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Abstract: Despite the increasing prevalence of artificial intelligence (AI) ethics frameworks, the
practical application of these frameworks in industrial settings remains limited. This limitation
is further augmented in energy systems by the complexity of systems composition and systems
operation for energy generation, distribution, and supply. The primary reason for this limitation
is the gap between the conceptual notion of ethics principles and the technical performance of AI
applications in energy systems. For instance, trust is featured prominently in ethics frameworks but
pertains to limited relevance for the robust operation of a smart grid. In this paper, we propose a
lifecycle approach for AI ethics that aims to address this gap. The proposed approach consists of
four phases: design, development, operation, and evaluation. All four phases are supported by a
central AI ethics repository that gathers and integrates the primary and secondary dimensions of
ethical practice, including reliability, safety, and trustworthiness, from design through to evaluation.
This lifecycle approach is closely aligned with the operational lifecycle of energy systems, from
design and production through to use, maintenance, repair, and overhaul, followed by shutdown,
recycling, and replacement. Across these lifecycle stages, an energy system engages with numerous
human stakeholders, directly with designers, engineers, users, trainers, operators, and maintenance
technicians, as well as indirectly with managers, owners, policymakers, and community groups. This
lifecycle approach is empirically evaluated in the complex energy system of a multi-campus tertiary
education institution where the alignment between ethics and technical performance, as well as the
human-centric application of AI, are demonstrated.

Keywords: AI ethics; responsible AI; energy AI; AI risks; AI lifecycle; energy systems; implementation
science

1. Introduction

Recent work on the evaluation of artificial intelligence (AI) ethics guidelines and
frameworks has revealed the challenges of advancing the practice of AI ethics for industrial
and professional work environments [1,2]. Jobin et al. [1] identify 84 ethics guidelines for
AI, with more than 80% being published since 2016, while Hagendorff [2] conducted a
semi-systematic evaluation that analyzed and compared 22 guidelines focusing on inter-
secting themes and, Mittelstadt [3] emphasized the resemblance of AI ethics to the four
classical principles of medical ethics. Current attempts at AI ethics in industry practice
are not sufficiently agile for the ethical challenges of technologically advanced industrial
settings, such as energy systems [4,5], smart cities [6,7], intelligent transport [8,9], and smart
factory settings [10]. In its role as critical infrastructure, AI ethics in energy systems are
fundamentally challenging due to the complexity of human–system dependence, a system
of subsystems composition, and the diversity of data generated by these systems. This
is further impacted by the computational resource requirements for processing, analysis,
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and synthesis of large volumes of data and machine-learning outcomes that lead to AI
capabilities [11,12].

While regulations may be informed by ethical thinking in part, regulations are not the
same as ethics. However, it is often believed that regulations are sufficient in ‘covering’
the ethical concerns emerging from technological engagement, particularly around data
use [13,14]. In contrast, treating regulations as the same as ethics has the potential to
disempower knowledge work and stifle creativity and innovation, as often there is limited
flexibility within regulations for creative thinking and mitigating risks on a case-by-case
basis [15]. Therefore, a more dynamic approach to ethics and ethical infrastructure is
needed to attend to the shifting landscape of AI in different sectors due to the numerous and
differing perspectives of ethics [16]. Although there are strategies in place that offer some
space to analyze ethical conundrums, these have been found to be ineffectual [17]. Ethical
review boards and risk assessment models [18] have their limitations, and a more dynamic
approach to designing ethical guidance is needed in accordance with the complexity of
ethics that emerge from automated and autonomous systems. Finding a compromise
between flexibility and strictness is necessary [19]. Approaches that supply sufficient space
to shift, change, and debate the challenges faced are needed, with the agility to adjust as
needed and the foresight to pre-empt problems.

Conventional responses to ethical challenges have been responsive rather than proac-
tive [20]. However, the perceived risk-averse nature of ethical engagement can be flipped
to pre-empt issues rather than responding to them when the negative consequences often
cannot be sufficiently rectified. There is a need to evaluate and compare how technology
can be harnessed and utilized against how it might be overused or misused [21]. Collabora-
tion has been identified as a key facet in navigating emerging ethical issues and facilitating
innovation, as well as looking to other disciplines, particularly social science, and disci-
plines that often encounter ethical dilemmas, can offer new perspectives and strategies for
tackling them [22]. IEEE Ethically Aligned Design (EAD) [23] and the Ethics Guidelines for
Trustworthy AI by the European Union’s High-Level Expert Group on AI (HLEG) [24] are
the two of the most established, widely cited and applied AI ethics frameworks in industrial
settings. The European Commission has further proposed the regulation of AI, focusing
on the most problematic use cases of AI, material distortion of human behavior, and the
exploitation of human vulnerabilities [25], which are not within the remit of industrial
systems. Therefore, our focus is on the Ethics Guidelines for Trustworthy AI published by
the European Union’s High-Level Expert Group on AI (EU HLEG). To achieve inclusive,
equitable, and progressive human-centric cyber-physical systems (CPS), the EU HLEG
states that AI design requires three overarching principles. First, adherence to ‘Lawful
AI’, which holds AI actors and processes to account to regulatory and legislative bodies.
Second, ‘Ethical AI’, which commits to values, processes, and practices that respect and
protect the dignity and well-being of all individuals and communities. Third, a ‘Robust
AI’ that limits unintentional harm. Although framed as discrete operations, practices and
policies that collectively embed these three components will ensure respect for human
rights, be transparent about responsibility and governance, and prioritize duty care. In
turn, meeting these conditions will achieve global aims for trustworthy AI.

The demarcating of lawful AI as a separate concern from ethical AI recognizes how
legislation is instrumental in ensuring procedures protect and prosecute human actors
responsible for AI decisions and/or consequences. However, the purpose of the law is to
make judgments about the extent autonomy and self-determination at the micro, meso, and
macro levels are permitted [26]. This epistemic stance presents challenges when deploying
automated agents, such as AI, as their function is to replace human decisions. Inevitably,
this means the deployment of CPS is not, at times, easily translated into legislation. In
contrast, ethics is not limited to what extent certain AI practices should be legitimized or
not. Ethical AI is also concerned about responsibility and accountability in relation to the
impact of the interconnectedness of society and technological advances on the everyday
lives of people. Ethical AI promotes transparency and explainability, which acknowledge
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public and private concerns about how AI and human-centric cyber-physical systems
interact with the material world. Ethics can negotiate complex scenarios, including to what
extent Al technologies in the workplace have impacted employment rights, relationships,
and governance structures. This is further supported by a taxonomy of AI ethics from
practitioner viewpoints for identifying and understanding the different aspects of AI
ethics, including awareness, perception, need, challenge, and approach [27]. Another
study proposed AI ethics literacy and skills as a means to train a workforce capable of
building ethical AI systems, with approaches such as teaching the ethical design of AI
algorithms in collaboration with interdisciplinary and industry practitioner input [28,29].
In energy systems, the complexity of systems composition and systems operation for energy
generation, distribution, and supply are challenges for the implementation and practice of
AI ethics. The primary reason for this limitation is the gap between the conceptual notion
of ethics principles and the technical performance of AI applications in energy systems.

2. The Proposed AI Ethics Lifecycle Approach for Energy Systems

Drawing on this current landscape of AI ethics, we propose a lifecycle approach for
AI ethics in energy systems as depicted in Figure 1. It consists of four phases: design,
development, operation, and evaluation, which are supported by a central AI ethics reposi-
tory for ethical practice issues and resolutions. As indicated by the bidirectional arrows
in Figure 1, the repository provides and receives ethics information to each phase. The
lifecycle is closely aligned with the operational lifecycle of energy systems, starting with
design, followed by use, maintenance, and repair, and finally, decommissioning, recycling,
and replacement. The design phase outputs a multi-granular matrix of ethics principles
and paradigms for tuples of subject, requester, and temporality that is situated within the
atomic and composite elements of the energy system design workflow. The development
phase maps this onto the technical and technological specification for system/solution
generation and outputs an ‘AI ethics operation matrix’ that feeds into the operation phase.
This operation matrix intersects with the system operators within the energy system setting
to generate AI ethics operator profiles. Finally, the performance of the operational system
is monitored and analyzed in real time, across multiple evaluation metrics to inform the
subsequent iteration of this lifecycle approach. The following four subsections deliberate
the workings of each of the four phases.

Figure 1. The proposed lifecycle approach for AI ethics of energy systems.

2.1. Design Phase

The design phase is predominantly focused on building out the multi-granular matrix
of ethics principles and paradigms for tuples of subject, requester, and temporality. This
notion of tuples is motivated by several recent studies in AI ethics [30,31]. As discussed
in [32], the ‘subject’ will be primarily the energy system, but also the operators of the system,
the output generated by the system, and its integration/connection to other systems. The
‘requester’ can vary across several levels of stakeholders, starting with operators requesting
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ethics for transparency and safety or managers and owners seeking ethics for accountability
acceptance. ‘Temporality’ is a measure of the duration, assuming most ethics requirements
are construed at the start of the function, feature, or operation. Therefore, the duration
of ethics may continue until the entire system is operational or until specific results or
sub-module operation. As depicted in Figure 2, the paradigms and principles represent the
theory of ethics feeding into the tuples, while the industrial system design workflow feeds
into the tuples through its constituent design elements. The three dimensions of the tuple
are: (1) Subject: the ethics of the stakeholders directly involved in the lifecycle of the energy
system and the ethical behavior of the system itself; (2) Requester: stakeholders seeking
out the ethics across several layers, starting from low-level operators and/or consumers
up to community groups and the overall society; and (3) Temporality: which time period
of the system is of concern to the stakeholders. This ranges across the beginning of life,
intermediate and end of life of the system. Each unique tuple (subject, requester, time)
will engage specific aspects of ethics are concerned, translated into “properties”. These
properties can be approached using different ethical paradigms, mainly deontology, and
consequentialism, which are the most effective in the context of applied ethics.

Figure 2. Multi-granular matrix of ethics tuples in the design phase.

2.2. Development Phase

The development phase receives the ethics design tuples as input from the design
phase. This content undergoes several iterations of refinement and updates to produce
the AI ethics operation matrix for the subsequent phase of the lifecycle operation. The
development phase is grounded on the five high-level capabilities of AI: prediction (and
forecasting), classification (and detection), association (and segmentation), optimization,
and generation [33]. The first four capabilities originate in conventional AI or narrow
AI, while the generative capability is a more recent manifestation of generative AI [34].
Expanding this out into energy systems, prediction and time-series forecasting models are
typically developed for energy usage forecasting, long-term demand prediction, emissions
prediction, and renewables generation prediction. Classification models are widely used
for the detection of anomalies in energy usage detection of usage drift, which would then
lead to the development of new baselines for prediction and the classification of energy
usage profiles, typically high to low usage. Association and segmentation are also used for
energy usage (or generation) profiling as well as distribution network stability profiling,
given large volumes of unlabeled data that represent the control and management of
the grid over time. Optimization models are widely used in most grids, typically for
the complex task of load balancing between demand and supply from conventional or
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renewable sources. Optimization is also useful for grid management, control tasks, and
resource allocation. Finally, generative AI is still an emerging area of application within
energy systems. Early adopters include data augmentation, synthetic data generation for
digital twin development, multimodal data generation for improved supervised learning
outcomes, such as from images of grids, plants, and distribution networks, as well as
conversational AI interfaces for some levels of stakeholder engagement.

The AI ethics design tuples are synthesized across the key elements of the development
phase that apply across the high-level AI capabilities mentioned above. These elements,
in order of sequence, are data acquisition, data staging, data storage, data preprocessing,
model development, model training, model testing, model evaluation, and model deploy-
ment. Each of the subject, requester, and temporality tuples is mapped into these elements
to identify and analyze the transition of the ethics requirement from the design phase into
the development phase. This synthesis pipeline is depicted in Figure 3.

Figure 3. Transformation of AI ethics design tuples in the development phase, informed by the
high-level AI capabilities.

2.3. Operation Phase

The operation phase is grounded on the eight implementation outcomes of accept-
ability, adoption, appropriateness, feasibility, fidelity, implementation cost, penetration,
and sustainability. These implementation outcomes are drawn from methods in Imple-
mentation Science, where the focus is on the scientific inquiry into questions concerning
implementation—the act of carrying an intention into effect in the form of evidence-based
practices, interventions, and policies [35]. Although primarily practiced in healthcare,
Implementation Science directly contributes to the realization of the practical needs of
AI ethics in energy systems. The eight implementation outcomes are distinguished from
service outcomes, such as efficiency, safety, effectiveness, and temporality, which can be
translated into system availability factors in the energy domain. These implementation
outcomes are deliberated below.

Acceptability: Outside service completion, acceptability represents the stakeholder
awareness and preference for the service, practice, or innovation that is provided by
the AI capability. Acceptability should be assessed based on stakeholder knowledge and
experience in the domain and with the AI capability itself in diverse settings. An example of
acceptability is the incentive scheme recommended by an AI service for retail vs industrial
energy consumers or prosumers.

Adoption: Also known as uptake, it is the intention or decision to start using an AI
capability for a service requirement in terms of its innovation or evidence-based practice.
The adoption of recommender systems for energy usage profiling by a single provider vs all
providers within the national grid is an example where the operation itself can be evaluated.

Appropriateness: Although similar in practice to acceptability, this outcome can
be distinguished in certain operational settings where a practice can be perceived as
appropriate but not acceptable, and vice versa. Appropriateness is also the relevance or
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compatibility of the AI innovation for a given practical setting. For example, the use of
time-series forecasting algorithms for demand prediction in a highly volatile energy setting
can be deemed inappropriate due to the inherent inaccuracies of the data in that volatile
consumption setting.

Cost: The cost impact of the implementation in an operational setting. The cost will
be composed of at least three components: design, development, and deployment cost,
and these can vary based on the size of the energy system, volume of data, number of
subscribers, nature of financial transactions, etc. The cost of AI capabilities needs to be offset
against the benefits gained by the stakeholders, including suppliers, staff, and consumers.

Feasibility: The capacity to which a new AI capability can be operationalized within
a given setting. Although closely linked to appropriateness, it is also different in its
technical needs for resourcing, data, or computation. Human-in-the-loop configurations are
mandated for AI capabilities, and this can impact the feasibility of system-wide deployment
and integration of AI capabilities.

Fidelity: The quality of the actual implementation, to which degree an implementation
was deployed as per the original design or specification. Fidelity can be decomposed
into further dimensions of adherence, quality of delivery, differentiation, exposure, and
responsiveness. In energy systems, the fidelity of AI capabilities is paramount for ensuring
service quality and availability. AI capabilities developed in test and trial settings can vary
significantly in their field performance following deployment. For example, smart meter
data stream outages can have an adverse effect on the predictions of usage/generation
which in turn can disrupt service quality and availability.

Penetration: Describes the extent of integration of an AI capability within an energy
system operation. It can be identified in terms of the number of services within a single
system or the number of systems within a set of service providers that may operationalize a
given AI capability. Short-term forecasting and long-term forecasting are typical examples,
where the former represents high penetration compared to the latter.

Sustainability: The extent of an AI capability to be integrated and adopted within a
service setting’s ongoing, stable operations. AI capabilities are quite often dismissed or
overlooked in preference of domain expertise of familiar means of operation. Sustainability
evaluates the extent to which this changes following operationalization. Sustainability is
further described in the three phases of passage, cycle or routine, and niche saturation to
indicate coverage and usage within a given setting.

2.4. Evaluation Phase

The evaluation phase receives the AI ethics operations matrix with metrics for the
implementation outcomes deliberated above. As depicted in Figure 4, these implemen-
tation metrics are aligned together with service metrics, AI performance metrics and
system/platform performance metrics in the evaluation phase to deliver real-time monitor-
ing of the energy system during its in-field operation. The service metrics are representative
of service availability features of efficiency, safety, effectiveness, and temporality. AI per-
formance metrics are mainly focused on accuracy and speed, with accuracy metrics for AI
models varying across capabilities, prediction, classification, association, optimization, and
variants of algorithms used for these capabilities. As a baseline, it is recommended to intro-
duce Root Mean Squared Error (RMSE) and related measures for prediction, F1-score/AUC
curve for classification, cluster purity/entropy for association, and convergence/solvability
for optimization. Results and outcomes from this evaluation phase are collated as inputs
into the subsequent iteration of the AI ethics lifecycle, where the design phase will begin
with a review of the metrics against the design and operational objectives of the energy
system. The large number of metrics evaluated in this phase will be recorded and analyzed
within the same AI ethics repository for consistency and reliability.
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Figure 4. Transition from operation to evaluation phase with implementation and service
metrics integration.

3. Evaluation of the Proposed Approach

The proposed AI ethics lifecycle approach was empirically evaluated and demon-
strated in the real-world energy system of a multi-campus education institution. The La
Trobe Energy AI Platform (LEAP) is a mid-sized microgrid with more than 200 build-
ings (consumers) and 20 renewable installations (generators) that service approximately
40,000 individuals during work hours (university operations) and non-work hours (recre-
ational, sport, and accommodation operations). Given the human-centric operation of
this energy system and the ethical focus of this article, it is pertinent to deliberate the
context of the operation of the university. Founded in 1964, La Trobe University is currently
ranked in the top 300 of all three major world university rankings. The university offers
undergraduate, postgraduate, technical, and executive education courses to a student body
of approximately 39,000 and employs close to 4000 staff [36]. The facilities and services
operation of the university is spread across its multiple campuses in geographically dis-
tributed regions in the state of Victoria, Australia. The main metropolitan campus is La
Trobe’s Bundoora campus, and the other four campuses are in regional locations: Bendigo,
Shepparton, Albury-Wodonga, and Mildura. All five campuses are in the state of Victo-
ria, which has a temperate oceanic climate and four seasons: summer from December
to February, autumn from March to May, winter from June to August, and spring from
September to November. The largest campus (Bundoora campus) has a central heating
system powered by gas that connects to all the buildings, while electricity powers all other
amenities, with 13× absorption chillers and 18× air-cooled electric chillers. This campus
has a mix of old and modern buildings where several LED retrofit and solar installation
projects are located. LEAP AI capabilities have been discussed and evaluated across several
studies, including generative AI chatbots [37], measurement and verification [38], and solar
irradiance forecasting [39].

Within this operational context, it is evident that the microgrid interfaces with many
human operations and human stakeholders, including designers, engineers, users, trainers,
operators, and maintenance technicians, as well as indirectly with managers, owners,
policymakers, and community groups. In applying the AI ethics lifecycle approach to
LEAP, the initial phase of design consists of compiling the multi-granular matrix of ethics
principles and paradigms for tuples of subject, requester, and temporality. The design
elements identified from the LEAP design workflow include data representation, data
processing, data quality, system accuracy, system responsiveness, system usability, system
integration, insight quality, and decision quality. The design tuples are presented in Table 1.
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In the development phase, the AI ethics design tuples are transformed into the AI
ethics operations matrix through the alignment and application of AI capabilities. This
phase brings together subject, requester, and temporality with the specific AI capability that
can influence the ethical practice of the entire system and its manifestation of AI as a system
capability. For clarity, this alignment and application of AI capabilities is presented in
Table 2, where the first column depicts the design element, followed by column 2 for ethics
practice and column 3 for AI capability. The distinction between data, system, and outcomes
for the application and practice of ethics is clearly depicted in this Table. For instance,
data-related design/system elements require a high degree of safe, secure, inclusive, and
effective undertakings, whereas system elements are more focused on reliability, resilience,
accountability, and explainability. System outcomes are a balance between the two, where
decisions must be inclusive, equitable, as well as effective, robust, and safe from system
operations and performance positioning.

Table 1. Tuples from the design phase of the AI ethics lifecycle.

Design Element Subject Requester Temporality

Data Representation Energy System, Sub-Modules,
Downstream Applications

Owners, Designers,
Developers, Engineers Design to Deployment

Data Processing Energy System, Sub-Modules,
Downstream Applications

Designers, Developers,
Engineers, Operators Design to Operation

Data Quality Energy System, Sub-Modules,
Decision Processes

Designers, Developers, Engineers,
Operators, Managers, Policymakers Design to Operation

System Accuracy
Energy System, Sub-Modules,
Downstream Applications,
Consumer Experience

Engineers, Operators, Managers,
Policymakers, Users Operation to Termination

System Responsiveness Downstream Applications,
Consumer Experience

Operators, Technicians,
Policymakers, Owners Operation to Termination

System Usability Energy System, Downstream
Applications, Consumer Experience

Operators, Technicians,
Policymakers, Owners Design to Operation

System Integration Energy System,
Integration Platforms

Operators, Managers,
Engineers, Owners Operation to Expansion

Insight Quality Energy System, Decision Processes,
Policy Implements

Operators, Managers, Engineers,
Owners, Consumers Operation to Termination

Decision Quality Energy System, Decision Processes,
Policy Implements

Owners, Managers, Policymakers,
Advocacy, Community Operation to Termination

Following the development phase, the operations matrix is received by the opera-
tion phase for assessment and monitoring against the eight implementation outcomes
deliberated earlier. These implementation outcomes, along with service, AI, and system
performance metrics, provide a comprehensive account of the AI ethics practice, start-
ing from design elements to AI and system capabilities. For instance, adopting this AI
ethics lifecycle approach provides an impactful and informative association between the
design construct of data representations and the implementation needs of an AI model for
predicting the data and the required data volumes for the optimal and useful operation
of the energy system. This association between design concept and technical implemen-
tation consolidates ethical oversight for owners, operators as well users, advocacy and
community groups alike. System usability is a further example that is generally overlooked
for ethical balance during technical implementation. Usability is not predefined by the
operational capabilities, instead informed and motivated by the design phase for an ethical
implementation that is accountable, effective, explainable, and inclusive, where evolving
user needs and evolving data volumes will predict how usability needs to be redesigned or
adapted for inclusive operation of the energy system.
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Table 2. Operations matrix from the development phase of the AI ethics lifecycle.

Design Element Ethics Practice AI Capability

Data Representation Effective, Explainable, Inclusive,
Robust, Trustworthy

Prediction of required data representations,
Prediction of required data volumes, Classification
of missing or erroneous data

Data Processing Effective, Robust, Resilient, Privacy, Safe,
Secure, Trustworthy

Prediction of process workloads, Outlier detection
in processes, Optimization of processing based on
patterns of recurrences

Data Quality Accountable, Effective, Explainable, Inclusive
Classification of quality factors and variability,
Prediction of loss of quality, Optimization of
quality thresholds for system outcomes

System Accuracy Effective, Explainable, Resilient, Robust, Safe,
Secure, Trustworthy

Prediction of drop/loss in system accuracy, Metric
optimization for performance gains, Association
of metrics with system operation goals

System Responsiveness Reliable, Resilient, Robust, Safe, Secure,
Trustworthy, Unbiased

Operational load prediction, Classification of
response times based on operator profiles,
Profiling operator capabilities

System Usability Accountable, Effective, Explainable, Inclusive
Prediction of evolving user needs, Prediction of
evolving data volumes, Profiling usability factors
by user groups

System Integration Reliable, Resilient, Robust, Safe, Secure

Predicting downstream system dependencies,
Classification of integration points and system
checks, Association of integration logs, timeouts,
and dropouts

Insight Quality Effective, Explainable, Inclusive, Safe,
Secure, Trustworthy

Classification of insight quality and acceptable
accuracy thresholds, Prediction of insight quality
based on data quality factors

Decision Quality Accountable, Effective, Explainable, Inclusive,
Safe, Secure, Trustworthy

Classification of decisions by downstream impact,
Profiling socio-technical implications of decisions,
Optimization of decisions for
socio-economic gains

4. Conclusions

This article presents our work in the conception and development of an AI ethics
lifecycle approach for energy systems. The proposed approach consists of the design, devel-
opment, operation, and evaluation phases that collectively deliver an AI ethics operations
matrix for real-time monitoring and evaluation of AI capabilities for ethically informed,
balanced, and inclusive operations and decision-making. The centralized AI ethics reposi-
tory captures and manages a persistent record of design considerations, implementation
outcomes, and evaluation metrics associated with each capability and ethics practice. This
approach aligns with the lifecycle of most industrial systems (including energy systems),
where design and production are followed by maintenance, repair, and then shutdown and
replacement. The lifecycle approach was evaluated in the real-world setting of a microgrid
energy system deployed and operational in a multi-campus tertiary education setting. The
results of this evaluation, presented in terms of the design and development outcomes,
provide comprehensive coverage and visualization of the interplay between ethics practice
and technical implementation of an energy system. All stakeholders of this energy system
can review and evaluate the design considerations, technical development, and subsequent
performance evaluation of AI capabilities in alignment with the ethics practice mandated
for the entire system. In future work, we intend to expand and adapt this lifecycle approach
for generalized application across any industrial system with consistent human-centric
operation and human-machine interactions. The adaptation of this approach for diverse
energy settings such as transport, healthcare, retail, and residential, as well as the develop-
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ment of evaluation metrics for the effectiveness, performance, usability, and governance of
the lifecycle approach to determine certainty and reliability, are further considerations for
future work. Based on the continuing effectiveness of this approach, we will also work on
the extension of the lifecycle from energy systems to generic industrial systems while also
taking into account the evolving nature of AI and the increasing/diversifying dimensions
of AI ethics that must be considered. In this case, the proposed approach will serve as a
performance baseline for AI ethics implementation and new dimensions will be introduced
and integrated upon this baseline. This lifecycle approach in its current form and the
extent of future work will continue to contribute toward the practice of responsible AI
in industrial settings and address the translation gap between policy and practice in AI
ethics undertakings.
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