
EWD32.html

Some meditations on Advanced Programming ST Co ~ EWD32 -1 EE

In case you expect me to give a complete, well-balanced and neutral survey o f

‘ the advanced programming activities of the world, I must warn you that I don ' t feel

© inclined, nor ent i t led to do so .

My t i t le already indicates that. I am going to meditate on the subject, which is -

‘something quite different from giving @ survey. Perhaps the t i t le o f my paper would

have been more outspoken i f it had been "My meditations on Advanced Programming" for

I in tend to, present a picture in the way I wish to see. i t ; and I should l ike to do

80 in all honesty without any claim to object iv i ty . I intend to do so because I have

a feeling that I serve you better by giving you an horig@t personal conviction than

by present ing you with the colourless average o f conflicting current opinions o f other

peop le .

You will observe that I shall fail to .give you a generally acceptable definition no

o f the subject "Advanced Programming”. I . think that in my own appreciation o f the sub-

jec t the description "Advancing Programming” would have been a bet ter qualification.

I do l ike many activi t ies which are wotthy, I think, o f the name "Advanced Programming"

but I don ' t l ike these activities so much for the sake o f their output , the programs

‘ that have resulted from them, as for what these activities can teach us. And if I am

“willing to study them, to meditate upon them, I am willing to do so in the hope this

study or these meditations will give me a clearer understanding of the programmers

t ask , o f his ends and his means. Therefore I should like to draw your attention in

+ particular to those efforts and considerations which try to improve " the state of

“ t he Art" of programming, maybe to such an extent that a t some time in the future

© we may speak of “the state of the Science o f Programming".

And a little look around us will convince us that this improvement is

very urgent , for on the whole the programmers world is a .ve ry dark one with only

- just the first patches of a brighter sky appearing at the horizon. . For the present-
: day darkness “in the programmers world the ‘programmers themselves are responsible

and nobody else. But before we put too much blame on them lock for a moment how their

http://www.cs.utexas.edu/users/EWD/transcriptions/EWD00xx/EWD32.html

EWD32 - 2

world came into ex is tence .

When the f i rs t automatic electronic computers started to work more o r less

proper ly , mankind was faced with a new. technical wonder , with a most impressive

achievement o f technical skill. And, as a result, everybody was highly impressed

and rightly so . Under these circumstances it was completely natural that the

structure o f these ear ly machines was mainly decided by the technical possibilities

a t tha t t ime . And under.these circumstances i t would have been an undreamt-off

undecency i f programmers had dared to suggest that those clever designers had not

built a t all the machines that programmers should l i ke to have. Therefore, th is

thought hardly s t ruck the programmers m inds . On the con t ra ry : f aced on the one hand

with the new computers and on the other hand heaps o f problems waiting for their

so lu t ion, they have done their utmost bes t to accomplish the task with the equipment ’

that had become available. They have accepted the full cha l lenge. The potentialities

o f the computers have exhausted to slightly beyond their utmost limits, the nearly

impossible jobs have yet been done by using the machines in all kinds of curious

and tr icky ways, which were complete ly unintended and even no t foreseen by the

designers. I n t h i s atmosphere o f p ioneer ing programming has ar isen not as a science

bu t as a c ra f t , as an occupat ion where man, under t he pressure o f the circumstances,

was guided more by opportunism than by sound pr inc ip les . This - I should l ike to call

i t "unhygienic"-~ creat ivi ty and shrewdness o f the programmers has had a very bad i n - -

f luence on machine designers, for after some time they fe l t free to include all kinds |

o f curious faci l i t ies o f doubtful usabi l i ty, reassuring themselves by their experience

that , no matter how crazy a faci l i ty they prov ided, always a more crazy programmer

- would emerge that would manage to turn i t into something profitable - as i f this

were suff ic ient just i f icat ion for i ts inc lus ion.

In the mean time programming es tab l ished i tse l f as a discipline where on the

whole the standards for quality were extremely crude and pr imi t i ve . The main -and

often only- possible v i r tues o f a program were i ts quant i tat ive character is t ics , v i z .

i t s speed and i t s storage requirements, Space and time became the exclusive aspects

o f eff ic iency. And in various places these standards are still in full v igour : not

80 long ago I heard o f two cases, one where a machine was not bought because its

EWO32 - 3

multiplication speed was too low —-and th is may be a valid argument- and another case

where a certesin machine was selected because its multiplication was so fast . And |

th is last decision was taken without the validity o f this criterion being questioned.

Apart from the programs tha t have been produced the programmers contr ibut ion to

human knowledge has been faily use less. They have concocted thousands and thousands

o f ingenuous t r icks but they have given this chaotic contribution without a mecha-

nism to apprec ia te , to evaluate these t r i c ks , to sort them ou t . And as many o f thess

t r icks couls only be played by. virtue o f some special property o f some special

machine the i r value was rather volat i le. But the tr icks were defended in the

name o f the semi-god "Ef f ic iency" and for a long time there was hardly an inkling

that there cou ld be anything wrong wi th t r i cks . The programmer was judged. by his

ability to invent and his willingness to apply t r i cks . And also this opinion is

st i l l a wide-spread. phenomenon: in advertisements asking for programmers and in

psychological tests for th is j ob i t is often required that the man should be "puzzle-

minded", th is in strong contrast to the opinion o f the slowly growing group o f peaple

- who th ink i t more valuable that the man should have a c lear and systematic mind.

But , as I to ld you , the sky above the programmers world i s brightening slowly.

Before I am go ing to draw your attent ion to some discoveries that are. responsible for

th is improvement I shou ld l ike to s tate as my opinion that i t i s relatively unimportant

whether t hese d iscover ies are rea l l y new d iscover ies o r whe ther they ape red iscover ies

o f t h i ngs pe r fec t l y we l l known to people l i ke , say , Tur ing o r von Neumann. For in the

lat ter case the important and new. th ing is that a greater number o f people become

aware o f such a fact and that a greater number o f people realize that these conside-

rat ions are not j us t theoret ical considerat ions but that they may have tangible, practical

resu l ts . In this light one might feel inclined to summarize the achievements o f
advanced programming as some pure ly educat iona l successes : "A t l es t programmers

have s ta r t ed t oneduca te one ano the r to a t l eas t some ex ten t . " . I sha l l no t protest

- against this summary provided one agregs with my opinion that mutual education is

one o f the major diff icult tasks o f mankind.

One important rediscovery is that o f the well-known equivalence o f designing a _

machine and making .a program. At this moment one might well ask onesel f why I ask

EWD32 ~ 4

attent ion for such a well-known fact . Well, I have. very good reasons to do so , for

i t has a great potent ia l in f luence which i s o f ten over looked: i t enables the man that

regards himself as a programmer to contribute to the f ie ld that is generally regarded

‘as "machine des ign" . And th is is a very fortunate circumstance.

Some f i f teen o r ten years ago the design and construct ion o f a new, unique

computer was a we l l - es tab l i shed and respec tab le occupa t ion fo r Un ivers i t y Lebo re to r i es .

And many o f these " laboratory machines" were, each i n . t he i r own pr ivate ways,

revo lu t ionary con t rap t i ons . From then onwards th is custom d ied out and design and

construct ion o f automatic computers became more and more an exclusively indfustiial

act iv i ty . F ive years ago most a f us felt this as a perfect ly natura l development:

construct ion o f new computers became an extremely costly affair and i t was generally

fel t tha t the time had come to leave this activity to the specia l ized indust r ies . Now, -

f ive years l a te r , we can only regret th is development, for the computers on the

market today a re , on the whole, very d isappoint ing. Al l r i gh t , they are fas te r , they

are much more re l iab le than the o ld labotatory machine, bu t , on the o the r hand, they

are o f ten bo r i ng , un insp i r ing and hopelessly o ld- fash ioned as we l l . For instance,

the commerc ia l requ i rement t ha t all t he programs made for some o lder machine from

the same manufacturer shou ld , wi thout any modi f icat ion, be acceptable to the new

machine has led to the design o f new machines the order code o f which included the

order code o f t he previous one in i t s ent i rety . Such a po l i cy , howeverm is a never

failing mechanism to prolong the lifetime o f previous mistakes. Some time ago we

were offered the slogans about " the computers o f the sbcond genera t ion" , but to my

taste many o f them were as dull as their paren ts . Apparently a n ice computer has a t

l eas t one proper ty in common w i th a gen t leman, v i z . t ha t i t t akes a t l eas t th ree

generat ions to produce one! Most o f t he indus t r ies , part icular ly the b igger ones,

proved to be very conserva t i ve and reac t i ona ry . They seem to des ign for the

customer tha t bel ieves the salesman who tel ls him that machine so-and -go0 is j us t the

machine he wan ts . Bu t the poor customer who happend to know a l ready, all by h imsel f ,

what he wants i s often forced to accept a machine with which he is already disgusted,

before the thing i s installed in his establishment. Under the present circumstances

i t i s , commercially speak ing , apparent ly not too attractive te put a nice computer

on the market . Th is i s a sorry state o f affairs, many aprogrammer suffers regularly
from the monstruosity of his tool and we can -on l y hope for a bet ter future wi th nicer

Co | | EWD32- 5

machines. In the mean time he can program; tak ing some eff iciency considerat ions for

granted he can force h i s machine to behave as he w ishes : .when making a programming

system he designs a machine as i t should have been, Thanks to the log ica l equivalence

between designing a machine and making a program, programmers can contribute to

fu ture machine des ign , by exp lor ing on pape r , in software, the possibilities o f

machines with a more revolutionary structure.

The equivalence o f making a program and designing a machine has another , may be

far-reaching consequence o f a much more practical na ture . I t i s no t unusual. to regard

a c lass i ca l computer as a sequen t i a l computer coup led to a number o f communicat ion

mechanisms for input and output . Such a communication mechanism, howsver , performs

in i t se l f a sequent ia l process - usually o f a cycl ic na tu re , bu t tha t feature is,

i o f no importance now. For this reason we can regard a c lassical machine, his commu-’

nicat ion mechanism inc luded , as a group o f loosely connected sequent ia l machines, with

~ in ter locks,where necessary, to prevent them to ge t too much ou t o f . phase with one

ano ther . The nex t s tep is to use the centra l computer no t for only one sequential

p rocess bu t t o equ ip i t wi th t he poss ib i l i t y t o d iv ide i ts a t ten t ion between an

arbitrary number o f such loosely connected sequential processes. One can do so with

complete preservat ion o f the symmetry between the sequent ia l processes to which a

dist inct rgice o f hardware corresponds on the one hand and those which are taken care

o f by the central computer on the other hand. Or even by one o f the central processors,

as the case may be . The dif ference between a modest and an ambitious installation

may be that a couple o f sequent ia l processes, that in the modest installation .are

performed by the cent ra l compu te r , are performed by pr ivate hardware in the ambitious

insta l la t ion. Bu t the above mentioned equivalence between designing a machine and

mak ing a p rogram, between per forming a p rocess e i t he r by hardware o r by so f twa re , "

should be exploited to guarantee that the. program acceptable for the one installation

i s also acceptable for the o the r . The above considerat ions are important because a

machine rigotously designed along the abeve lines should greatly facilitate

t he manufacturers task to equip his product with the required software. The moral o f

th is is tha t , i f a t the present moment many manufacturers have great di f f icul t ies in

fulfilling their software obligations and i f one of the main sources o f their trouble

" i s that no two insta l la t ions o f the same machine are ident ical , the i r trouble could

EWD32 - 6 .

very wel l be a self- inf l icted pa in .

In this connection, I should l ike to mention that I am fully aware o f the fact

tha t my previous picture o f the commercial computer market was somewhat

one-s ided . Many o f you will rea l i ze that at least one o f the commercial products

shows a g rea t number o f the "n ice proper t ies" j us t mentioned. I n my opindon,

this paficular computer should be regarded as one of the brighter patches in the

sky .

Now I am turning my attention to one o f the most important facts that happened

in the programmers world since the UNESCO Conference in 1959, v i z . the publieation

o f the famous "Report on the Algorithmic Language ALGOL 60 " , edited by D r Peter

Naur. I shall not discuss here the merits o f the language ALGOL 60, nor shall I go

into the question whether i t has reached its original aims o r no t . I intend to restrict

myself to a discussion o f the consequences o f th is publication, o f the influence i t

has had in t he wor ld o f programming. Fo r , th is inf luence has been tremendous. In

a short summary I could formulate as fol lows: through i ts merits ALGOL 60 has inspired

.a great number o f . people to make translators for i t , through i ts defects ‘ i t has

induced a great number o f people to think about the aims o f a "Programming Language".

ALGOL 60, in all probabi l i ty and in accordance w i th the in tent ion o f i t s authors,

will be superseded by some beter language in due t ime, bu t much, much longer we

" sha l l be able to trace i te educat ional e f fec ts .

Programming l anguage , t ranslator and computer , these th ree toge ther for a too l ,

and in thinking about th is tool as a wha le , new dimensions have been added to the

‘ o l d concept o f "rel iabi l i ty" . In connection with the. third o f the three components,

v i z . the computer, concern about i ts rel iabi l i ty is as o l d as the computers them-

se lves , t he acceptance tes t i s a well-known phenomenon.

Bu t what i s the value o f such an acceptance tes t? I t is certainly no. guarsntee

that the machine is co r rec t , t ha t the machine ac t s msccording t o i t s spec i f i ca t ions .

I t only says that in these specif ic testprograms the machine has . worked correct ly.

I f the design i s based on some criticel assumption, we can only -conclude, that in

EWD32 - 7

these tes t programs the corresponding cr i t ical s i tuat ions apparent ly did no t a r ise .

I f the design st i l l contains logical er rors, we can conclude, tha t in these speci f ic

tes t programs these logical errors apparently did no t mat te r , Bu t as a user , we are

no t in terested in t he test programs, we are interested in ou r own programs. And from

the succesfu l acceptance test we should l i ke to conc lude, that the machine works

correctly in our programs a lso ! But we cannot draw this conclusion. The. best thing

a succesful acceptance test can do is to strengthen .our

be l ieve in t he mach ines co r rec tness , t o inc rease the p laus ib i l i t y that i t will per-

* form any program in accordance w i th t he spec i f i ca t i ons . The bas i c property o f t he

program of the user i s that it w i l l certainly requ i re from the machine to perform

act ions it has never done be fo re . Machine designers have seen th is difficulty quite

clear ly. They have real ized that the succesful acceptance test has only value as

fa r as future programs are concerned, provided the act ions performed in the tes t

programs can be regarded as representative for all i ts possib le operat ions. And they

can on ly be representat ive by v i r tue o f t he clean ea systematic structure o f the ma-

ch ine i t se l f . The above is common knowledge among machine designers; cur iously enough,

this is not true for translator makers, for whose act iv i ty the same considerations

apply.

I n order that the t oo l , consist ing o f programming language, translator and

mach ine , be a reliable t oo l , i t i s , o f cou rse , mandatory that all i ts components be

re l i ab le . One should expect that the t ranslator maker , who in contrast to the machine

des igner has to deal w i th l og i ca l gTTOTS on ly , shou ld do h is j ob at least as wel l as

t he machine bu i l de r . But I am af ra id tha t the converseis t r ue , At the Rome Conference

l as t spr ing I was surprised to hear tha t t he ex tens i ve t rans la to rs fo r symbolic

 l anguges constructed in the United States cont inued to show up errors for years.

I was shocked, however, when I saw the fatalistic mood in which th is sorry state

was accepted as the most natural thing in the wor ld. Th is same attitude is refelcted

in the terms o f reference o f an ISO committee which deals with the standardizat ion.

o f programming languages: there one finds the recommendation to construct for any

. standard langauge a se t o f standard test examples on which any new translator for

such a language cou ld be t r i ed . ou t . Bu t no hint tha t the correct p rocess ing of

‘ t hese standard test examples obviously i s only a trivial minimum requirement, no

EWD32 - 8

trace o f the considerat ion that our belief in the correctness o f a translator can

‘ neve r be founded on succesful tes ts alone, bu t is ultimately der ived from the clean

and systematic s t ructure o f the t ranslator and from noth ing e l se . I n deciding

between re l iab i l i ty o f t he t rans la t ion process on the one hand and the

product ion o f an ef f ic ient ob jec t program on t he o the r hand the choice of ten has

been decided in favour o f the la t te r . But I have the impression that the pendulum

i s now swinging backwards .

f o r i ns tance : i f one ge t s a much more powerfu l l machine in ones establishment

than the one one had before , one can react to th is in two di f ferent ways. The c las-

sical reaction is that the new machine i s so much more expensive, that i t is ever so

much more mandatory that no expensive computing.time o f the new machine should be

was ted , that the new machine shou ld be used as eff ic ient ly as possible, e t c . etc..

On the o ther hand one can also reason as fo l lows: as the new machine is much faster,

time does no t mat ter so very much any more ; as in the new computer the cos t per

operat ion is less than in the previous ones, i t becomes more readistic to investigate

whether we can invest some of the machines speed in other things than sheer production,

say in convenience for the user -what we do already when we. use a convenient programming

language~ or in elegance and reliability o f the translator, thus increasing the

quality o f our ou tpu t .

Also it i s more widely recognised now than a couple o f years ago that the

construct ion o f an optimizing translator i s , essent ia l ly , a nasty j ob . Optimizing

means improving the ob jec t program, i . e , making a more eff ic ient ob jec t

program than the one produced by s t ra igh t fo rward , bu t re l iab le and t rustworthy

translation techniques. Optimization means. " tak ing advantage o f a special s¥tuat ion" .

We l l , i f one opt imizes in one respect , i t i s no t an impossible burden to verify that

| the shortcut in t roduced in the ob jec t program does na t lead to undesired resu l ts .

I f , however , one op t im izes in two d i f fe ren t r espec t s , the duty o f veri f icat ion

becomes much ha rde r , fo r one has to verify no t on l y , tha t the two methods are correct

in themselves, bu t one must also check that they do not interfere with one another .

I f one optimizes in more different respects , the task to create confidence in the .

translators correctness explodes exponentially. As a result i t is no longer possible

EWD32 = 9

t o recommend a computer by pointing t o , say , the s ize o f the translators available

for i t . On the contrary: the more extensive and shrewd a- t ranslator i s , the more

doubt fu l i s i ts qua l i t y . And fu r ther : for the necessi ty o f such extensive

opt imizat ion e f fo r ts one m igh t , f ina l ly , blame t he computer in ques t i on : i f we

really need such an intr icate process as an optimizing t ranslat ion to load our

programs one feels inclined to defend the opinion that , apparently, the computer is

no t too wel l su i ted for i t s t ask . I n sho r t , the construct ion o f in t r icete opt imiz ing

t ranslators is an act the wisdom o f which is sub jec t to doubt and there is certainly

a virtue in ef for ts to remove the need for them, e .g . the design o f computers

where t hese op t im iza t ion t r i cks don ' t pay , o r at l eas t don ' t pay so much.

With regard to the structure o f a translator ALGOL 60 has acted as a great

promoter o f non-opt imiz ing t rans la to rs . The fact i s that the language as i t stands

i s certainly no t an open invi tat ion for opt imizat ion e f f o r t s . Fo r t hose tha t thought

they knew how to write optimizing translators -be it for less flexible

languages— this has been one o f the reasons to re jec t ALGOL 60 as a serious too l .

I n my opinion these people be t on the wrong horse. I don ' t agree wi th them although

I can sympathize with them: i f one has solved a problem one tends to ge t attached to

i t and i f one l i kes ones solut ion for i t , i t i s , o f cou rse , a l i t t le b i t hard to

swi tch over to an a t t i tude in which the problem i s not considered worth solv ing

anymore. The experience with ALGOL 60 translation has taught us still another thing.

Some translator makers could not refrain from optimizing, but finding the task

as such too d i f f icu l t to do they t r ied to ease matters by in t roducing addi t ional

restr ict ions into the language. The fact that the i r t ranslators had only to deal

with " rest r ic ted l anguage , however , did no t speed’ up t ranslator const ruct ion: the

task to exploi t the restr ic t ions to full advantage has prevented t h i s .

Smoothly we have arr ived a t the third component o f our t oo l , v i z . the language:

also the language should be a reliable one. I n other words. i t should assist the

programmer as much as possib le in the most d i f f icul t aspect o f h is t ask , v i z . to

convince himself —and those others who are really interested that the program he

has written down: def ines indeed the process he wanted to define. Obviously the

language rules may no t contain t raps o f the k ind o f which there are still some in
 ALGOL 60, where, for instance, " real array" may be abreviated into "ar ray" , but

EWD32 --10

\

"own real array" may no t be abbreviated into "own array". The next obvious

requ i rement i s t ha t t hose ru l es wh i ch de f ine a l ega l t ex t don ' t leave any doub t as

to whether a g iven t ex t i s l ega l o r no t , e .g , i f t he re shou ld be a res t r i c t i on

w i th r espec t t o recurs i ve use o f a p rocedu re , i t shou ld be c l ea r under what cond i t i ons

these res t r i c t i ons app l y , in par t i cu la r when the term “ recu rs i ve use" app l i es . I

ment ion t h i s pa r t i cu la r example because here i t i s by no means obv ious . F ina l l y ,

when faced wi th an undoub ted ly l ega l t ex t we want to be qu i te su re what i t means.

Th i s implies t ha t t he semant i c de f in i t i on shou ld be as r i go rous as poss ib l e . I n

sho r t : we need a comple te and unambiguous p ragmat ic de f in i t ion o f t he l anguage ,

s ta t i ng exp l i c i t l y how to reac t t o any t ex t . So much fo r the necess i t y tha t t he

too l be re l i ab le .

As my very l as t remark I shou ld l i ke t o s t r ess t ha t t he t oo l as a whole shou ld

have s t i l l ano the r qua l i t y . I t i s a much more sub t l e one ; whe the r we apprec ia te i t

o r no t depends much more on ou r pe rsona l t as te and educat ion and I sha l l no t even try

to de f ine i t . The too l shou ld be charming , i t shou ld be e l egan t , i t shou ld be

wor thy o f ou r l ove . Th i s i s no j oke , I am terr ib ly se r i ous abou t t h i s , I n th i s r espec t

t he programmer does no t d i f fe r f rom any o the r c ra f t sman : un less he l oves his tools

i t i s h igh ly improbab le t ha t he will e ve r c rea te someth ing o f super io r qua l i t y .

A t t he same time t hese cons ide ra t i ons t e l l us t he g rea tes t v i r tues a

program can show: E legance and Beau ty .

