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ABSTRACT
Background: Low birthweight (LBW) is when an infant is born too soon or too small, and it 
affects one in seven infants in low- and middle-income countries. LBW has a significant impact 
on short-term morbidity and mortality, and it impairs long-term health and human capital. 
Antenatal microbial and inflammatory exposure may contribute to LBW.
Methods: Ovid-Medline, Embase and Cochrane databases were searched for English-language 
articles evaluating inflammatory, microbial or infective causes of LBW, small-for-gestational 
age, intra-uterine growth restriction or prematurity. Inclusion criteria were human studies 
including published data; conference abstracts and grey literature were excluded. A narrative 
synthesis of the literature was conducted.
Results: Local infections may drive the underlying causes of LBW: for example, vaginitis and 
placental infection are associated with a greater risk of prematurity. Distal infection and 
inflammatory pathways are also associated with LBW, with an association between period-
ontitis and preterm delivery and environmental enteric dysfunction and reduced intra-uterine 
growth. Systemic maternal infections such as malaria and HIV are associated with LBW, even 
when infants are exposed to HIV but not infected. This latter association may be driven by 
chronic inflammation, co-infections and socio-economic confounders. Antimicrobial prophy-
laxis against other bacteria in pregnancy has shown minimal impact in most trials, though 
positive effects on birthweight have been found in some settings with a high infectious disease 
burden.
Conclusion: Maternal inflammatory and infective processes underlie LBW, and provide trea-
table pathways for interventions. However, an improved understanding of the mechanisms 
and pathways underlying LBW is needed, given the impact of LBW on life-course.
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Introduction

Low birthweight (LBW) is defined as a birthweight of 
<2500 g, regardless of gestational age. LBW is an easily 
obtained measure of risk, particularly where access to 
ultrasound gestational dating is limited [1,2]. Each year, 
more than 20 million live births are of LBW, equating to 
14.6% of all live births worldwide, with 91% being in 
low- and middle-income countries (LMIC) [3]. Over 80% 
of neonatal deaths occur in LBW neonates [4]. The 
rates of reduction in LBW remain less than half of 
those required to meet global nutrition targets to 
reduce LBW by 30% by 2025 [5]. There is therefore 
a pressing need to understand the pathophysiology 
and determinants of LBW in order to identify preven-
tive interventions and programmes of action to reduce 
its burden worldwide.

There are several different LBW phenotypes that col-
lectively give rise to small, vulnerable newborns, with 

overlapping categories [6]. Being small for gestational 
age (SGA) is defined as a birthweight under the 10th 
percentile for sex and gestational age. Data for 2010 
estimated that 27% of all births in LMIC were SGA [7,8]. 
SGA infants can be normal and healthy, but in areas of 
high prevalence, SGA is often used as a de facto proxy for 
intra-uterine growth restriction (IUGR), which is more 
typically associated with deficits in health and develop-
ment. In settings where ultrasound monitoring of fetal 
development is readily available, IUGR is defined as 
a reduced fetal growth rate during pregnancy, rather 
than by birthweight. In contrast, growth that is appropri-
ate for gestational age (AGA) is healthy growth regardless 
of gestation. Prematurity is defined as birth before 37 
completed gestational weeks. Global trends in 2000– 
2014 showed an increase in preterm birth in a majority 
of countries with available data [8].

LBW can result from IUGR, SGA, preterm birth or 
a combination of these. These birth phenotypes have 
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varying rates of mortality, morbidity and longer-term 
clinical outcomes, and so interventions for LBW infants 
are often targeted according to each adverse birth 
outcome. However, reliable methods of assessing 
gestational age such as early antenatal ultrasound 
scans are often unavailable in LMIC, making it challen-
ging to determine whether a small newborn is SGA or 
premature. LBW is therefore often used pragmatically 
to capture all phenotypes, but prevents the use of 
targeted interventions. However, it is worth noting 
that whilst a significant proportion of SGA infants are 
born entirely healthy, preterm infants are considered 
to be at an increasingly high risk of morbidity and 
mortality with lower gestational ages, and infants 
who are SGA and preterm are considered to be at 
greatest risk owing to the combined effects of both 
phenotypes [8,9].

Child and life course of LBW

LBW is associated with increased infant mortality, poor 
child growth and impaired health throughout life 
[3,9,10]. In children, this includes reduced cognitive 
and motor development as well as physical strength 
and cardiovascular fitness [11,12]. LBW programmes 
the body to have less lean and muscle mass, leading 
to reduced capacity for homeostasis in the context of 
energy metabolism and cardiovascular health [13,14]. 
As LMIC experience the ‘double burden of malnutri-
tion’ with increasing metabolic load caused by obeso-
genic lifestyle factors, being LBW in LMIC increases the 
risk of long-term non-communicable disease (NCD) in 
adulthood [15,16]. Observational evidence consistently 
associates LBW with several life-course outcomes, 
including type 2 diabetes, hypertension and cardiovas-
cular disease [10,17,17–21]. Epidemiological studies 
outside LMIC also associate LBW with many other dis-
eases including osteoporosis, impaired mental health, 
breast cancer and fertility problems [22,23].

LBW is also associated with broader psychosocial 
factors such as maternal education and maternal 
stress, together with community factors including 
the quality of the social environment, rural dwelling, 
levels of poverty and access to safe water [24–29]. 
Therefore, the lifetime effects of LBW reflect com-
bined adversities experienced antenatally, leading 
to reduced postnatal metabolic capacity and lean 
mass, compounded by overlapping physiological 
and psychological risk factors for poor growth and 
child development [30]. LBW is a precursor of sus-
tained linear and ponderal growth deficits, including 
stunting (length-for-age Z-score <-2) and wasting 
(weight-for-height Z-score <-2), indicative of under-
nutrition. LBW therefore feeds into an intergenera-
tional cycle whereby poor maternal nutritional status 

during pregnancy increases the risk of subsequent 
LBW and stunting [30].

Rationale for review

New approaches are required to reduce LBW and the 
associated risk factors in order to meet global nutrition 
targets. To enable rational design of interventions, it is 
necessary to understand the pathogenic processes 
underlying LBW. The recent Lancet Series on Small 
Vulnerable Newborns provides a broad overview of 
the mechanisms underlying preterm birth and SGA 
[31], including maternal infectious and nutritional 
causes, as well as broader household and societal 
issues such as access to hygiene, maternal education, 
antenatal care, and other social factors [31–33]. Whilst 
a wide range of interventions to reduce LBW have 
been appraised, addressing infective pathways such 
as HIV and the range of inflammatory pathways asso-
ciated with a poor long-term outcome are mechanisms 
that may be addressed [31–33]. The Series also pro-
vides a contemporary evidence base for current inter-
ventions to reduce LBW, including interventions 
applicable to all women, women at greater risk of 
delivering small vulnerable newborns, or women with 
imminent preterm birth [31,31]. These include smoking 
cessation, having good access to midwife-led continu-
ity antenatal care, zinc supplementation, periconcep-
tion food fortification with folic acid, insecticide nets, 
and medical interventions for high-risk women such as 
cervical cerclage and anticoagulant therapy, amongst 
others [31,34]. This review focuses in depth on micro-
bial causes owing to the high infectious exposure of 
pregnant women delivering in LMIC, and inflammation 
owing to its role in common pathways underpinning 
fetal growth restriction and prematurity. It also reviews 
the scope for antimicrobial and anti-inflammatory 
interventions for LBW, which remain relatively under- 
explored. Knowledge gaps for future research are iden-
tified, and the potential for novel interventions to pre-
vent LBW in LMIC is discussed.

Methodology and aims for review

A narrative review of relevant studies which explore 
the relationship between maternal inflammation and/ 
or infection and LBW was undertaken. Although this is 
not a systematic review, full details of the search strat-
egy and approach to screening and selecting studies in 
the supporting material in the supplementary appen-
dix and search strategy in an online repository are 
included [35]. Ovid-Medline, Embase and Cochrane 
databases were searched for English language articles 
between 1 January 1992 and 1 January 2022 which 
evaluated inflammatory, microbial and/or infective 
causes of LBW, SGA, IUGR or preterm/prematurity, 
and studies for inclusion were prioritised based on 
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the most recent and highest quality data as per the 
search strategy in the appendix and in LMIC. The 
review aims to include relevant studies and data to 
understand microbial and inflammatory drivers of 
LBW, SGA and prematurity.

Microbial and inflammatory pathways of LBW

Studies reporting data on LBW pathogenesis mainly 
addressed the following pathways: (i) localised infective 
and inflammatory pathways at the feto-maternal inter-
face, (ii) distal inflammatory pathways in other maternal 
tissue, and (iii) systemic infection. The pathways in which 
infection may contribute to inflammation and subse-
quent reduced uterine growth and gestational age at 
birth are outlined in Figure 1, with supporting literature 
discussed in the local pathways section.

Local pathways

Placental, cord blood and fetal membrane 
inflammatory pathways
Healthy fetal growth relies on a series of tightly regu-
lated processes mediated via the placenta which are 

disrupted by infection and inflammation. Maternal 
immune cells recognise and respond to fetal tissue 
but inflammatory activation is minimised in healthy 
pregnancies by placental structure, limited T-cell pro-
portions in the uterus and placenta, and restricted 
HLA-class I expression on fetal trophoblasts [36]. 
Inflammation in the placenta, fetal membranes and 
cord blood can be triggered by maternal infections in 
local or distal tissue (discussed above), impaired devel-
opment and/or damage to feto-maternal tissues and 
chronic inflammatory conditions (e.g. irritable bowel 
syndrome and auto-immune disease) [37,38]. 
Inflammation at these sites is consistently associated 
with adverse birth outcomes. For example:

● Rupture of fetal membranes leads to release of the 
extracellular matrix component fibronectin into 
cervicovaginal secretions, which is associated 
with preterm birth and lower mean birthweight 
in both high-income and LMIC settings [39,40]. 
Premature membrane rupture before the onset 
of labour triggers the release of the pro- 
inflammatory cytokine IL-6 into cervicovaginal 
secretions and cord blood and is a risk factor for 

Figure 1. Local, distal and systemic contributors to maternal infection and inflammation pathways and their impact on low- 
birthweight infants. This simplified model depicts how different pathways contribute to the risk of premature birth and being 
small for gestational age, contributing to LBW and associated long-term poor outcomes. Maternal inflammatory pathways are 
above the dotted line; infant birth outcomes and long-term pathways are below the dotted line.
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fetal sepsis and mother-to-child transmission of 
HIV [39,41,42].

● Pre-eclampsia is one clinical manifestation of 
defects in placental development; it is thought 
to arise from abnormal placental spiral artery for-
mation driving increased maternal blood pressure 
and local and systemic inflammation during preg-
nancy. Plasma C-reactive protein (CRP) was ele-
vated in 100 Bangladeshi women with pre- 
eclampsia in the 3rd trimester relative to age- 
matched normotensive pregnant women; both 
CRP and pre-eclampsia were associated with 
LBW in this cohort [43]. Small sample size limits 
the ability to draw significant conclusions and 
prospective trials are needed.

In addition, some data suggest that microbial com-
munities are present in the placenta and fetal mem-
branes, which in studies in both high-income 
countries (HIC) and LMIC are associated with birth-
weight and other anthropometric measures imme-
diately following birth [44,45]. However, data 
supporting the existence of placental microbiomes 
are highly conflicting [46] and prone to confoun-
ders, and this is a contentious area.

Inflammation itself, whether infectious or non- 
infectious in origin, can also affect the placental 
tissue itself [47] and has been investigated in mur-
ine models of intra-uterine inflammation, which 
identified alterations in placental transcriptome 
and metabolomes [48]. Such pathways may lead 
to placental vascular and endothelial problems, 
including placental malperfusion and fetal vessel 
resistance, with subsequent IUGR and preterm 
birth [49].

There is therefore cumulative evidence that 
inflammation at the feto-maternal interface and in 
the systemic circulation contributes to an adverse 
birth outcome. Improving birthweight will rely on 
considering the independent and dependent 
impact of inflammation during pregnancy and iden-
tifying the most relevant mediators from the inflam-
matory repertoire.

It is plausible that inflammation in tissue distal to 
the feto-maternal interface could also contribute to 
LBW, including oral, respiratory, intestinal and cuta-
neous barrier tissue.

Genito-urinary microbiome and infection

The urogenital tract may be a simultaneous source of 
pathogens and a site of commensal microbiome dys-
biosis which contribute to local inflammation and an 
adverse birth outcome. Few studies have explored 

interactions between the vaginal microbiome, local 
inflammation and birth outcome in LMIC.

There are well-established associations between 
sexually transmitted infections (STIs), chorio- 
amnionitis (inflammation of the chorion and mem-
branes of the placenta) and an adverse birth outcome 
[50–53], mediated by placental and fetal inflammation. 
Disturbances of the maternal commensal microbiome 
may also mediate infection and subsequent inflamma-
tion at various body sites. The composition and func-
tion of the vaginal microbiome influences 
susceptibility to local infection [54] and inflammation 
[55] via colonisation resistance. In high-income set-
tings, the vaginal microbiome is dominated by one of 
four Lactobacillus species, providing a low pH environ-
ment to deter pathogen colonisation [56]. Shifts to 
a high-diversity, Lactobacillus-deficient vaginal micro-
biome are associated with preterm birth, plausibly 
through inflammation [57,58]. These disruptions to 
the commensal vaginal microbiome are collectively 
termed bacterial vaginosis (BV).

BV is defined by a lack of vaginal Lactobacillus 
species, which results in elevated vaginal pH and 
a relative over-abundance of other commensal vagi-
nal species such as Gardnerella vaginalis. In the 
absence of speciation, this may be defined by yel-
low-green discharge, altered pH and the presence of 
clue cells on microscopy [59]. BV has consistently 
been associated with preterm birth and LBW in 
both HIC and LMIC [60]. This dysbiotic state results 
in a greater risk of STI and other urogenital infec-
tions and heightens vaginal inflammation which 
may interfere with fetal growth [61]. Healthy non- 
pregnant women in Saharan Africa were found to 
have low Lactobacillus/high diversity vaginal micro-
biomes; the latter was correlated with cervicovaginal 
lavage cytokine levels and activated T-cells (albeit 
not linked to LBW) [61]. A Lactobacillus-deficient 
vaginal microbiome is common in certain settings 
[62], suggesting that classical definitions of BV may 
not accurately reflect the more subtle vaginal micro-
biome signatures which have been associated with 
an adverse birth outcome in both HIC and LMIC 
[61,63]. Additionally, a Lactobacillus-deficient and 
overly abundant Gardnerella species in the vaginal 
microbiome predicts spontaneous preterm birth in 
women living with HIV [64]. Other studies have 
demonstrated potential associations between pre-
term birth and Atopobium vaginae species, among 
others [65–68].

Pelvic and sexually transmitted infections are an 
important cause of an adverse birth outcome 
[69,70]. Ascending genital tract infections trigger 
an inflammatory cascade leading to the onset of 
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labour. Chlamydia can cause partial activation of 
the systemic cytokine network via IFN-γ and IL10, 
IL 12, IL 23 and TNF-alpha, leading to preterm 
labour [71–74]. Histological chorio-amnionitis 
increases the risk of preterm birth and LBW [75].

Schistosomiasis is a parasitic helminth infection 
which entails cutaneous invasion and systemic migra-
tion by larvae and long-term residence of adult worms 
in capillaries surrounding the urogenital (Schistosoma 
haematobium) and intestinal (S. mansoni, S. japonicum 
and others) tracts. Adult worms release eggs which 
must cross from the bloodstream into urogenital/ 
intestinal tracts and which elicit mucosal granuloma 
formation and characteristic type 2 and regulated type 
2 immune responses in affected tissue. Because schis-
tosomiasis causes both anaemia and undernutrition, 
maternal infection with schistosomes could have dele-
terious consequences during pregnancy [76], although 
not all studies have shown associations with an 
adverse birth outcome [76–79]. A study of 
Schistosoma haematobium in Zimbabwe (471/4437, 
10.6% S. haematobium egg-positive) found no associa-
tion with LBW, term SGA, preterm or preterm SGA 
outcome, while a study in Gabon (103/1115, 9% 
S. haematobium egg-positive) found an increased risk 
of LBW but not preterm birth [77,80]. Trials of prazi-
quantel in pregnancy have not shown an effect on 
birth outcome [76,81], and praziquantel is often 
avoided in pregnancy owing to concerns about fetal 
toxicity.

Distal pathways

Peridontal and oral infection
Oral disease is highly prevalent in LMIC, with 
a frequent lack of preventive dental care. It has been 
estimated that approximately 7.4% of the adult popu-
lation worldwide is affected by severe periodontitis 
[82], while its milder form may be as high as 50% 
[83]. Periodontitis is a chronic inflammatory disease of 
the tooth-supporting tissues; initiation and progres-
sion are driven by shifts in the supragingival and sub-
gingival microbiome [84–87]. These dysbiotic changes 
in microbial communities can redirect the immune and 
inflammatory responses of the host towards destruc-
tion of periodontal tissue.

Periodontitis has been associated with a range of 
systemic diseases, including diabetes mellitus [88] and 
cardiovascular disease [88,89] as well as preterm birth 
and LBW [90]. The translocation of oral pathogens, 
their pathogenic products and/or inflammatory mar-
kers to the fetal-placental unit may lead to placental 
inflammation, suppression of growth factors and pre-
term labour [91–94], providing a plausible biological 
mechanism for the association between periodontal 

disease and LBW. A case–control study of 390 women 
in Vietnam found that those with periodontitis were 
significantly more likely to deliver an SGA infant than 
those without periodontitis [95]. Similarly, a rural 
Malawian study demonstrated an association between 
peri-apical infections, reduced gestation and birth-
weight [96]. In contrast, a hospital-based case–control 
study reported that maternal periodontal status and 
generalised periodontitis were not associated with an 
adverse outcome of pregnancy [97].

The impact of periodontal treatment on pregnancy 
duration and infant birthweight has also been investi-
gated, showing that women with untreated period-
ontitis had a higher proportion of preterm LBW 
infants (79%) than treated groups [98,98]. Likewise, in 
a trial in Australia, women delivering SGA infants had 
poorer clinical dental parameters and more severe 
periodontal disease than mothers of appropriate-for- 
gestational age infants [99]. Although the treatment of 
periodontal disease during mid-pregnancy signifi-
cantly reduced the levels of several inflammatory mar-
kers in gingival crevicular fluid, it did not benefit 
pregnancy-related outcome [99].

Although data on the composition and function of 
the oral microbiome in pregnant women in LMIC are 
scarce, studies in high-income settings report associa-
tions between the abundance of specific commensal 
members of the oral microbiome and birth outcomes. 
Actinomyces naeslundii, Eikenella corrodens and 
Capnocytophaga spp. were negatively associated and 
Lactobacillus casei was positively associated with birth-
weight and duration of pregnancy [100,101].

The current literature is still controversial and het-
erogeneous [99], meaning that a definitive causal rela-
tionship between periodontal disease and LBW has not 
been established. The small sample size limits many of 
the studies and the studies included are open to sig-
nificant bias. Confounders with socio-economic status 
could contribute to significant proportions of the asso-
ciations observed. Further, well designed longitudinal 
and prospective studies which follow women through-
out the full duration of pregnancy should be consid-
ered to understand the mechanisms and impact of 
periodontitis as a risk factor for LBW, alongside obste-
tric outcome and assessment of local and systemic 
microbial and inflammatory biomarkers. This would 
help inform discussions with pregnant women on the 
potential risks related to untreated periodontitis and 
guide the implementation of oral health interventions 
to prevent preterm and/or LBW, especially in LMIC.

Gastro-intestinal infection

The gut is the densest and most diverse microbial 
ecosystem in the body and a major site for interaction 
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between immune cells and environmental antigens, 
but it is an under-explored site of dysbiosis, pathogen 
carriage and inflammation during pregnancy.

Environmental enteric dysfunction (EED), a subclinical 
disorder of the small intestine characterised by inflamma-
tion, altered gut morphology and loss of barrier function, 
is almost universal in LMIC, and is associated with dysbio-
sis and increased carriage of enteropathogens [102]. The 
authors of this review have previously hypothesised that 
maternal EED drives adverse birth outcome [103] since 
microbial translocation increases during pregnancy and 
triggers systemic inflammation [104]. Markers of intestinal 
damage (intestinal fatty acid-binding protein, I-FABP) and 
innate immune cell activation (sCD14 and sCD163) in 
early pregnancy are associated with preterm birth in HIC 
[105,106]. In LMIC, markers of microbial translocation and 
intestinal inflammation are associated with shorter gesta-
tion and reduced length at birth [107]; diarrhoea during 
pregnancy is associated with SGA [108], and poor sanita-
tion with preterm birth [109]. Clinical and subclinical 
infection, intestinal inflammation and microbial transloca-
tion are potentially modifiable drivers of preterm birth 
and SGA. The gut microbiome helps to modulate gut 
barrier function and therefore disturbances to the normal 
gut microbiome structure may mediate some of the 
intestinal inflammatory pathways hypothesised to contri-
bute to adverse birth outcomes. Evidence from high- 
income settings has shown a lower diversity of microbial 
species and relative abundance of Bifidobacteria, 
Streptococci and Clostridia in the gut of women deliver-
ing preterm versus those delivering at term [110]. In rural 
Zimbabwe, patterns of gut microbiome composition and 
function, including starch metabolism genes, were highly 
predictive of birthweight and subsequent neonatal 
growth [111]. Metagenomic pathways involved in biofilm 
formation in response to nutrient starvation are strongly 
associated with reduced birthweight [111].

EED and HIV enteropathy are virtually indistin-
guishable pathogenic processes in terms of circulat-
ing biomarkers; both are associated with systemic 
translocation of microbial antigens (including endo-
toxin), intestinal mucosal damage (e.g. circulating 
intestinal fatty acid binding-protein, IF-ABP), ele-
vated circulating anti-bacterial antibody titres, and 
biomarkers of monocyte/macrophage activation 
(e.g. sCD163 and sCD14). In a prospective cohort 
study of women living with HIV in Uganda, anti- 
endotoxin and anti-flagellin titres were inversely 
associated with duration of gestation [107]. In 
a small cohort of women living with predominantly 
untreated HIV in India, the odds of preterm birth 
were associated with soluble CD14, CD163 and 
I-FABP but not CRP relative to term births in HIV- 
positive mothers [112].

Intestinal schistosomiasis (discussed above) and 
soil-transmitted helminth infection/s may influence 
cytokine concentrations at the distal maternal/fetal 

interface, and altered fetal cytokine production con-
tributes to SGA [113]. In a study of the relationship 
between soil-transmitted helminth infection and the 
progress and outcome of pregnancy, hookworm 
infection was associated with LBW (adjusted OR 
1.81, 95% CI 1.02–3.23) [114]. However, 
a randomised controlled trial in Uganda showed no 
effect of antihelminthic treatment on birthweight or 
proportion of LBW [76]. In a Cochrane systematic 
review in 2015, administration of antihelminthics for 
soil-transmitted helminths during pregnancy had no 
impact on LBW (RR 1.00, 95% CI 0.79–1.27, 3255 par-
ticipants) [115].

Respiratory

The COVID-19 pandemic provided an opportunity 
to explore the effect of respiratory infections on 
birth outcomes. COVID-19 is a highly pro- 
inflammatory disease, and infection during preg-
nancy is associated with heightened systemic and 
placental inflammatory cascades in affected 
mothers [116,117]. Whilst the clinical effect of SARS- 
CoV-2 in LMIC is still to be fully established, it is 
clear that there has been an enormous global 
impact on adverse pregnancy outcome, including 
higher risk of abortion and stillbirth and, emerging 
data suggest, a greater risk of preterm birth 
[118,119]. A retrospective study in China demon-
strated an increased prevalence of IUGR in mothers 
infected with SARS-CoV-2 during pregnancy but no 
increased risk of prematurity [120,121]. Data from 
high-income settings suggest that the risk of pre-
maturity is increased with more severe maternal 
COVID-19 disease and with later gestation in preg-
nancy [122]. A global systematic review found 
higher risks of preterm birth (OR 4.29, 95% CI 
2.41–7.63) and LBW (OR 1.89, 95% CI 1.14–3.12) in 
14,264 pregnant women in Africa, Asia, Europe and 
the Americas, consistent with similar studies 
[122,123]. These studies largely included trials from 
HIC, and the effects of maternal COVID-19 on birth 
outcomes in LMIC still need to be established, as 
well as the evidence base for other respiratory 
infections. These data highlight the importance of 
studying the effects of a range of acute respiratory 
viral infections and their potential impact on LBW 
pathways.

Systemic infection

Emerging evidence suggests that systemic infection 
plays a role in driving LBW, including maternal brucel-
losis [124] and syphilis [125]. Here, the focus is specifi-
cally on two common systemic infections that affect 
pregnant women in LMIC: HIV and malaria.
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HIV

A 2015 meta-analysis of cohort studies including 
15,538 participants demonstrated a clear association 
between maternal HIV infection and LBW (OR 1.73, 
95% CI 1.64–1.82), with a greater effect when analyses 
were limited to studies from LMIC (OR 2.12, 95% CI 
1.81–2.48) [126]. The HIV landscape has changed con-
siderably since most studies were conducted (with 
many from the 1990s), since women living with HIV 
are now more likely to start pre-conception or antena-
tal antiretroviral therapy (ART), and HIV-exposed chil-
dren are consequently less likely to be HIV-infected. 
However, recent studies have found that the associa-
tion between maternal HIV and LBW remains, even in 
the current ART era [127–130]. Furthermore, the effect 
is not limited only to children who acquire HIV; studies 
of infants who are HIV-exposed but uninfected have 
also demonstrated associations between maternal HIV 
and infant LBW, both before [131] and after [130] the 
availability of ART.

The drivers of LBW in HIV infection are probably 
multifactorial, including both biological and sociodemo-
graphic pathways [132]. Maternal chronic inflammation 
and immune activation, a hallmark of HIV infection, may 
be one explanation [133]. Elevated levels of the pro- 
inflammatory cytokines CRP and IP-10 have been 
reported in infants of women living with HIV, both at 
birth and up to 6 months of age [134]. The pathway 
leading from maternal HIV infection to LBW may include 
HIV-associated co-infections such as tuberculosis, cyto-
megalovirus and hepatitis B [135,136].

Although clearly required for maternal health and for 
the prevention of vertical HIV transmission, whether ART 
exposure is negatively associated with LBW is uncertain. 
A 2017 meta-analysis demonstrated a greater risk of 
LBW in infants born to women living with HIV who 
used ART at conception than in infants of women who 
commenced ART during pregnancy [relative risk (RR) 
1.30, 95 CI 1.04–1.62]. However, advanced HIV infection 
may also be associated with increased ART, contributing 
to this association [137]. Encouragingly, in a study of 
women without HIV, use of ART for pre-exposure pro-
phylaxis was not associated with LBW (adjusted OR 0.58, 
95% CI 0.20–1.73) [138].

Malaria and other systemic infective-inflammatory 
pathways

Pregnancy is known to increase the risk and severity of 
malaria infection, and malaria increases the risk of 
maternal anaemia and LBW [139,140]. Much of the 
impact of malaria on birthweight has been studied in 
the context of clinical trials examining the effect of 
chemoprophylaxis, such as those included in 
a systematic review in 2013 with data from 6281 preg-
nancies [141]. The study found that an increase to 

three doses of intermittent preventive therapy using 
sulfadoxine-pyrimethamine for pregnant women was 
associated with a lower risk of LBW, alongside other 
benefits. In malaria-endemic areas, the absence of anti-
malarial treatment, even in asymptomatic pregnant 
women, is associated with an increased relative risk 
of LBW. The impact of placental malaria is important. 
In one study in Uganda, placental infection on blood 
smear was associated with a higher risk of LBW (18.9%) 
compared with systemic malaria without placental 
infection (7.2%, p = 0.01), as well as a higher risk of 
preterm delivery (OR 4.7, 95% CI 1.28–17.5) [142]. 
Data suggest that the risk of malaria contributing to 
LBW differs between trimesters of pregnancy. In 
a study of 1628 women in a high-prevalence area in 
Malawi, malaria in the first trimester led to a higher risk 
of preterm birth than in subsequent trimesters [143]. 
The impact of malaria and its prevention may also be 
associated with gravidae. There is evidence that 
women in their first and second pregnancy may be at 
greater risk [144], although other studies have shown 
a greater impact of sulfadoxine-pyrimethamine on 
birthweight in multigravida than in primigravid 
women [145]. Moreover, malaria epidemiology may 
have an impact on birthweight: in areas with endemic, 
stable transmission, women might have partial immu-
nity and chronic subclinical placental infection, leading 
to slightly reduced birthweight, whereas women in 
areas with unstable transmission might have less anti-
malarial immunity, more clinical placental infection 
and a higher risk of LBW [145].

Malaria during early pregnancy alters the kinetics of 
systemic inflammatory, angiogenic and metabolic med-
iators [143,146], which might contribute to the relation-
ship between malaria and adverse birth outcome 
(discussed above). However, in other studies of malaria 
infection during pregnancy, CRP was not predictive of 
LBW [147], and, although placental TNFα was associated 
with parasitaemia, monocyte infiltration and LBW, circu-
lating TNFα was only weakly associated with infection 
[148]. The effects of malaria on birth outcome might be 
worsened further in the context of co-infection with HIV 
[149], schistosomiasis [77] and others.

Systemic inflammation provides an indicator of 
a mother’s inflammatory status that is more readily 
accessible than tissue sampling and, in some cases, 
reflects tissue inflammatory pathways. In 1179 preg-
nant women in Malawi, plasma levels of the liver acute- 
phase protein alpha-1-acid glycoprotein (AGP) was 
a significant predictor of newborn weight-for-age 
Z-score [150]; pathway analysis of this cohort indicated 
that AGP had a mediating rather than independent 
effect on the relationship between maternal infection, 
anthropometry and nutritional status and infant birth-
weight [150,151]. In 653 mother-infant dyads in Nepal, 
serum AGP (but not CRP) was also inversely associated 
with birthweight, length and head and chest 
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circumference [152]. In two studies which simulta-
neously assessed a wider range of plasma biomarkers 
in 432 Tanzanian and 1506 Malawian women, 
a combination of pro-angiogenic and pro- 
inflammatory mediators was predictive of SGA [153] 
and preterm birth [154], respectively. However, it 
should be noted that large cohort studies have 
shown that first-trimester exposure to non-steroidal 
anti-inflammatory drugs such as ibuprofen is asso-
ciated with small reductions in birthweight [155,156], 
although these studies took place in HIC where 
antenatal exposure and subsequent pathways leading 
to SGA and preterm may differ.

Antimicrobial interventions

Whilst it is beyond the scope of this review to appraise 
all potential antimicrobial interventions, a brief review 
of selected studies highlights the potential value of 
targeted antimicrobial interventions as a promising 
pathway to reduce SGA, prematurity and/or LBW.

Targeted interventions

There are positive impacts on LBW of several targeted 
interventions. Early antibiotic treatment of BV in preg-
nancy in the context of previous premature birth led to 
reduced odds of premature birth [157–160]. Antibiotic 
treatment of asymptomatic bacteriuria on microscopy 
led to reduced preterm birth (RR 0.34, 95% CI 0.13– 
0.88) and reduced LBW (RR 0.64, 95% CI 0.45–0.93) 
[161]. A systematic review in 2014 found that malaria 
chemoprevention led to a reduction in LBW of 27% (RR 
0.73, 95% CI 0.61–0.87) in endemic settings compared 
with placebo or no intervention. Comparing antimalar-
ial prophylaxis using cotrimoxazole or sulphadoxine- 
pyrimethamine in women with HIV, infant birthweight 
was similar between strategies in both randomised 
and observational analyses [160,160,162,163]. The 
screening and treatment of STI during pregnancy in 
a systematic review demonstrated a lower risk of pre-
mature birth (RR 0.55, 95% CI 0.41–0.75) and a reduced 
risk of LBW (RR 0.48, 95% CI 0.34–0.66) [164]. However, 
the potential benefits have not been universal. In 
a Cochrane systematic review, treatment of 
Trichomonas vaginalis with metronidazole in preg-
nancy was associated with an increased incidence of 
LBW and preterm delivery [165]. Moreover, there might 
be risks associated with certain anti-microbials in preg-
nancy, as highlighted by a study which demonstrated 
more functional impairments at age 7 years in children 
of mothers treated with erythromycin for spontaneous 
preterm labour with intact membranes and a higher 
risk of cerebral palsy in children whose mothers 
received either erythromycin or co-amoxiclav in labour 
[166]. However, many large-scale studies have demon-
strated the safety of many antimicrobial agents [141].

Untargeted interventions

Several studies have explored untargeted antimicro-
bial prophylaxis during pregnancy. A systematic review 
of 4300 pregnant women in eight trials in mixed- 
income settings assessed the impact on birth outcome 
of prophylactic antibiotics in the second and third 
trimesters versus placebo [158]. Prophylactic antibio-
tics had no impact on LBW or prematurity in general 
populations. Moreover, other antimicrobial interven-
tions such as mass anti-helminth administration have 
had no positive impact on LBW; this could be owing to 
marginal effects of helminths on birthweight, associa-
tions that are confounded by multiple coincident risk 
factors for helminth infection and LBW, and/or anti- 
helminthic treatments that are insufficiently effective 
(e.g. praziquantel and albendazole do not prevent re- 
infection). However, the potential impact of antimicro-
bial administration might be more pronounced in set-
tings with a high burden of infectious disease. A review 
of eight studies [167] found that antibiotics during 
pregnancy had a positive impact on IUGR or preterm 
birth. Five positive trials were in sub-Saharan Africa, 
where broadspectrum antibiotics were generally used, 
ranging from single-dose cephalosporins to a 6-week 
course of erythromycin. The mean reduction in gesta-
tion was 0.5 weeks, or a 20% reduction in preterm birth 
in those receiving antibiotics rather than in those 
receiving a placebo. Studies in India, the US and the 
UK had heterogeneous results [167].

Taken together, data from these studies suggest 
that targeted antimicrobial interventions hold promise 
in reducing LBW and premature birth. Untargeted anti-
microbial prophylaxis might have a role to play, parti-
cularly in specific settings with a high prevalence of 
infectious diseases such as reproductive tract infec-
tions, HIV or parasitic infections.

Future research priorities

This is a narrative review and should be considered for 
hypothesis generation and to inform new ideas for 
research. A systematic review is required in this field 
to comprehensively further appraise these data, and 
prospective trials are needed to assess causality.

Given the morbidity associated with LBW in LMIC, 
further research is needed to guide potential new 
strategies. Compared with the wealth of studies in 
HIC, there is a need for further studies in LMIC popula-
tions with a high infectious disease burden and high 
rates of LBW.

Specifically, research is needed to identify which 
groups of women with evidence of perturbed inflam-
matory and infective pathways are most at risk of 
a poor pregnancy outcome, including those with par-
ticular microbial colonisation patterns and genetic sus-
ceptibility to certain pathways. In addition, this review 

8 J. BROAD ET AL.



highlights the importance of research into tissue- 
specific inflammation pathways, which may be harder 
to capture by existing clinical sampling. Mechanistic 
studies in LMIC should include longitudinal evaluation 
of microbial taxonomy and function, specific inflam-
matory pathways underlying adverse birth outcome 
and periods of highest risk during pregnancy to char-
acterise typical fluctuations in microbial/inflammatory 
exposure during healthy pregnancies in LMIC, and also 
identify the mechanistic pathways leading to LBW. 
Dissecting the pathways in different LBW phenotypes 
(SGA versus preterm, versus SGA-preterm) needs 
further evaluation.

Additional research is needed to differentiate the 
value of different anti-infection strategies, including 
the efficacy and cost-effectiveness of chemoprophylaxis 
versus intermittent screen-and-treat approaches for 
specific infections (e.g. for malaria), and systemic versus 
local (e.g. vaginal) approaches. Efficacy studies in ende-
mic settings should consider combinations of vaccines, 
antimicrobials and other preventive approaches such as 
prebiotics or probiotics to target intestinal dysbiosis and 
enteropathy during pregnancy. In addition to evaluat-
ing the effects on LBW phenotypes, studies could eval-
uate the impact of these strategies on other related 
adverse pregnancy outcomes, such as late spontaneous 
miscarriage. There is a concurrent need to explore both 
the positive and adverse effects of treatments in preg-
nancy which target inflammatory and microbial path-
ways, with an emphasis on population-level effects in 
LMIC, particularly in the context of increasing concerns 
regarding antimicrobial resistance in these settings.

Conclusion

An improved understanding of the mechanisms 
and pathways underlying LBW is needed, given 
the impact of LBW throughout life. LBW, compris-
ing SGA and prematurity, persists despite global 
intervention, causing significant risks of death and 
illness over a lifetime in LMIC. There is a variety of 
proven interventions, including smoking cessation, 
access to antenatal care and micronutrient supple-
mentation [31], although this paper emphasises 
the potential role of antenatal microbial and 
inflammatory exposure as a treatable pathway for 
intervention. The studies included here suggest 
that local infection and inflammation pathways 
such as vaginitis and placental infections contri-
bute to prematurity. Distal pathways such as per-
iodontitis and EED, and systemic infections such as 
malaria and HIV are also linked to LBW. Malaria 
chemoprophylaxis, the screening and treatment of 
asymptomatic bacteriuria and certain STIs have 
shown positive associations with reducing LBW 
through the effects on prematurity and SGA, 
although prophylaxis against other pathogens 

requires further investigation. Scale-up of proven 
interventions and further research into how mater-
nal infection and inflammation can be prevented 
are needed to reduce LBW and improve long-term 
health, growth and human capital.

Abbreviations

AGA appropriate for gestational age
ART antiretroviral
BV bacterial vaginosis
CRP C-reactive protein
EED environmental enteric dysfunction
HIC high-income countries
IFABP intestinal fatty acid binding protein, an EED 

biomarker
IL interleukin
LBW low birthweight
LMIC low- and middle-income countries
HIV human immunodeficiency virus
IFN interferon
IUGR intra-uterine growth restriction
NCD non-communicable disease
SGA small for gestational age
STI sexually transmitted infection.

Key takeaways

● Maternal inflammatory and infective pathways probably 
represent a small proportion of the overall burden of LBW 
but provide different treatable pathways for 
interventions.

● An intervention that prevents infection and inflammation 
in pregnancy at tissue sites local to and distal from the 
developing fetus may benefit both the mother and infant 
in LMIC, by reducing LBW through an effect on prematur-
ity and SGA.

● Additional research is needed on how infection and 
inflammation can be prevented, specifically maternal vac-
cination, antimicrobial treatment and the value of differ-
ent approaches and timing in pregnancy.
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