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ABSTRACT 
Introducing automated vehicles (AVs) on roads may challenge es-
tablished norms as drivers of human-driven vehicles (HVs) interact 
with AVs. Our study explored drivers’ decisions in game-theoretical 
scenarios amid mixed traffic using an online survey study. We ma-
nipulated factors including interaction types (HV-HV vs. HV-AV), 
scenario types (chicken game vs. public goods game), vehicle driv-
ing styles (aggressive vs. conservative), and time constraints (high 
vs. low). The quantitative results showed that human drivers tended 
to “defect” more, that is, not cooperate, against vehicles with con-
servative driving styles. The effect of vehicle driving styles was 
pronounced when interacting with AVs and in chicken game sce-
narios. Drivers exhibited more “defection” in public goods game 
scenarios and the effect of scenario types was weakened under 
high time constraints. Only drivers with moderate driving styles 
“defected” more in HV-AV interaction. Our qualitative findings pro-
vide essential insights into how drivers perceived conditions and 
formulated strategies for decision-making. 

CCS CONCEPTS 
• Human-centered computing → Empirical studies in HCI. 

KEYWORDS 
automated vehicles; mixed-traffic environment; human-machine 
cooperation; game theory 

ACM Reference Format: 
Yutong Zhang, Edmond Awad, Morgan R. Frank, Peng Liu, and Na Du. 2024. 
Understanding Human-machine Cooperation in Game-theoretical Driving 
Scenarios amid Mixed Traffic. In Proceedings of the CHI Conference on Human 
Factors in Computing Systems (CHI ’24), May 11–16, 2024, Honolulu, HI, USA. 
ACM, New York, NY, USA, 13 pages. https://doi.org/10.1145/3613904.3642053 

This work is licensed under a Creative Commons Attribution International 
4.0 License. 

CHI ’24, May 11–16, 2024, Honolulu, HI, USA 
© 2024 Copyright held by the owner/author(s). 
ACM ISBN 979-8-4007-0330-0/24/05 
https://doi.org/10.1145/3613904.3642053 

1 INTRODUCTION 
With the maturity of automated driving technology and the prolif-
eration of automated vehicles (AVs), the future of transportation 
will involve a combination of AVs, conventional human-driven ve-
hicles (HVs), and other road users (e.g., pedestrians and cyclists). In 
mixed-traffic environments, HVs have to frequently interact with 
AVs. Human drivers mostly navigate driving scenarios without 
incidents through social norms and signaling [42]. However, intro-
ducing AVs on public roads may challenge established norms as 
HVs learn to interact with AVs. How will human drivers behave as 
HVs interact with AVs in mixed-traffic scenarios? Will HVs become 
more cooperative through trust in rule-following AVs? Or will HVs 
take advantage of AVs for their personal benefit thus decreasing 
cooperation even with other AVs? 

Existing studies have explored the interaction between drivers 
in HVs and AVs in mixed-traffic environments. Research showed 
that human behaviors and decisions in HVs were influenced by 
different factors, such as interaction types (HV-HV vs. HV-AV) 
[13, 25, 27, 30, 31, 40, 41, 59] and driver driving styles [30]. Evi-
dence [27, 30] suggests that human drivers may have intentions 
to bully AVs rather than HVs. However, there are some research 
gaps that need to be addressed. First, AVs have been assumed to 
be conservative without the possibility for AVs to adapt their be-
havior based on interactions with other vehicles. The research in 
HV-AV interaction lacks insights into how the variable, AV driv-
ing style, impacts human decision-making, and vice versa. Second, 
although studies have included multiple driving scenarios, none 
of them theoretically categorize driving scenarios and investigate 
their effects on drivers’ decision-making in mixed-traffic environ-
ments. Insights here may connect directly to a wealth of game 
theoretic research with the potential to influence policy making 
while optimizing transportation safety and efficiency. Third, ex-
isting literature focuses mostly on one or two variables at a time. 
However, variables may interact to reveal higher-order outcomes 
in driving scenarios. Fourth, most prior research on human driver 
behavior patterns relied on quantitative analyses, without an under-
standing of how individuals integrate various factors and develop 
strategies for decision-making. In this study, we fill the research 
gap by answering the following three research questions: 

RQ1: Does the driving style of the interacting vehicle influence 
human drivers’ decisions when they interact with AVs and HVs? 
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RQ2: How do human drivers’ decisions vary across different 
types of game-theoretical driving scenarios? 

RQ3: What information do drivers extract in a given scenario to 
inform their decision-making process, and what strategies do they 
employ in making decisions? 

To answer these research questions, we developed an online 
survey study (N=674) to examine drivers’ decision-making in differ-
ent conditions. This study investigated how the interaction types, 
scenario types, vehicle driving styles, time constraints, and driver 
driving styles influenced drivers’ decision-making in mixed-traffic 
environments. We identified two types of interaction in mixed-
traffic environments: HV-AV and HV-HV, and assumed that all the 
interacting vehicles had two distinctly different driving styles: ag-
gressive and conservative. Driving scenarios were developed based 
on game theoretic interactions and time constraints could serve as 
a factor in manipulating changes in task payoffs. 

This study contributes to building an understanding of how hu-
man drivers make decisions in a mixed-traffic environment. We 
delve into human drivers’ decisions between cooperation and de-
fection under a systematic game-theoretic framework. Leveraging 
a mixed-method approach, we illuminate the underlying motiva-
tions and strategies that drivers employed during decision-making. 
This study fills the research gap by emphasizing the pivotal in-
fluence of driving styles, both for AVs and HVs, across various 
game-theoretical driving scenarios. Our findings will provide in-
sights into refining the design and program implementation of AVs, 
particularly in striking a balance in driving styles to adapt to human 
behaviors. Future driver behavior prediction and decision assistant 
systems and vehicle communication systems should take human fac-
tors into full consideration to ensure AVs and HVs understand each 
other’s needs, foster collaboration and achieve respective goals in 
mixed traffic. This may better support a safe, reliable, and effective 
HV-AV interaction in mixed-traffic environments. 

2 RELATED WORK 

2.1 Decision-Making in Mixed Traffic 
Human behaviors and decision-making in mixed-traffic environ-
ments have been widely studied, including the interaction between 
pedestrians and AVs and between drivers in HVs and AVs. Research 
on pedestrian-AV interaction showed that pedestrians’ crossing 
behaviors were influenced by AV driving behaviors [19, 39, 65], 
communication methods [1, 6, 48, 60], road conditions [19], and 
individuals’ characteristics [1, 10, 36]. For example, Colley et al. [6] 
found that AV external communication, other pedestrians’ behavior, 
and previous experience influenced pedestrians’ crossing decisions. 
Zhao et al. [65] found that pedestrians showed a greater intention 
to engage in risky road-crossing behaviors in front of AVs com-
pared to HVs. For HV-AV interaction, prior work has shown that 
interaction types (HV-HV vs. HV-AV) [13, 25, 27, 30, 31, 40, 41, 59], 
communication methods [7, 45], driver driving styles [30], time 
constraints [59], and expectations for AVs [33] influenced human 
drivers’ behaviors and decision-making. 

Some studies investigated the effect of interaction types on the 
decision-making of human drivers through web-based surveys 
[27, 30], driving simulator studies [13, 25, 40, 51, 59], and field 
experiments [31, 41]. For example, a cross-national survey study 

[27] indicated that human drivers were more inclined to bully AVs 
than HVs. Ma and Zhang [30] explored how interaction types and 
driver driving styles influenced human decision-making and sub-
jective feelings. The results suggested that aggressive and moderate 
drivers were more likely to exhibit aggressive behavior in HV-AV 
interaction than in HV-HV interaction, and aggressive drivers had 
more anxious feelings when interacting with AVs compared to HVs. 
Driving simulator studies [13, 25, 40, 51, 59] and field experiments 
[31, 41] were conducted to characterize the behavioral adaptation 
of human drivers when interacting with AVs. These studies showed 
that human drivers performed a higher speed and acceleration 
[31], shorter lane changing duration [25, 40], smaller time head-
ways [13, 40, 41, 51], higher time-to-collision [31], and higher gap 
acceptance [59] when interacting with AVs compared to HVs. 

The HV-AV interaction was explored in various traffic scenarios, 
such as merging, lane changing, and car-following scenarios. Some 
studies constructed the one-on-one interaction scenarios between 
HV and AV [30, 31, 41, 59], while others focused on the interaction 
between HVs and AV platoons [13, 25, 40, 51]. For example, Rad 
et al. [40] constructed three different traffic scenarios (base: only 
HVs; mixed: platoons of 2–3 AVs driving on any lane and mixed 
with HVs; dedicated lane: platoons of 2–3 AVs driving only on a 
dedicated lane) in a fixed driving simulator. Their results indicated 
that in a dedicated lane scenario, drivers in HVs maintained shorter 
distances behind other cars when following them and were willing 
to take smaller gaps when changing lanes, as opposed to in mixed 
and base scenarios. 

Almost all the studies above are based on the assumption that AVs 
have defensive programming and are designed to be law-abiding. 
Perceiving AVs as being defensive, safe, and compliant with traffic 
laws may encourage people’s intention to take advantage of AVs 
on the road. Autonomous driving companies have reported that 
individuals, including pedestrians and human drivers, displayed 
aggressive behavior towards AVs while they were being tested 
on public roads [14, 43]. This could result in potential interaction 
conflicts. AVs have to “learn to be aggressive in the right amount 
according to culture” [46]. Appropriate aggressiveness has been 
proven to be desirable to enhance traffic efficiency [53]. Several 
studies have investigated the potential benefits of human-like driv-
ing styles in automated vehicles, aiming to strike a balance between 
safety and efficiency [2, 15, 49, 63]. Although studies have shown 
that AVs’ driving styles affected human trust and acceptance when 
driving or riding in AVs [9, 29], little has been done to investigate 
how AVs’ driving styles influence human drivers’ decision-making 
in HVs when they interact with AVs on the road. 

2.2 Game Theory in Human-robot Interaction 
and Traffic 

Game theory has revealed numerous aspects of human cooperative 
behavior and can be used as a framework to study mutual cooper-
ation [3, 5, 11, 52]. Many studies investigated human behavior in 
one-on-one human-robot interaction [18, 23, 37, 58, 61], particularly 
regarding how humans interact with robots in comparison to their 
interactions with other humans. For example, Paeng et al. [37] and 
Wu et al. [61] investigated whether the individual’s decisions were 
influenced by the agent type they interacted with in a prisoner’s 
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dilemma. Their results revealed that humans had a greater degree 
of trust in robots than other humans. In the prisoner’s dilemma, 
the Nash equilibrium occurs when both players choose to defect, 
as it is each player’s best response regardless of the other’s action, 
leading to a collectively suboptimal outcome. 

Interacting with automated vehicles in mixed traffic requires 
a balance between assertiveness and caution to ensure traffic ef-
ficiency and avoid collisions. The chicken game underscores the 
importance of cooperation and reciprocity by representing con-
flict situations in which two players can cooperate or defect. In this 
game, the player who opts for cooperation is labeled as the “chicken,” 
while the other, who chooses not to cooperate, emerges as the win-
ner [54]. A player gets the most benefits if s/he chooses to defect 
and the opponent chooses to cooperate. The chicken game features 
multiple Nash equilibria characterized by asymmetric strategies: 
one player cooperates while the other defects, and vice versa. This 
strategic structure makes the chicken game a suitable model for 
understanding and predicting human behavior when interacting 
with automated vehicles. Although not within the transportation 
context, researchers have explored human-human/computer/robot 
interaction using chicken game [23, 58]. For example, Kim et al. 
[23] utilized iterative chicken games to study players’ behavioral 
patterns in competition with a human or a computer and found that 
human players altered their behaviors in response to the agent’s 
behavioral pattern and were more sensitive to fairness when they 
were told to play with a human. Torre et al. [58] revealed that when 
interacting with robots in the chicken game, human behaviour 
changes based on robot anthropomorphic level and human per-
ceived autonomy. 

Some studies explored human-robot interaction when teaming 
up with multiple robots [8] or competing against robot groups [12]. 
Public goods game is a multiplayer experiment used to study the 
behavior of individuals in a group setting: those who cooperate 
contribute to the public good, while those who defect do not make 
any contribution. The total contribution is multiplied by an en-
hancement factor less than the number of members, and the result 
is distributed evenly among all members of the group. Hence, de-
fectors get the same benefit as cooperators at no cost [47]. Correia 
et al. [8] demonstrated the importance of group-oriented decision-
making by revealing the positive perceptions of prosocial behavior 
in human-robot interaction. Additionally, Fraune et al. [12] found 
that in human-robot interaction, individual-to-individual interac-
tion is more negative and competitive than individual-to-group 
interaction. They posited that this may not simply be attributed to 
the traditional motivation of greed and fear. They speculated that 
the equivalence in size between the robot group and the human 
group played a significant role in competition behaviors. A series 
of studies by Tanimoto et al. [35, 56, 57] suggested that social dilem-
mas may underlie a traffic flow phenomenon. They found that the 
structures of some traffic cases, including 2 into 1 lane junction 
(bottleneck), lane changes, and route selection, corresponded to the 
chicken game and public goods games in game theory. 

While behavioral game theory shows great potential to study 
human-robot interaction, little research has employed game theory 
to theoretically categorize driving scenarios and investigate their 
effects on drivers’ behaviors and decision-making in mixed-traffic 
environments. 

3 METHOD 
We developed an online survey to explore how interaction types, 
scenario types, vehicle driving styles, time constraints, and driver 
driving styles impacted driver decisions in mixed-traffic environ-
ments. This research complied with the American Psychological 
Association Code of Ethics and was approved by the institutional 
review board at the University of Pittsburgh. 

3.1 Experimental design 
Independent variables. We constructed a study with a 3 × 2 × 
2 × 2 × 2 mixed factorial design. The between-subjects variables 
were the driver driving style (aggressive vs. moderate vs. conser-
vative), vehicle driving styles (aggressive vs. conservative), and 
interaction types (HV-HV vs. HV-AV). Aggressive driving style [62] 
is associated with faster speed, acceleration, and larger steering 
wheel rotation angle and angular velocity. Conservative driving 
style [62] is associated with longer space headway, larger angle of 
the brake pedal, and longer deceleration. Moderate driving style 
[62] is associated with relative steady motions that are neither too 
conservative nor too aggressive. In our experiment, the automation 
level of AVs is SAE Level 5 (defined by The Society of Automotive 
Engineers), which means that the automated driving system can 
drive the vehicle under all conditions, and humans are not required 
to perform any driving tasks [17]. Drivers’ driving style groups 
were further explained in Section 3.3. 

The within-subjects variables were time constraints (high vs. 
low), and scenario types (chicken game vs. public goods game). 
Under high time constraints, drivers were requested to reach a 
destination with utmost haste, whereas they drove without time 
pressure under low time constraints. We set up four specific high-
time-constraint situations to trigger high time pressure among 
participants: rushing to an important meeting, rushing to an up-
coming important interview, catching a flight with limited time, and 
catching a train with limited time. We conducted a manipulation 
check on the time constraints by asking participants to evaluate 
their perception of time pressure (1: not at all; 5: extremely) under 
each condition. The one-way repeated measures ANOVA analysis 
showed that the difference in perception of time constraints was 
significant (𝐹 (1, 673) = 2443.334; 𝑀𝑒𝑎𝑛high = 3.605; 𝑀𝑒𝑎𝑛low = 
1.428; 𝑝 < .001).The payoff matrices of the chicken game (Table 
3) and the public goods game (Table 4) were presented in Appen-
dix A.1. We did not claim the scenario types or provide the payoff 
matrices with specific values to participants because individual 
participants may have varying pay-off values influenced by factors 
such as their interpretation of scenarios, perceived time pressure, 
and perceived risk. Each condition was designed using a text de-
scription and an animated scenario (see Fig. 1) to help participants 
understand the context. The order of each condition was random 
across participants. 

Dependent variable. The dependent variable was the partici-
pants’ decisions. A binary category variable was used to represent 
the driver’s tendency to cooperate or defect. After participants 
watched each scenario animation, they were given two options (see 
Table 1 and Figure 1), displaying in a random order. Selecting the 
option (1) (see Table 1: Possible decisions) indicated cooperation, 
and selecting the option (2) indicated defection. In addition, in order 
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Figure 1: An example of survey questions 

to explore drivers’ decision-making strategies and related factors, 
we further set up an open-ended question to ask the reasons for 
selecting/not selecting the option. 

Scenarios. We constructed eight game-theoretical driving sce-
narios (see Table 1) to test driver decisions in mixed-traffic envi-
ronments. We created scenarios from a top-down viewpoint to 
enhance the understanding of the overall traffic situations. In the 
chicken game scenarios, the subject car (the car participants were 
driving) and another car competed for the right of way. In the public 
goods game scenarios, the subject car in the traffic could overtake 
other vehicles by changing lanes to achieve free riding. In both 
types of game theoretical scenarios, players had the option to either 
cooperate or defect to meet their needs. 

3.2 Procedure 
The consent, instructions, driving scenarios, and questionnaires 
were integrated into Qualtrics, and the study was launched on the 
CloudResearch platform 1 . First, participants who met the criteria 
were randomly assigned to four groups (human-driven vehicles 
with aggressive driving style, human-driven vehicles with conser-
vative driving style, automated vehicles with aggressive driving 
style or automated vehicles with conservative driving style). Then 
they were guided to read the instructions and take the training 
session. In the instructions, participants were introduced to the 
definitions of the vehicle driving style and vehicle type associated 
with their respective groups. In the training session, participants 
were required to read the introduction of scenarios and answer 
the attention check questions carefully. If they failed the attention 
check, the survey would end automatically. 

After the training session, participants were asked to imagine 
themselves as the driver of the HV and make decisions when in-
teracting with either human-driven vehicles or automated vehicles 
in four conditions (2 types of time constraints × 2 scenario types). 
For each condition, they were asked to read a text description and 
watch an animated traffic scenario, and then indicate their pre-
ferred decision from two choices. Each participant encountered 
2 chicken game scenarios and 2 public goods scenarios (1 under 
high time constraints and 1 under low time constraints in each 
scenario type). These scenarios were created by random sampling 

1The Qualitrics online survey platform is at https://www.qualtrics.com and the 
CloudResearch participant recruitment platform is at https://www.cloudresearch.com/ 

without replacement from 4 chicken game scenarios and 4 pub-
lic goods game scenarios. After making the decision, participants 
were asked to assess the anticipated time pressure in the given sce-
nario and answer the open-ended question. In the end, participants 
reported their demographic information, the propensity to trust 
automated vehicles [32] and answered the violation subscale of 
Driving Behavior Questionnaire (DBQ) [44]. 

3.3 Participants 
A total of 686 people were recruited from the CloudResearch plat-
form and based on the United States Census template. We obtained 
informed consent from each participant. We screened them for var-
ious inclusion criteria including 18 years or older, driver’s license 
status, and non-colorblind. We deleted the data of participants who 
timed out (we set the completion time as 80 minutes), submitted in 
less than 5 minutes using the incorrect link, or failed the attention 
check. At last, 674 qualified people (336 females, 338 males) partici-
pated in the study. Participants were paid $3 for their participation 
in the 20-minute online survey study. The participants’ ages ranged 
from 18 to 80 with an average age of 45.88 years (SD=15.5 years). 
Propensity to trust automated vehicle scale included 6 items rated 
on five-point rating scales (1: strongly disagree; 5: strongly agree). 
A higher score indicates a greater propensity to trust automated 
vehicles. Participants’ average trust propensity was 2.69 (SD=1.13). 

We characterized drivers’ driving styles into three categories 
[21, 28, 62] based on the scores in the adapted violation subscale of 
DBQ. All the 12 items were rated on six-point rating scales (1: never; 
6: nearly all the time). Existing studies [16, 64] indicated drivers 
with high DBQ violation scores showed more aggressive objective 
driving behavior. We divided our participants into three groups 
based on the 33rd percentile and the 66th percentile [22, 38, 55]: 
aggressive (223 participants; score>23: 𝜇 = 30.55, 𝜎 = 7.08), mod-
erate (191 participants; 19<=score<=23: 𝜇 = 20.94, 𝜎 = 1.43), and 
conservative (260 participants; score<=18: 𝜇 = 15.51, 𝜎 = 2.04) dri-
vers. There were 170 participants assigned to interact with HVs 
with conservative driving styles, 170 participants with HVs with 
aggressive driving styles, 170 participants with AVs with conserva-
tive driving styles, and 164 participants with AVs with aggressive 
driving styles. 

Figure 2: A diagram of the experiment procedure. 

https://www.cloudresearch.com
https://www.qualtrics.com
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Table 1: An overview of our eight game theoretic driving scenarios. Chicken game and public goods game each have four 
scenarios. S1-S4 belong to the chicken game, S5-S8 belong to the public goods game. For each scenario, we provide a description, 
two possible decisions (option (1) represents defection, option (2) represents cooperation), and a diagram. In each diagram, the 
black vehicle represents the ego vehicle. 

Abstract 
game 

Scenario description Possible decision Diagram 

Chicken 
game 

S1. Two vehicles in the most-right and 
most-left lanes of a three-lane road, are 
slowed down by the traffic ahead, and 
plan to switch to the empty middle lane. 

(1) switch to the empty middle lane first, 
or (2) yield to another vehicle and switch 
after it. 

S2. Two vehicles on two equal-priority 
merging-into-one roads trying to join 
the single road (like an inverted fork). 

(1) merge into one road first, or (2) yield 
to another vehicle and then merge. 

S3. On a three-lane, two-way road, two 
vehicles are running in the most-right 
and most-left lanes in the opposite di-
rections. They both need to encroach on 
the same middle lane to pass an obstruc-
tion. 

(1) try to change to the middle lane first, 
or (2) wait until the other vehicle passes 

S4. Two vehicles are heading towards 
each other on a narrow two-way traffic 
road 

(1) continue forward assuming the op-
posing vehicle will yield, or (2) yield 
to the opposing vehicle by reversing or 
swerving onto the sidewalk 

Public Goods 
Game 

S5. A vehicle is joining a two-lane road 
with the aim of turning right at the next 
exit. The right-line is a right-turn-only 
lane and is the slower lane of the two. 

(1) join the (slower) right lane first, or 
(2) continue ahead on the (faster) left 
lane and make its way in front of other 
vehicles on the right-hand lane. 

S6. Driving in traffic congestion. (1) adhere to speed limits and remain in 
your lane, or (2) swerve between lanes 
when gaps between vehicles emerge. 

S7. In a two-lane roundabout, a vehicle 
is running in the right lane with heavy 
traffic and aims to exit at the third exit. 
The left lane has lower to empty traffic. 

(1) change to the left lane first and merge 
into the right lane before exit, or (2) re-
main in the right lane. 

S8. A vehicle is running in the empty 
right lane but the right lane is closed 
ahead. The left lane has heavy traffic 
and is the slower lane. 

(1) change to the left lane once knowing 
the right lane is closed, or (2) remain in 
the right lane and merge to the left lane 
when close to the closure. 

4 RESULTS 

4.1 Effects on Decisions 
Statistical analysis was performed using IBM SPSS Statistics Version 
28.0. Due to the repeated measurements and the binary responses, 
Generalized Estimating Equations (GEE) were constructed to an-
alyze the effects of independent variables (vehicle driving styles, 

interaction types, time constraints, scenario types, and driver driv-
ing styles) on the dependent variable (driver decisions). We included 
the independent variables and their two-way interactions as factors 
in the GEE model. We specified Binomial as distribution, Logit as the 
link function, and Bonferroni for multiple comparisons adjustment. 

4.1.1 Main Effects. The test of model effects showed that there 
were significant main effects of vehicle driving styles (𝜒 2 (1) = 
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(a) The main effect of vehicle driving styles was significant (𝑝 < .01). (Left) Vehicle Driving Styles and Interaction Types. In the HV-AV interaction, 
the difference in the percentage of defections between vehicle driving styles was greater than in the HV-HV interaction (𝑝 < .001, 𝑝 < .01). The 
percentages of defections were higher when interacting with vehicles with conservative driving styles in both interaction types. (Right) Vehicle 
Driving Styles and Scenario Types. The main effect of scenario types was significant (𝑝 < .001). We only observed significant difference in the 
percentage of defections between vehicle driving styles in the chicken game (𝑝 < .001). 

(b) The main effect of time constraints was significant (𝑝 < .001). (Left) Time Constraints and Interaction Types. There was no interaction effects 
between interaction types and time constraints. (Right) Time Constraints and Scenario Types. The main effect of scenario types was significant 
(𝑝 < .001). The percentages of defections were higher in public goods game than in chicken game under both time constraints. Under low time 
constraints, the difference in percentage of defections between scenario types was greater than under high time constraints (𝑝 < .001, 𝑝 < .05). 

Figure 3: The interaction effect results (Error bars indicate 1 standard error [SE]) 

27.32; 𝑝 < .001), time constraints (𝜒 2 (1) = 123.357; 𝑝 < .001), 
scenario types (𝜒 2 (1) = 27.797; 𝑝 < .001), and driver driving styles 
(𝜒 2 (2) = 52.013; 𝑝 < .001) on driver decisions. The main effect of 
interaction types was not significant (𝜒 2 (1) = 2.748; 𝑝 = .097). 

The main effects indicated that drivers defected more when 
interacting with vehicles that have a conservative driving style. 
Additionally, drivers were more inclined to defect when under 
high time constraints. In the public goods scenarios, their decisions 
leaned more towards defection. We also examined the effect of the 
individual scenario. Drivers exhibited more defections (𝑝 < .001) 
in Scenario 6 (S6 in Table 1) and Scenario 8 (S8 in Table 1) in public 
goods game. Regarding driver driving styles, the propensity for 
defection increased from conservative to moderate and was highest 
among aggressive drivers. 

4.1.2 Interaction Effects. There were significant interaction effects 
between vehicle driving styles and interaction types (𝜒 2 (1) = 
5.703; 𝑝 = .017), between vehicle driving styles and scenario types 

(𝜒 2 (1) = 25.165; 𝑝 < .001), between time constraints and scenario 
types (𝜒 2 (1) = 6.254; 𝑝 = .012), and between interaction types and 
driver driving styles (𝜒 2 (2) = 6.812; 𝑝 = .033). All the other ef-
fects were not significant. Below we further explain the interaction 
effects in detail. 

Vehicle Driving Styles × Interaction Types. The significant inter-
action effect between vehicle driving styles and interaction types 
on driver decisions (see Fig. 3a) suggested that both in HV-AV 
interaction and HV-HV interaction, drivers had a higher chance 
of defections interacting with vehicles with conservative driving 
styles than aggressive driving styles (𝑝 < .001, 𝑝 = .005). Yet, in the 
HV-AV interaction, the impact of vehicle driving styles was greater 
than in the HV-HV interaction. 

Vehicle Driving Styles × Scenario Types. The significant interac-
tion effect between vehicle driving styles and scenario types on 
driver decisions (see Fig. 3a) indicated that drivers were more likely 
to defect when interacting with a conservative vehicle driving style 
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versus an aggressive driving style in the chicken game scenarios 
(𝑝 < .001). Yet, in the public goods game, the effect of vehicle driving 
styles on driver decision-making was not significant (𝑝 = .634). 

Time Constraints × Scenario Types. The significant interaction 
effect between time constraints and scenario types (see Fig. 3b) 
showed that in public goods games, the percentage of defection 
was higher than in chicken games under both low and high time 
constraints (𝑝 < .001, 𝑝 = .027). While under low time constraints, 
the impact of scenario types was greater than under high time 
constraints. 

Interaction Types × Driver Driving Styles. The significant inter-
action effect between interaction types and driver driving styles 
(see Fig. 4) showed that the significantly more defections in HV-AV 
interaction only existed in drivers with moderate driving styles 
(𝑝 = .036). 

4.2 Qualitative Results 
To better understand how drivers make decisions in mixed traffic, 
we collected their responses to an open-ended question: "Please 
describe your reasons for selecting option A (the text of their se-
lected option) and reasons for not selecting option B (the text of 
their non-selected option)." Each participant provided a total of four 
responses, answering this question once after each scenario. We 
removed 16 responses from 4 participants due to the poor quality 
including incomplete sentences, providing the same answer for dif-
ferent scenarios, and meaningless answers made to meet the word 
limit. Our final analysis used 2680 responses from 670 participants. 
To construct participants’ decision-making rationale, we employed 
an inductive approach to conduct thematic analysis [4]. Two an-
notators independently read the responses and conducted open 
coding to identify the categories. The annotators and authors then 
discussed the existing disputes and overlaps, ultimately refining 
and finalizing the main themes and sub-themes. 

We identified two main themes to define the decision-making 
process reflected in participants’ responses: perception factor and 
strategy. Table 2 showed the framework and Table 5 in Appendix 
A.2 served as the codebook that further described each strategy and 
their examples. Under the perception factor, we examined what 
kind of conditions and scenarios influenced drivers’ decisions. We 
found that "reaching the destination within a time limit" was not 
perceived as a benefit. Instead, participants viewed failing to reach 
the destination on time as a loss. For example, P431 mentioned that 
"It sounds as though this job interview is important and I cannot afford 
to be late." This aligns with the prospect theory of Kahneman and 
Tversky (1979), which indicates that loss aversion causes individuals 
to weigh losses more heavily than gains relative to the reference 
point [20, 50]. This structured the game-theoretic loss framework 
of our design. Under the strategy, we identified four criteria that 
participants depended on when making decisions. Considering the 
outcomes of cooperation and defection, 64% responses adopted 
risk aversion (41%) and loss aversion (23%) given the trade-off. 
9% responses showed that the decisions stemmed from drivers’ 
attitudes towards other vehicles. 27% decisions were made based 
on participants’ driving styles and habits. Below we discussed each 
strategy in detail. 

4.2.1 Trade-off in loss-frame game theory. In general, we assumed 
that defection reduced time losses, and cooperation carried no 
safety risks. However, participants held varied views of loss and 
risk through cooperation or defection, which was determined by 
their perceptions of the mixed traffic. Regarding the perception of 
loss, some drivers believed that defection did not lead to time losses. 
Some drivers argued that defecting did not necessarily mitigate 
time losses in the chicken game, like what P313 said, "There would 
be no advantage gained by getting in the left lane, since I’d just have to 
get back into the right lane anyway". This occurred more frequently 
in scenarios S5 and S7 (two-lane exit). A subset of drivers were of 
the opinion that under low time constraints, cooperation would 
not lead to time loss. Concerning the perception of risk, some other 
drivers thought that defection came with risks and would cause 
an accident, like what P433 said, "There’s a chance of getting in an 
accident if you try and force the lane change." However, some drivers 
felt that cooperation was less safe than defection in some scenarios 
such as S6 and S8. In S8, P223 said, "I’d rather stay in the right lane 
than get in with the aggressive drivers." This explained the variance 
we observed between public goods game scenarios. In summary, 
based on participants’ diverse perceptions, we found that defection 
can either reduce time losses or have no influence on time, can 
be associated with safety risks, yet can also be safe in the public 
goods game scenarios. Cooperation can either increase time losses 
or have no impact on time, can be safe, but can also entail risks 
in public goods game scenarios. These differences were driven by 
participants’ varying interpretation of scenarios, perceived time 
pressure, and perceived risk. Individuals constructed their own 
payoff values based on these factors, which led them to behave 
as rational economic men when making the decisions. Therefore, 
varying payoff structure ultimately achieved two results, cooperate 
and defect, through four trade-off categories: safety risks, time 
losses, no influences on time, and time losses and safety risks (see 
Table 2, Fig. 5). 

After discerning the losses and risks, drivers subsequently em-
ployed two strategies based on the perceptions: risk aversion and 
loss aversion. If they perceived cooperation as leading to time losses 
(19%), they leaned towards defection (see Fig. 5). If they felt that 
defection would not substantially reduce time losses (12%), they 
tended to cooperate. When faced with a situation where cooper-
ation or defection could potentially introduce safety risks (16%), 
drivers generally prefer cooperation. Moreover, when cooperative 
behavior resulted in time losses but defection carried safety risks 
(13%), drivers weighed the losses and risks. When drivers prioritize 
time and the negative consequences of time losses, they may be 
willing to take on risks (2%). For example, P383 said, "Because I 
am in a hurry ... I am aware that the other driver is driving with an 
aggressive driving style. I would try to out maneuver the other driver 
... ." On the other hand, to ensure safety or prevent the potential 
exacerbation of losses due to accidents, drivers opted for risk aver-
sion, as mentioned by P509, "If I get into the left lane and the exit is 
coming up soon, I may have trouble merging back into the right lane 
... resulting in me missing my exit and being even later." 
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Figure 4: The interaction effect between interaction types and driver driving styles. 

Table 2: An overview of identified themes, sub-themes, and their descriptions and dimensions with the number of responses 
for the open-ended question. 

Theme Sub-theme Description & Dimension #Response 
Perception 
Factor 
(overlapping) 

A. Conditions Independent variables mentioned by participants influence decision-
making (e.g., aggressive, conservative, in a hurry, not in a hurry, AVs) 

2385 (89%) 

B. Scenarios Scenarios mentioned by participants influence decision-making (e.g., 
two-lane exit, one-on-one interaction, heavy traffic, empty lane) 

2037 (76%) 

Strategy 

A. Risk aversion Prioritize risk avoidance given: a) Safety risks; b) Time losses and 
safety risks; c) No influences on time 

1099 (41%) 

B. Loss aversion Minimize time losses given: a) Time losses; b) Time losses and safety 
risks 

616 (23%) 

C. Attitudes towards 
others 

Make decisions based on drivers’ attitudes towards other vehicles: a) 
Positive; b) Negative 

241 (9%) 

D. Own driving 
styles and habits 

Make decisions based on driver’s driving styles and habits: a) Style 
and preference; b) Experience and habit; c) Manner and rule adherence 

724 (27%) 

4.2.2 Varied attitudes towards other vehicles. In 9% of the responses, 
participants’ decisions were directly related to their attitudes to-
wards other vehicles (AVs or all others). Some participants main-
tained a consistent attitude toward other vehicles, unaffected by 
the conditions, such as "I don’t trust the other drivers" (e.g., P96, 
P148). Others expressed their opinions based on their perceived 
information from mixed traffic. Classifying attitudes from positive 
and negative perspectives, 2% responses indicated a positive stance, 
with participants placing trust in other vehicles and feeling con-
fident that they would cooperate. These participants consistently 
chose to defect. In contrast, some other drivers held negative atti-
tudes (7%), expressing distrust and skepticism. They chose to take 
control of their own destiny, such as assuming others would not 
yield and thus yield themselves. 

Specifically, participants had varied attitudes and expectations 
regarding AVs, which led to their distinct decisions. Drivers who 
distrusted AVs (4%) far outnumbered those who trusted them (0.7%), 
because many people found the behavior of AVs to be unpredictable. 
Some even thought AVs were harmful, as P31 said, "I will yield to 
the automated vehicle because its driving is dangerous..." An aggres-
sive driving style of AVs only heightened such sentiments, like 
what P533 stated, "I don’t trust that an automated car (especially 

driving aggressively) could possibly yield as effectively as a human 
would." Individuals classified themselves and AVs into various social 
categories, leading to bias and prejudice. Drivers viewed AVs as 
"machines" that should yield to human drivers on the road and 
bullied AVs. For example, P519 said, "May as well abuse their pro-
gramming and get ahead. Machines can wait." Notably, there was an 
urgent need for human drivers to have effective communications 
with AVs, as emphasized by P201 and P556, "I have no way to hand 
signal to the automated vehicle, because there is no driver." 

4.2.3 Make decisions based on drivers’ driving styles and habits. 27% 
decisions were made based on drivers’ driving styles and habits. We 
coded them into three categories: style and preference, experience 
and habit, and manner and adherence. In 13% responses, partici-
pants maintained their driving style regardless of the conditions. 
A subset of drivers expressed their preference for a more leisurely 
driving style, seeking relaxation and simplicity. They enjoyed "lis-
tening to audio books while driving" and leaned towards "simpler 
and easier" maneuvers. 9% responses anchored their decisions to 
past experiences and ingrained habits. 5% advocated for politeness 
and prioritized strict adherence to established road rules. 
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4.2.4 Why do drivers defect? Figure 5 showed the mapping from 
dimensions to strategies and then to decision outcomes. The story 
told us that while drivers considered various factors and employed 
distinct strategies during decision-making, the majority still gravi-
tated towards cooperation. The main reason for cooperation is to 
avoid safety risks, followed by one’s driving styles and habits, as 
well as attitudes toward other vehicles. The primary motivations 
for defecting were: minimizing the time losses, avoiding risks, and 
positive attitudes towards other vehicles. Although drivers made 
different decisions when weighing losses and risks (see Figure 5, 
Dimension, Time Losses with Safety Risks), a mere 2% chose to em-
brace the risk in order to reduce the loss. It is crucial to understand 
and predict the behavior of this small fraction. 

5 DISCUSSION 
Our research revealed the significance of the vehicle driving styles 
for human drivers’ decisions when they interacted with AVs and 
HVs (RQ1). Varying types of game-theoretic driving scenarios inter-
acted with time constraints and vehicle driving styles to influence 
drivers’ decisions (RQ2). Moreover, we gained insight into how 
drivers extract information from those scenarios and formulate 
strategies for decision-making (RQ3). Below we discuss the results, 
the design implications, and the limitations and future work. 

5.1 Driver decisions when interacting with AVs 
vs. HVs 

Our findings highlight that the driving style of the interacting vehi-
cle holds a more substantial influence than whether the interacting 
vehicle is human-driven or automated. Our results indicated that a 
vehicle’s driving style significantly impacted the driver’s decision-
making, with drivers performing more defective behaviors when 
interacting with vehicles with conservative driving styles. Addi-
tionally, drivers exhibited varying behaviors when interacting with 
AVs with different driving styles, a distinction less pronounced 
with HVs. One possible explanation is that AVs may accentuate 
disparities between vehicle driving styles. Compared with the HVs 
of the same driving style, drivers might exploit AVs of conserva-
tive driving styles more, anticipating their likelihood to yield, and 
exercise more caution when interacting with aggressive AVs due 
to their unpredictability. Our results were consistent with GATE-
way project 2017 [24]. This study indicated that driving decisions 
were predominantly influenced by factors like gap size and safety 
evaluations, which were reflected in driving style, rather than the 
presence of AVs or HVs. Similarly, our qualitative results indicated 
that first, in mixed traffic, the interaction type took a lower priority 
in human drivers’ information processing, with drivers prioritizing 
traffic conditions and personal needs. Additionally, human drivers 
had varying views and expectations regarding AVs. The underlying 
reason might be the agency and subjectivity of AV has not been 
acknowledged. The mental model developed by Liu [26] considered 
human and machine drivers as heterogeneous and incompatible. 
Even though we emphasized AVs in traffic were fully autonomous 
at SAE Level 5, human drivers held reservations about AVs’ level 
of intelligence. 

We found that the effects of time constraints were similar in 
HV-AV interaction and HV-HV interaction. However, Trende et al. 
[59] discovered that under high time pressure, people may take 

more advantage of AVs than HVs. One possible explanation for this 
discrepancy could be that their participants were informed that AVs 
drove more cautiously than HVs but our study posited that besides 
the driving modes, both AVs and HVs had the potential to exhibit 
aggressive or conservative driving styles. Additionally, our work 
considered more situations and our results were more generalizable. 
For example, our participants were exposed to a variety of scenarios, 
while their participants only experienced a specific right and left 
turn at an intersection scenario. Also, our participants were from 
different age and occupation groups but their participants were 
relatively young with an academic background. 

Furthermore, drivers’ decisions often align with their intrinsic 
driving styles. Our statistical results revealed the distinct patterns 
among three categories of drivers: conservative, moderate, and 
aggressive. Aggressive drivers tended to defect more than rela-
tively conservative drivers. Specifically, in HV-AV interaction, both 
moderate and aggressive drivers exhibited defection; in HV-HV in-
teraction, both conservative and aggressive were more cooperative. 
It appeared that conservative drivers and aggressive drivers did not 
change their behaviors while moderate drivers might adjust their 
behaviors based on the type of vehicle they are interacting with. 
It indicated that drivers with extreme driving styles consistently 
adhered to their driving styles, regardless of external factors. We did 
not find a significant difference in decisions towards AVs and HVs 
among aggressive drivers or among conservative drivers, which 
seemed different from Ma and Zhang [30]. Their results suggested 
that aggressive drivers were more likely to take advantage of inter-
acting vehicles in HV-AV interaction than in HV-HV interaction. 
One big difference between these two studies is that the driving 
styles of AVs could be either aggressive or conservative in our study 
but were coded to drive cautiously in their study. 

5.2 Driver decisions in varying 
game-theoretical driving scenarios 

To expand the existing studies, we employed the chicken game 
and public goods game in game theory to develop two types of 
driving scenarios. Our results suggested that drivers were more 
likely to cooperate in chicken game scenarios compared to public 
goods game scenarios. This is consistent with traditional game 
theory, which posits that two-person games like the chicken game 
encourage more cooperation, and are inherently different from 
games involving three or more players [34]. 

However, this differs from the phenomenon mentioned in a 
human-robot interaction study [12], which constructed a one-on-
one chicken game and a one-on-group chicken game to examine 
how the number of robots affects human behavioral competition 
in dilemma tasks. Their results showed that the number of robots 
had no effect on the competitive behavior of humans. However, our 
research showed behavioral variances between the chicken game 
scenarios and the public goods game scenarios. This discrepancy 
might stem from the fact that in mixed traffic, the human driver’s 
perception of the scenarios does not solely depend on the number 
of interacting vehicles, but on the complexity and payoff structure 
changes caused by the number of interacting vehicles. Also, it is 
worth noting that driving is fundamentally rooted in safety, and the 
game-theoretical results from human-robot interaction may not be 
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Figure 5: Why do drivers defect? A mapping that reflects the dynamic relationship from dimensions to strategies to decisions 
when drivers make decisions. 

directly applied to interactions between human drivers and AVs in 
a mixed-traffic environment. Our findings confirmed this. From the 
qualitative results, one possible reason for differences between the 
two types of games could be that in our scenario design, chicken 
game scenarios posed greater risks than public goods scenarios 
due to the immediate danger of head-on collisions. Drivers in the 
chicken game scenarios exhibited higher levels of risk aversion. In 
the chicken game scenarios, drivers showed more willingness to co-
operate when confronted with vehicles of aggressive driving styles 
compared to vehicles of conservative driving styles. This trend was 
not observed in the public goods scenarios. Participants notably 
exhibited more cooperation only when encountering vehicles with 
aggressive driving styles in chicken game scenarios. The aggressive 
driving style heightened the risk of chicken game scenarios and 
further intensified drivers’ risk aversion in decision-making. 

Under high time constraints, drivers exhibited a higher tendency 
to defect. This indicated that when losses occurred, drivers chose 
to prioritize minimizing these losses. Meanwhile, under high time 
constraints, we found that drivers were more likely to defect in 
both scenario types compared to low time constraints, whereas 
the gap between different scenario types was narrow compared to 
low time constraint conditions. A possible explanation for these 
results is that drivers amplified the negative outcomes of time losses 
under high time constraints. Therefore, even if defection carried 
significant risks, drivers were more inclined to take those risks 
to mitigate time losses. In essence, under high time constraints, 
loss aversion outweighed risk aversion, potentially reducing the 
variances introduced by the different scenarios. 

5.3 Implications for AV and System Design 
This study highlights the need to understand the direct and indi-
rect influence of AV programming (and their driving styles) on the 
overall driving behavior of humans on the road. AV programming 
should strike a balance, avoiding being excessively conservative 
while also not being easily bullied by other vehicles. Recognizing 
the diverse perceptions and expectations people have regarding 
vehicle types and driving styles, it is important for manufacturers 
and regulators to either standardize certain behaviors or clearly 
define AV’s driving styles. AV design should prioritize dynamic 
adaptability to human drivers’ driving styles and be equipped with 
mechanisms for recognizing and responding to human drivers ap-
propriately. While spotlighting the potential of integrating driving 
styles into AV design, it also highlights the ethical responsibilities 
that accompany such technological advancements. We are com-
mitted to a careful exploration of these issues in our ongoing and 
future work. 

Our findings have significant implications for the development 
of driver behavior prediction systems, which could predict driver 
behaviors and decision-making when interacting with AVs in novel 
situations. This indicates that various aspects of human drivers, 
including their personal needs, risk perceptions, attitudes, expecta-
tions towards other vehicles, and their own driving styles, could 
serve as key predictive factors. Additionally, this study emphasizes 
the importance of developing innovative communication methods 
between HVs and AVs. For example, designing human-machine 
interfaces to communicate AV intentions and offer driving strategy 
suggestions to drivers could be beneficial. Lastly, future traffic reg-
ulations and public policies should delve deeper into defining the 
rights and responsibilities of AVs in mixed traffic environments. 
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6 LIMITATIONS & FUTURE WORK 
There are some limitations in our work. First, our sample was geo-
graphically limited to the United States, which may not represent 
the perceptions and behaviors of other populations in distinct re-
gions. To gain a more comprehensive understanding, cross-country 
research would be necessary in the future. The use of different coun-
tries will help establish the external validity of the findings across 
a wide-set of countries. Second, our game theoretical scenarios and 
settings were described using text and animations, and participants’ 
decisions were collected from web-based questionnaires. In such 
settings, we were only able to investigate participants’ hypothetical 
responses. Future research can employ driving simulator studies 
and on-road testing to immerse participants in interactions with 
various vehicle types and driving styles, examining their revealed 
decisions, such as driving strategies and performance in the dy-
namic environment. Third, future research could develop more 
scenarios and manipulate more interaction settings (e.g., number 
of passengers, vehicle automation level, vehicle brand) and driving 
environments (e.g., geographical locations, weather, and light con-
ditions) to investigate human-machine cooperation in more diverse 
mixed-traffic environments. 

7 CONCLUSION 
This study investigated how the driver and vehicle driving styles, 
interaction types, scenario types, and time constraints influenced 
human drivers’ decision-making in mixed-traffic environments and 
provided insights into how drivers perceived conditions and formu-
lated strategies for decision-making. First, in the HV-AV interaction, 
the difference between conservative and aggressive vehicle driv-
ing styles was more pronounced than in the HV-HV interaction. 
Drivers defected more when interacting with vehicles with conser-
vative driving styles. Second, in the chicken game scenarios, drivers 
cooperate more when encountering vehicles with aggressive driv-
ing styles. While such differences did not exist in the public goods 
game scenarios. Third, drivers tended to defect more in the public 
goods game scenarios or under high time constraints. Yet, compared 
to the low time constraints, the difference between scenario types 
narrowed. We also identified that human drivers adopted four strate-
gies, including risk aversion, loss aversion, attitudes towards others, 
and own driving styles and habits to make decisions in the mixed 
traffic. Our findings provide essential insights into AV algorithm 
design and the implementation of future human-machine systems 
from human aspects to facilitate human-machine cooperation in 
mixed-traffic environments. 
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Table 3: Payoff matrix of the chicken game, played by pairs. First payoff is for Player i, the second is for Player j. Payoffs are 
represented as Tie, Win, Lose, Crash, with 𝑊 𝑖𝑛 > 𝑇 𝑖𝑒 > 𝐿𝑜𝑠𝑒 > 𝐶𝑟𝑎𝑠ℎ. 

𝑃𝑙𝑎𝑦𝑒𝑟 𝑗 
𝐶𝑜𝑜𝑝𝑒𝑟 𝑎𝑡𝑒 𝐷𝑒 𝑓 𝑒𝑐𝑡 

𝑃𝑙𝑎𝑦𝑒𝑟 𝑖 
𝐶𝑜𝑜𝑝𝑒𝑟𝑎𝑡 𝑒 𝑇 𝑖𝑒, 𝑇 𝑖𝑒 𝐿𝑜𝑠𝑒, 𝑊 𝑖𝑛 
𝐷𝑒 𝑓 𝑒𝑐𝑡 𝑊 𝑖𝑛, 𝐿𝑜𝑠𝑒 𝐶𝑟 𝑎𝑠ℎ, 𝐶𝑟 𝑎𝑠ℎ 

Table 4: Payoff matrix of the public goods game, played by a group of 𝑘 players. Payoffs are for Player 𝑖 . Payoffs are represented 
as 𝑎 𝑗 = 𝑟 .𝑐 . 𝑗 +1 

𝑘
− 𝑐 and 𝑏 𝑗 = 𝑟 .𝑐 . 𝑗 

𝑘 , where 𝑗 = 0, ..., 𝑘 − 1 is the players −𝑖 who chose cooperation, 𝑟 is the multiplier (with 1 < 𝑟 < 𝑘 ), 
and 𝑐 is the cost of cooperation. For simplicity, we choose 𝑐 = 1 and 𝑟 = 𝑘 +1 

2 . 

𝑃𝑙𝑎𝑦𝑒𝑟 −𝑖 
k-1 k-2 ... 1 0 

𝑃𝑙𝑎𝑦𝑒𝑟 𝑖 
𝐶𝑜𝑜𝑝𝑒𝑟 𝑎𝑡𝑒 𝑎𝑘 −1 𝑎𝑘 −2 ... 𝑎1 𝑎0
𝐷𝑒 𝑓 𝑒𝑐𝑡 𝑏𝑘−1 𝑏𝑘−2 ... 𝑏1 𝑏0

Table 5: Codebook for sub-themes and dimensions 

Strategy 
(Sub-theme) 

Dimension Description & Example 

Risk aversion 
Safety risks Participants prioritized risk avoidance given safety risks. 

e.g., "There’s a chance of getting in an accident if you try and force the lane change." 
Time losses and 
safety risks 

Participants prioritized risk avoidance by weighing time losses and safety risks. 
e.g., "If I get into the left lane and the exit is coming up soon, I may have trouble merging back 
into the right lane–or possibly be unable to merge, resulting in me missing my exit and being 
even later." 

No influences 
on time 

Participants prioritized risk avoidance due to there was no influences on time. 
e.g., "There would be no advantage gained by getting in the left lane, since I’d just have to get 
back into the right lane anyway." 

Loss aversion 
Time losses Participants minimized time losses. 

e.g., "I chose to swerve between lanes ... because I don’t want to waste all day arriving at my 
location." 

Time losses and 
safety risks 

Participants minimized time losses after weighing time losses and safety risks. 
e.g., "Because I am in a hurry ... I am aware that the other driver is driving with an aggressive 
driving style. I would try to out maneuver the other driver ... by increasing my velocity and in 
sharply." 

Attitudes 
towards 
others 

Positive Participants placed trust in other vehicles and felt confident that they would cooperate. 
e.g., "I believe the automated car will yield to me." 

Negative Participants expressed distrust and skepticism on other vehicles as assuming others would 
not yield. 
e.g., "I don’t trust other vehicles." 

Own driving 
styles and 
habits 

Styles and pref-
erence 

Participants maintained their driving style regardless of the conditions or expressed their 
preference. 
e.g., "I was taught how to drive defensively so will always opt to avoid possible accidents." 

Experience and 
habit 

Participants anchored their decisions to past experiences and ingrained habits. 
e.g., "It’s always better to do that in a roundabout and I know that from experience." 

Manner and 
rule adherence 

Participants advocated for driving manner and prioritized strict adherence to established road 
rules. 
e.g., "Turning wide is technically illegal even though many people do it." 
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