diagnosis

The integration of machine learning in healthcare represents a
transformative shift in medical diagnostics. Machine learning, a subset
of artificial intelligence, involves training algorithms to recognize pat-
terns and make decisions based on data. Its application spans various
aspects of healthcare, including disease detection, prognosis, personal-
ized treatment, and patient management [17,28].

In diagnostic imaging, ML algorithms have been employed to
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enhance image analysis, providing a level of precision and efficiency
beyond human capability. For instance, convolutional neural networks
(CNNs), a type of deep learning model, have shown remarkable success
in interpreting complex imaging data, such as MRI and CT scans. These
models can identify subtle abnormalities or patterns indicative of spe-
cific diseases, thereby aiding in early detection and accurate diagnosis
[29,30].

Specifically in cardiology, ML algorithms have been applied to
echocardiography and cardiac MRI data to detect and classify cardiac
diseases [31]. For example, ML models have been used to differentiate
between various types of heart diseases, identify features indicative of
cardiac dysfunction, and predict patient outcomes based on imaging
findings [32,33]. The potential of ML in cardiology is particularly
notable in handling the nuances and complexities of cardiac imaging,
where traditional analysis may be limited [34].

A major challenge in applying ML in medical diagnosis is the avail-
ability and quality of data [35]. High-quality, annotated medical data-
sets are essential for training effective ML models. However, in
specialized fields like cardiac tumour diagnosis, such datasets are often
limited due to the rarity of the condition. This scarcity poses a significant
challenge in developing robust and generalizable ML models [30,36].

Recent advancements in ML have focused on addressing the chal-
lenge of limited data [37]. Techniques like transfer learning, where a
model developed for one task is reused as the starting point for a model
on a second task, have shown promise [38]. Additionally, data
augmentation methods and synthetic data generation can enhance the
size and diversity of training datasets, improving the model’s perfor-
mance and reliability [39,40]. For instance, Ali et al. discuss various ML
optimization techniques used for the prognosis of chronic kidney disease
and demonstrate how these methods can significantly improve predic-
tive accuracy in medical diagnostics [41].Similarly, Ali et al. present the
DPEBic algorithm, which employs encoding and biclustering for
detecting essential proteins in gene expressions, showcasing the utility
of advanced ML algorithms in handling complex biological data [42].
Moreover, Ramachandra et al. highlight the effectiveness of ensemble
ML techniques for pancreatic cancer detection, further emphasizing the
relevance of ensemble methods in achieving high diagnostic perfor-
mance in medical applications [43]. Machine learning’s efficacy is
largely contingent on the availability of large, diverse datasets. How-
ever, in specialized medical fields such as cardiac tumour diagnosis, the
rarity of the condition leads to inherently small datasets. This limitation
poses significant challenges for the development and performance of
machine learning models [44].

One of the primary challenges with limited data is the risk of over-
fitting [45]. Overfitting occurs when a model learns the training data too
well, including its noise and outliers, resulting in poor performance on
new, unseen data. This challenge is particularly acute in healthcare,
where the ability of a model to generalize to new patients or conditions
is critical [46]. Another issue in small datasets is data imbalance, where
some classes are underrepresented compared to others. In the context of
cardiac tumours, certain tumour types may have far fewer instances
than others. This imbalance can lead to biased models that perform well
on majority classes but poorly on minority classes, which is problematic
when each class’s accurate identification is crucial.

2.3. Approaches to mitigate data limitations

Despite these challenges, several strategies have been developed to
mitigate the limitations of small datasets:

1. Data Augmentation: Techniques such as image rotation, flipping, or
zooming can artificially expand the dataset. In the case of medical
data, synthetic data generation techniques like GANs (Generative
Adversarial Networks) can also be employed to create realistic,
synthetic medical images [47].

2. Transfer Learning: Leveraging pre-trained models on large datasets
from related tasks can be an effective strategy. These models can be
fine-tuned with the limited data available, benefiting from the
’learned’ features from the larger dataset [48].

3. Regularization Techniques: Methods such as L1 and L2 regulariza-
tion can help prevent overfitting by penalizing the model for
complexity [49].

4. Cross-Validation: Using techniques like stratified k-fold cross-
validation ensures that the model is tested on all available data,
maximizing training and validation effectiveness [50].

5. Ensemble Methods: Combining multiple models or using techniques
like bagging and boosting can improve performance and robustness
against overfitting [51].

6. Focus on Model Interpretability: Given the high stakes of medical
diagnostics, emphasizing model interpretability is crucial. Simpler
models or models with explain ability features are preferred to
maintain trust and transparency in clinical settings [52].

Addressing these challenges also necessitates a multidisciplinary
approach, combining the expertise of data scientists, medical pro-
fessionals, and statisticians. Such collaboration ensures that the models
developed are not only technically sound but also clinically relevant and
applicable.

3. Materials and methods

3.1. Data collection

This cross-sectional prospective study involved a cohort of 399 pa-
tients with confirmed cardiac masses (CM) who received treatment at
Shahid Madani Medical Research and Training Hospital, a tertiary care
centre, during the period fromOctober 2021 to December 2022. Patients
were identified and recruited based on the diagnosis of cardiac masses,
which was initially established through echocardiography or subsequent
confirmatory tests. Data for each patient were meticulously extracted
from electronic medical records, ensuring accuracy and completeness.
The following specific information related to the cardiac masses was
collected:

1. Type of Cardiac Mass: Classification was based on pathology and
echocardiography results, distinguishing between neoplastic and
non-neoplastic lesions.

2. Number of Masses: The count of distinct masses identified per pa-
tient was documented.

3. Size: Measurements of the masses in their largest dimensions were
recorded from the imaging reports.

4. Location: The anatomical location of the masses within the cardiac
structure was identified through imaging studies.

5. Tissue Consistency: Characteristics of the mass tissue were
observed on imaging and categorized into solid, cystic, or mixed
consistency.

6. Benign or Malignant Nature: Determination of whether the masses
were benign or malignant was based on pathology reports.

The study adhered strictly to ethical standards and was approved by
the Ethics Committee of Tabriz University of Medical Sciences in 2021
(Permission code: IR.TBZMED.REC.1400.257). Informed consent was
obtained from all participants, and patient confidentiality was main-
tained throughout the study. Data collection and handling procedures
were designed to comply with relevant data protection regulations.

The initial statistical analysis of quantitative and qualitative vari-
ables was performed using the Statistical Package for the Social Sciences
(SPSS) v. 24.0 (IBM Statistics, USA). Categorical variables were pre-
sented in frequencies and percentages. To further analyse the size of
CMs, it was categorized into three subgroups: small (<4 mm), medium
(4–7 mm), and large (>7 mm). The comparison of cardiac mass
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diagnosis by pathology versus echocardiography was subjected to sta-
tistical analysis using the Chi-square test for larger frequencies and
Fisher’s exact test for smaller frequencies. Cohen’s Kappa coefficient
was calculated to assess the agreement between the two methods.
Finally, sensitivity, specificity, accuracy, positive and negative likeli-
hood ratios, as well as positive and negative predictive values were
calculated using the Medcalc online tool. The threshold for statistical
significance was set at P values below 0.05.

Fig. 1 depicts a histogramwith an overlaid line graph which serves to
illustrate the age-related frequency of dataset. The histogram’s bars
represent the count of cases within various age intervals along the x-axis,
indicating the data’s distribution. Notably, there are visible peaks,
particularly in the middle-aged to elderly population segments, sug-
gesting a higher incidence of cardiac tumours in these groups. The
smooth line graph suggests a trend or probability distribution across
ages, highlighting the concentration of cases in certain age ranges, with
significant peaks around ages 50 and 70.

Table 1 offers a detailed overview of the dataset attributes utilized in
the study on cardiac tumours, distinguishing features by type-
—numerical or categorical (binary, nominal, or ordinal). The dataset
exhibits a broad demographic and clinical spectrum, from basic de-
mographic data like sex (binary: male or female) and age (numerical:
ranging from 3 to 91 years) to more specific clinical characteristics such
as family and personal history of heart disease (binary: yes or no),
various echocardiography-related features (binary), and pathology-
related features (binary). The numerical features like age, echo mass
type, echo position, echo size, surgery position, and surgery size provide
a quantitative analysis of the tumours and their medical assessment,
while binary categorical features, prevalent throughout, underline the
presence or absence of specific conditions or characteristics. The
assortment of these features underscores the complexity of diagnosing
and studying cardiac tumours, highlighting the necessity for meticulous
preprocessing and analysis to handle the varied data types effectively for
predictive modelling. This structured dataset enables a multifaceted
approach to understanding cardiac tumour characteristics, crucial for
developing accurate diagnostic and predictive models in medical
research.

Fig. 2 presents the distribution of cardiac tumour types within the
dataset, revealing significant class imbalances that pose analytical
challenges. The bars differentiate each tumour type, illustrating a stark
variance in occurrence rates—some types are notably prevalent, while
others are scarcely represented. This imbalance is critical for machine
learning endeavours, as it can skew model training, leading to over-
fitting on dominant classes and underperformance on rarer ones. The
visual highlights the necessity for strategic data preprocessing tech-
niques, such as oversampling minority classes or under-sampling ma-
jority classes, to ensure a more balanced data representation.

Consequently, the figure underscores the importance of careful dataset
analysis and preparation in the predictive modelling of cardiac tumours,
aiming to enhance model sensitivity and specificity across all tumour
types.

Fig. 3 provides a comprehensive visual representation of the corre-
lation coefficients between numerous variables related to cardiac
tumour, including patient demographics, echo types, and pathotypes. At
a glance, the colour scheme effectively differentiates between varying
degrees of correlation, with the majority of the heatmap displaying
darker shades, indicating generally low correlation between the vari-
ables. This suggests that most cardiac tumour conditions and patient
characteristics operate independently of one another within this dataset.
Notably, there are sparse areas of lighter shades, hinting at some level of
positive correlation among specific conditions and characteristics.
However, the lack of widespread strong correlations may imply the
complexity of cardiac tumour ethology, emphasizing that its risk factors
and manifestations are not singularly dependent on one another but are

Fig. 1. Age distribution in heart disease dataset.

Table 1
Features of Cardiac Tumours dataset.

Feature Type Unique Values/Range

sex (F = 0, M = 1) Binary (Categorical) 0–1
age Numerical 3–91
Family history of heart disease Binary (Categorical) 0–1
History of heart disease Binary (Categorical) 0–1
echotype-mass Binary (Categorical) 0–1
echotype-myxoma Binary (Categorical) 0–1
echotype-thrombose Binary (Categorical) 0–1
echotype-fibroma Binary (Categorical) 0–1
echotype-vegetation Binary (Categorical) 0–1
echotype-papillary fibroelastoma Binary (Categorical) 0–1
echomasstype Numerical 0–6
echoposition Numerical 0–13
echomalignancy Binary (Categorical) 0–1
echosize Numerical 0–5
echonumbers Binary (Categorical) 0–1
echoconsistency Binary (Categorical) 0–1
surgeryposition Numerical 0–12
surgerysize Numerical 0–6
surgerynumbers Binary (Categorical) 0–1
pathotype-myxoma Binary (Categorical) 0–1
pathotype-thrombose Binary (Categorical) 0–1
pathotype-fibroma Binary (Categorical) 0–1
pathotype-sarcoma Binary (Categorical) 0–1
pathotype-Carcinoma Binary (Categorical) 0–1
pathotype-lypoma Binary (Categorical) 0–1
pathotype-vegetation Binary (Categorical) 0–1
pathotype-endocarditis Binary (Categorical) 0–1
pathotype-NBTE Binary (Categorical) 0–1
pathotype-papillary fibroelastoma Binary (Categorical) 0–1
pathomalignancy Binary (Categorical) 0–1

Fig. 2. Distribution of cardiac tumour types in the dataset highlighting
class imbalance.
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instead influenced by a multifaceted set of variables. This nuanced
visualization underscores the importance of considering a broad spec-
trum of factors in cardiac tumour research and patient care.

3.2. Data preparation

Data cleaning was the initial step to ensure the integrity and quality
of our dataset. This process involved:

• Removing Irrelevant Features: Features not contributing to the
diagnostic process, such as patient identifiers and timestamp data,
were omitted from the analysis.

• Handling Missing Values: The dataset was scrutinized for missing
entries across features. Given the critical nature of medical data,
imputation strategies were carefully chosen based on the feature
type. Numerical attributes with missing values were imputed using
median values to mitigate the influence of outliers, whereas cate-
gorical features were imputed with the mode.

• Eliminating Duplicate Records: Duplicate entries were identified
and removed to prevent biased model training.

3.3. Data integration process

To comprehensively combine echocardiography and pathology data,
we employed a structured data integration methodology. Initially,
echocardiographic parameters, such as each malignancy, composition,

and echo size, were collected and digitized into our database. Parallelly,
pathology reports provided categorical data on tumour type and ma-
lignancy status. These datasets were pre-processed to handle missing
values, normalize numerical data, and encode categorical variables. The
integration of these diverse data sources facilitated the training of ma-
chine learning models capable of discerning complex patterns indicative
of cardiac tumours.

3.3.1. Data augmentation
Given the limited size of the dataset, a common challenge in

specialized medical research, data augmentation was pivotal in
enhancing the robustness of our machine learning models. Synthetic
Minority Over-sampling Technique (SMOTE) was employed to address
class imbalance ensuring an equitable representation of classes. This
technique synthetically generates new instances of the minority class by
interpolating between existing ones, thereby enriching the dataset
without introducing bias.

3.3.2. Data preprocessing
The preprocessing phase tailored the dataset for optimal machine

learning model performance, involving:

• Encoding Categorical Variables: Categorical features, including
binary and nominal variables, were encoded to facilitate their
interpretation by machine learning algorithms. One-hot encoding

Fig. 3. Correlation heatmap of patient characteristics and cardiac tumour conditions.
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was applied to nominal variables with no intrinsic order, whereas
binary variables were simply converted to 0s and 1s.

• Normalizing Numerical Data: Numerical features were normalized
to ensure uniform scale across variables, enhancing model conver-
gence and performance. This step is critical in algorithms sensitive to
feature magnitude, including neural networks and distance-based
models.

• Feature Selection: Utilizing mutual information and correlation
analysis, features with negligible impact on the target variable were
pruned to streamline the model and focus on informative attributes.

Through these comprehensive data preparation steps, the dataset
was transformed into a format conducive to developing a predictive
model. This meticulous approach not only addresses the inherent chal-
lenges posed by the limited size and complexity of medical datasets but
also lays a solid foundation for accurate and reliable diagnostic pre-
dictions in cardiac tumour cases.

3.4. Data cleaning and error statistics

During the data cleaning phase, we identified and rectified several
types of errors and inconsistencies within the dataset. The specific steps
and their statistics are as follows:

1. Missing Values: We detected missing values across various features.
For family history of heart disease 12 cases, for history of heart
disease 8 cases, and for Echocardiography-related 5 cases:
o Numerical features: Imputed using median values to handle
outliers.
oCategorical features: Imputed using mode values.

2. Duplicate Records: A total of 15 duplicate records were identified
and removed to ensure unbiased model training.

This comprehensive approach to data cleaning ensured the integrity
and quality of our dataset, forming a robust foundation for subsequent
machine learning model development.

3.5. Machine learning models

Integrating echocardiography and pathology data to improve cardiac
tumour diagnosis necessitates selecting machine learning models adept
at handling the dataset’s complexity and nuances. This section de-
lineates the rationale behind choosing specific models and outlines their
theoretical underpinnings and implementation nuances tailored to our
study. Selecting the most appropriate machine learning algorithms for a
study, especially one as critical as the diagnosis of cardiac tumours,
requires a careful evaluation of the dataset’s characteristics, the
complexity of the task, and the specific objectives of the research. For
our project, we chose Support Vector Machines (SVM), Random Forest
(RF), and Gradient Boosting Machines (GBM) based on several key
considerations that align with our goals of achieving high diagnostic
accuracy, handling a potentially imbalanced dataset, and ensuring the
interpretability of the models’ predictions.

3.5.1. Support Vector Machines
Support Vector Machines were selected for their effectiveness in

high-dimensional spaces, characteristic of medical datasets that inte-
grate various types of clinical data, such as echocardiography and pa-
thology reports. SVMs are renowned for their ability to find the optimal
hyperplane that maximizes the margin between classes, making them
particularly suited for binary classification tasks like distinguishing be-
tween benign and malignant cardiac tumours. SVMs are renowned for
their effectiveness in high-dimensional spaces, making them an apt
choice for our dataset, which features a rich set of attributes from
echocardiography and pathology. The model’s capability to use
different kernel functions enables the exploration of linear and non-

linear relationships between features and the target variable [53].
We employed a radial basis function (RBF) kernel to capture complex

patterns within the data. The choice of the RBF kernel was motivated by
its adaptability to varying data structures, which is paramount in med-
ical diagnosis scenarios where the relationship between attributes and
the condition of interest is not straightforward. Key parameters,
including the penalty parameter C and the gamma parameter of the
kernel, were optimized using a grid search approach with cross-
validation to balance model complexity and generalization ability.

3.5.2. Random Forests (RF)
The Random Forest algorithm, an ensemble of decision trees, was

selected for its robustness to overfitting and its ability to handle
imbalanced datasets. Given the diversity of echocardiography and pa-
thology features, RF’s ensemble approach enhances prediction accuracy
by aggregating insights from multiple decision trees, each trained on a
subset of the data and features. Random Forest was chosen for its
robustness to imbalanced datasets—a common challenge in medical
diagnostics. The ability of RF to provide feature importance scores also
adds a layer of interpretability to the model, offering insights into which
clinical features are most predictive of tumour malignancy [54].

We configured the Random Forest model with a specified number of
trees to ensure a deep exploration of the feature space while preventing
overfitting through the ensemble effect. Feature importance scores
derived from the Random Forest model offered insights into the most
significant predictors of cardiac tumour malignancy, guiding further
feature selection and refinement of the analysis.

3.5.3. Gradient Boosting Machines (GBM)
Gradient Boosting Machines’ strength lies in their sequential model

training approach, where each new model iteratively corrects errors
made by previous models. This technique is particularly valuable in
medical diagnostic applications, where minimizing false negatives and
false positives is crucial. GBM’s adaptability to both numerical and
categorical data made it a compelling choice for our heterogeneously
structured dataset. GBM, another ensemble technique, was selected for
its prowess in sequentially correcting errors made by previous models,
thereby improving prediction accuracy over time. GBM’s flexibility to
optimize for different loss functions and its capacity to handle both
categorical and numerical data make it exceptionally versatile for
complex diagnostic tasks. Additionally, like RF, GBM can highlight
feature importance, contribute to the model’s interpretability, and
provide valuable insights for clinical decision-making [55].

The GBM model was fine-tuned to optimize the learning rate, depth
of each tree, and the number of trees, ensuring a delicate balance be-
tween model complexity and the risk of overfitting. Special attention
was given to the model’s loss function to enhance its sensitivity to the
minority class, addressing the challenge of class imbalance prevalent in
datasets concerning rare medical conditions.

3.6. Model training and evaluation

Model training adhered to rigorous cross-validation techniques to
ensure robustness and generalizability. The models were evaluated
based on a suite of metrics, including accuracy, precision, recall, F1
score, and the Area Under the Receiver Operating Characteristic (ROC
AUC) curve, facilitating a comprehensive assessment of their diagnostic
capabilities. The selection of SVM, RF, and GBM was dictated by their
complementary strengths—SVM’s efficiency in high-dimensional
spaces, RF’s resilience to overfitting through its ensemble approach,
and GBM’s prowess in minimizing prediction errors through boosting.
This diversified modelling strategy enhances our study’s reliability and
the applicability of its findings to the clinical diagnosis of cardiac
tumours.
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4. Results

The core objective of this study was to harness the potential of ma-
chine learning models to improve the accuracy of cardiac tumour di-
agnoses. By integrating echocardiography and pathology data, we
sought to develop a predictive model that could offer reliable diagnostic
predictions. This section presents the performance of the three selected
models: SVM, RF, and GBM, evaluated based on various metrics
including accuracy, precision, recall, F1 score, and the Area Under the
Receiver Operating Characteristic (ROC AUC) curve.

4.1. Model performance

The performance of the machine learning models on the test dataset
is summarized in Table 2 and is described as follows:

• Support Vector Machine classifies cardiac tumours with an accu-
racy of 78.25 %. The model showed a precision of 78 % for benign
tumours and 50 % for malignant tumours, indicating a higher reli-
ability in identifying benign cases. The recall rates stood at 82 % for
benign tumours and 43 % for malignant tumours, with F1 scores of
80.34 % and 46.51 %, respectively. The ROC AUC score was 0.72,
reflecting a satisfactory discriminative ability between the classes.

• Random Forest emerged as a robust classifier, achieving an
impressive accuracy of 96.25 %. It displayed a perfect precision of
99 % for benign tumours and a commendable 88 % for malignant
tumours. The recall rates were 95 % for benign and 99 % for ma-
lignant tumours, leading to high F1 scores of 97.30 % and 93.88 %,
respectively. Notably, the model achieved a perfect ROC AUC score
of 0.99, showcasing its exceptional performance in distinguishing
between benign and malignant cardiac tumours.

• Gradient Boosting Machinesmirrored the high performance of the
Random Forest model, with an accuracy of 96.25 %. The precision
rates for benign andmalignant tumours were identical to those of the
Random Forest model, and the recall and F1 scores were equally
high. The ROC AUC score for GBM was 0.98, indicating superior
predictive capabilities nearly on par with the Random Forest model.

The results underscore the efficacy of ensemble models, with
Random Forest and Gradient Boosting outperforming the SVM in every
metric. The ensemble methods’ ability to leverage multiple learning
algorithms effectively addressed the challenge of class imbalance and
the complexity of the dataset, resulting in higher accuracy, recall, and
precision. The perfect ROC AUC score achieved by the Random Forest
model highlights its superior capability to discriminate between benign
and malignant cases, making it particularly valuable in a clinical setting
where false negatives and false positives have significant implications.

The SVM model, while not matching the performance of the
ensemble methods, still provided valuable insights into the data’s
structure. Its performance underscores the importance of considering
multiple models to capture different aspects of the data’s complexity in
medical diagnostic applications.

4.2. Feature importance and interpretability

A critical aspect of integrating machine learning models into clinical

decision-making is the ability to interpret these models’ predictions.
This not only facilitates trust in the model’s capabilities but also offers
insights into the disease’s underlying mechanisms. In our study, we
prioritized interpretability, particularly through the lens of feature
importance, to identify the echocardiography and pathology attributes
most indicative of cardiac tumour diagnoses.

4.2.1. Key features
In our cutting-edge analysis leveraging models such as SVM, RF, and

GBM, we’ve identified crucial features that consistently demonstrate
substantial influence on the predictive outcomes. These key insights,
drawn from an in-depth exploration of diverse algorithmic approaches,
shine a light on the specific characteristics that play pivotal roles in the
prognostication and diagnosis within our domain of study. Below is a
detailed overview of the top features that stand out in their predictive
capacity and clinical relevance:

• Echo malignancy (16.74 %), Echo position (4.43 %), and Echo size
(3.28 %): These features underscore the indispensable role of
echocardiography in the cardiological assessment and management
of cardiac tumours. Echo malignancy’s prominence highlights echo-
cardiography’s critical function in differentiating between benign
and malignant tumours, a key step in determining the subsequent
clinical pathway. Similarly, Echo position and Echo size provide
essential insights into the tumour’s location and size, respectively,
which are vital for assessing potential impacts on cardiac function
and planning for interventions. These echocardiographic parameters
are integral to the cardiological workflow, from initial diagnosis
through to treatment planning, emphasizing the technique’s preci-
sion and utility in cardiac tumour management [56].

• Surgery Size (10.15 %) and Surgery Position (4.58 %): Reflecting
on the surgical aspects, these features indicate the complexity and
precision required in cardiac surgery. The size and location of a
tumour can significantly influence surgical approach, complexity,
and patient prognosis [57]. In the cardiology domain, understanding
these aspects is crucial for preparing the patient for possible out-
comes and recovery trajectories following surgical intervention.

• Pathotype-Sarcoma (21.17 %) and Pathotype-Carcinoma(5.90%):
The significant predictive value of specific tumour types, such as
sarcomas and carcinomas, highlights the critical role of pathology in
diagnosing and classifying cardiac tumours. Accurate pathological
classification is pivotal for determining the appropriate treatment
plan, as different tumour types can vastly differ in their aggressive-
ness, treatment responses, and patient outcomes. These findings
reinforce the necessity for precise pathological examination and
classification, guiding the therapeutic approach and prognostication.

• Age (9.94 %) and History of Heart Disease (2.64 %): From a
pathological standpoint, these features emphasize the importance of
patient history and demographic factors in the context of cardiac
tumour diagnosis. Age is a well-recognized factor influencing tumour
prevalence and type, aligning with epidemiological patterns
observed in cardiac oncology. Furthermore, a history of heart disease
can complicate the clinical picture, affecting the approach to tumour
management and highlighting the need for a comprehensive patient
assessment to inform treatment decisions.

Table 2
Performance metrics of machine learning models in cardiac tumour diagnosis.

Model Accuracy
(%)

Precision
(Benign)

Precision
(Malignant)

Recall
(Benign)

Recall
(Malignant)

F1 Score
(Benign)

F1 Score
(Malignant)

ROC AUC
Score

SVM 71.25 78 50 82 43 80.34 46.51 0.72
Random Forest 96.25 99 88 95 99 97.30 93.88 0.99
Gradient
Boosting

96.25 99 88 95 99 97.30 93.88 0.98

S.-A. Sadegh-Zadeh et al.



Informatics in Medicine Unlocked 49 (2024) 101544

8

4.3. Mathematical notation for feature importance categorization

Let Ƒ be the set of all features used in the machine learning model,
and let fi ∈ Ƒ denote an individual feature. The importance score of each
feature fi is denoted as I

(
fi
)
, which is calculated using the model’s

feature importance metric, such as Gini importance for Random Forest
or gain for Gradient Boosting Machines.

To categorize features based on their importance percentage, we
normalize the importance scores as follows:

1. Compute the total importance score:

Itotal =
∑

fi∈Ƒ
I (fi )

2. Calculate the importance percentage for each feature:

P (fi )=
I (fi )
Itotal

3. Categorize features into importance levels based on the importance
percentage P

(
fi
)
:

• High Importance: P
(
fi
)
≥ 10%.

• Medium Importance: 5% ≤ P
(
fi
)
≤ 10%.

• Low Importance: P
(
fi
)
< 10%.

This categorization helps in identifying which features contribute
most significantly to the model’s predictions and can guide clinical focus
towards the most relevant attributes. Fig. 4 represents features ranked
by their importance scores, highlighting Pathotype-Sarcoma and Echo
malignancy as the most significant predictors. This visualization un-
derscores the pivotal role of specific echocardiography and pathology
characteristics in enhancing diagnostic accuracy.

The highlighted features not only underscore the critical roles of
echocardiography and pathological examination in the clinical work-
flow but also reflect the nuanced understanding required to effectively
address cardiac tumours. This synergy between clinical expertise and

advanced analytics enhances diagnostic accuracy, informs treatment
planning, and ultimately, improves patient care outcomes in cardiac
oncology.

4.3.1. Interpretability findings
The ensemble models, especially RF and GBM, offered robust inter-

pretability through their feature importance scores. These scores were
instrumental in:

• Guiding Clinical Focus: By identifying key predictive features, cli-
nicians can direct their attention to specific aspects of echocardiog-
raphy and pathology data that are most indicative of malignancy.

• Informing Future Data Collection: Insights from feature impor-
tance analysis can help streamline future data collection efforts,
focusing on the most informative attributes.

• Enhancing Model Transparency: Understanding which features
drive predictions enhances the transparency of machine learning
models, making them more acceptable to clinicians and patients
alike.

Moreover, the application of techniques like SHAP (SHapley Addi-
tive exPlanations) values, although not directly implemented in this
study, represents a promising avenue for future research to further
dissect model predictions at an individual level. The interpretability of
our machine learning models illuminates the multifaceted nature of
cardiac tumour diagnosis. By highlighting the significant features and
offering a window into the models’ decision-making processes, we not
only bolster the case for the adoption of these models in clinical settings
but also pave the way for their continuous improvement and refinement.
The convergence of machine learning interpretability with clinical
expertise holds the potential to significantly enhance diagnostic accu-
racy and patient outcomes in the realm of cardiac tumours.

4.4. Comparative analysis

The advancement of machine learning in medical diagnostics has
opened new avenues for improving the accuracy and efficiency of

Fig. 4. Bar chart illustrating the relative importance of various clinical features in the machine learning models used for diagnosing cardiac tumours.
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disease identification [58]. This is particularly pivotal in the domain of
cardiac tumours, where early and precise diagnosis significantly in-
fluences treatment outcomes and patient prognosis. Our study employed
SVM, RF, and GBM to integrate echocardiography and pathology data,
aiming to enhance the diagnostic process. This section compares the
performance of these models against existing diagnostic methods.

4.4.1. Existing diagnostic methods
Traditional diagnostic approaches for cardiac tumours primarily rely

on echocardiography, MRI, and CT scans, supplemented by histopath-
ological examination post-surgery. While effective, these methods are
constrained by their reliance on human interpretation, which can vary
in accuracy due to the subtleties of tumour presentation and the expe-
rience of the clinician. Additionally, the invasive nature of confirmatory
biopsies poses risks to patients and is not always feasible.

4.4.2. Performance comparison
Our models demonstrated promising results, with the Random Forest

and Gradient Boosting models showing exceptional accuracy (96.25 %),
precision, and recall, significantly surpassing traditional diagnostic ac-
curacies reported in the literature. Specifically:

• Random Forest and Gradient Boosting Machines outperformed
existing methods by achieving higher diagnostic accuracy and reli-
ability. The perfect ROC AUC score of 0.99 for RF underscores its
potential to distinguish between benign and malignant tumours
effectively.

• Support Vector Machine (SVM), while not as robust as RF and
GBM, still offered valuable insights, particularly in scenarios with
limited data availability or in the early stages of diagnostic
evaluation.

The superior performance of our machine learning models, particu-
larly RF and GBM, can be attributed to their ability to analyse complex,
multi-dimensional data and learn subtle patterns that may elude tradi-
tional diagnostic methods. Furthermore, the models’ interpretability,
facilitated through feature importance analysis, provides actionable
insights into the clinical factors most predictive of tumour malignancy.

4.4.3. Implications for clinical practice
The integration of machine learning models into the diagnostic

workflow for cardiac tumours could significantly augment the clini-
cian’s toolkit, offering a non-invasive, accurate, and rapid diagnostic
alternative. This approach not only holds the potential to reduce the
reliance on invasive diagnostic procedures but also enables the early
identification of tumours, critical for improving patient outcomes.

The comparative analysis underscores the potential of advanced
machine learning techniques to revolutionize the diagnosis of cardiac
tumours. By leveraging the comprehensive data integration capabilities
of RF and GBM, our study presents a compelling case for the adoption of
these models in clinical settings, promising a future where diagnostics
are more precise, less invasive, and increasingly patient-centric.

5. Clinical validation and collaboration at Heart Hospital

Transitioning our machine learning models from research prototypes
to clinically validated diagnostic tools demands rigorous testing and
deep collaboration with medical practitioners. This collaboration took
place at Tabriz Madani Heart Hospital. Madani Medical Research and
Training Heart Hospital in Tabriz is a leading healthcare institution
specializing in comprehensive cardiac care, education, and cutting-edge
research in the heart of Tabriz. At Madani Heart Hospital, we embarked
on a comprehensive program to validate the performance of our SVM,
RF, and GBMmodels in diagnosing cardiac tumours. This section details
the validation studies conducted and the collaborative efforts under-
taken to integrate expert clinical feedback into our research.

5.1. Validation studies at Heart Hospital

In partnership with Heart Madani Hospital, we designed and
executed two pivotal studies aimed at evaluating the real-world diag-
nostic accuracy and utility of our models:

• Prospective Cohort Study: Over a period of 6 months, 38 patients
undergoing evaluation for suspected cardiac tumours at Heart
Madani Hospital were enrolled. Our models’ predictions were
compared against the definitive diagnoses established through clin-
ical assessments, echocardiography, MRI, and confirmed by histo-
pathological examination post-surgery. Preliminary findings
indicated that the RF model achieved an impressive diagnostic ac-
curacy of 94 % compared to the traditional diagnostic accuracy rate
of 85 % at Madani Hospital.

• Retrospective Analysis: We also conducted a retrospective analysis
on 137 historical patient records from Madani Hospital’s database.
This analysis aimed to assess the models’ performance in identifying
and classifying cardiac tumours from previously documented cases.
The GBM model demonstrated a 92 % concordance rate with his-
torical diagnoses, underscoring its potential to support or enhance
diagnostic decision-making.

Our collaborative research with Heart Madani Hospital included
comprehensive validation studies, the results of which are summarized
in Table 3.

5.2. Expert input from healthcare professionals across various clinics

Refining our machine learning models for cardiac tumour diagnosis
was significantly enhanced by the invaluable input from the team at
Heart Madani Hospital, alongside contributions from a broader network
of cardiologists, radiologists, and pathologists. This collaborative effort
was instrumental in ensuring that the models we developed were not
only technically robust but also clinically relevant and intuitive for
medical professionals to use. Through workshops engaging with 14
clinicians, we embarked on a detailed process of model interpretation
and feature validation. These sessions were crucial for aligning the
models’ predictions with current clinical knowledge and practices.

During these interactive workshops, specific features such as echo
position and echo malignancy were scrutinized for their diagnostic sig-
nificance, leading to insightful discussions on their practical utility in
clinical settings. The clinicians’ feedback was invaluable, highlighting
areas for improvement and suggesting adjustments to model parameters
to better meet clinical expectations. This process of feature validation
and model refinement underscored the importance of integrating clin-
ical expertise into the development of machine learning tools, ensuring
that our models could effectively support clinicians in diagnosing and
managing cardiac tumours.

6. Discussion

The results of our investigation into the diagnostic accuracy of ma-
chine learning models for cardiac tumours, specifically through the
integration of echocardiography and pathology data, reveal significant
advancements in precision diagnostics. The superior performance of the
RF and GBM models, characterized by high accuracy, precision, recall,
and F1 scores, marks a noteworthy progression in the application of
machine learning within the medical field. Here we delve into the im-
plications of these findings, drawing parallels and contrasts with existing
literature.

The notable accuracy of 96.25 % achieved by both RF and GBM
models in diagnosing cardiac tumours presents a substantial improve-
ment over traditional diagnostic method. This echoes the findings of
Esteva et al. [59], who highlighted the potential of machine learning to
enhance diagnostic processes in dermatology, but our study surpasses
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their reported accuracy rates by leveraging a comprehensive dataset
encompassing both echocardiography and pathology features. The
integration of these diverse data types, as proposed by our study, ap-
pears to enrich the models’ learning, underscoring the value of multi-
dimensional data in clinical diagnostics [60].

The combined use of echocardiography and pathology data, as
detailed in the paper, provides a multidimensional approach to tumour
diagnostics. This integrative methodology echoes the sentiments of
Chawla et al. [61] emphasizing the potential of ML to unlock patterns
within complex data sets that traditional methods might overlook. The
identification of key features such as echo malignancy, echo position, and
patient age as critical predictors in cardiac tumour diagnosis highlights
the nuanced understanding of tumour characteristics achievable
through ML. This analysis aligns with the findings of Hannun et al. [62],
who also spotlighted the significance of detailed feature analysis in
enhancing diagnostic processes. The importance of feature selection, as
evidenced by the significant role of age, echo malignancy, and echo po-
sition in our models, resonates with the findings of Hannun et al. [62],
who identified similar features as key predictors in cardiac diagnostics.
The validation of ML models at the Heart Hospital, demonstrating a 94
% diagnostic accuracy rate, provides a tangible testament to the models’
real-world applicability. Such validation is crucial for bridging the gap
between theoretical research and clinical practice, a challenge that
Johnson et al. [63] also navigate in their work on healthcare databases.
The study’s exploration of non-invasive ML-based diagnostics offers a
potential paradigm shift in cardiac tumour management. This approach
could significantly reduce reliance on biopsies, aligning with the
research’s future direction towards less invasive and more
patient-centric diagnostic solutions.

The implications of our research extend far beyond the immediate
diagnostic improvements for cardiac tumours. By integrating machine
learning models with echocardiography and pathology data, we not only
enhance diagnostic accuracy but also pave the way for non-invasive,
patient-centric diagnostic approaches. This innovation has the poten-
tial to significantly reduce the reliance on invasive procedures, mini-
mizing patient risk and discomfort. The ability of our models to
accurately identify key features indicative of malignancy supports the
development of more precise and personalized treatment plans, ulti-
mately improving patient outcomes. Furthermore, the successful clinical
validation of our models highlights their readiness for real-world
application, marking a significant step towards their adoption in
routine clinical practice. As we continue to expand and refine our
dataset, these models can evolve to address a broader spectrum of car-
diac conditions, thereby revolutionizing the field of cardiac diagnostics.

Despite the promising results, our study has several limitations that
must be acknowledged to appropriately interpret our findings. Firstly,
the dataset used, although comprehensive within our study context, is
relatively small and specific to a single medical centre, which may limit
the generalizability of the results. Additionally, the class imbalance
inherent in our dataset, despite the application of techniques such as
SMOTE, may introduce biases that affect the model’s performance on
underrepresented classes. Furthermore, the diagnostic accuracy re-
ported here may vary in different clinical settings due to variations in
imaging techniques and operator expertise. Another limitation is the
reliance on retrospective data for part of our analysis, which might not
fully capture the real-time dynamics of clinical diagnostics. Future
research should focus on validating these findings across diverse pop-
ulations and healthcare settings to ensure broader applicability. Lastly,
while our models incorporate multiple diagnostic modalities, the

integration of additional data types, such as genetic markers or longi-
tudinal patient data, could further enhance diagnostic precision and
should be explored in future studies.

Despite the limitations, our study highlights the considerable po-
tential of machine learning models to enhance cardiac tumour diagnosis
and offers multiple clinical application avenues. The demonstrated high
accuracy, precision, and recall rates of Random Forest and Gradient
Boosting models suggest their ability to augment traditional diagnostic
methods, providing clinicians with reliable additional tools for cardiac
tumour identification. Furthermore, these models hold promise for the
early detection of malignancies that might be challenging to diagnose
with conventional imaging, potentially enabling earlier interventions
for improved patient outcomes. By leveraging detailed feature impor-
tance analyses, the models also offer insights into tumour characteris-
tics, aiding clinicians in devising personalized and effective treatment
plans. Moreover, the capacity of these models to provide non-invasive
diagnoses could lessen the reliance on biopsies and other invasive pro-
cedures, thereby reducing patient risk and discomfort, marking a sig-
nificant step forward in cardiac healthcare.

6.1. Theoretical and comparative analysis

The integration of echocardiography and pathology data with ma-
chine learning models in our study addresses several key limitations of
traditional diagnostic methods. Traditional approaches, primarily
relying on imaging techniques such as echocardiography, MRI, and CT
scans, often face challenges in differentiating between benign and ma-
lignant tumours due to their reliance on human interpretation, which
can vary significantly based on the clinician’s experience and the tu-
mour’s presentation. By contrast, our machine learning models, partic-
ularly RF and GBM, leverage the power of data integration and advanced
algorithms to uncover subtle patterns that may be imperceptible to
human observers.

The RF model, with its ensemble approach, mitigates the risk of
overfitting and improves generalization by aggregating the results of
multiple decision trees, each trained on different subsets of the data.
This results in a model that is robust to the variability in the data and
capable of providing high diagnostic accuracy. Similarly, the GBM
model enhances prediction accuracy through its sequential training
process, where each new model corrects the errors of the previous one,
leading to a highly refined and accurate diagnostic tool.

Comparative analysis with existing diagnostic methods highlights
the superior performance of our models. Traditional methods typically
achieve diagnostic accuracies in the range of 70–85 %, as reported in the
literature. In contrast, our RF and GBM models achieved diagnostic
accuracies of 96.25 %, with the RF model attaining a perfect ROC AUC
score of 0.99. These results underscore the potential of our machine
learning approach to significantly enhance diagnostic precision, reduce
reliance on invasive procedures, and provide a more patient-centric
diagnostic process. The key features identified by our models, such as
echo malignancy, echo position, and echo size, emphasize the importance
of integrating diverse data types for a holistic diagnostic approach. This
integrative methodology not only improves the accuracy of tumour
characterization but also provides actionable insights for clinicians,
facilitating better-informed treatment decisions. The robustness and
interpretability of our models further enhance their clinical utility,
making them valuable tools for improving patient outcomes in cardiac
tumour diagnosis.

Table 3
Results of validation studies on machine learning models at Heart Madani Hospital.

Study Type Number of Patients Model Used Diagnostic Accuracy Concordance Rate Comparison with Traditional Accuracy

Prospective Cohort 38 RF (Random Forest) 94 % N/A 94 % vs. 85 % (Traditional)
Retrospective Analysis 137 GBM (Gradient Boosting Machines) N/A 92 % N/A
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7. Conclusion

This study embarked on a pioneering journey to enhance the preci-
sion of cardiac tumour diagnostics through the integration of echocar-
diography and pathology data with advanced machine learning
techniques, utilizing Support Vector Machines (SVM), Random Forest
(RF), and Gradient Boosting Machines (GBM) to develop models that
significantly improve the accuracy, sensitivity, and specificity of cardiac
tumour diagnosis compared to traditional methods. Our main findings
reveal that particularly RF and GBM models demonstrated exceptional
diagnostic accuracy, with RF achieving a perfect ROC AUC score of 0.99,
outperforming existing diagnostic methods and highlighting the poten-
tial of machine learning in identifying both benign and malignant car-
diac tumours with high precision. The study illuminated key features
critical to diagnosing cardiac tumours, such as patient age, echo malig-
nancy, and echo position, aiding in refining diagnostic criteria and
focusing clinical attention on the most predictive indicators of tumour
malignancy. Collaboration with Madani Medical Research and Training
Heart Hospital for clinical validation provided a real-world context for
our models, affirming their practical applicability and reliability in a
clinical setting. This is crucial for bridging the gap between theoretical
development and clinical implementation. The significance of our
research lies in its potential to revolutionize cardiac tumour diagnostics,
offering a non-invasive, accurate, and efficient diagnostic tool that fa-
cilitates early detection, reduces the need for invasive procedures, en-
ables personalized treatment planning, and ensures model
interpretability for seamless integration into clinical workflows,
enhancing decision-making processes and patient care. Future research
should focus on data expansion by collaborating with more institutions
to gather larger, more diverse datasets, conducting external validation
studies across various healthcare settings, exploring new models, and
engaging in interdisciplinary collaborations with cardiologists, radiol-
ogists, and data scientists. Additionally, examining implementation
studies to understand the practical aspects of integrating these models
into clinical settings, including workflow integration, clinician training,
and patient outcomes, is vital for successful adoption.
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[23] Nóbrega S, da Costa CM, Amador AF, Justo S, Martins E. Cardiovascular magnetic
resonance versus histopathologic study for diagnosis of benign and malignant
cardiac tumours: a systematic review and meta-analysis. J Cardiovasc Imag 2023;
31(4):159. https://doi.org/10.4250/jcvi.2023.0028.

[24] Chalian H, O’Donnell JK, Bolen M, Rajiah P. Incremental value of PET and MRI in
the evaluation of cardiovascular abnormalities. Insights Imaging 2016;7(4):
485–503. https://doi.org/10.1007/s13244-016-0494-5.

[25] Nensa F, et al. Hybrid cardiac imaging using PET/MRI: a joint position statement
by the European society of cardiovascular radiology (ESCR) and the European

S.-A. Sadegh-Zadeh et al.

https://doi.org/10.1007/s11864-019-0662-1
https://doi.org/10.1016/S1470-2045(05)70093-0
https://doi.org/10.1016/S1470-2045(05)70093-0
https://doi.org/10.1016/S0002-9149(97)00587-0
https://doi.org/10.1136/hrt.2009.186320
https://doi.org/10.1161/CIRCULATIONAHA.109.192064
https://doi.org/10.1161/CIRCULATIONAHA.109.192064
http://refhub.elsevier.com/S2352-9148(24)00100-X/sref6
http://refhub.elsevier.com/S2352-9148(24)00100-X/sref6
https://doi.org/10.1016/j.heliyon.2023.e19932
https://doi.org/10.1016/j.heliyon.2023.e19932
https://doi.org/10.1159/000528915
https://doi.org/10.1159/000528915
https://doi.org/10.1007/s11748-021-01754-7
https://doi.org/10.1007/s11886-020-01420-z
https://doi.org/10.1007/s11864-019-0662-1
https://doi.org/10.1016/S1470-2045(05)70093-0
https://doi.org/10.1016/S1470-2045(05)70093-0
https://doi.org/10.1016/S0002-9149(97)00587-0
https://doi.org/10.1136/hrt.2009.186320
https://doi.org/10.1007/s10741-022-10247-5
https://doi.org/10.1007/s10741-022-10247-5
https://doi.org/10.1093/eurheartj/ehab625
https://doi.org/10.1016/j.compbiomed.2023.107696
https://doi.org/10.1016/j.compbiomed.2023.107696
https://doi.org/10.3390/infrastructures8020021
https://doi.org/10.1016/j.tcm.2021.08.010
https://doi.org/10.1093/ehjci/jes193
https://doi.org/10.21470/1678-9741-2019-0199
https://doi.org/10.1093/eurheartj/ehab635
https://doi.org/10.1093/eurheartj/ehab635
https://doi.org/10.4250/jcvi.2023.0028
https://doi.org/10.1007/s13244-016-0494-5


Informatics in Medicine Unlocked 49 (2024) 101544

12

association of nuclear medicine (EANM). Eur Radiol 2018;28:4086–101. https://
doi.org/10.1007/s00330-017-5008-4.

[26] Burke A, Jeudy J, Virmani R. Cardiac tumours: an update. Heart 2008;94(1):
117–23. https://doi.org/10.1136/hrt.2005.078576.

[27] Maleszewski JJ, Anavekar NS, Moynihan TJ, Klarich KW. Pathology, imaging, and
treatment of cardiac tumours. Nat Rev Cardiol 2017;14(9):536–49. https://doi.
org/10.1038/nrcardio.2017.47.

[28] Nazari Mohammad-Javad, et al. A machine learning approach for differentiating
bipolar disorder type II and borderline personality disorder using
electroencephalography and cognitive abnormalities. PLoS One 2024;19(6):
e0303699. https://doi.org/10.1371/journal.pone.0303699.

[29] Mall PK, et al. A comprehensive review of deep neural networks for medical image
processing: recent developments and future opportunities. Healthcare Anal 2023:
100216. https://doi.org/10.1016/j.health.2023.100216.

[30] Rana M, Bhushan M. Machine learning and deep learning approach for medical
image analysis: diagnosis to detection. Multimed Tool Appl 2023;82(17):
26731–69. https://doi.org/10.1007/s11042-022-14305-w.

[31] Nedadur R, Wang B, Tsang W. Artificial intelligence for the echocardiographic
assessment of valvular heart disease. Heart 2022. https://doi.org/10.1136/
heartjnl-2021-319725.

[32] Ueda D, et al. Artificial intelligence-based model to classify cardiac functions from
chest radiographs: a multi-institutional, retrospective model development and
validation study. Lancet Digit Health 2023;5(8):e525–33. https://doi.org/
10.1016/S2589-7500(23)00107-3.

[33] Chen H-Y, et al. Artificial intelligence-enabled electrocardiography predicts left
ventricular dysfunction and future cardiovascular outcomes: a retrospective
analysis. J Personalized Med 2022;12(3):455. https://doi.org/10.3390/
jpm12030455.

[34] Gala D, Makaryus AN. The utility of language models in cardiology: a narrative
review of the benefits and concerns of ChatGPT-4. Int J Environ Res Publ Health
2023;20(15):6438. https://doi.org/10.3390/ijerph20156438.

[35] Aminizadeh S, et al. The applications of machine learning techniques in medical
data processing based on distributed computing and the Internet of Things. Comput
Methods Progr Biomed 2023:107745. https://doi.org/10.1016/j.
cmpb.2023.107745.

[36] Ahsan MM, Luna SA, Siddique Z. Machine-learning-based disease diagnosis: a
comprehensive review. In: Healthcare. MDPI; 2022. p. 541. https://doi.org/
10.3390/healthcare10030541.

[37] Whang SE, Roh Y, Song H, Lee J-G. Data collection and quality challenges in deep
learning: a data-centric ai perspective. VLDB J 2023;32(4):791–813. https://doi.
org/10.1007/s00778-022-00775-9.

[38] Kora P, et al. Transfer learning techniques for medical image analysis: a review.
Biocybern Biomed Eng 2022;42(1):79–107.
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