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A B S T R A C T

Load frequency control (LFC) aims to stabilize grid frequency fluctuations by countering load disturbances with
generation-side controllers. In smart grids, demand response (DR) and electric vehicles (EV) offer alternatives to
traditional frequency control, reducing reliance on costly generation-side controllers. These decentralized con-
trols, interconnected through a shared communication medium, form a cyber-physical system, vulnerable to
challenges like packet drops and false data injection (FDI) attacks. Additionally, consumer participation in DR
introduces significant time delays. This paper derives stability conditions for LFC using a state feedback
controller, estimating unobservable states with an observer while accounting for bounded disturbances and
noise. This cyber-physical system, involving an observer, controller, and network, is modelled as an observer-
based networked control system (NCS) using an asynchronous dynamical system (ADS) approach. The result-
ing switched system model is used to establish linear matrix inequality (LMI) criteria that ensure stability and
determine observer and controller gains under specified packet drop rates, disturbances, and noise. The meth-
odology is tested on various configurations, demonstrating that decentralized EV with LFC and DR improves
system response, minimizes frequency fluctuations, and optimizes networked control bandwidth under given
conditions.

1. Introduction

Traditional LFC in power systems uses spinning and non-spinning
reserves [1] to balance the generation and variable load demand.
However, modern power grids incorporate a high penetration of sto-
chastic renewable energy [2]. Hence, responsive loads can be utilized as
a part of the DR strategy to balance the generation and demand [3].
Moreover, it also helps to avoid the traditional load following schemes
that lower operational costs and greenhouse gas emissions [4]. The load
demands are met by balancing mechanisms (BM) with units operating at
different time scales [5]. Non-BM units typically involve the loads
participating in DR. As per the report by National Grid [6], £105.6 M
was spent on the generation side for the balancing mechanism. DR
techniques can be utilized to reduce the costs incurred in the BM and are

implemented with real-time consumer participation by regulating the
electricity market price [7]. The delay in consumer response, incurred
due to the tariff adjustment from various DR techniques, can cause grid
stability problems [8].

1.1. Previous works on DR, EV, and renewable energy in LFC

The automatic generation control (AGC) system employs conven-
tional controllers in conjunction with various renewable energy sources
[9], whose design is formulated using the solution of LMIs. In the context
of LFC [10,11], diverse distributed generators (DGs) have been consid-
ered, encompassing systems such as wind turbine generators (WTGs),
fuel cells (FCs), aqua electrolysers (AEs), and diesel engine generators
(DEGs). Furthermore, the inclusion of wind turbine models [12,13] and
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the combined wind and hydro generating systems with battery systems
[14,15] have also been explored within the LFC framework. In-
vestigations into stochastic models of renewable energy demand in LFC
have been conducted in [16,17] and the corresponding simulation
analysis has also been conducted regarding the grid frequency
fluctuations.

Coordination mechanisms among multiple household devices
engaged in frequency control have been devised, leveraging time-
frequency thresholds [18] without incorporating it within the LFC
loops. Dynamic DR models, utilizing the linear quadratic regulators
(LQR), have been introduced to enhance LFC [19], while control
parameter optimization for smart appliances participating in DR stra-
tegies has been addressed based on frequency deviation thresholds [20].
Regional DR schemes, on tie-line power flows, have been implemented
in [21], using the dynamic adaptive demand response (DADR) for
augmenting frequency stability within distribution networks [22]. This
concept has been extended to encompass the control of fast-dynamic
appliances such as refrigerators [23]. Control loop enhancements,
including adaptive delay compensators to mitigate communication de-
lays [24], and extended state observers to estimate disturbances and
uncertainties have been designed in the context of DR in LFC.

Electric vehicles (EVs) have been integrated into LFC frameworks
[25,26], functioning as controllable loads alongside other household
appliances. Similarly, electric water heaters, heat pump water heaters,
and EVs have been utilized as controllable loads for grid frequency
regulation [24,25,27]. The impact of WTGs on LFC systems has been
examined in [28], along with demonstrations of EV-based battery stor-
age systems leveraging vehicle-to-grid (V2G) technology in dynamic
power systems and their integration in the AGC systems has been pur-
sued in [29], with future considerations incorporating combined use of
heat pumpwater heaters and electric vehicles for enhanced grid stability
[30]. Challenges pertaining to cyber-attacks on AGC systems within
future smart grids have been analysed in [31], amidst the broader
challenge of operating and controlling power systems along with the
integration of fluctuating renewable energy sources [32].

The efficacy of LFC systems amidst high-penetration wind and
photovoltaic (PV) power integration has been evaluated [33], with
microgrid integration of renewable energy sources alongside EVs, aimed
at mitigating frequency fluctuations [34]. Recent efforts have focused on
establishing stability conditions for networked LFC systems incorpo-
rating EVs, employing stochastic jump system theory [35], linear
operator inequalities [36], and event-triggered control strategies
employing switching approaches [37].

1.2. Previous works of networked control systems and its applications in
LFC

In modern power systems, decentralized control of a smart grid
utilizes a shared communication medium due to its ease of imple-
mentation, maintenance etc., so that a modern smart grid system with a
shared communication medium can be viewed as a cyber-physical sys-
tem or an NCS. However, the inherent structure of the communication
network in the smart grid may cause network imperfections such as
communication delay and/or packet dropout among the devices and are
also vulnerable to cyber-attacks such as denial of service (DoS) attack
which degrades the control loop performances and also may lead to
whole system instability. Contemporary researchers have attempted to
analyse stability by designing robust controller for such systems under
packet drop and/or communication delay. For example, LMI based event
trigger control mechanism have been proposed for the LFC under
communication delay in [38]. Bilinear matrix inequality (BMI) based
Lyapunov stability criteria and state feedback controller design has also
been proposed for the LFC under communication delay and packet
drops. Other works on mitigating cyber-attack in the NCS used different
methods such as evolutionary optimization technique [16], hierarchical
games [39], delay estimator and decision making unit [40], zero-input

actuator policy within an additional loop [41].
Cyber-attack, where information within NCS is corrupted, is known

as an FDI attack. FDI attack in LFC has been detected using a neural
network in [42,43], and defence strategy has been developed using
generative adversarial networks (GANs) in [44]. The neural network
weights are updated using an extended Kalman filtering (EKF) algorithm
in [42,43] for resilient estimation of the states corrupted by FDI. A non-
integer disturbance observer based refined frequency control technique
has been designed in [45] and the performance has been assessed
against unknown disturbances and cyber-attacks.

Whereas closed-loop exponential stability of the NCS under packet
drop, with an observer-based state feedback controller, has been
ensured by deriving an LMI presented in [46]. The stability conditions of
NCS, modelled as switched systems, are derived considering the rela-
tionship between the packet dropout rate and Lyapunov stability criteria
using the average dwell time approach. A similar switched system
concept is utilized in [47] to tackle a class of NCS with random packet
losses while ensuring robust stability.

However, the switched system, signifying packet drop in forward and
feedback path, is modelled using the Bernoulli distribution to design an
observer-based controller such that the closed-loop NCS meets the
criteria for exponential stochastic stability. Similar an NCS modelling
approach is utilized in [48,49] using a switched system approach and
linear Bernoulli function. A robust controller is designed considering the
NCS packet drops as a discrete-time Markovian jump system between
different states [50]. Joint design of parameters for stochastic inde-
pendent and identically distributed (IID) protocols for signal trans-
mission in NCS and control gains are obtained in [51] to ensure system
stability. A simultaneous predictive strategy is utilized in [52,53] to
forecast the estimated states lost in the communication channel. How-
ever, in this case, the packet drop rate is considered after the data pro-
cessing unit, and the predictor output is used as a signal to design the
controller.

1.3. Research gap, novelty and contributions of this paper

Comparing the existing works mentioned in the previous sub-
sections, we can summarize the research gaps as:

• Prior efforts in designing controllers for LFC have predominantly
employed output feedback strategies, neglecting the state-feedback
designs. State feedback design permits the integration of indepen-
dent controllable energy sources with conventional controllers.

• Existing literature in this domain has not simultaneously addressed
stochastic renewable energy and packet drops within the same
control loop. While our previous work has partially addressed this
issue [16], the packet drop considerations have been limited to the
feedforward path only. Additionally, contemporary aspects of the
smart grid, such as stochastic renewable energy and decentralized
energy sources like DR and EVs, remain unexplored in [54] even
though packet drop scenarios have been considered.

• A comprehensive analysis of a generalized control strategy tested
across different smart grid configurations, such as EVs and DR, is
lacking in the previous literature.

Therefore, to address the above challenges, in this paper, the robust
state feedback controller and observer are jointly designed for the NCS
modelled as a switched system using the ADS approach [55,56] under
random packet drops and process and measurement disturbances. The
state feedback controller and observer gains are obtained simulta-
neously while satisfying bounded H∞ norm. A set of LMI criteria are
derived and used to obtain the controller and observer gain, ensuring the
exponential system stability and state estimation at an arbitrary packet
drop rate and external disturbances. The Lyapunov stability criteria
satisfying the H∞ norm bound has been derived from our previous work
in [57], and in this paper observer based state-feedback control strategy
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has been designed instead of the PI controller derived in our previous
work.

ADS model for the NCS provides an edge over the existing modelling
strategies using Bernoulli packet drops in [46,48], and Markovian jump
model in [50,58] as it takes into account the stochastic ordering and
transmission of packets with a uniform sampling time. Moreover, the
stochastic packet transmission at an arbitrary rate helps us gauge the
system performance. Stochastic protocol for packet scheduling and
dropout rates are considered in [51], but the emphasis is on obtaining
the optimal parameters of the stochastic IID protocol for facilitating
signal transmission. Moreover, the aperiodic sampling rate for designing
the communication protocol is challenging to implement in practice.
This paper formulates a set of LMI criteria for the NCS modelled as a
switched system considering arbitrary packet drops in a shared
communication network from the sensor to observer and controller to
actuator while extending the theoretical framework in [59] for an
observer and state feedback controller and satisfying the norm bound of
the output concerning the disturbance and noise as shown in [47]. The
proposed networked observer and state feedback controller design
methodology is utilized for an LFC system while incorporating the DR
strategies and EV control strategy.

The proposed state feedback control strategy helps us to design a
decentralized control strategy for multiple control input within the
system, i.e. secondary controllers, EV, and DR aggregators. The decen-
tralized infrastructure involves a shared communication network for the
secondary frequency control from the generation company (GENCO)
and DR scheme from the independent load and EV aggregator. This
scheme is analogous to a server-client topology described in the IEEE
Standard 2030.5–2018 [60] for smart energy profile application proto-
col. The energy controller gains form the back-end server, the secondary
load controllers and independent EV and load aggregators are on the
application frontend interface. Power system deregulation renders the
decoupling of DR and secondary loop control viable.

Similarly, in [37], the EV is coupled with the LFC signal. However, in
this paper, the system response is tested against coupled and decoupled
EV aggregator in the LFC. A shared communication network between the
resources makes it prone to cyber-attacks in the form of a high packet
drop rate, considered equivalent to DoS attack. The controller and
observer gains are generally obtained for lower packet drop rates in [46]
using the switched system model. However, higher packet drop rates,
considered equivalent to a DoS attacks [16], are utilized for obtaining
controller and observer gains.

The phasor measurement units (PMU) measure the power grid fre-
quency, and the power exchanged between different areas [61]. The
security of the data collected by PMU is discussed in [60] as per the IEEE
Standard C37.247.2019. The data processing capability of the PMUs can
be severely affected due to malware attacks [62], as per the IEEE
Standard 1815-2012 distributed network protocol (DNP3) used in smart
grid distribution [63]. The gaps between the octets of the 16-octet block
make it viable for the attackers to corrupt the incoming data frame,
which is interpreted as an FDI attack. The observer is utilized to measure
the system states corrupted with the FDI attack [64]. Moreover, the
observer for LFC helps us visualize the rate of change of variables under
disturbance and noise, which is quite expensive in practice with the
distributed sensors. Based on the ratio of infinity norm of output and
disturbance, the designed controller will stabilize the system based on
arbitrary packet loss at a specific rate, rather than finding the probability
bound as given in [54,65].

The research reported in this paper represents the smart grid archi-
tectural model (SGAM) [63,65,66] where the LFC, demand response and
EV model represents the component layer. The shared communication
medium in the feedback path between the PMU and EV power utilization
measurement to the server computing the control gain and forward path
between the load aggregator to the consumer, EV aggregator to the EV
charging centre and control centre to the governor control system rep-
resents the communication layer. The observer, representing the server

estimating the system states, forms the information layer. The control
algorithm represents the functional layer. The usage of various EV and
demand response configuration to reduce the spinning reserve costs
forms the business layer objective. Hence, we can summarize the key
novelty as follows:

• Theoretical Innovation: This paper introduces a pioneering
approach to design a robust state feedback controller and observer
tailored for NCS, conceptualized as switched systems. Leveraging an
ADS framework [53,55], our methodology addresses the challenges
posed by random packet drops and process/measurement distur-
bances. This research builds upon our previous work [57], where a
robust output feedback Proportional-Integral (PI) controller was
devised, ensuring output robustness against bounded H∞ norm
concerning input disturbances.

• Application Advancement: Our study breaks new ground by
applying the novel state feedback controller and observer design to
mitigate frequency fluctuations across diverse smart grid configu-
rations, while accommodating packet drops in both feedforward and
feedback pathways. This research extends the scope of our earlier
research [16], which primarily focused on examining packet drops
within the feedforward domain. Notably, this paper establishes a
guaranteed stability criterion, an aspect absent in our prior work
[16]. The LFC model employed here draws from [37], incorporating
an electric vehicle (EV) model, although it does not consider the time
delay of demand response and packet drop conditions. While packet
drop scenarios are addressed in [54], the modern aspects of the smart
grid, such as decentralized EV and DR scenarios, remain unexplored.

Based on the novelty outlined above, the unique contributions of this
paper are as follows:

• Implementation of State Feedback Control: Unlike previous studies
employing output feedback control, this paper utilizes a state feed-
back control scheme for LFC. By integrating this state-feedback
control scheme, the LFC loop becomes adaptable to incorporate
modern components of the smart grid, such as independent energy
sources like EVs and demand response. The Lyapunov stability
criteria are utilized to find the observer and controller gains, with the
existence of common quadratic Lyapunov function (CQLF)
[56,59,67,68] for the NCS while satisfying H∞ norm bound and
ensuring exponentially stability of the system. Notably, while EVs
are addressed in [37], their independence, as demonstrated in this
paper, is emphasized, as they are not reliant on the output of con-
ventional control schemes.

• Comprehensive Analysis and Benchmarking across Modern Smart
Grid Configurations: This paper conducts an in-depth analysis using
rigorous statistical tests to evaluate the impact of stochastic renew-
able energy and packet drop rates. This aspect has only been previ-
ously explored in our prior work [16]. Furthermore, the analysis
extends beyond previous studies by considering an additional FDI
attack alongside controllable decentralized energy sources like EVs
and demand response. Furthermore, it also tests the robustness of the
system to various packet drop rates and demand response time delay
scenarios which is analogous to a DoS attack [16] and time delay
attack [69]. This is the first paper which considers the cascaded
cyber-attack impacts viz. DoS, time delay and FDI, along with the
stochastic renewable energy and load demand.

• Statistical Analysis with Stochastic Renewable Energy and Load
Demand Scenarios: The stabilizing controller for different LFC
configurations, EV and DR, are tested against stochastic renewable
energy source modelled by geometric Brownian motion (gBm) as
given in [16]. The frequency, spinning reserve control, EV and DR
output is analysed with L1, L2 and L∞ norms of the signals, obtained
fromMonte Carlo simulations of the stochastic renewable energy and
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packet drop rates. The signal norms are analysed using bivariate
density plots and nonparametric statistical tests.

This paper is structured into three primary sections before we head to
simulation and results:

• Section 2 describes the state-space model of diverse smart grid
configurations, incorporating DR and EVs in both centralized and
decentralized scenarios.

• Section 3 elaborates on the discretization of the generalized state-
space models outlined in Section 2, at a specified sampling time.
Then the formulation of NCS as a switched system model is derived
for a given controller and observer gain. This consideration encom-
passes packet dropouts in both the feedforward and feedback
pathways.

• In Section 4, the Lyapunov stability criteria are employed, utilizing
common quadratic Lyapunov matrices to determine the controller
and observer gain respectively, ensuring bounded H∞ norm against
input disturbances. This ensures stability of the switched system
derived in Section 3 across varying rates. The LMI condition derived
for solution is akin to our prior work in [57].

• Section 5 presents numerical results, incorporating diverse state-
space models introduced in Section 2. The results are obtained
using the controller and observer gain respectively, derived from
solving the LMI. Additionally, the analysis encompasses various
packet drop rates and includes stochastic renewable energy and load
demand models.

2. Load frequency control with demand response and electric
vehicle

The state space model used in this paper is a reduced version of the
complex power system dynamics [70] to analyse the nonlinearities
induced by the packet drop models. The reduction methodology is
similar to the reduction of nonlinear two-layer liquid lattice process [71]
and wave processes in oceanography, acoustics and hydrodynamics [72]
into simpler ordinary differential equations (ODEs). The generalized one
area LFC, similar to the schematic used in [19] is shown in Fig. 1. The
two inputs of the EV represent the decentralized and centralized
participation in the LFC structure respectively where both of them are
not considered at once. The scheme is similar to the decentralized

control for the ith area in the power system decoupled from other
geographical areas. This schematic can also be considered as a micro-
grid operating in a small geographical region. Single control area is
considered in this paper as the LMIs derived in the later sections are too
restrictive, and it is a challenging task to obtain an acceptable solution
with higher-order systems. In this paper, we do not consider the unit
commitment and deregulated environment with associated task alloca-
tions since this will overcomplicate the analytical stability studies
currently under investigation. Although here the stability analysis is
considered with ith area as a representative case, for large inter-
connected smart grids with many areas, the system matrices will be
bigger. Although the NCS design method is generic, due to restrictive
nature of the LMI algorithm, it may not produce any feasible stabilizing
solution. Therefore, in order study the possible cyber-physical security
problems, we proceed with a single area-based analysis.

2.1. Load frequency control state space model

The model of the power system is inherently nonlinear. However,
linearized models of LFC are acceptable for analysis because the load
fluctuations are usually quite small. The simplified LFCmodel consisting
of the governor, non-reheated turbine, along with the electrical machine
models with load fluctuations as state disturbance, is represented as a
linear state-space model as follows:

Δḟ i(t) = −
Di

Mi
Δfi(t)+

1
Mi

ΔPmi (t) −
1
Mi

ΔPL(s), (1)

ΔṖmi (t) = −
1
Tti

ΔPmi (t)+
1
Tti

ΔPGi (t), (2)

ΔṖgi (t) = −
1

RiTgi
Δfi(t) −

1
Tgi

ΔPgi (t)+
1
Tgi

Δuci (t), (3)

d
dt

[

βi
∫

Δfi(t)dt
]

= βiΔfi(t). (4)

Here, Tti and Tgi represent the time constant of the governor and
turbine, respectively. Ri represents the droop constant of the primary
control loop. Di is the damping coefficient of the system, and Hi is the
equivalent system inertia. Td represents the fixed equivalent delay in the
demand response side. Here, ΔuC represents the control input to the

Fig. 1. Schematic of load frequency control with different strategies of EV and demand response. Packet dropout and FDI attacks are shown at relevant places.
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governor. As shown in Fig. 1, the governor, turbine, and power system
time constants govern the grid frequency dynamics. The droop compo-
nent (Ri) is a part of the primary control loop, which acts upon the
frequency deviation Δfi. The primary feedback loop will activate the
necessary over-frequency and under-frequency relays in the thermal
power station. The term βi

∫
Δfi(t)dt represents the power needed to

stabilize the frequency fluctuations Δfi, which is utilized in the sec-
ondary control loop. It can also be considered a cumulative disturbance
due to the frequency fluctuations in other areas, as given in [61]. The
value of the parameters used in the state-space model (1)–(4) is adopted
from [37]. The model (1)–(4) can be written in the form:

ẋ(t) = Ax(t) + B1u(t) + B2w(t),
y(t) = Cx(t) + Dn(t). (5)

Here, A is the system matrix, B1 is the control input matrix, B2 is the
disturbance matrix, C is the observation matrix and D is the noise ma-
trix. Moreover, x(t) is the state vector, u(t) is the input vector, w(t) ∈
L2[0,∞) is the disturbance vector, y(t) is the system output and n(t) ∈
L2[0,∞) is the output noise vector. Since we are designing an observer-
based controller here, it is essential to measure certain states to make the
system observable. Corresponding to (1)–(4), we can write the system
matrices as follows:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
Di

Mi

1
Mi

0 0

0 −
1
Tti

1
Tti

0

−
1

RTgi
0 −

1
Tgi

0

0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,B1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0
1
Tgi
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,B2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
1
Mi

0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (6)

where, input states: x =
[
Δfi(t) ΔPmi (t) ΔPgi (t) β

∫
Δfi(t)dt

]T, system

output y =
[

Δf(t) β
∫

Δf(t)dt
]T, control input: u = Δuci (t) and

disturbance input w = [ΔPL dFDI ]T. Here ΔPL and dFDI represent the
load and FDI attack disturbance vector.

The output vector is chosen such that the observability condition is
satisfied i.e.

rowrank

⎛

⎜
⎜
⎜
⎜
⎝

⎡

⎢
⎢
⎢
⎢
⎣

C
CA
CA2

⋮
CAn− 1

⎤

⎥
⎥
⎥
⎥
⎦

⎞

⎟
⎟
⎟
⎟
⎠

= n. (7)

2.2. Load frequency control with demand response

In this subsection, we consider time delays in the demand response.
Although many contemporary literatures have studied LFC with time
delays in the primary and secondary loops, here the delay in demand
response is significantly larger than rest of the NCS. This is because the
delay in demand response involves multiple stages of information pro-
cessing and consumer's decision based on tariff which are not typically
communication delays on NCS. The power balance equation with the
inclusion of demand response is written, as shown in Fig. 1:

ΔPmi (s)+ΔuDR(s)G(s) − ΔPL(s) = 2HisΔfi(s)+DiΔfi(s), (8)

where, G(s) represents the Pade approximation of the time delay
induced by the demand response. IEEE Std 2030.6- 2016 [73], suggests
that the delay time is the cumulative sum of notification time sent to the
consumer from the aggregator and the consumer response time. For the
sake of simplicity, here 2nd order Pade approximation of the delay is

considered. Moreover, in [19], the performance change is negligible
with the reduction in the order of the Pade. The second-order Pade
approximation e− sTd is given as [74]:

G(s) =
Td

2s2 − 6Tds+ 12
Td2s2 + 6Tds+ 12

. (9)

Now let us consider: Xtemp(s) = ΔuDRi (s)G(s).
Hence, we can write:

Xtemp(s) = G1(s)⋅ΔuDR(s)

=

((

s2 −
6s
Td

+
12
T2
d

)/(

s2 +
6s
Td

+
12
T2
d

))

⋅ΔuDR(s). (10)

The above expression can be written as:

Xtemp(s) = ΔuDR(s)+X1(s), (11)

where,

X1(s) = −

((
12s
Td

)/(

s2 +
6s
Td

+
12
T2
d

))

ΔuDR(s). (12)

Now, let us consider X2(s) = 1
s⋅X1(s). Hence, we can write x2(t) as:

ẋ2(t) = x1(t). (13)

Substituting the value of x2(t) in (11) and writing the equation in the
time domain, we get:

ẋ1(t) = −
6
Td
x1(t) −

12
T2
d
x2(t) −

12
Td
L− 1[ΔuDR(s) ]. (14)

Here, L− 1[.] represent the inverse Laplace transform.
Thus, two new state variables x1(t) and x2(t) are incorporated in the

state-space model due to the second-order Pade approximation of the
time delay. The time delay Td considered in this paper is 1 s. The new
states in (13)–(14) is incorporated along with (1)–(4) to form the
following state-space model for LFC with demand response:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
Di

Mi

1
Mi

0 0
1
Mi

0

0 −
1
Tti

1
Tti

0 0 0

−
1

RiTgi
0 −

1
Tgi

0 0 0

0 0 0 1 0 0

0 0 0 0 −
6
Td

−
12
T2
d

0 0 0 0 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
Mi

0 0
1
Tgi

0

0 0

0 −
12
Tdi

0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B2

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
1
Mi

0

0

0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

(15)

where, input states x =
[

Δfi(t) ΔPmi (t) ΔPgi (t) βi
∫

Δfi(t)dt x1
(t)x2(t)

]T, output variables y =
[

Δfi(t) β
∫

Δfi(t)dt
]T , control input

u = [Δuci (t) ΔuDR(t) ]T and disturbance input w = [ΔPL dFDI ]T.
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2.3. Load frequency control with centralized and decentralized EV
connection

From Fig. 1, we can write the EV power output ΔPEV as in [37]:

ΔṖE(t) = −
1

RiTE
Δfi(t) −

1
TE

ΔPE(t)+
KE

TE
ΔuSt(t). (16)

Here, KE and TE are the gain and time constant of the EV module
respectively. The ΔuSt(t) depends on whether it is coupled to spinning
reserves or regulated independently from a decentralized strategy,
which can be characterized as:

Δust(t) =
{

ΔuC(t), EV Strategy = Centralized,
ΔuEV(t), EV Strategy = Decentralized. (17)

The parameters of the EV model defined in (16) are adapted from
[37]. Hence we combine the power generator's LFC model in (1)–(4)
with the EVmodel in (16), to write the state space model of the form (5),
with centralized strategy as:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
Di

Mi

1
Mi

0 0 0

0 −
1
Tti

1
Tti

0 0

−
1

RiTgi
0 −

1
Tgi

0 0

0 0 0 1 0

−
1

RiTE
0 0 0 −

1
TE

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,B1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0

0
1
Tgi
0
KE

TE

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,B2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
1
Mi

0

0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

(18)

Here, states: x =
[

Δfi(t) ΔPmi (t) ΔPgi (t) βi
∫

Δfi(t)dt ΔPEi (t)
]T,

output variable:y =
[

Δfi(t) βi
∫

Δfi(t)dt ΔPE(t)
]T, control input: u =

Δuc(t) and disturbance input: w = [ΔPL dFDI ]T.
We observe that we need to incorporate the change in EV output

ΔPE(t) in the output vector to satisfy the observability condition (7).
Therefore, for decentralized EV configuration, the A and B2 remains the
same as (18) and B1 is modified as follows:

B1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0

0 0
1
Tgi

0

0 0

0
KE

TE

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (19)

It is seen that, for decentralized configuration, we have two control
inputs in this configuration u = [Δuc(t) ΔuEV(t) ]T.

2.4. LFC with demand response and centralized/decentralized EV
configuration

In this case, we combine all the state space equations of traditional
LFC from (1)–(4) and the new state-space variables obtained from de-
mand response (13) and the EV model (16) with the configuration
strategy defined in (17). We can write the state space equation of LFC,
DR and with centralized EV configuration as:

A =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
Di

Mi

1
Mi

0 0
1
Mi

0 0

0 −
1
Tti

1
Tti

0 0 0 0

−
1

RiTgi
0 −

1
Tgi

0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 −
6
Td

−
12
T2
d

0

0 0 0 0 1 0 0

−
1

RiTE
0 0 0 0 0 −

1
TE

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B1

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
M

0 0
1
Tgi

0

0 0

0 −
12
Td

0 0
KE

TE
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, B2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

−
1
Mi

0

0

0

0

0

0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (20)

where, input states: x =
[

Δfi(t) ΔPmi (t) ΔPgi (t) βi
∫

Δfi
(t)dtx1(t)x2(t)ΔPE(t)

]T , output variables: y =
[

Δfi(t) βi
∫

Δfi
(t)dtΔPE(t)

]T , control input: u = [Δuc(t) ΔuDR(t) ]T and disturbance
input: w = [ΔPL dFDI ]T .

Similar to the previous subsection, for decentralized EV configura-
tion, A and B2 remains the same as (20), but B1 changes as follows,
satisfying observability condition (7):

B1 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0
1
M

0

0 0 0
1
Tg

0 0

0 0 0

0 −
12
Td

0

0 0 0

0 0
KE

TE

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (21)

where, u = [ Δuc(t) ΔuDR(t) ΔuEV(t) ]T.
However, in order to design the observer based state feedback

controller under random packet drop, the continuous-time state-space
system for different LFC, DR and EV configurations defined in (6), (15),
(18)–(19) and (20)–(21) need to be converted into discrete-time domain
with a specified sampling time Ts. Hence, as per [75], the continuous
time state-space can be represented in discrete-time domain with spec-
ified Ts as:

x(k+ 1) = Fx(k) + G1u(k) + G2w(k),
y(k) = Cx(k) + Dn(k), (22)

where,

F = eATs ,G1 =

∫Ts

0

eATsB1dt,G2 =

∫Ts

0

eATsB2dt. (23)
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The stabilizing controller and observer for the system defined by (22)
under random packet drop and external disturbances are derived in the
next section. In (22), u(k) represents the control output from the
communication network. The concept of probabilistic observability is
not used to analyse the system as given in [54]. Instead, the switched
system is modelled, and joint observer and controller gains are obtained
to ensure its stability based on the arbitrary number of packet drops,
which is explained in the following sections.

3. Switched system modelling under packet dropout with
observer and controller gain

The controller and observer used for the system (22) are shown in
Fig. 2. Generally, the observer at the control centre receives the
measured signal from the communication channel to estimate the given
states x̂(k) for the next time instant. The state feedback controller gain K
has to be obtained from the estimated states to generate control signals.
As shown in Fig. 2, the controller is derived from the observer, whose
form is given as:

x̂(k+ 1) = Fx̂(k) + G1u(k) + L(y(k) − ŷ(k) ),
ŷ(k) = Cx̂(k). (24)

Here, y(k) represents the output received by the observer after the
feedback network effect to estimate the state variables x̂(k) using
observer gain L and ŷ(k) represents the observed output. The control
input u(k) is defined as:

u(k) = − Kx̂(k). (25)

The state estimation error of the dynamical system, i.e. e(k) = x(k) −
x̂(k), where x(k) is obtained from the discretized systemmodel (22) and
x̂(k) is obtained from the observer equation in (24), which play an
essential role in deciding the performance of the NCS. The estimation
error of the dynamical system governed by the observer gain L should be
much faster than the closed-loop system response obtained from the
state feedback control gain K [75]. Ideally, it should be four to five times
faster for optimum system response. Physically, an observer is a com-
puter program; hence it is possible to increase the response speed so that
the estimated state converges to the true state. However, the error

dynamical system response is constrained by the noise and the sensi-
tivity issues present in the system.

As described in [76], there are two ways to model packet dropout in
the literature. In the first method, the dropouts follow a particular
probability distribution and a stochastic model like the Markovian jump
linear system is utilized to describe the NCS. The second approach is
deterministic, where packet dropouts can be specified in time average
sense or maximum value. An ADS with a rate constraint on the deter-
ministic events i.e. effective packet transmission [77] represents this
approach, based on the CQLF approach. Thus, the packet dropouts in
both the feedback and forward path are considered as events; hence the
NCS can be considered as a discrete time switched system. Here, the
switched system means the hybrid dynamical system, having a finite
number of subsystems, which are modelled using different packet
transmission scenarios in both the feedback and forward path of the
NCS. A logical rule is used to facilitate switching between the sub-
systems. The switched system stability studies with arbitrary switching
signals have been performed here as per [78,79]. As shown in [80], the
switched system has to be modelled so that the controller and observer
use the previously transmitted information to stabilize the system and
estimate the system states, respectively. A time-driven observer is uti-
lized to design a state feedback controller (25), as ADS under random
packet dropouts as given in [68] with certain assumptions as follows:

• The data packets are time-stamped, containing the information of the
sampling instant when it is sampled. As given in IEEE Standard
1815–2012 [63], the DNP3 protocol supports data time-stamping,
aiding the utilities to collect historical data.

• The sensor clock is considered as the reference. For load frequency
control, the PMU clock can be considered.

• Both the controller and actuator are time driven.

The packet transmission from the controller to the actuator (in the
forward path) and sensor to the observer (in the feedback path) is shown
in Fig. 1 and Fig. 2, respectively. We have considered the FDI attack in
the governor input of the primary control loop, input of the EV strategy
and by manipulating the output of the demand response, to simulate a
realistic scenario of NCS under cyber-attack. The aim of this paper is to

Fig. 2. Schematic of the observer-based controller for the decentralized load frequency control system. The packet drops at feedback and feedforward are also shown
in the schematic, which helps obtain the derivations of the switched system model for stability analysis.

D.K. Panda et al.
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design a robust control strategy so that it can ensure the stability even
with an FDI attack and high percentage of packet dropout, which are
validated by credible Monte Carlo simulations. It is assumed that two
switches, i.e. s1 and s2 respectively, can represent the network in the
feedback and forward path of the control loop. Depending on the switch
position, system output y(k) and control input u(k) at time instant k can
be modelled using Boolean variables, s1(s1),s2(s2), which is represented
as:

s1 : y(k) = y(k) for effective transmission
s1 : y(k) = y(k − 1) for ineffective transmission
s2 : u(k) = u(k) = − Kx̂(k) for effective transmission
s2 : u(k) = u(k − 1) = − Kx̂(k − 1) for ineffective transmission

⎫
⎪⎪⎬

⎪⎪⎭

,

(26)

where, s1(s1) represents the close (open) position of the switch s1 in the
feedback path and s2(s2) represents the close (open) position of the
switch s2 in the forward path. As per Boolean switch configuration (26),
four possible subsystems can be formulated as an ADS with the Boolean
combinations (s1, s2), (s1, s2), (s1, s2), (s1, s2). The resulting NCS from
these combinations is represented as an ADS. It has a rate constraint (r)
using the subsystems represented by Φσ(k), σ(k) = 1,2, 3,4 as:

z(k+ 1) = Φσ(k)z(k) + Γσ(k)η(k), σ(k) = 1, 2,3, 4
ỹz(k) = C̃z(k),

(27)

where, z(k),η(k) represents the augmented system states, input states,
and ỹ, C̃ represents the output, output matrix of the subsystems. The
stability of the state estimation error for the switched system (27)
deploying a Luenberger observer, is obtained by finding a CQLF using
LMIs [81,82]. In the following subsection, subsystems of the switched
systems are derived for different switching conditions.

3.1. Case 1: no packet drop condition

As per the switching condition {s1, s2}, the system output and control
input is represented using (26) as:

y(k) = y(k) = Cx(k) + Dn(k),
u(k) = u(k) = − Kx̂(k). (28)

The state estimation error e(k) is represented as:

e(k) = x(k) − x̂(k). (29)

From the discrete-time systems in (22), and substituting the esti-
mation error e(k) in (29) we can write:

x(k+1) = (F − G1K)x(k)+G1Κe(k)+G2w(k). (30)

Similarly, we can write the discrete-time system at time instant (k −
1) as:

x(k) = Fx(k − 1)+G1u(k − 1)+G2w(k − 1). (31)

The corresponding state estimation error is derived as:

e(k+1)=x(k+1)− x̂(k+1)
⇒e(k+1)=[Fx(k)+G1u(k)+G2w(k)]− [Fx̂(k)+G1u(k)+L(y(k)− ŷ(k))]
⇒e(k+1)=[Fx(k)+G1u(k)+G2w(k)]− [Fx̂(k)+G1u(k)+L(y(k)− Cx̂(k))]
⇒e(k+1)=[Fx(k)+G2w(k)]− [Fx̂(k)+L(Cx(k)+Dn(k)− Cx̂(k))]
⇒e(k+1)=[ Fx(k)+G2w(k)]− [F( x(k)− e(k))+L(Ce(k)+Dn(k))]
⇒e(k+1)=[F− LC]e(k)+G2w(k)− LDn(k).

(32)

Similarly (28), we can write u(k) as:

u(k) = − Kx(k)+Ke(k). (33)

Now, let us define the augmented states as:
z = [ x(k) x(k − 1) e(k) u(k − 1) ]T and η(k) = [w(k) w(k − 1)

n(k)n(k − 1) ]T ..
The NCS (27) can be formulated using (30)–(33) as:

z(k+1)=Φ1z(k)+Γ1η(k)

=

⎡

⎢
⎢
⎣

F − G1K 0 G1K 0
0 F 0 G1
0 0 F − LC 0
− K 0 K 0

⎤

⎥
⎥
⎦z(k)+

⎡

⎢
⎢
⎣

G2 0 0 0
0 G2 0 0
G2 0 − LD 0
0 0 0 0

⎤

⎥
⎥
⎦η(k).

(34)

3.2. Case 2: packet drop in the feedback path

Under this condition, i.e.{s1, s2} the system output becomes:

y(k) = y(k − 1) = Cx(k − 1)+Dn(k − 1). (35)

The terms x(k+ 1),x(k), u(k) will remain the same as given in (30),
(31) and (33) respectively. The estimation error e(k+ 1) can be written
as:

Using (30), (31), (33), (36), the matrix Φ2 and Γ2 in (27) can be
written from the augmented states as:

Φ2 =

⎡

⎢
⎢
⎣

F − G1K 0 G1K 0
0 F 0 G1
LC − LC F − LC 0
− K 0 K 0

⎤

⎥
⎥
⎦,Γ2 =

⎡

⎢
⎢
⎣

G2 0 0 0
0 G2 0 0
G2 0 0 − LD
0 0 0 0

⎤

⎥
⎥
⎦.

(37)

3.3. Case 3: packet drop in the feedforward path

For {s1, s2}, i.e. packet drop occurring in the forward path only, we
get:

u(k) = u(k − 1). (38)

Thus we can write x(k+ 1) from (22) as:

x(k+1) = Fx(k)+G1u(k − 1)+G2w(k). (39)

The term x(k) will remain the same as given in (31). The estimation
error e(k+ 1) can be written as:

⇒e(k+ 1) = [Fx(k) + G1u(k) + G2w(k) ] − [Fx̂(k) + G1u(k) + L(Cx(k − 1) + Dn(k − 1) − Cx̂(k) ) ]
⇒e(k+ 1) = Fe(k) + LCx̂(k) − LCx(k − 1) − LDn(k − 1) + G2w(k)
⇒e(k+ 1) = Fe(k) + LC[x(k) − e(k) ] − LCx(k − 1) − LDn(k − 1) + G2w(k)
⇒e(k+ 1) = [LC]x(k) + [F − LC]e(k) − LCx(k − 1) − LDn(k − 1) + G2w(k).

(36)
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Using (31), (40) the matrix Φ3 and Γ3 in (27) can be written from the
augmented states as:

Φ3 =

⎡

⎢
⎢
⎣

F 0 0 G1
0 F 0 G1
G1K 0 F − G1K − LC G1
0 0 0 I

⎤

⎥
⎥
⎦,Γ3 =

⎡

⎢
⎢
⎣

G2 0 0 0
0 G2 0 0
G2 0 − LD 0
0 0 0 0

⎤

⎥
⎥
⎦.

(41)

3.4. Case 4: packet drop in the feedback and feedforward path

If the packet drop occurs in both the sides (feedback and forward
path) of the control loop, i.e. {s1, s2}, the terms x(k+ 1),x(k), u(k) will
remain the same as in the previous case. The estimation error e(k+ 1)
can be written as:

Using, (31), (38), (39), and (42), the matrix Φ4 and Γ4 in (27) can be
written from the augmented states as follows:

Φ4 =

⎡

⎢
⎢
⎣

F 0 0 G1
0 F 0 G1

LC+ G1K − LC F − G1K − LC G1
0 0 0 I

⎤

⎥
⎥
⎦,Γ4

=

⎡

⎢
⎢
⎣

G2 0 0 0
0 G2 0 0
G2 0 0 − LD
0 0 0 0

⎤

⎥
⎥
⎦. (43)

Therefore, the output of the subsystems can be written as:

ỹ(k) = C̃z(k) = [C 0 0 0 ]z(k). (44)

4. Stability analysis of NCS using ADS and joint controller/
observer design

The procedure aims to find the controller gain for the NCS defined in
(27) ensuring guaranteed exponential stability for the system, based on
the bounded H∞ norm. We assume that the fraction of the effective data
packet transmission be r1 and r2 across the switches s1 and s2 respec-
tively. Here, the switches s1 and s2 practically represents the situation
where the data is transmitted from the PMU measurement to the control
centre and load centre for the generation and demand response control
system. Let us assume r1 = r2 = r (considering same network settings in

the forward and feedback path), the effective transmission probabilities
R1,R2,R3,R4 from the sensor to the actuator, for each of the following
four cases, can be computed as:

s1, s2 : R1 = r2, s1, s2 : R2 = (1 − r)r,
s1, s2 : R3 = r(1 − r), s1, s2 : R4 = (1 − r)(1 − r). (45)

Then as per [55], the NCS defined in (27) is exponentially stable
under packet drop if the following inequality is satisfied:

αR1
1 αR2

2 αR3
3 αR4

4 > α > 1 : α1,α2, α3, α4 ∈ ℝ+. (46)

Hence, we can derive the following theorem:

Theorem 1. The NCS (27) is exponentially stable with decay rate α > 0
under random packet drop rate driven by arbitrary switching signal and
external disturbances if there exists a CQLF, i.e. P = PT > 0 and state
feedback controller and observer gains {K, L} with the satisfaction of H∞

norm bound γ > 0 by satisfying the following LMIs:
⎡

⎢
⎢
⎣

C̃TC̃ − α− 2
σ P 0 ΦT

σ

0 − γ2I ΓT
σ

Φσ Γσ − Q

⎤

⎥
⎥
⎦ < 0, ∀σ = 1,2, 3,4, (47)

where P− 1 = Q, implying:

PQ = I. (48)

Proof. :
As shown in [55], the NCS (27) will be exponentially stable at

transmission rate r, if (46) is satisfied and the discrete-time Lyapunov
function satisfies the following inequality:

ΔV(k) = V(z(k+1) ) − V(z(k) ) <
(
α− 2

σ − 1
)
V(z(k) ), (49)

while considering the Lyapunov function V(z(k) ) = zT(k)Pz(k). In order
to satisfy theH∞ norm bound γ for the NCS (27), the following inequality
has to be satisfied [83]:

V(z(k+1) ) − V(z(k) )+ ỹT(k)ỹ(k) − γ2ηT(k)η(k) < 0. (50)

Here, V(z(k+ 1) ) and V(z(k) ) should satisfy the inequality condition
for the exponential stability of the switched system. Substituting
V(z(k) ) = zT(k)Pz(k) in (27), to satisfy the relation (49), we can write
the following inequality:

e(k+ 1) = x(k+ 1) − x̂(k+ 1)
⇒e(k+ 1) = [Fx(k) + G1u(k − 1) + G2w(k) ] − [F[x(k) − e(k) ] + G1{ − K[x(k) − e(k) ] } + L(Cx(k) + Dn(k) − Cx̂(k) ) ]
⇒e(k+ 1) = [Fx(k) + G1u(k − 1) + G2w(k) ] − [F[x(k) − e(k) ] + G1{ − K[x(k) − e(k) ] } + L(Ce(k) + Dn(k) ) ]
⇒e(k+ 1) = [Fx(k) + G1u(k − 1) + G2w(k) ] − [[F − G1K]x(k) + [ − F+ G1K+ LC]e(k) + [LD]n(k) ]
⇒e(k+ 1) = [ F − F+ G1K]x(k) + [F − G1K − LC]e(k) + G2w(k) − LDn(k) + G1u(k − 1)
⇒e(k+ 1) = G1Kx(k) + [F − G1K − LC]e(k) + G1u(k − 1) + G2w(k) − LDn(k).

(40)

⇒e(k+ 1) = [Fx(k) + G1u(k − 1) + G2w(k) ] − [Fx̂(k) + G1u(k) + L(y(k − 1) − Cx̂(k) ) ]
⇒e(k+ 1) = [Fx(k) + G1u(k − 1) + G2w(k) ] − [F{x(k) − e(k) } + G1{ − K[x(k) − e(k) ] } + L(y(k − 1) − C{x(k) − e(k) } ) ]
⇒e(k+ 1) = [Fx(k) + G1u(k − 1) + G2w(k) ] − [{F − LC − G1K}x(k) + { − F+ G1K+ LC}e(k) + Ly(k − 1) ]
⇒e(k+ 1) = [ F − F+ LC+ G1K]x(k) + [F − G1K − LC]e(k) + G1u(k − 1) − Ly(k − 1) + G2w(k)
⇒e(k+ 1) = [LC+ G1K]x(k) + [F − G1K − LC]e(k) + G1u(k − 1) − Ly(k − 1) + G2w(k)
⇒e(k+ 1) = [LC+ G1K]x(k) + [F − G1K − LC]e(k) + G1u(k − 1) − L[Cx(k − 1) + Dn(k − 1) ] + G2w(k)
⇒e(k+ 1) = [LC+ G1K]x(k) + [F − G1K − LC]e(k) + G1u(k − 1) − LCx(k − 1) − LDn(k − 1) + G2w(k).

(42)
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[
zT(k) ηT(k)

]
[

ΦT
σPΦσ − α− 2

σ P ΦT
σPΓσ

ΓT
σPΦσ ΓT

σPΓσ

][
z(k)
η(k)

]

< 0. (51)

For satisfying the H∞ norm bound of the output to the disturbance
input as per (50), the following inequality holds:

ỹT(k)ỹ(k) − γ2ηT(k)η(k) ≤ 0. (52)

Using the relation (44), in the above inequality yields:

[
zT(k) ηT(k)

]
[
C̃TC̃ 0
0 − γ2I

][
z(k)
η(k)

]

≤ 0. (53)

Considering the strict inequalities in (51) and (53), we can write:

[
zT(k) ηT(k)

]
[

ΦT
σPΦσ − α− 2

σ P+ C̃TC̃ ΦT
σPΓσ

ΓT
σPΦσ ΓT

σPΓσ − γ2I

][
z(k)
η(k)

]

< 0,

(54)

which implies:
[

ΦT
σPΦσ − α− 2

σ P+ C̃TC̃ ΦT
σPΓσ

ΓT
σPΦσ ΓT

σPΓσ − γ2I

]

< 0. (55)

Thus, we can write (55) as:
[
− α− 2

σ P+ C̃TC̃ 0
0 − γ2I

]

+

[
ΦT

σ

ΓT
σ

]

P[Φσ Γσ ] < 0. (56)

Taking Schur complement of (56), we can write:
⎡

⎢
⎢
⎣

C̃TC̃ − α− 2
σ P 0 ΦT

σ

0 − γ2I ΓT
σ

Φσ Γσ − Q

⎤

⎥
⎥
⎦ < 0, (57)

where, P− 1 = Q, thus proving (47) and (48). □ The
error convergence due to the observed and current state depends on the
boundedness of noise and disturbance vector stated for the linear
switched system [81]. Hence, load disturbance and nature of FDI attack
is considered to be pulsed. Pulsed load disturbance can be considered
from the naval shipboard power system [84] or a fast DC voltage electric
vehicle charger [85].

Load demand is a pulse signal defined as:

ΔPL =
{
0.01 10 < t < 100,
0 otherwise. (58)

The disturbance is considered as an FDI attack in a similar pattern as
given in [43] as:

dFDI(t) =

⎧
⎨

⎩

0.04 t > 100
0.09 120 < t < 150
0 t > 150.

(59)

The FDI attack modifies the state variables like governor input Pgi (t)
or the input signal to the EV, PE(t) as given in [43]. As far as the DR is
concerned, the FDI attack modifies the state variable x1(t) which is
indirectly affected by the attack on the data transfer between the load
aggregator and the consumers.

The feasibility of the problem in Theorem 1 is nonconvex due to the
matrix equality constraints as shown in (47) and (48). As shown in [86],
this type of problem is NP-hard. The cone complementary linearization
(CCL) algorithm efficiency is relatively higher as compared to other
methods [87] while solving the LMIs with nonconvex constraints. This
algorithm has also been used to find the state feedback controller for the
NCS considering the network delay and packet dropout in [88]. The CCL

algorithm states that the LMI
[
P I
I Q

]

≥ 0 is feasible in the matrix

variables P ∈ ℝn > 0 and Q ∈ ℝn > 0, then Tr(PQ) ≥ n and at the opti-
mum Tr(PQ) = n iff PQ = I. Hence, in order to find the controller and
the observer gain for the switched system (27) using the CCL algorithm,
the equality constraints (48) are cast in the following LMI form:
[
P I
I Q

]

≥ 0. (60)

Hence, in order to find the observer and controller gain, the
following trace minimization problem has to be solved:

minTr(PQ) (61)

subjected to (46), (47) and (60).
The algorithm is summarized as follows:

Algorithm. : Cone Complementary Linearization (CCL).
Initialize: Select the number of iterations N and switching
rate r and exponential convergence rate {αi}

4
i=1. Set j = 0

if
(
∑4

i=1rilog(αi) > 0
)

Find{P0,Q0} solving (47) and (60)
for j= 0, N do

min
P,Q

Tr
(
PjQ+QjP

)
s.t. (47) and (60)

Pj+1←P, Qj+1←Q

Fig. 3. Convergence of the CCL algorithm when it is run for 100 iterations and time taken for all the system configurations.

D.K. Panda et al.



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 186 (2024) 115323

11

end
end

5. Results and discussions

5.1. Convergence and computational time analysis

The joint observer and controller for the NCS are found numerically
by solving the above CCL algorithm in MATLAB using the YALMIP
toolbox [89]. The semidefinite optimization SeDuMi solver [90] is uti-
lized in the YALMIP toolbox to implement the CCL algorithm, which
solves (61), satisfying (46), (47) and (60). The solver can be initialized
with the settings solver = 'sedumi' sedumi.eps = 10− 12. The value

of the data transmission rate (r) and exponential convergence rate, (αi)

as defined in, (46) is initialized as 0.1 and {1.50,1.25,1.25,1.1}
respectively, which means the system is tuned at a 90 % packet drop
rate. The activation of the packet drop condition is executed randomly.
We employ a uniform random number generator to produce a random
value within the range of 0 to 1, which is subsequently compared with
our predetermined threshold of 0.9. If the generated value exceeds 0.9,
data transmission occurs from both the feedforward and feedback paths.
Otherwise, the control input u(t) and output y(t) retain their values from
the previous time step, as outlined in eq. (26). The algorithmic
convergence is tested on the LFC model with different DR, and EV
configuration is shown in Fig. 3.

The algorithm converges to obtain (P,Q,L,K, γ) in 100 iterations. We
observe that the algorithm convergence rate is quite fast, as it requires

Fig. 4. Stable and unstable system response for different sampling time for different LFC system configurations.

Fig. 5. Eigenvalue shifting of the discrete-time system sampled at different sampling intervals for different LFC system configurations.
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around 20 iterations to settle down. The higher-order dynamics pro-
vided due to the DR time delay increases the total convergence time, as
shown in Fig. 3. The total iteration time is highest for LFC, DR, and EV
combined, as the system order is relatively high. Hence, we can say that
the total iteration time depends linearly upon the order of the system. It
is noted that the present work considers the CCL algorithm, a well-
known technique for solving LMIs (57) with strict and nonconvex con-
straints, as a sequential optimization problem as reported in
[59,67,87,91]. As shown in Fig. 3, the CCL algorithm ensures the
convergence of the error Tr(PkQk+1 +QkPk+1) − 2n for all the system
configurations, i.e. at a minimum value when t→∞ while satisfying the
LMIs (57). However, we observe an unequal converged CCL error in
Fig. 3, which can be attributed to the difference in system configuration.

5.2. System stability based on the sampling time

The system response of the different system configurations with the
proposed state feedback controller and observer for different sampling
time Ts is shown in Fig. 4. We observe a spike in the frequency response
at a time interval 10 < t < 200, which is due to the bounded load
disturbance and the FDI attack as mentioned in (58) and (59). The
maximum frequency fluctuations are encountered with LFC with DR
configuration, being marginally >0.01 p.u. (per-unit). The maximum
frequency fluctuations

{
Δfi

}

max are comparable to the one obtained in
[37]. Moreover, it is also in line with the IEEE smart grid industrial
standards of interoperability [92].

The sampling time Ts is varied at the rate of 0.01 s to find the dis-
cretized system as per the relation given in (23), from which the LMI is
solved to obtain the controller and observer gains. A low value of Ts
utilizes that higher communication bandwidth, while a higher value can
make the plant unstable with the obtained observer and controller gains.
Hence, a threshold margin of the sampling time is obtained, beyond
which, if increased, can make the LFC system unstable, as shown in

Fig. 4. We found the threshold on Ts from the simulations but a more
rigorous analysis on the choice of sampling time can be explored in the
future using analytical methods. As per our analysis, the sampling time
Ts for instability is least when LFC and EV/DR is utilized and highest for
LFC with decentralized EV configuration with and without the inclusion
of DR. The system response in Fig. 4 suggests that the LFC with DR and
decentralized EV configuration utilizes minimum communication
bandwidth for stability scenario while ensuring system stability.

The integration of EVs into LFC follows the configuration outlined in
[33]. Despite appearing as an additional transfer function in Fig. 1, it is
utilized in two distinct configurations as presented in eq. (17). However,
the impact can be summarized as follows:

• In the decentralized EV configuration, the sampling time required for
controller design is observed to be the largest, as shown in Fig. 4.
Higher sampling time subsequently reduces the communication
bandwidth, necessary for implementing the control scheme.

• Notably, the decentralized EV configuration exhibits the lowest
maximum frequency fluctuation during FDI attacks. This suggests
that when EVs are integrated into the LFC loop as decentralized
energy sources, they enhance system stabilization in the presence of
FDI attacks and packet drop rates.

The above inference is supported in Fig. 5, with the given eigenvalue
pattern of F at different sampling times for different LFC, DR and EV
configurations. LFC has an eigenvalue at the origin, a real eigenvalue
and a pair of complex eigenvalue pairs. The eigenvalue at the origin is
responsible for making the steady-state value of Δfi to zero. DR state
variable adds another pair of complex eigenvalue pair, while a coupled
EV configuration adds another eigenvalue on the real axis while pulling
the resultant complex eigenvalue pair closer to the origin. With the
decentralized EV configuration, the eigenvalue located on the real axis is
not affected. However, the complex pairs of eigenvalues move away

Fig. 6. Eigenvalue configuration of the modelled switched systems at different sampling times for different system configurations.
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from the origin, resulting in stability at a higher sampling rate and faster
system performance in terms of settling time. A similar phenomenon is
observed in LFC and DR with different EV combinations, centralized and
decentralized, where the complex and real poles are farther away from
the origin. Controller designed on the LFC system where eigenvalues are
far away from the origin gives faster response with a smaller peak
overshoot.

The degradation in stability for all systems under varying sampling
time is observed in Fig. 5. It is seen that the eigenvalues of all the systems
are shifting towards higher frequencies and lower damping region, i.e.
shifted away from the stable region when Ts is increasing. Moreover,
when DR is considered in the LFC and the combination of LFC and EV,
the number of complex conjugate poles increases (i.e. two pairs of
complex conjugate poles); thus, the number of non-dominant poles are
increasing. Therefore, it will be challenging to design a controller based
on dominant pole placement for these systems [93,94]. However, a
deeper insight into system characteristics is obtained by incorporating
the controller and observer gains to consider the eigenvalues of {Φi}

4
i=1

for all the system configurations, as shown in Fig. 6. We observe that the
eigenvalues or poles of each sub-system lie within the unit circle at
different sampling times. However, the poles are shifting towards higher
frequencies and lower damping ratio region in the unit circle with an
increase in sampling time Ts.

When packet drop occurs in both feedback and forward path, i.e. Φ4,
we observe that the poles are more divergent in nature with higher Ts
than other sub-systems for all system configurations. In the case of LFC
with DR and both DR and EV configuration, the eigenvalues of sub-
systems under no packet drop are dominant with an increase in Ts.
However, for the LFC with EV with centralized configuration Φ4 pro-
vides poles with dominant nature with an increase in Ts. The switched
systems can be unstable or stable under certain switching signals be-
tween all the sub-systems, even though the sub-systems are stable,

unstable or a combination of both respectively [79,95,96]. This phe-
nomenon can be attributed to the fact that the system stability depends
on the dynamics of each sub-system and the properties of the switching
signal (e.g. controlled switching, arbitrary switching). The switched
system stability under controlled or restricted switching using dwell-
time and average dwell-time [97], piecewise and multiple Lyapunov
function [79] approaches have also been discussed. For example, Hes-
panha [98] has proposed that under the time-controlled class of
switching signals (i.e., trajectory independent), uniform asymptotic
stability of switched linear systems is equivalent to the exponential
stability, and in [97], it has been shown that under slow switching, the
switched-system is exponentially stable. For ensuring the stability of the
switched systems with both stable and unstable sub-systems, an average
dwell time approach has been proposed in [99], where the activation
time of unstable sub-systems is chosen smaller than the stable sub-
systems. However, the approaches proposed in [97,99] are not valid
for switched systems under arbitrary switching since these methods
suggest dwelling in stable sub-systems for a considerable period. The
existence of CQLF using the LMI approach has been presented for the
switched systems under arbitrary switching in [56,58,59,67,68,96]. In
the present work, NCS under packet drop has been modelled as switched
systems using the ADS approach, where the aim is to obtain observer and
state feedback controller gains with CQLF and bounded H∞ norm such
that the LMIs (47) are satisfied, ensuring exponential stability for the
NCS, subjected to packet drop modelled as switched systems under
arbitrary switching. Therefore, it is important to select appropriate Ts for
the discrete time dynamical systems such that the NCS is exponentially
stable, since the sub-systems are going towards instability region with
the increasing Ts; thus leading to an unstable behavior of the NCS (27)
under arbitrary switching. Hence, we can infer that the selection of Ts
should be smaller for the stable sub-systems to achieve overall stability
of the NCS, modelled as switched systems under arbitrary switching. The

Fig. 7. True/observed states and estimation error for the LFC under bounded disturbance and noise obtained after 100 Monte Carlo simulations at 99% random
packet drop rate.
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selection of Ts for the NCS stability analysis under arbitrary packet drop
will be analytically explored in the future. Although in many contem-
porary studies on NCS based on random and fixed delays, researchers
have considered the Lyapunov-Krasovskii functional (LKF) for stability
analysis which is fundamentally different from the approach reported in
this paper. Here, the focus is to consider Pade approximation of the fixed
delay within a switched system framework, needed to model the packet
drops in the NCS.

With high packet drop rates in feedback and forward path, we can
expect the switched system Φ4 to be activated most of the time. Hence
the poles of Φ4 will dominate the dynamics of the overall system. As we
saw in Fig. 5, we also see a similar pattern for eigenvalues of {Φi}

4
i=1 in

Fig. 6, where they move away from the origin with an increase in
sampling time. In a decentralized EV system with LFC, the eigenvalue
movement is away from the real and imaginary axis. However, for LFC
systems with DR, the eigenvalues drift away along the imaginary axis
only. We observe in the case of decentralized EV systems with LFC, the
complex conjugate eigenvalue pairs are further apart, from the origin, as
compared to the eigenvalues in other system configurations. As a result,
we see a better-quality response from the networked system.

5.3. State estimation and analysis under bounded noise and disturbance

The system response with the designed state feedback controller and
observer gain obtained after solving the LMI (57) using the CCL algo-
rithm is shown in Fig. 7, Fig. 8, Fig. 9, Fig. 10, Fig. 11 and Fig. 12. The
system response is obtained under bounded noise and disturbance,
which is defined as follows:

ΔPL =
{
0.01 100 < t < 200
0 otherwise, (62)

and

n(t) =
{
0.01 300 < t < 400
0 otherwise. (63)

The FDI attack as a disturbance is not considered in this case since it
was studied in the previous section. Pulsed load disturbance is consid-
ered for the simulation analysis. The noise represents the error in
measuring variables in the power control centre and EV aggregator
centre for those configurations where EV was deployed. The nature of
the disturbance in (62)–(63) is such that it is L2-norm bounded so that
the controller and observer design is valid for linear switched system
[81]. The system simulation is performed at a 99 % packet drop rate,
even though the controller and observer gains were obtained at a 90 %
packet drop rate. The simulation strategy was deployed to analyse the
state estimation error and system sensitivity to higher packet drop rates
and controller validation. The sampling time Ts considered here is the
one described in the previous section.

We observe a common trend for all the system configuration that the
estimation error due to disturbance input is higher than the input load
disturbance. Moreover, we also observe that the settling time and un-
certainty of the estimated system state, when the bounded noise was
applied, is relatively higher than the settling time when the disturbance
was applied. We observe for the states

{
Δfi,ΔPThi ,ΔPgi

}
, the settling

time for the estimation error is close to 200 s and for βi
∫

Δfidt it is
around 400 s even though the noise duration was for 100 s as defined in
(63). However, we observe that the settling time for the state βi

∫
Δfidt is

the highest for the LFC system in Fig. 7 as compared to other states. The
settling time is lower when the input disturbance ΔPL is applied. Hence,
we observe a steep jump in βi

∫
Δfidt value when the noise is applied. The

finite uncertainty in the estimation error plot eβi
∫

Δfidt
during the time

Fig. 8. True/observed states and estimation error for LFC with DR under bounded noise and disturbance obtained after 100 Monte Carlo system simulations at 99%
random packet drop rate.
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Fig. 9. True/observed states for LFC with centralized EV configuration under bounded noise and disturbance obtained after 100 Monte Carlo simulations at 99%
random packet drop rate.

Fig. 10. True/observed states for LFC with decentralized EV configuration under bounded noise and disturbance obtained after 100 Monte Carlo simulations at 99%
random packet drop rate.
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Fig. 11. True and observed states for LFC with demand response and centralized EV configuration obtained after 100 Monte Carlo simulations at 99% packet
drop rate.

Fig. 12. True and observed states for LFC with demand response and decentralized EV configuration obtained after 100 Monte Carlo simulations at 99% packet
drop rate.
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200 < t < 300, even when no disturbance or noise is present in the
system, confirms that the state was not steady during that period.
Physically, the secondary control feedback for frequency deviation and
its observer estimated value is quite sensitive to system noise. We
observe higher uncertainty in the state estimation error for the
remaining states when it is settling down or reaching the peak under
persistent noise in the given time duration.

We observe in Fig. 8 that the response of the states
{

Δfi,ΔPThi ,ΔPgi
}

and estimation error is similar to what we observed for the LFC system
with a similar settling time. However, the settling time for the state
estimation error βi

∫
Δfidt is much lower than the previous case. More-

over, the settling time for that state for input disturbance is also lower,
which can be attributed to the demand response contribution, where the
requirement of secondary control input becomes lesser than the same
without it. However, we observe uncertainty in the error response of the
state βi

∫
Δfidt at the time 500 < t < 600, even though no disturbance or

noise is present during that interval. This phenomenon is attributed due
to the delay between the aggregator and consumer response which also
reflects on the estimation error of the state {X1,X2} and βi

∫
Δfidt during

the interval 500 < t < 600.
We observe in Fig. 9 that the estimation error of the states

{
Δfi,ΔPThi ,ΔPgi

}
is quite similar as compared to the previous cases for

the LFC with centralized EV configuration. However, we observe the
uncertainty in the estimated value of the state ΔPThi during the time
interval 300 < t < 500. The settling time for βi

∫
Δfidt is higher for the

LFC system, which we observed in Fig. 7 due to the uncertainty of its
estimation error. Unlike the other states, the effect of load disturbance is
higher for the state ΔPE than the measurement noise, which is evident by
comparing its peak. However, the settling time of the state ΔPE is much
faster as compared to other system states.

As compared to the previous responses, the state estimation error is
not settling down to zero, as shown in Fig. 10 for the LFC system with a
decentralized EV configuration. However, the mean of the estimation
error is almost settling to zero for all the states. Higher uncertainty is
caused for this system due to the fact that the poles are far apart from the
origin, as shown in the eigenvalue plot for the discretized system in

Fig. 5. An increase in any parameter moves the eigenvalues of the closed-
loop system closer to the unit circle, making the system sensitive to
parametric variations. We observe that the oscillations due to mea-
surement noise are much higher, as compared to system disturbances.
However, the peak of the state βi

∫
Δfidt is much lower as compared to

the previous cases.
For the LFC, demand response, and EV configuration, the estimation

error is similar for centralized and decentralized configuration. How-
ever, for βi

∫
Δfidt, the peak value is lower for the decentralized

configuration. In the centralized EV configuration, βi
∫

Δfidt settles
faster when there is an input disturbance, but the settling time is similar
for the same state under a bounded noise scenario. We observe a higher
uncertainty for the estimation error of βi

∫
Δfidt in the decentralized

scenario, which may be due to the higher system sensitivity to para-
metric variations. We observe the sensitivity in the wiggles found for the
mean state of {X1,X2} for the decentralized EV scenario. The wiggles are
also persistent when the noise and disturbance are not present in the
system. However, we do not see any uncertainty or wiggles for {X1,X2}

during the input disturbance period for the centralized EV configuration.
However, the trend is opposite for the state ΔPE, where we find higher
uncertainty for the system with centralized EV configuration when the
bounded noise is present in the system. Moreover, we also observe an
improvement in the settling time for the state ΔPE for the decentralized
EV configuration. However, the system response and estimation error
are similar for ΔPE during the interval when input disturbance is applied
to the system.

5.4. State estimation and analysis under FDI attack and load disturbance

In Fig. 13, we observe that all the states are estimated perfectly by
the observer, tracking in the given time interval. However, during the
period when the FDI attack and load disturbance occurs, the real and the
observed states vary. We observe that the state β

∫
Δfidt is estimated

perfectly despite the FDI attack and load disturbance, which may be due
to the relative magnitude of the attack and the estimated states being
higher than the remaining states. When the FDI attack and load

Fig. 13. Observer response for LFC system with mean and uncertainty calculated over 100 Monte Carlo simulations.
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disturbance occurs,
{

ΔPgi ,ΔPmi

}
increases for a while before it settles

down to zero. It suggests that FDI attack on the input tends to increase
the generation than what is required from the plants.

The impact of the FDI attack on
{

ΔPgi ,ΔPmi

}
is much more pro-

nounced for LFC and DR, as seen in Fig. 14, as the peak value is higher
than observed in the previous case. However, the estimated states
{

ΔP̂gi ,ΔP̂mi

}
during FDI attack is negative maximum of the original

state variables observed. For the DR state variables {X1,X2}, we also
observe a similar pattern, where estimation error is large when the FDI
attack occurs with the underestimation of both the parameters.

When we incorporate a centralized EV configuration with LFC,
positive power output from the aggregator is expected as shown in

Fig. 15, which means either the EVs have to be in discharge mode during
that period or energy has to be provided from the storage devices owned
by the aggregators. However, the peaks of

{
ΔPgi ,ΔPmi

}
during load

disturbance and FDI attack are much lower than in the previous case
suggesting that the centralized EV provides better regulation of power
plants during the grid disturbance as compared to DR. The EV state ΔPE
is almost correctly estimated even during the FDI attack.

However, when EV is introduced in a decentralized configuration in
the LFC loop, ΔPThi is better estimated by the observer, as shown in
Fig. 16. Moreover, the peak of

{
ΔPgi ,ΔPmi

}
during load disturbance and

FDI attack is much lower as compared to all the previous cases. We also
observe a reduced ΔPE requirement in the decentralized strategy as

Fig. 14. Observer response for LFC and DR system configuration with mean and uncertainty calculated over 100 Monte Carlo simulations.

Fig. 15. Observer response for LFC and centralized EV system configuration with mean and uncertainty calculated over 100 Monte Carlo simulations.
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compared to the centralized strategy of the EV, which is mainly due to
the introduction of the eigenvalues away from the origin. There is also a
reduction of β

∫
Δfidt required to stabilize the frequency of the grid.

When all the LFC, DR and EV configuration is combined, we observe
a higher peak for the state

{
ΔPgi ,ΔPmi

}
. However, the secondary fre-

quency feedback β
∫

Δfidt required is much lower during the distur-
bance. Similarly, we observe lower ΔPE requirement from the
aggregator when the EV works in a decentralized configuration
compared to the centralized one (Figs. 17 and 18). The estimation of the
EV power is much better than the other state variables, during the FDI
attack and load disturbance.

5.5. System response with different packet drop rate

As we increase the packet drop rate from 90 to 95%, we observe a
marginal difference in the frequency fluctuation response shown in
Fig. 19. However, as we increase it to 99%, most system configurations
remain stable except when EV is utilized in a decentralized fashion in
conjunction with the classical LFC. We observe sustained oscillations in

that case, which seems to increase with time along with higher uncer-
tainty. The higher oscillations suggest that the system is fragile with high
sensitivity to the system parameters like packet drop rates. We also
observe a higher uncertainty in the frequency fluctuation due to random
packet drop rates for LFC, DR and EV configurations. When the packet-
drop rates increase to 99.9%, the LFC with decentralized EV configu-
ration becomes unstable with or without the inclusion of demand
response. However, when the EV configuration is centralized, we
observe sustained oscillations of lower magnitude than LFC and LFC
with DR configurations. The oscillations with LFC and LFC with DR have
higher uncertainty and seem to grow bigger with time (Fig. 19).

5.6. System response with various demand response time delays

As seen in Fig. 20, the system configuration of demand response with
LFC and LFC with centralized EV configuration is stable with an increase
in demand response time delay. However, the system is unstable when
decentralized EV configuration is used with the increase in time delay. In
Fig. 5 and Fig. 6, we observe that the eigenvalues move away from the
stability region in the decentralized EV operation. The eigenvalues tend

Fig. 16. Observer response for LFC and decentralized EV system configuration with mean and uncertainty calculated over 100 Monte Carlo simulations.

Fig. 17. Observer response for LFC, DR and centralized EV system configuration with mean and uncertainty calculated over 100 Monte Carlo simulations.
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to make the system fragile and sensitive to system parameters like the
DR time delay. We also observe from Fig. 21 that as the time delay Td of
the demand response increases, the eigenvalues move towards the unit
circle. Hence, due to switching behavior, these eigenvalues move out
from the stability region to render the system unstable.

5.7. System response and multivariate analysis including renewable
energy sources

As shown in Fig. 22, stochastic solar power output is passed through
a DC-DC converter and an interconnected inverter having time constant
of TI/C and TI respectively. Similarly, stochastic wind power from the
turbine is passed through a wind generator system having gain KWTG and
time constant TWTG. The stochastic model of solar and wind power is
similar to the gBm model and the system parameters are adopted from

[16]. Geometric Brownian motion is used for the solar irradiance (Φ
⌣
(t) )

and the Ornstein-Uhlenbeck (OU) Brownian motion model is utilized for
the wind speed (v) and load demand. The solar power (PPV) and wind
power (PW) is related to solar irradiance and wind speed as follows:

PPV = ηSΦ
⌣

(t){1 − 0.005(Ta +25) }, (64)

where, the parameters η = 10% is the conversion efficiency of the PV
cells, S = 4084m2 is the measured area of the PV array, Φ is measured in
kW/m2 which is the solar radiation of the PV cells and Ta = 25◦C is
considered as the ambient temperature:

PW(t) =

⎧
⎨

⎩

130 − 63v(t) + 9.1v2(t) − 0.3v3(t) ;4 < v(t) < 15 m
/
s

140+ 11v(t) − 0.36v2(t) ; 15 ≤ v(t) < 26 m
/
s

0 ; v(t) > 26 m/s.
(65)

The wind speed is considered between 0 and 30 m/s for the single

Fig. 18. Observer response for LFC, DR and decentralized EV system configuration with mean and uncertainty calculated over 100 Monte Carlo simulations.

Fig. 19. Frequency fluctuations for different system configurations with variation in the packet drop rates calculated for all LFC system configuration over 100 Monte
Carlo simulations.
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area. The rate and the drift for solar irradiation and parameters to
simulate Ornstein-Uhlenbeck process for the load demand and wind
velocity are obtained from [16] to generate the random input profiles for
solar irradiation. The gBm has been simulated in MATLAB using the

function gbm() in the Financial Toolbox. The mean and uncertainty of
the Monte Carlo simulations of the stochastic solar power, wind power
and load demand are shown in Fig. 23.

Let us introduce a variable kPRen that is equal to the renewable energy

Fig. 20. Frequency fluctuations for different demand response system configurations with variation in the packet drop rates calculated for the over 100 Monte Carlo
simulations.

Fig. 21. Configuration of the poles of different discrete systems with an increase in time delays due to demand response.

Fig. 22. Schematic of the stochastic renewable energy (solar and wind) and load demand used in the LFC configuration.
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utilization factor shown in Fig. 25. Thus, considering its positive and
negative oscillations, we consider the absolute value of the variable.
Hence, we can write:

PRen

PRen + ΔPThi
= |kPRen |⇒ΔPThi =

(
1 − |kPRen |
|kPRen |

)

PRen⇒ΔPThi

=

(
1

|kPRen |
− 1

)

PRen. (66)

It suggests when kPRen < 0 and kPRen > 1 then ΔPThi < 0. However,
when 0 < kPRen < 1, the ΔPThi > 0. Moreover, we also observe that a
smaller value |kPRen | will increase the thermal power output ΔPThi . We
observe in Fig. 25 that the fluctuation of |kPRen | is highest when LFC is
with the centralized EV configuration. It suggests, when renewable en-
ergy is used for LFC, the LFC with demand response and LFC with
centralized EV configuration, they tend to reduce the thermal power
output. The increase in thermal power output is observed only after
t > 600, for LFC and LFC with demand response. However, for the LFC
with decentralized EV configuration and LFC with demand response and

centralized EV configuration kPRen lies between 0 and 1 mainly after
t > 200. Moreover, initial fluctuation of |kPRen | is also lower as compared
to the last three cases. It suggests that the LFC with decentralized EV
configuration and LFC with demand response and centralized EV
configuration utilizes thermal power plant output more than other
configurations. However, for LFC with demand response and a decen-
tralized EV configuration, the |kPRen | > 1 maximum fluctuation is lower,
as compared to the LFC with decentralized EV configuration and LFC
with demand response and centralized EV configuration. The random
fluctuations in Fig. 25 can be explained with the help of the power
balance equation. Since the frequency fluctuation is close to zero, as
shown in Fig. 24, we can suggest that the power generation and demand
is almost balanced as:

ΔPThi + PRen + ΔPDR + ΔPEV ≈ ΔPL
⇒ΔPThi ≈ ΔPL − PRen − ΔPDR − ΔPEV .

(67)

Substituting the value of ΔPThi from (66) in (67), we obtain:

Fig. 23. Uncertainty and mean of the stochastic solar power, wind power and load demand after 500 Monte Carlo simulations.

Fig. 24. Frequency fluctuations for LFC and different fluctuations for the stochastic load demand and renewable energy with 500 Monte Carlo simulations.
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(
1

|kPRen |
− 1

)

PRen ≈ ΔPL − PRen − ΔPDR − ΔPEV ,

⇒ΔPL ≈
1

|kPRen |
PRen + ΔPDR + ΔPEV .

(68)

We observe that when 0 < kPRen < 1, PRen is highly utilized to meet
the load fluctuations. Thus, we can infer from (67) and (68) that if we
increase the higher renewable energy fluctuation, utilization leads to
higher thermal power output. A higher value of |kPRen | for the LFC system

suggests that the load is mainly met by thermal power since there is no
demand response and EV power, and it also explains the higher uncer-
tainty in the frequency fluctuation in Fig. 24. When LFC is utilized with
decentralized EV configuration and with demand response and
centralized EV configuration, we observe 0 < kPRen < 1 which suggests
that renewable energy is highly utilized for those configurations to meet
the load fluctuations. However, when EV is utilized in a decentralized
configuration, demand response and EV output are primarily utilized to
meet the load fluctuation due to the higher value of |kPRen | in this system

Fig. 25. Renewable energy utilization for different system configurations obtained after 500 Monte Carlo simulations of renewable energy source. The uncertainty is
considered at one standard deviation.

Fig. 26. Boxplot for the L1 norm, L2 norm and L∞ norm of frequency fluctuations for different system configurations.
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configuration. In our simulation studies in many cases, the frequency
fluctuation is quite small showing the efficacy of the LMI based robust
control design since without the analytical stability framework such
large disturbance could easily destabilize the LFC.

When renewable energy is introduced in the disturbance input, we
see a frequency fluctuation within a specific limit while satisfying the
requirement [92]. However, we observe that the uncertainty limit is low
due to the magnitude of FDI attack being much higher than the
renewable energy generation fluctuations. We also observe that due to
demand response, the uncertainty in the frequency fluctuations Δfi is
relatively low. The maximum fluctuations in frequency are lowest when
the decentralized configuration of EV is utilized with LFC.

The L1 norm, L2 norm and L∞ norm of frequency fluctuations Δfi are
shown in Fig. 19, explaining that the total fluctuations are highest for
LFC with DR and centralized EV configuration, while it is lowest for LFC
with a decentralized EV combination. The LFC, DR, and EV with the

centralized configuration, have lower frequency fluctuations than the
two combinations. The maximum fluctuations of LFC, DR, and EV with
centralized configuration are much higher than that in the decentralized
configuration. However, the total absolute fluctuation

⃦
⃦Δfi

⃦
⃦
1 for the two

configurations is similar.
For a quantitative check of the Δfi, we have to conduct a statistical

hypothesis test. Firstly, we need to check whether the signal norms are
multivariate normal. The multivariate statistical test on the signal norms
is performed similarly in [100], where multivariate normality is tested.
The test is conducted with the help of the function mult.norm() in the
QuantPsyc package in R [101]. The skewness and kurtosis coefficients
β̂1,m and β̂2,m are used to compute the test statistic and the p-value for
checking the normality. The details about the coefficients are provided
in [100]. As we observe in the univariate plot in Fig. 26 and Fig. 27, the
data does not follow a normal distribution. The qualitative inference is
confirmed by the p-value in Table 1, which is 0. The critical distance is
the same for both the signals as it only depends on the sample size, which
is considered to be equal. However, the skewness coefficient for the
governor control signal norms is smaller than the frequency fluctuation
norms Δfi. Since the p-value is zero, a nonparametric multivariate test is
to be conducted on the given data.

Then we perform a nonparametric multivariate test using the
nonpartest() function using the npmv package in R [102] on the given
data considering the three norms as the factor levels while testing 1000
Monte Carlo samples and different LFC system configurations. Wilk's
lambda statistic is considered here, which has an effective test statistic
that follows an F-distribution having degrees of freedom df1 and df2.
The expressions for the effective test statistic and degrees of freedom is
mentioned in [100]. We observe in Table 2, that the p-value is zero,
which confirms that neither the frequency nor the control norms are
similar for the different system configurations. The degrees of freedom
are the same for both the signal norms as they only depend on the
sample size. However, the test statistic for the governor control signal
norms is lower than the frequency deviations, which states that the
governor control signal norms are similar for the different system
configuration as compared to the frequency fluctuation norms.

Fig. 27. Boxplot for the L1-norm, L2-norm and L∞-norm of governor control input fluctuations for different system configurations.

Table 1
Multivariate normality test results on the frequency fluctuations and governor
control signal norms.

Signals β̂1,m β̂2,m Critical distance p-value
⃦
⃦Δfi

⃦
⃦
1,
⃦
⃦Δfi

⃦
⃦
2,
⃦
⃦Δfi

⃦
⃦

∞
6.795 12.585 7.814 0

‖Δuci ‖1,‖Δuci ‖2,‖Δuci ‖∞ 1.787 11.524 7.814 0

Table 2
Results of nonparametric multivariate test for the frequency fluctuation and
governor control signals norms considering different system configuration as the
samples.

Signals Test statistic
(F)

Degrees of
freedom (df1)

Degrees of
freedom (df2)

p-
value

⃦
⃦Δfi

⃦
⃦
1,
⃦
⃦Δfi

⃦
⃦
2,⃦

⃦Δfi
⃦
⃦

∞

7621.986 15 8260 0

‖Δuci ‖1,‖Δuci ‖2,
‖Δuci ‖∞

3927.158 15 8260 0
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Similarly, the comparison is also performed on the governor control
input, based on the three norms as shown in Fig. 27. Here, ‖Δuc‖2
represents the cost of the spinning reserves as given in [54]. We observe
that with the combination of LFC, DR, and EV, the cost due to spinning
reserves is reduced. Even with DR, only the cost is relatively low as well.
However, the spinning reserve cost is highest when EV with centralized
configuration is used along with LFC with high uncertainty per ensemble
of disturbance vector. When we observe the overall fluctuations, we see
a positive correlation pattern for the relationship between the and
⃦
⃦Δfi

⃦
⃦
1 for the LFC and DR configuration in Fig. 28. A bimodal bivariate

distribution is observed only in the case of LFC configuration. However,

for the other configurations, no significant correlation pattern can be
deduced.

In Fig. 29 we observe that the spinning reserve cost is positively
correlated to the frequency fluctuations in LFC, DR and EV combina-
tions. A slight positive correlation is obtained for simple LFC cases.
However, a slight negative correlation is obtained for the

⃦
⃦Δfi

⃦
⃦
2 and

‖Δuc‖2, with no correlation obtained when LFC, DR and EV are used in a
decentralized fashion. Thus, we can say that by incorporating the DR
and EV in a centralized configuration, the rate of frequency fluctuations
increases with a relative increase in the governor control input. As far as
the maximum fluctuation is concerned, we observe a positive correlation

Fig. 28. Bivariate analysis of the L1-norm of the frequency fluctuations and governor control input with 500 Monte Carlo simulations.

Fig. 29. Bivariate analysis of the L2-norm of the frequency fluctuations and governor control input with 500 Monte Carlo simulations.
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between frequency and control input in Fig. 30. The bimodal pattern is
observed for the LFC and centralized and decentralized EV configura-
tion. A trimodal pattern is observed for LFC, DR and centralized EV
configuration.

We do not see any significant correlation between the governor
control input and the DR output signal norms for LFC and DR configu-
ration in Fig. 31. However, trimodal distribution in the case of L1 and L∞
norms of the variables is observed. We observe a positive correlation
when EV is added to the LFC and DR configuration, which states that
increased control input is equally matched by increased DR output. The
power output from the EV effectively nullifies the above power output as
observed for the L1 and L2 norm fluctuations in Fig. 31. However, we do
not see any such pattern of the demand response output ΔPDR with the
frequency fluctuation Δfi in Fig. 32. A slight positive correlation is
observed in the case of ΔPDR and Δfi for LFC and DR combination. The
distribution is also mostly unimodal except in the L∞-norm of LFC, DR
and centralized EV combination. We observe a positive correlation in

the L1-norm and L2-norm of the ΔPEV and the governor control input Δuc
when using the LFC, DR and EV configuration in Fig. 33. Some positive
correlation is also observed in the L∞-norm relation for LFC, DR and
decentralized EV configuration. A bimodal distribution is observed for
the L2-norm and L∞-norm of the variables concerned. Moreover, an
obtuse tilt of the 2D kernel density estimate (KDE) plot indicates a slight
negative correlation between the L2-norm of ΔPEV and Δuc.

A positive correlation is observed for the L∞-norm between electric
vehicle output ΔPEV and frequency fluctuations Δfi in the LFC case with
decentralized EV configuration as observed in Fig. 34. Similarly, a
positive correlation with multimodal distribution is observed in LFC
with DR and centralized EV configuration. However, a slight negative
correlation and multiple modes are observed in the case of LFC, DR and
decentralized EV configuration. In the bivariate plots of L1 and L2 norms,
we do not observe a strong correlation pattern. However, we observe a
significant bimodal data pattern in the case of L2-norm between ΔPEV
and Δfi.

Fig. 30. Bivariate analysis of the L∞-norm of the frequency fluctuations and governor control input with 500 Monte Carlo simulations.

Fig. 31. Bivariate analysis of the norms of the demand response and governor control input with 500 Monte Carlo simulations.

D.K. Panda et al.



Chaos, Solitons and Fractals: the interdisciplinary journal of Nonlinear Science, and Nonequilibrium and Complex Phenomena 186 (2024) 115323

27

Fig. 32. Bivariate analysis of the norms of the frequency fluctuations and demand response output with 500 Monte Carlo simulations.

Fig. 33. Bivariate analysis of the norms of the governor control input and electric vehicle output with 500 Monte Carlo simulations.

Fig. 34. Bivariate analysis of the norms of the frequency fluctuations and electric vehicle output with 500 Monte Carlo simulations.
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A positive correlation is observed between the DR output and EV
output L1-norm signal, as shown in Fig. 35. However, in the L∞ norm,
the correlation is slightly more negative for centralized strategy with
demand response output than decentralized output. It suggests that the
maximum fluctuations of DR output will decrease with maximum fluc-
tuations in EV output when operating as a centralized configuration.
However, the pattern remains similar for both the cases suggesting that
the rate of change in EV output is similar for both the configuration, with
the requirement more in centralized strategy than the decentralized one.

Hence, we can summarize the outcomes from the detailed simulation
results as follows:

• The state feedback controller and observer gain, derived from solv-
ing the LMIs, ensure stable operation under bounded load distur-
bance and FDI attack. This stability extends to higher packet drop
rates of up to 90 %, as depicted in Fig. 4, and up to 85 % packet drop
rate, as shown in Fig. 19. The frequency fluctuations remain within
the prescribed limit of the IEEE standard for grid operations [86].

• Incorporating decentralized EVs into the LFC loop results in stable
operation at higher sampling times, while utilizing lower commu-
nication bandwidth, as illustrated in Fig. 4 when compared to
different LFC configurations with DR and EVs.

• Nonetheless, the system configured with decentralized EVs is
vulnerable to parametric variations, such as delays in demand
response or increase in packet drop rates, which can lead to increased
frequency fluctuations and instability, as evidenced by the instability
arising from increased packet drop rates in Fig. 19 at a 99 % packet
drop rate.

• Integration of LFC with EVs and demand response strategies can
yield lower spinning reserve costs, as compared to standalone LFC or
LFC coupled with either EVs or DR alone, as demonstrated in Fig. 27,
through comparison of the L2-norm of the control input.

6. Conclusions

In this paper, a joint state feedback controller and an observer has
been designed for the decentralized LFC system with demand response
and EV. The stability conditions are derived using a switched system
using an ADS model, where the controller and observer gains were ob-
tained using a CCL algorithm solving an LMI for different LFC, DR and
EV configurations. The system response is checked at different packet
drop rates and time delay due to demand response. The frequency
fluctuations, governor control input, EV and DR output are analysed
using bivariate plots. The analysis is computed with the respective L1, L2

and L∞ signal norms obtained when renewable energy is considered as
disturbance vector. The analysis is also aided by the nonparametric
statistical tests for frequency fluctuations and governor control input
signal norms.

The main findings of the paper are summarized as follows:

• The state feedback controller and observer gain obtained after
solving the LMI can ensure stable operation under bounded load
disturbance and FDI attack and at a higher packet drop rate of 90 %.

• The combination of decentralized EV in the LFC loop leads to stable
operation at higher sampling time, utilizing lower communication
bandwidth.

• However, the system with decentralized EV configuration is sus-
ceptible to parametric variations like the demand response time
delay or increase in packet drop rate as it can cause higher frequency
fluctuations and instability.

• Combining LFC with EV and demand response strategies can lead to
lower spinning reserve cost than standalone LFC or LFC with either
EV or demand response.

Although the controller design steps may seem quite complex using
the LMI framework to find the stabilizing controller for the NCS, cast as a
discrete time switched system, after the control design for practical
implementation, it's simply an observer-based state feedback controller.
It has been shown in the past that such LMI based NCS design can handle
very high percentage of packet dropout if the sampling time is suffi-
ciently small as compared to the system time constants which is rein-
forced here through the study of wide variety of complex system
architectures, even with 99 % packet dropout rate.

Future work will incorporate designing less restrictive LMIs so that
concept can be extended to a larger number of areas by incorporating
deregulation factors while also investigating scalability of the LMI based
networked control algorithm on larger state space models of multi-area
LFC systems. Moreover, accuracy of the whole complex power system
model can also be verified using real operational data using suitable
statistical inference methods in future research.
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Appendix A

Typical parameters for the LFC model are given as:

Td = 1,H = 5,D = 1,M = 10,Tt = 0.3,Tg = 0.1,R = 0.05,TE = 1,KE = 1, β = 1+ (1/R),
r = 1,α1 = 1.5, α2 = 1.25, α3 = 1.25,α4 = 1.1,Ts = 0.09 (LFC),Ts = 0.06 (LFC+ DR),Ts = 0.06 (LFC+ EVC),

Ts = 0.14 (LFC+ EVD),Ts = 0.09 (LFC+ DR+ EVC),Ts = 0.14 (LFC+ DR+ EVD).
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