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A B S T R A C T 

We present a no v el natural language processing (NLP) approach to deriving plain English descriptors for science cases otherwise 
restricted by obfuscating technical terminology. We address the limitations of common radio galaxy morphology classifications 
by applying this approach. We experimentally derive a set of semantic tags for the Radio Galaxy Zoo EMU (Evolutionary Map 

of the Universe) project and the wider astronomical community. We collect 8486 plain English annotations of radio galaxy 

morphology, from which we derive a taxonomy of tags. The tags are plain English. The result is an extensible framework, which 

is more flexible, more easily communicated, and more sensitive to rare feature combinations, which are indescribable using the 
current framework of radio astronomy classifications. 
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 I N T RO D U C T I O N  

anguage is often difficult to define or use. When new concepts
rise and demand their own terminology, terms can be adopted from
imilar ideas (e.g. ‘entropy’ in information theory and physics; Natal
t al. 2021 ), invented (e.g. ‘utopia’; Romm 1991 ), or named after the
 E-mail: micah.r.bowles@gmail.com 
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isco v erers (e.g. ‘Newtonian physics’). Individual terms often have
ultiple accepted definitions within a given field, and especially

cross fields (e.g. ‘modern’ in philosophy and art; von Schelling,
on Schelling & Schelling 1994 ; Adajian 2022 ). The construction of
anguage in science is especially important, as language is believed
o affect how we think (Wolff & Holmes 2010 ). 

The terminology used in astronomy struggles with these same
ssues. Some terms are obfuscated, poorly defined, or so specific that
xperts can often only engage in the subject matter if a definition
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s provided on each use. In radio astronomy, a field which began
n the 1930s (Southworth 1956 ), the language used to describe 
elestial objects has been developed almost entirely in tandem 

ith the instruments and corresponding scientific understanding. 
onsequently, some terms are limited by our physical understanding 

e.g. Little Green Man 1; Hewish et al. 1968 ) or the sample inspected
t the time (e.g. FRI/FRII; Fanaroff & Riley 1974 ). 

In the case of radio galaxy morphologies, language is becoming 
ncreasingly difficult to use, especially as technological and scientific 
dvancements provide deeper insight into the vast range of radio 
orphologies. The gap between the diverse range of observed radio 

alaxy morphologies and the classification schemes used is widening. 
he current morphological classifications carry information, which 
annot be quantified under current frameworks, meaning the use of 
on-numeric features, i. e. language based schemes, is una v oidable. 
ccordingly, the current classification schemes fall victim to obfus- 

ated language. Additionally, the terms used tend to describe abstract 
lasses, which lack the ability to capture the increasingly complex 
eatures of radio galaxies observed with the newest generation of 
nstruments. Rudnick ( 2021 ) urges the radio astronomy community 
o develop a tagging system rather than forcibly attempting to create 
lasses, which neatly separate objects. Such a tagging system would 
llow an object to be assigned plain English descriptors capturing the 
emantics of the object’s features through tags rather than be assigned 
 distinct class to which it belongs. Additionally, this tagging system
ould be able to consolidate instrument specific morphologies within 

he same framework without producing conflicts. As an example, a 
ource could be tagged as ‘compact’ in a low-resolution surv e y while
aving specific morphological features captured by tags referring to 
bservations made by higher resolution instruments. This work aims 
o build the framework for such a tagging system for the first time. 

The newest radio instruments in operation are producing maps 
f sources which are so deep, resolved, and with such high dy-
amic range that our existing classification schemes are failing. 
n updated, and extensible, radio morphology taxonomy of tags 
ould be a tremendous benefit moving forward because deeper 

nd wider surv e ys are e xpected to be a massiv e driv er of scientific
evelopment in the coming decades. If the scientific community had 
 framework and terminology, which were not intrinsically limited by 
ensitivity or resolution, it would mean that we could work with the
ame framework regardless of the technological improvements to 
he instruments in the field. We therefore expect this work could 
ave major implications in various scientific contexts, including 
opulation studies and rare object searches in observations made by 
urrent and future radio instruments including the Australian Square 
ilometre Array Pathfinder (ASKAP; Johnston et al. 2008 ), the 
ow Frequency Array (LOFAR; van Haarlem et al. 2013 ), the Deep
ynopic Array 2000 (DSA-2000; Hallinan, Ravi & Deep Synoptic 
rray Team 2021 ), the Murchison Widefield Array (MWA; Tingay 

t al. 2013 ), MeerKAT (Jonas & MeerKAT Team 2016 ), the next
eneration Very Large Array (ngVLA; Murphy & ngVLA Science 
dvisory Council 2020 ), and the Square Kilometre Array (SKA; 
ewdney et al. 2009 ). 
This work uses data from the Evolutionary Map of the Universe 

EMU; Norris et al. 2011 ), a radio surv e y being conducted with the
SKAP telescope. ASKAP’s large field of view means that it can 
ap a large portion of the sky at once. Because of this, EMU is

urrently planned to map three quarters of the sky, the first two-
hirds of which are planned to be completed in the first five years.
MU is estimated to catalogue 40 million sources (estimate made 
sing the Tiered Radio Extragalactic Continuum Simulation method, 
-RECS; Bonaldi et al. 2019 ). In an effort to classify these sources
t scale, we are launching ‘Radio Galaxy Zoo EMU’ (RGZ EMU).
GZ EMU is a citizen science project designed to allow the public to
rovide valuable and essential insights into these sources, including 
ost identification, source assembly, and source classification (full 
etails on RGZ EMU in Tang, Vardoulaki et al. in preparation). While
esigning this project, we discussed what classifications we would 
sk the citizen scientists to use. It became clear that there was no
onsensus on the terms to use. In part as a response to this dilemma,
e collect plain English annotations on radio galaxies and implement 
 no v el frame work to deri ve semantic plain English tags. 

The proposed process uniquely combines existing natural lan- 
uage processing (NLP) methods. NLP has garnered significant 
esearch interest o v er the last 20 yr (see for instance Mishra & Kumar
020 ). Thomas et al. ( 2022 ) use NLP and a form of topic modelling
alled latent Dirichlet allocation (LDA; Vayansky & Kumar 2020 ) 
ith the aim of guiding the planning process of research priorities
y analysing trends in previous publications. Grezes et al. ( 2021 ) use
eep learning-based NLP techniques with the aim of improving the 
AO/NASA Astrophysics Data System (ADS. 1 ). 
The method we present is not bound to radio astronomy. It can

e applied to any domain. The code used in this work is publicly
vailable at https://github.com/mb010/Text2Tag and is written to be 
ransferable to other fields. 

Our work is structured as follows. In Section 2 , we detail the
ata used in and collected through our experiments. We present 
he proposed method in full in Section 3 before presenting the
etails of its application and the resulting taxonomy in Section 4 .
nitial physical results using the semantic taxonomy are presented 
n Section 5 . The results and impact are discussed in Section 6 and
onclusions are made in Section 7 . 

 DATA  

wo experiments were designed and executed. Both made use of 
arly versions of cutouts prepared for the RGZ EMU project as
escribed in Section 2.1 . The intent and design are detailed for
he Plain English Annotations experiment as well as the Expert 
lassification experiment in Sections 2.2 and 2.3 , respectively. An 
non ymized v ersion of the data is publicly available. 2 

.1 Image data 

o produce the data analysed in this work, users were asked to
onsider individual images in turn. An example of one of these
mages is presented in Fig. 1 . These images are early versions of
he data to be used in the RGZ EMU project. This version consists
f three panels containing a 6 arcmin by 6 arcmin cutout from the
MU pilot surv e y. The panels show EMU contours with the false
olour EMU image, a Digitized Sk y Surv e y (DSS; Lasker et al.
990 ) cutout, and a Wide-Field Infrared Surv e y Explorer (WISE;
right et al. 2010 ) cutout. Each image is centred on an EMU Selavy

atalogue component (Norris et al. 2011 , 2021b ). 
The cutouts are subject to a number of criteria designed to select a

mall number of sources for early testing. Components which had an
ngular extent of less than 27 arcsec (1.5 beamwidths) were remo v ed.
omponents which were within 45 arcsec (2.5 beamwidths) of 
nother catalogued component were also remo v ed, as these are
argely simple doubles with little to no morphological features and 
MNRAS 522, 2584–2600 (2023) 
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Figure 1. Example cutout as presented to the participants of the experiments 
detailed in Sections 2.2 and 2.3 . Cutout centre: 21 h 02 min 16 s – 54 ◦23 
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an be classified algorithmically. This resulted in a list of 306 sources,
or which cutout images were made. Our final sample consists of 299
f these cutouts because an undetected upload error caused seven
utouts to not be uploaded to the Zooniverse platform. 

.2 Plain English annotations 

o derive the desired plain English taxonomy, we started with
lain English descriptions (annotations) of the given object or
henomenon. Using the 299 sets of images outlined in Section 2.1 ,
e built a pri v ate Zooni verse 3 project, where we presented users with

n empty text box and a prompt reading: 
Please describe the source: 

(i) in the middle of the frame and any associated emission. 
(ii) use simple English. 
(iii) avoid jargon . 

(a) e .g . refr ain from typing FRI, WAT, and so on. 

(iv) descriptions should be separated by ‘’, . 

This data was intentionally collected to be relatively unconstrained
o encourage the annotations to co v er div erse ideas of source features.
hus users were enabled to highlight and describe whatever caught

heir attention within the image. The trade-off in this unstructured
escription approach is that the resulting data are unwieldy and noisy
the consistency and formatting of phrases is not constrained). As
uch, the method outlined in Section 3 contains a significant o v erhead
f data cleaning, which is common with any unstructured natural
anguage data. 

The data collection for this experiment ran from 2021 December
7 to 2022 January 27. We offered users who processed more than
00 sources co-authorship on this publication, which is a direct result
f their efforts. In total, we had 19 users annotate an average of 154
ources each, resulting in a total of 2920 descriptions consisting of
 8486 comma separated annotations. Almost all of these users are
stronomers, and more than three quarters of them have at least some
cademic experience of radio morphologies. 

.3 Expert classification 

e conducted a second experiment to collect expert classifications
n the same sets of images. This experiment was conducted with the
im of extracting ideas represented by annotations which are rele v ant
o the expert’s science cases. 

We established a separate pri v ate Zooni verse project and invited a
umber of experts to participate in classifying the radio morphologies
NRAS 522, 2584–2600 (2023) 

 See: https:// www.zooniverse.org/ 

o  

a  

l  
f the objects in the images described in Section 2.1 . To classify
bjects with predefined classes participants were prompted with: 
Radio morphology : Please describe the source: 

(i) in the middle of the frame and any associated emission 
(ii) select one or more tags that fit object radio morphology. 

We presented the participants with 22 classes, which they could
se as they wished, including assigning none or all of them to the
ubject. The abstract classes listed were selected from a compiled
ist of radio morphology classes presented in Rudnick ( 2021 ) and
ere: Single, Double, Classical Double, Triple, Narrow-angle tail

NAT), Wide-angle tail (WAT), Bent tail, Fanaroff & Riley Class 1
FR I), Fanaroff & Riley Class 2 (FR II), Fanaroff & Riley Class 0
FR 0), Hybrid, X-shaped, S-shaped, C-shaped, Diffuse, Double–
ouble (DDRG), Core-dominant, Core-jet, Compact Symmetric
bject (CSO), 1-sided, Odd Radio Circle (ORC), and Star-Forming
alaxy (SFG). This experiment ran from 2022 January 27 to 2022
ay 19. Fiv e e xperts made a total of 1257 multilabel classifications

f an average 251 objects each. 

 M E T H O D  

o the best of our knowledge, there is no existing process or NLP
pproach, which produces a semantic taxonomy from a corpus of
hort annotations. The closest approaches are widely used topic
odelling approaches. These approaches capture topics within a

orpus through distributions of terms in documents. Vayansky &
umar ( 2020 ) present a helpful re vie w of topic modelling variants.
hese models are designed to return a distribution of terms, which
elong to each disco v ered topic. The y are not designed to return
erms, which communicate what a given topic is. We explicitly want
o build a taxonomy on a certain subject. Therefore, the terms which
f fecti vely capture the meaning of a topic are essential. 

Although a panel of experts may be able to manually define a
emantic set of terms for a given problem, the success of such an
pproach would depend on whether the panel agree, the backgrounds
f the experts, and their ability to distil complex ideas into simple
lain English ef fecti vely. This manual approach would likely also
ack the reproducibility and tractability that is expected by the
hysical sciences. 
We therefore propose a method through which short annotations

re distilled into semantic tags in accordance with a specific science
ase and its respective features (including classes). The workflow
f the method is presented in Fig. 2 . The derived taxonomy should
ro vide wide co v erage of objects of interest, have the ability to
istinguish features, be clear in what semantic feature it describes,
nd be appropriate to the science cases. 

Conceptually , in the framework similar annotations are aggregated
o produce a single term, which we call ‘tag’. We rank how important
ags are based on the impact they have in classifying the existing
bstracted science classes. A selection is made on the most important
ags to form a taxonomy. 

A technical outline of the method is presented in Section 3.1 .
he implementation details for our data and project are presented in
ection 3.2 . 

.1 Technical outline 

equences of words are processed where w i represents the i th word
f N in a given annotation, a j = ( w 1 , w 2 ,..., w N ). Here a j is the j th
nnotation of the M annotations in our corpus. Note that in the NLP
iterature, the equi v alent of annotations would be ‘documents’. This

art/stad1021_f1.eps
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Figure 2. Proposed workflow to computationally derive a semantic plain 
English taxonomy from a set of annotations. 
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ethod is expected to work best on extremely short annotations 
documents), where each annotation contains a single idea. The 
nnotations are embedded into a k -dimensional vector through a 
re-trained model, f emb : 

 emb 

(
a j 
) = v j ∈ R 

k . (1) 

his is currently implemented such that the order of the words does
ot affect the encoding (i.e. in a bag-of-words paradigm). We embed 
ach word within an annotation through 

 emb 

(
a j 
) = 

1 

N 

N ∑ 

i= 1 

f emb ( w i ) . (2) 

For pairs of annotations, ( i , j ) ∈ [1, M ] 2 , a similarity value is
alculated using the cosine similarity, g cs sim 

: R 

k −→ [ −1 , 1], which
akes the dot product of two vectors scaled by the inverse of the
roduct of the Euclidean norms of those vectors: 

 cs sim 

( v i , v j ) = 

v i · v j 
‖ v i ‖‖ v j ‖ . (3) 

ccording to a similarity threshold, σ , M av eraged v ectors are then
alculated through: 

 

′ 
i = 

1 

M 

′ 

M ∑ 

j= 1 

{
v j if g sim 

( v i , v j ) ≥ σ

0 else 
, (4) 

here M 

′ 
is the number of non-zero elements being summed o v er.

he model, f emb , used to embed the annotations is then used to
roduce the token, which is closest to v ′ i : 

 

−1 
emb ( v 

′ 
j ) ≈ s q , (5) 
here s q is the q th entry of all Q unique derived tags. As tags are
erived from the M annotations Q ≤ M . 
For each annotated object, we define t = ( t 1 ,..., t Q ) as a vector

ncoding of the tags, where t q is 1 if that tag was present in an
nnotation associated with that object, or 0 if that tag is not associated
ith it. As each object has multiple individual annotations associated 
ith it, it can be described through its derived tags t ∈ { 0, 1 } Q . 
We consider each science class y in the set of science classes Y .

sing the encoded tag vector, t , for each object, we fit a model,
 y : { 0 , 1 } Q −→ { 0 , 1 } , to predict the presence of each science class
 ∈ Y . For each model, f y , and tag representation, t q , we calculate an
mportance 

 Importance ( f y , t q ) = I ( q,y) ∈ R , (6) 

here a larger value of I ( q , y ) means that t q , and subsequently s q , are
ore important to the classification output. 
To reco v er the importance of the q th tag, we take an average across

ll models, f y , for a given tag, s q . We take the support weighted
verage of the importance of each model 

 q = 

1 

Q 

∑ 

y∈ Y 
n y I ( q,y) . (7) 

ere, n y is the number of (positive) class y entries. Note that other
eightings may be preferable depending on the available data and 
urpose. For instance, if a multi-objective regression task were used 
nstead to calculate I ( q , y ) , then a uniform weighting across tasks may
e more appropriate. We normalize the importance values, I q , such
hat 
Q ∑ 

q= 1 

I ′ q = 1 , and I ′ q ∈ [0 , 1] . (8) 

inally, the tags, s q , are sorted by their I ′ q . Although tags are all
xpected to have some non-zero I ′ q , a majority of the information is
ontained within the top tags. Additionally, the tags ranked lowest in
his scheme are expected to be noisy (e.g. annotations which contain
ncorrect spellings, reference otherwise irrele v ant features, or are 
nly impactful on a given prediction through the random association 
f its small sample size). We set an importance threshold to select the
op Q 

′ 
< Q tags. These most important tags, consisting of Q 

′ 
strings,

 ∈ S Taxonomy , is the derived taxonomy. 
Some of the tags, s , may require clarification to allow the tag to

e clear upon first reading. To do so the raw annotations, which that
ag was derived from are taken into consideration, in order to verify
hat it represents. 

.2 Implementation 

he exact implementation of the method outlined in Section 3.1 will
epend on the data being used. The details for our implementation
re as follows. 

.2.1 Pre-processing 

he goal of pre-processing the annotations is to format the data in
 uniform manner without disrupting the content (i. e. standardizing 
rammar, spelling, and formatting). To do this, a number of common
LP data processes are applied. These are applied in the order they

re presented in. 
All annotations are set to lower case and all accents are re-
o v ed from characters. Ampersands and new line commands are

emo v ed or replaced as appropriate. Forward slash and full stop
MNRAS 522, 2584–2600 (2023) 
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Figure 3. The histogram of the cosine similarities of the embedded annota- 
tions. Data is lemmatized and does not include self-similarity values. 
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haracters are replaced with commas as they are often observed to
epresent separate ideas, which our method assumes are comma
eparated. Double whitespaces are corrected and hyphens are 
emo v ed. 

Based on manual inspection, additional corrections are made to a
umber of annotations. These are spelling mistakes such as ‘copact’
eing corrected to ‘compact’. We then drop any annotations which
ention ‘DSS’, ‘WISE’, or ‘optical’ as these annotations are not

xpected to be a comment on the radio morphology, which is our
arget of interest. 

At this point, the sets of comma separated annotations are
eparated into individual annotations. Contractions are expanded.
 list of stopwords 4 is extended to include ‘like’, as well as scientific

erms, which the pipeline should not be affected by as they are both
echnical and not related to morphology. These additional stopwords
nclude ‘emu’, ‘g alaxy’, ‘g alactic’, ‘emission’, and ‘source’. Terms
or cardinal directions (‘north’, ‘south‘, ‘east’, and ‘west’) are also
dded to the stopwords since our focus is on the features themselves
nstead of their position relative to a specific source. This stopwords
ist is applied to the annotations. 

We consider both lemmatized 5 and unlemmatized approaches to
he data moving forward. Each annotation has now been cleaned,
nd the data are largely consistently formatted. 

.2.2 Embeddings 

hen embedding the cleaned annotations into vectors, we use
paCy’s large English language model, 6 which is the largest available
odel within the SpaCy package (v3.3.0) that has tokens (largely
ords) embedded. It contains 685k embeddings. For a given vector,

he model can return the closest embedded word(s). This feature is
ssential to our process, and is a key factor in the decision to use this
odel. Other advanced, such as transformer based models, can take
ord order into account, but do not have these token embeddings. In

he implemented SpaCy v ersion, the v ector embeddings are learned
hrough the GloVe algorithm introduced by Pennington, Socher &

anning ( 2014 ). GloVe (Global Vectors for Word Representation)
s an unsupervised representation learning algorithm, which aims to
mbed words in a space which presents various desirable features.
hese features include semantic and linguistic similarity, which is
dvantageous for our use case. 

To decide what similarity threshold to use to aggregate over, we
onsider the histogram of cosine similarities of all annotations. This
s presented in Fig. 3 . This histogram is presented using annotation
mbeddings, which were lemmatized and does not include self-
imilarities. The peak at 1.0 is due to tags, which are identical
maximally similar). The rigorous cleaning process reducing short
nnotations to a few words before the annotations are embedded
s likely a factor. Additionally, self-consistent v ocab ulary across

ultiple annotations may be embedded to an (essentially) identical
ector. 

To capture the excess tail of more similar vectors, we consider
imilarity thresholds abo v e 0.5 for our models. Lower thresholds
NRAS 522, 2584–2600 (2023) 

 Stopwords are a list of superfluous words, which when applied to a text 
emo v es instances of those words from the text. Examples include ‘it’ and 
the’. A list of def ault stopw ords can be found in the SpaCy source code 
nder spacylangenstop w ords.p y. 
 Lemmatization is replacing a word with its root word, e.g. ‘apples’ becomes 
apple’. 
 https:// spacy.io/models/ en#en core web lg 
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ould contain the bulk of all annotation pairs, which would be
ounterproductive in trying to capture individual concepts. However,
e would like to explore thresholds down to 0.5 to reduce the number
f unique terms and maximize the number of entries per unique tag.
he tags derived from the aggre gated v ector encodings, are returned
y SpaCy as single tokens (words). 

.2.3 Model definition 

e predict science classes on a source by source basis. We use 22
cience classes to train the models to classify science classes from our
erived tags. Three science classes presented to our expert classifiers
re functionally remo v ed as they are either not usable without
pectra ( CSO ), extremely contested and largely disused ( Fanaroff-
iley Class 0 ; FR0 , Hardcastle & Croston 2020 ; Rudnick 2021 ),
r largely uninformative when considering extended radio mor-
hology ( Single ). Furthermore, the following three science classes
ave insuf ficient positi ve cases for training: Double–Double Radio
alaxies (DDRG; Schoenmakers et al. 2000 ), Hybrid Morphology
adio Sources (HyMoRS; Banfield et al. 2015 ; Kapi ́nska et al.
017 ), and ORC (Norris et al. 2021a ). The experts often did not
gree with their usage of the terms. We explore what degree of
greement (expert threshold) beyond which we will consider a
ource as being positively classified with a certain science class
n Section 4.1 . 

To train models that predict science classes from our derived tags,
e have 299 sources. This is a small data set. We chose a relatively

imple model in response. We train random forests in a one-vs-rest
cheme, i. e. one random forest model to classify one science class.
e treat a set of these models as a single model, which predicts

he multilabel target of an input. The random forests use the Gini
mpurity criterion, with the aim of improving the explainability of
he selected features (Menze et al. 2009 ). The random forests are
onfigured with 500 estimators, no maximum depth, and a seeded
andom state to allow for reproducible results. Unspecified features
f the models are inherited from default values as implemented by
cikit-Learn v1.1.0. 

https://spacy.io/models/en#en_core_web_lg
art/stad1021_f3.eps
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Figure 4. Aggregated F1 scores of both random forest models and baselines 
sho wing the ef fect of thresholding the expert classifications. The baselines 
are constructed by randomly predicting in accordance with the rate of positive 
cases per positive class. Statistics are measured over 5000 instances of 
the baseline estimators, and o v er all lemmatization and similarity threshold 
configurations of the random forest models. 
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.2.4 Evaluation 

nother challenge of the relatively small data set is the e v aluation
f the trained models. We use cross-validation to maximize our use 
f the data. The model is e v aluated through 10-fold cross-validation,
here we train 10 models on 10 different sets of nine-tenths of

he available data and e v aluate each on the respectively withheld
nal tenth. With predictions for each tenth from one of the 10

rained models, we reco v er predictions for each data point. These
redictions result in approximate generalized performance metrics 
or the models. 

We choose to track the performance of our models with macro and
eighted F1 scores. An F1 score is the harmonic mean of precision

nd recall, and can be written as 

 1 = 2 ∗ ( precision · recall) 

( precision + recall) 
= 

T P 

T P + 

1 
2 ( F P + FN ) 

, (9) 

here TP is the number of true positives, FP is the number of false
ositives, and FN is the number of false negatives. The macro and
eighted F1 scores are extensions to enable e v aluations of multilabel
roblems. The macro F1 score is calculated by averaging F1 scores
alculated in a one-vs-rest scheme for each target class. The weighted 
1 score is calculated identically to the macro F1 score, except that
e take the weighted mean where each score is first scaled by the
umber of samples of a given class, which may be more telling in an
mbalanced data classification problem. 

.2.5 Importance 

o estimate the importance of each of the tags, we use Shapley
 alues. Shapley v alues are a common explainability tool used in
achine learning applications (Lundberg & Lee 2017 ). These values 

onv e y how much a feature has contributed to the prediction of
he respective model in comparison to the average predictions of 
he model. Exact Shapley values for each input tag and science 
lassification are calculated using the trained random forest model 
nd the SHAP package for trees introduced in Lundberg et al. ( 2020 ).
hese values are the importance values used to estimate which tags 
apture the semantics of radio morphology. 

 TA X O N O M Y  

.1 Data configuration 

o e v aluate which data configuration (i.e. data processing parameter 
election) is best, we consider the F1 scores of models trained on
arious configurations of the data. We grid search data across config- 
rations including four expert thresholds, 11 similarity thresholds, 
nd with or without lemmatization. This results in 88 configurations, 
hich we construct and e v aluate. 
F or the e xpert classification we demand that at least 20 per cent,

0 per cent, 60 per cent, or 80 per cent of the votes made on a given
ource agree. We call these confidence thresholds. Note that we make 
se of percentages. Sources which have not been classified by all 
xperts can still have their classifications reflected in the confidence 
hresholds used in this search. We do not consider 100 per cent
greement amongst experts as so few classifications would survive 
hat we could not train a model (highlighting a serious issue of the
urrent classification scheme). The F1 scores are presented in Fig. 4 ,
or which the statistics of the random forest models are taken o v er
ll 22 configurations (two lemmatization and 11 similarity threshold 
ombinations) for each expert threshold. 
Simply stating that the model impro v es as the expert threshold is
ncreased is largely true, see Fig. 4 . Ho we ver, with increasing expert
hresholds, the task which the model has been asked to complete
ecomes easier as the noise in the classifications is functionally 
educed. The subset of data where experts have a high consensus
re more likely to have clearly identifiable morphologies (reduced 
leatoric uncertainty) or present with a morphological classification, 
hich is more widely agreed upon amongst the experts (reduced 

pistemic uncertainty). In an attempt to capture a broader perspective 
n what radio morphologies are, while maintaining accuracy of the 
lassifications, we select an expert threshold of 60 per cent for the
emainder of this work. 

Fig. 5 shows the performance of the 22 models for each similarity
hreshold and lemmatization configuration. We select the configu- 
ation with a similarity threshold of 0.80 and lemmatized inputs. 
his configuration results in 213 unique tags. The model achieved a
eighted F1 score of 0.254 and a macro F1 score of 0.350. This is

he model with the highest weighted F1 score. The highest macro F1
core is 0.352 held by both configurations with a similarity threshold
f 0.6. 

.2 Tag ranking 

he Shapley values are calculated for each tag provided to the model
ith respect to the model’s outputs and the full data set. This provides
s with a Shapley value for each science class and tag combination.
e take the support weighted average of the Shapley values across

he science cases to provide us with a descriptive Shapley value
or a given tag. We normalize these values so that they sum to
ne across all tags. We call these values the comparative weighted
hapley values. These are presented as percentages, which reflect 
ow much sway a given tag has over the science classification of the 
odel. 
We calculate the comparative weighted Shapley values and present 

he 70 most important terms in Fig. 6 . To select a usable volume
MNRAS 522, 2584–2600 (2023) 
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Figure 5. Grid search results across both lemmatization and the 11 similarity 
threshold configurations for the selected expert threshold of 60 per cent. 
tag count refers to the total number of unique tags which that configuration 
produced, which is strongly dependent on the similarity threshold of the 
configuration. The selected configuration is the lemmatized version with a 
similarity threshold of 0.80 (expert threshold of 60 per cent). 
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Figure 6. Top 70 tags sorted by their comparative weighted average Shapley 
values for the configuration selected in Section 4.1 . 
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f tags, we define the taxonomy to be the top tags required for
8 per cent of the descripti ve po wer to be maintained (approximately
 per cent of the comparative weighted Shapley value). In this data
onfiguration, this results in a taxonomy of 33 tags. 

Highlighting the benefits of Shapley ranking over a simpler
pproach such as correlations, we present an interactive graph visu-
lization of moderately strong correlations between all combinations
f both tags and science cases in Fig. 7 . Importantly, the graph does
ot contain all 33 tags. This is because most of the top 33 tags
re not strongly correlated with other terms. They are still the most
mpactful to the model’s decision, as non-linear combinations of tags
an be used to classify the science case. Their value to the non-linear
lassifications is captured by Shapley values. 

.3 Taxonomy adjustments 

imited to single words, the derived tags may not be an optimal
election. Suboptimal tag representations may also occur when
he conjugation of a given term is relevant to the use case but
emmatization has remo v ed it ev en if it would been more easily
nderstood (e.g. ‘extended’ in comparison to ‘extend’). Furthermore,
he method only outputs single words, even if the concept the tag
epresents is better represented by multiple terms. 

We therefore investigate each tag in turn by considering all
nnotations which contribute to it. We adjust tags in an attempt to
ptimize the taxonomy for grammatical and conceptual clarity. The
djusted tags are listed below, including descriptions of the original
nnotations/concepts, which a tag represents. 

(i) tr ace : deriv es directly from numerous annotations stating
traces host galaxy’. This is a more clear expression for what this tag
epresents. We therefore alter ‘trace’ to ‘traces host galaxy’. 

(ii) disc : derives from annotations such as ‘emission from galaxy
isc’. We therefore merge this with ‘traces host galaxy’ (originally
trace’). This refers to the radio emission tracing the host galaxy
ather than the morphology of the host. 

(iii) bright : refers to bright features of a presented cutout. This
ncludes cores as well as neighbouring sources. This information is
NRAS 522, 2584–2600 (2023) 
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Figure 7. Still frame from the interactive graph available at https://gith 
ub.com/mb010/Text2Tag/ blob/main/ Corr elationsGr aph.html (download and 
open with a browser). The graph’s edges are correlations abo v e a magnitude 
of 0.3. Nodes are tags from the top top 33 (purple), other tags (blue), and 
science classes (orange). The node sizes reflect the occurrence rate of a given 
node across the 299 sources. The width of the edges represents the correlation 
between the two nodes it connects. All correlations are in the range [ − 0.5, 
0.9]. 
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ore clearly contained in the catalogues of radio component fluxes. 
herefore, this tag is dropped. 
(iv) spir al : deriv es from spiral galaxies being the hosts of the

adio emission. This tag is changed to ‘traces host galaxy’ as it then
ontains the rele v ant radio morphology information. 

(v) asymmetric : original annotations refer to asymmetric struc- 
ure. To highlight the difference between asymmetric structure and 
rightness, we rename this tag to ‘asymmetric structure’. 
(vi) extend : grammatical adjustment to ‘extended’. 
(vii) component : refers to the number of components, which the 

ource is composed of. This tag is dropped in fa v our of catalogues,
hich list how many separated components are assigned to a 

ource. 
(viii) counterpart : refers to matching emission in either optical or 

nfrared. Host identification and ‘traces host galaxy’ will capture this 
nformation. Therefore, this tag is dropped. 

(ix) middle : largely referring to presence and features of the central 
ore of a radio galaxy. We therefore rename this tag to ‘core’. 

(x) brighten : refers to ‘edge brightened’ sources. We therefore 
larify this by altering this tag to ‘edge brightened’. 

(xi) linear : refers to non-bent radio morphologies, which is cap- 
ured in the absence of the ‘bent’ tag. Therefore this tag is dropped. 

(xii) elongate : refers to elongated structures in the radio emission. 
his is captured by the absence of the ‘bent’ tag when sources are
lso ‘extended’ and is therefore dropped. 

(xiii) radio : annotations were written commenting on the radio 
mission in general ways (such as the presence of a jet or how
any components are visible). This information is all mapped by 

ther tags/processes. For this reason, we drop this tag from the 
axonomy. 
(xiv) overlap : often refers to emission, which o v erlaps with radio
ontours or vice versa. It is therefore be changed to ‘traces host
alaxy’. 

(xv) brightness : original annotations almost e xclusiv ely refer to 
asymmetric brightness’ across components or within the structure 
eing discussed. We therefore clarify this tag by changing it to
asymmetric brightness’. 

(xvi) straight : refers to the non-bent structure of the radio galaxy.
e therefore drop it in fa v our of the absence of the tag ‘bent’. 
(xvii) lobes : we make a grammatical change to ‘lobe’ with the

ntent to make this tag less ambiguous for future users. 
(xviii) edge : highlighting clear edges of sources, as opposed to 

iffuse edges. This is largely equivalent to and is merged into ‘edge
rightened’. 
(xix) margin : the annotations from which this tag derives refer 

o the source extending beyond the margins of the cutout. This is
eing accounted for with updated cutouts, and is not morphologically 
ele v ant beyond the angular extent of a source, which is better
resented in a catalogue format. 

.4 Semantic taxonomy 

fter the adjustments made to the tags in Section 4.3 , we have 22
nique semantic tags. In alphabetical order, the semantic tags we 
ropose to use for radio galaxy morphology are: amorphous, asym- 
etric brightness, asymmetric structure, bent, bridge, compact, core, 

iffuse, double, edge brightened, extended, faint, host, hourglass, jet, 
obe, merger, peak, plume, small, tail, and traces host galaxy. 

.5 Effecti v ely assigning tags 

e have succeeded in deriving semantic tags for radio morphologies 
see Section 4.4 ). Ho we ver, for RGZ EMU and other citizen science
pproaches it is not ef fecti ve to ask citizen scientists to use 22 tags.
erms would likely be ignored in a long list, and users would easily
ottleneck on a small number of tags, neglecting the remainder of
he taxonomy. This would be detrimental to both the science case
nd the user experience. 

To impro v e the scientific results as well as the user experience,
nd to make the most ef fecti ve use of the citizen scientists’ time and
nergy, we consider which tags within the taxonomy can be most
asily computed algorithmically at other stages of processing, e.g. 
small’ is easily calculated through the angular extent of the assembly
ask for a given source. We aim for 10 tags, which can be presented

n a single screen to the citizen scientists. We consider each term in
urn, and outline how each term might be assigned in Table 1 . 

The tags which we believe are least easily computed will benefit
he most from citizen scientist input. These are the tags, which are
resented as ‘proposed for tagging’ in Table 1 . These 10 tags are
hose which the RGZ EMU project will present to its citizen scientist
olunteers. 

.6 RGZ EMU early feedback 

hile working towards our final release of RGZ EMU, we asked a
mall group of 16 testers who hav e nev er w ork ed on radio galaxy
tudies before (eight from China, seven from Pakistan, and one 
rom Germany) for feedback on an early version of the tags terms
rovided by a beta version of the pipeline presented in this work.
he tags presented to the testers were: bent, bridge, complex, diffuse,
istorted, elongated, hourglass, jet, plume, and tail. 
MNRAS 522, 2584–2600 (2023) 
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Table 1. A summary of the suggestions on how the tags of the final adjusted 
taxonomy are to be assigned. ‘Assembly mask’ refers to a mask derived from 

the source assembly process where multiple source components are grouped 
as (likely) belonging to a single source. ‘Tagging’ refers to citizen science 
support, or calibrated and trained machine learning models. 

Proposed for algorithmic assignment 

Asymmetric brightness Integrated flux ratio between source sections. 
Asymmetric structure Symmetric components around host. 
Compact Angular extent of the components. 
Diffuse Proportion of assembly mask with emission. 
Double A ‘component’ number of two. 
Edge brightened Relative radial brightness distribution. 
Extended Angular extent of the source. 
Faint Inte grated relativ e flux. 
Host Whether or not a host is identifiable. 
Peak Peak within the assembly mask. 
Small Angular extent of assembly mask. 
Traces host galaxy Assembly mask and host emission correlation. 

Proposed for tagging 
Amorphous, bent, bridge, core, hourglass, jet, lobe, merger, plume, and tail 
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In general, our testers found most provided tags self-explanatory.
he main concern which the testers raised, was around the definition
f three words they were not very familiar with: ‘plume’, ‘tail’,
nd ‘elongated’. We believe there are two main contributions to this
henomena: 

(i) Our testers were all non-native English speakers, which is likely
o explain their struggle with the meaning of ‘plume’. 

(ii) The testers showed differences in their thinking around terms.
 or e xample, this included describing ‘elongated’ as ‘e xtended’, ‘tail
f a comet’, ‘oval shape’, or a ‘jet-like structure’. 

To address these concerns, the final workflow will contain ex-
mples and conceptual definitions (see Appendix A ), which users
an reference for guidance. Furthermore, the RGZ EMU team is
onsidering the translation of the tags into multiple languages, where
ssues such as this may be less rele v ant. 

 R A D I O  A S T RO N O M Y  C H A L L E N G E S  A N D  

EMANTIC  M O R P H O L O G I E S  

he semantic taxonomy derived in this work (Section 4.4 ) is expected
o be most useful as a tool by which astronomers can select samples of
adio galaxies from source catalogues in a flexible manner. Assuming
ach of the tags is present or not, we can estimate how many
opulations can be selected. For the full taxonomy of 22 tags,
 

22 = 4194 304 populations can be selected (2 10 = 1024 for the 10
ags that RGZ EMU citizen scientists will use; see Section 4.5 ). 

In practice, the number of populations that the tags map may be
uite different. For example, the binary estimate presented here does
ot consider the use of other catalogued features, such as flux, spectral
ndex, or redshift. It also does not take into account that certain tags
ay be fundamentally correlated. Additionally, one might expect

hat given enough data, catalogues containing vote fractions for each
ag could enable uncertainty and strength estimates, i.e. how ‘bent’
 source might be could be approximated by the fraction of citizen
cientists which return the tag for that source. 

To demonstrate the utility of such semantically selected samples,
e here synthesize a catalogue and perform some example selections.
o synthesize our small data set into a catalogue, we estimate

he tags for this catalogue by considering a source to have been
ssigned a given semantic tag if at least one of its annotations
NRAS 522, 2584–2600 (2023) 
aps on to one of the tags in our final taxonomy. In this way,
e treat our source annotations as a tagged catalogue. 7 Future

atalogues will likely impro v e upon this synthesized catalogue
hrough multiple individuals making direct use of available semantic 
ags. 

We use this pseudo-catalogue to demonstrate the impact that
atalogues using a semantic taxonomy can have by considering two
ractical use cases. First, we demonstrate the reco v ery of an e xisting
opulation of radio galaxies in Section 5.1 . We then highlight our
bility to find morphological outliers in Section 5.2 . 

.1 Detecting traditional populations 

e demonstrate how traditional populations can be reco v ered by
eco v ering star-forming galaxies. We do this by considering sources
agged with traces host galaxy . In practice, we query our data for
ources, which were originally tagged with ‘trace’. This is the closest
roxy to ‘traces host galaxy’ tag that we can produce with our current
ata (see Sections 4.2 and 4.3 ). 
By simply considering sources with the ‘trace’ tag, we identify

8 objects. These are listed along side their respective expert SFG
lassification and estimated tags in Table 2 . This simple approach
eco v ers 33 of the 45 sources labelled as SFGs by our experts (with
t least 60 per cent expert agreement). 

Five sources with the ‘trace’ tag were not classified as SFGs in
ur expert classification scheme, i.e. 34–38 in Table 2 . Images of
hese sources are presented in Fig. 8 , where their radio contours are
hown o v erlaid on optical data from the Dark Energy Surv e y (DES;
bbott et al. 2018 ). Combining the deeper and higher resolution DES
ptical data into an RGB image aids visual interpretation compared
o using DSS greyscale images. Now the primary choice for the
MU Zoo project, DES data were not initially used due to concerns
bout accessibility and co v erage. Each of these sources is discussed
ndi vidually belo w with respect to the optical morphology catalogues
resented in Walmsley et al. (in preparation) made with the Zoobot 8 

ackage (as described in Walmsley et al. 2022 ), where the percentage
f people who would have answered with a given feature is stated
ehind each catalogued feature. 
Source 34 is a smooth (78 per cent) cigar-shaped (70 per cent)

alaxy (could be an edge-on galaxy). Source 35 is a featured
82 per cent) face-on (98 per cent; not edge-on) spiral (73 per cent)
alaxy without a bar (70 per cent). Due to selection cuts, Source 36
as not included in the Walmsley et al. (in preparation) catalogues;
o we ver, the radio emission is expected to stem from at least
wo small galaxies bounded by the contours in the image. Source
7 is a smooth (67 per cent) round (59 per cent) galaxy. Source
8 is a featured (91 per cent) face-on (98 per cent; not edge-on)
piral (98 per cent) galaxy. It does not have a bar (71 per cent)
ut has a small bulge (80 per cent) and tightly wound spiral arms
83 per cent). 

Consequently, of the five sources initially not classified as SFGs,
hen reconsidered with the deeper DES (Abbott et al. 2018 ) images

nd optical morphology catalogues, it is clear that at least two sources
35 and 38) are star-forming spiral galaxies. It is likely that the
xperts simply did not feel confident in classifying these sources
s SFG with the limited resolution and sensitivity of the DSS 

ata. 

https://github.com/mb010/Text2Tag/blob/main/data/mock_catalogue.csv
https://github.com/mwalmsley/zoobot
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Table 2. Sources selected for the traces host galaxy tag (‘trace’ in practice; see Section 5.1 ). Using an expert threshold of 60 per cent (see Section 4.1 ) 
we confirm whether or not the sampled sources are SFGs. For each source, the tags are listed in alphabetical order. 

No. Coordinates (J2000) 
Expert SFG 

classification Tags 

1 20 h 22 min 17 s − 55 ◦42 
′ 
52 

′′ 
� Asymmetric structure, compact, double, faint, host, peak, traces host galaxy 

2 20 h 22 min 31s − 55 ◦16 
′ 
45 

′′ 
� Amorphous, extended, host, traces host galaxy 

3 20 h 23 min 00 s − 54 ◦59 
′ 
23 

′′ 
� Amorphous, bent, compact, core, host, traces host galaxy 

4 20 h 23 min 12 s − 53 ◦55 
′ 
43 

′′ 
� Compact, diffuse, host, tail, traces host galaxy 

5 20 h 26 min 02 s − 55 ◦36 
′ 
02 

′′ 
� Bent, bridge, double, faint, host, hourglass, peak, traces host galaxy 

6 20 h 26 min 53 s − 53 ◦56 
′ 
33 

′′ 
� Amorphous, diffuse, host, traces host galaxy 

7 20 h 29 min 31 s − 56 ◦44 
′ 
34 

′′ 
� Amorphous, extended, host, traces host galaxy 

8 20 h 29 min 44 s − 57 ◦57 
′ 
21 

′′ 
� Bridge, core, double, extended, faint, host, peak, traces host galaxy 

9 20 h 31 min 29 s − 53 ◦44 
′ 
17 

′′ 
� Amorphous, extended, faint, host, peak, traces host galaxy 

10 20 h 31 min 52 s − 53 ◦46 
′ 
30 

′′ 
� Amorphous, compact, core, extended, host, merger, peak, traces host galaxy 

11 20 h 32 min 02 s − 53 ◦37 
′ 
56 

′′ 
� Amorphous, compact, extended, host, merger, peak, traces host galaxy 

12 20 h 34 min 02 s − 52 ◦58 
′ 
50 

′′ 
� Diffuse, extended, faint, host, traces host galaxy 

13 20 h 35 min 33 s − 57 ◦22 
′ 
44 

′′ 
� Amorphous, compact, extended, faint, host, traces host galaxy 

14 20 h 36 min 11 s − 57 ◦09 
′ 
38 

′′ 
� Compact, core, extended, faint, host, peak, traces host galaxy 

15 20 h 38 min 19 s − 54 ◦05 
′ 
49 

′′ 
� Host, merger, peak, small, traces host galaxy 

16 20 h 40 min 18 s − 55 ◦16 
′ 
18 

′′ 
� Compact, diffuse, extended, host, traces host galaxy 

17 20 h 40 min 36 s − 53 ◦15 
′ 
53 

′′ 
� Bent, bridge, extended, host, merger, traces host galaxy 

18 20 h 41 min 09 s − 55 ◦28 
′ 
19 

′′ 
� Compact, double, extended, host, traces host galaxy 

19 20 h 43 min 10 s − 53 ◦27 
′ 
55 

′′ 
� Compact, faint, host, peak, small, tail, traces host galaxy 

20 20 h 43 min 41 s − 57 ◦02 
′ 
09 

′′ 
� Diffuse, extended, host, traces host galaxy 

21 20 h 43 min 55 s − 57 ◦20 
′ 
04 

′′ 
� Amorphous, compact, core, extended, faint, host, merger, peak, traces host galaxy 

22 20 h 50 min 42 s − 55 ◦47 
′ 
58 

′′ 
� Diffuse, extended, faint, host, traces host galaxy 

23 20 h 53 min 05 s − 56 ◦25 
′ 
08 

′′ 
� Amorphous, compact, extended, host, traces host galaxy 

24 20 h 53 min 43 s − 54 ◦02 
′ 
26 

′′ 
� Compact, extended, faint, host, peak, traces host galaxy 

25 20 h 55 min 25 s − 54 ◦45 
′ 
40 

′′ 
� Amorphous, asymmetric structure, compact, extended, host, traces host galaxy 

26 20 h 55 min 35 s − 55 ◦05 
′ 
54 

′′ 
� Bent, core, diffuse, extended, host, lobe, peak, tail, traces host galaxy 

27 20 h 59 min 43 s − 53 ◦58 
′ 
52 

′′ 
� Amorphous, compact, extended, host, traces host galaxy 

28 20 h 59 min 56 s − 55 ◦33 
′ 
47 

′′ 
� Diffuse, double, edge brightened, extended, faint, host, hourglass, peak, traces host galaxy 

29 21 h 00 min 39 s − 54 ◦29 
′ 
13 

′′ 
� Amorphous, compact, core, host, peak, traces host galaxy 

30 21 h 01 min 13 s − 57 ◦14 
′ 
26 

′′ 
� Compact, extended, faint, host, peak, small, traces host galaxy 

31 21 h 01 min 49 s − 57 ◦56 
′ 
45 

′′ 
� Amorphous, compact, diffuse, host, traces host galaxy 

32 21 h 02 min 10 s − 55 ◦04 
′ 
42 

′′ 
� Core, diffuse, extended, host, peak, traces host galaxy 

33 21 h 06 min 19 s − 56 ◦48 
′ 
27 

′′ 
� Asymmetric brightness, compact, diffuse, extended, host, traces host galaxy 

34 20 h 22 min 36 s − 56 ◦16 
′ 
25 

′′ × Asymmetric structure, compact, double, faint, host, peak, small, tail, traces host galaxy 
35 20 h 24 min 45 s − 56 ◦20 

′ 
47 

′′ × Asymmetric structure, compact, faint, host, small, traces host galaxy 
36 20 h 47 min 46 s − 56 ◦44 

′ 
04 

′′ × Asymmetric structure, compact, core, diffuse, extended, host, tail, traces host galaxy 
37 20 h 58 min 37 s − 57 ◦56 

′ 
39 

′′ × Compact, host, traces host galaxy 
38 20 h 59 min 51 s − 57 ◦51 

′ 
21 

′′ × Bent, compact, core, double, extended, faint, host, peak, small, traces host galaxy 
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12 additional sources that were classified as SFGs with 60 per cent
greement amongst our experts, but that did not have the ‘trace’ tag
ssigned to them are presented in Table 3 . If the selection had been
ade on ‘traces host galaxy‘, rather than ‘trace’, then these sources
ould have been included in Table 2 . This is because ‘traces host
alaxy’ is derived through multiple tokens such as ‘counterpart’ (see 
ection 4.3 ). 
With a consistent use of the ‘traces host galaxy’ tag, the remaining

ight SFG sources from Table 3 (sources 5–12) are likely to be tagged
s such, as their radio emission do largely trace the respective optical
ost (see Appendix B ). 
Of the 45 sources our experts classified as SFGs, the selection of

races host galaxy would have recovered at least 82 per cent (33 and
our from Tables 2 and 3 , respectively) of these sources, making it
 strong candidate to select SFG populations from future catalogues 
nd highlighting how such a catalogue can be used. 
.2 Rar e sour ce detection 

e here highlight the flexibility and practicality of our taxonomy 
y considering a combination of tags that a radio astronomer might
onsider to be abnormal. We query to find a source which (a) appears
o be a merger, (b) presents bridged features, and (c) is not faint. The
esult is a single entry: source 17 from Table 2 , shown in Fig. 9 . 

This source is, as expected, an unusual object requiring expert 
ollowup. It is a composite of emission from a flocculant spiral face-
n 2MASS galaxy (Skrutskie et al. 2006 ), plus apparently associated
mission to its SE with no obvious separate optical counterpart. The
urned out (blue) object at the southern edge of the contours is listed
s two stars in the Gaia catalogues (Gaia Collaboration et al. 2016 ,
021 ), and has no obvious connection to the radio structure. A very
areful e v aluation of the chances for serendipity, and the possible
hysical nature of this source, are beyond the scope of this paper.
MNRAS 522, 2584–2600 (2023) 
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M

Figure 8. Sources 34–38 from Table 2 tagged with trace (selected as a proxy for ‘traces host galaxy’), which are not classified as SFGs by experts. EMU radio 
brightness contours matching those in Fig. 1 with DES cutouts, combining g, r, and i band data into an RGB image following Lupton et al. ( 2004 ). Sources are 
annotated with their source numbers and (J2000) coordinates as presented in Table 2 . Each source is shown to the same angular scale, as highlighted by the 
radio beam size in the bottom left-hand of each panel. 

Table 3. Sources which had expert SFG classifications (abo v e 60 per cent agreement) but were not selected through ‘trace’ as 
described in Section 5.1 and used for Table 2 . 

No. Coordinates (J2000) Tags 

1 20 h 32 min 03 s − 53 ◦44 
′ 
35 

′′ 
Amorphous, compact, core, extended, host, traces host galaxy 

2 20 h 34 min 13 s − 54 ◦01 
′ 
30 

′′ 
Asymmetric structure, compact, core, faint, host, tail, traces host galaxy 

3 20 h 36 min 30 s − 57 ◦07 
′ 
19 

′′ 
Asymmetric structure, compact, extended, host, small, traces host galaxy 

4 20 h 44 min 36 s − 57 ◦37 
′ 
29 

′′ 
Asymmetric structure, compact, extended, faint, host, small, tail, traces host galaxy 

5 20 h 32 min 59 s − 55 ◦38 
′ 
04 

′′ 
Compact, host, lobe 

6 20 h 33 min 34 s − 54 ◦31 
′ 
22 

′′ 
Amorphous, compact, extended, host, merger, peak 

7 20 h 34 min 49 s − 54 ◦12 
′ 
39 

′′ 
Amorphous, compact, diffuse, double, extended, host, hourglass 

8 20 h 41 min 41 s − 56 ◦10 
′ 
21 

′′ 
Amorphous, compact, double, faint, host, merger, peak 

9 20 h 46 min 26 s − 54 ◦00 
′ 
51 

′′ 
Diffuse, double, host 

10 20 h 55 min 12 s − 54 ◦31 
′ 
25 

′′ 
Amorphous, compact, extended, host, merger, small 

11 20 h 56 min 44 s − 56 ◦37 
′ 
48 

′′ 
Compact, diffuse, double, extended, host, merger 

12 21 h 02 min 57 s − 54 ◦29 
′ 
35 

′′ 
Amorphous, asymmetric structure, bent, core, diffuse, faint, host, peak, tail 
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o we ver, the control provided by these semantic tags has allowed
or the selection of an unusual object worthy of further study. 

 DISCUSSION  A N D  I M PAC T  

.1 Taxonomy 

he proposed semantic tags will find immediate use in the RGZ EMU
itizen science project (Tang & Vardoulaki et al., in preparation). For
uture implementations of science tags being assigned to sources, we
uggest that the community uses a hash symbol to denote the use of a
ag (e.g. ‘#compact’) as suggested in Rudnick ( 2021 ) to distinguish
rom traditional classification frameworks. This should pro v e useful
o the legibility and analysis of future catalogues and works. 

This is the first step of the ta g ging fr ame work in radio astronomy
orphology. The taxonomy is intentionally designed to be extensi-

le, such that when the community decides a feature of interest is
NRAS 522, 2584–2600 (2023) 
ot being captured by the current version of the taxonomy it can be
pdated to include the appropriate tag. The presented set of semantic
ags are a first step towards mapping common features of radio

orphologies using plain English annotations. 
The specificity of the tags in comparison to the current clas-

ification scheme may be a concern to some astronomers. The
nconsistency with which current radio morphological classifications
re defined means that the language currently in use does not have
he desired specificity either – regardless of how specific a term is
n an individual astronomer’s mind. Furthermore, we highlight that
erms are expected to be used more consistently and clearly when
elected directly rather than being derived through annotations. 

A science class mapping using the semantic taxonomy is one of
he goals of the RGZ EMU team. This mapping will be constructed
owards the end of the RGZ EMU project. This mapping should be
ble to provide the traditional classification of objects by predicting
hem based on the tags that citizen scientists have assigned to objects.

art/stad1021_f8.eps
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Figure 9. Rare source selected from the synthesized initial semantic tag 
catalogue by querying ‘ hourglass \ (amorphous ∪ traces host galaxy ∪ 

bent) ’ (set theory notation). EMU radio brightness contours matching those 
in Fig. 1 ontop of a DES cutout prepared as in Fig. 8 . 
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t will include the most common radio morphology science classes, 
hich the community is more accustomed to. While it is hoped that

he tags will span the full space of possible scientific classifications, 
here may be cases where the provided mapping does not co v er a
cience case perfectly in its current form. 

Regardless, the ability to combine the tags to select semantic 
opulations, as demonstrated in Section 5 , will enable feature specific 
opulation studies and sources to be omitted if they present features 
hat are not rele v ant to a given science case. 

.2 Experiment and implementation 

s described, the experimental set up of this work has a number of
imitations, including the small size of the data set: given the degree of
ariation present across radio galaxy morphologies it is not possible 
o capture all abstract science classes of radio galaxies completely. 
 or e xample, as stated in Section 3.2.3 , ORCs are so rare that we
ould not train on them, and thus they are not taken into consideration
n the weighted Shapley values. Such biases are therefore currently 
assed on to the derived and proposed semantic taxonomy. 
Additionally, abstract science classes based primarily on morphol- 

gy do not directly encode other physically rele v ant information. 
i ven suf ficient information, it may be more informative to derive

emantic tags directly from physical parameters, e.g. active galactic 
uclei accretion rates. This would encourage the derived semantic 
ags to carry information regarding the physics itself, rather than a 
roxy, e.g. abstract science classes. In practice, collecting a large 
nough sample with which to do this is not feasible at this time, but
hould be considered in future approaches and other domains. 

We use a pre-trained NLP model in our approach to this task.
his model is a limitation even though it is also a k ey f actor in

he success of our implementation and e xperiments. F or instance, 
he model we used only returns individual ‘tokens’, and not fully
rammatically correct terms or phrases. We amend this through 
anual inspection and adjustments, ho we ver, we recognize this is not
 scalable solution, and will not be possible in all situations. We hope
hat future approaches will find solutions to this problem. The NLP
iterature is currently developing at a significant pace. We therefore 
rge future iterations and applications of this approach to actively 
e-consider which pre-trained model is used. We expect that by using
he most up to date pre-trained model, future implementations will 
ave more robust and versatile encodings of annotations and tags. 
Finally, we note that the semantic radio morphology taxonomy 

erived in this work is inherently bound to the instrument with
hich the radio galaxies were imaged (ASKAP). Data from a more

ensitive (e.g. SKA; Dewdney et al. 2009 ) or higher resolution
e.g. LOFAR long baseline Morabito et al. 2022 ) instrument might
equire additional or different semantic tags. This would be simple 
o implement under the proposed tagging paradigm, as it would be
ufficient to supplement the existing taxonomy with the appropriate 
emantic tags. 

.3 Semantic taxonomies 

he proposed method, and respective task of deriving semantically 
eaningful tags (first outlined in Bowles et al. 2022 ), have the

otential to impact other fields. We therefore discuss their potential 
mpact and limitations in a domain agnostic tone.The mo v e a way
rom technical classes to semantic language capturing features may 
ave a broad impact across a number of technical fields, especially
here complex classes have been defined and the field has since
o v ed be yond those initially valuable classification schemes, as is

he case in radio astronomy. This could include any feature rich data
roduct, especially where features are often repeated across classes. 
The collaborative nature of science may be impro v ed by the

se of simplified and semantic language. Complex ideas are often 
hrouded in equally complex terminology, which can be highly 
f fecti v e when e xperts communicate with one another, but quickly
ecomes a hindrance to communicating in any other situation. 
apturing features of an object using dictionary level definitions 
ill lower the barrier to entry for established researchers who are
ot domain experts to study the features captured by the semantic
anguage. This can be a significant benefit, where domain specific 
erminology could be an active barrier to communication in inter- 
isciplinary research. Additionally, the use of plain English should 
nable scientific collaborations within a given field, i.e. between radio 
stronomy domain experts and astronomers who are not experts in 
adio morphology. 

Outreach efforts are also likely to benefit from the change to
anguage. We hope that the simple language will reduce the barrier
o entry for those who w ould lik e to become experts in the respective
eld. This will have direct impact on the accessibility of technical
elds as a whole including communities who have not had much
ractice in the use of scientific language. This is in perfect alignment
ith the educational aspects of citizen science, which are often used

o engage underprivileged communities in science with the aim to 
nspire and empower. The hope of citizen science outreach is that
tudents who have seen, interacted with, and subsequently added to 
he international body of science feel empowered to pursue STEM 

ubjects. Clearer language will impro v e engagement to support this
oal. 
The science in citizen science projects is also expected to benefit

rom the new language. Easily understood concepts presented by the 
implified language should lead to impro v ed usage of tags for a given
ource (Wald, Longo & Dobell 2016 ). Additionally, the reduction in
raining time/effort of the citizen scientists is hoped to lower the
MNRAS 522, 2584–2600 (2023) 
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abelling cost for projects as a whole by reducing the labelling cost
or individual citizen scientists. 

Deep learning and machine learning models currently learn to
redict scientific classes from images (or similarly high dimensional
ata). Learning to encode these classes can be quite challenging
s the concepts and definitions represented by these classes can
e both abstract and contentious. This may be partially addressed
y training models to encode a semantic taxonomy instead, as
odels would learn the features instead of abstracted classes. Derived

emantic taxonomies presents more clearly defined concepts and
ay encourage models to learn a more robust feature space. This

ould impro v e the ef fecti veness of the encoded features of a model
or various other tasks. Even in a simple use case, the more robust
eature space may allow models to be more generalizable and less
rittle, i.e. transferable or fine-tunable to differing data sets and tasks,
hich would be of immediate benefit to a number of applications. 
The anglocentric nature of this work was alluded to previously. Al-

hough the language impro v ements, may benefit man y populations,
t does still marginalize those who do not speak English natively. The
GZ EMU team is considering a number of strategies to mitigate the
ffect of anglocentric labelling, including translation into multiple
anguages. Ho we ver, we recognize that there are broader complex
ssues around use of language in science and recommend this as a
opic of discussion in future work. 

Finally, the ethics of deriving terms from an unstructured data set
nclude careful consideration of the potential presence and impact
f malicious agents. Caution is therefore advised when applying this
rocess to other fields. In this work, the data set used was small
nough that each annotation was inspected individually. 

 C O N C L U S I O N S  

n this work, we derive a flexible English taxonomy for radio
stronomy and the respective morphological tagging. The proposed
axonomy of 22 semantic tags is 

(i) the product of experiments collecting expert classifications
nd plain English annotations on radio source morphologies using
elected cutouts from the EMU pilot surv e y, 

(ii) reduced to a set of 10 terms to maximize its ef fecti veness
ithin citizen science projects, starting with RGZ EMU, 
(iii) derived analytically through a novel method with minimal

larifying intervention. 

We demonstrate the first ef fecti ve use cases of the newly derived
emantic morphology taxonomy. We show that using the tags we can
eco v er 

(i) known scientific morphologies, and 
(ii) rare sources with abnormal morphologies. 

The method which was developed, detailed, and applied in this
ork is domain agnostic. The method 

(i) provides a framework through which plain English annotations
f complex ideas can return a ranked taxonomy on a given subject, 
(ii) can be applied to any scenarios where language is a barrier to

uture research, 
(iii) can increase the accessibility of complex scientific concepts

y distilling concepts into simpler English for the public, collabora-
ors, and citizen scientists. 

The potential scientific impacts, applications, and communication
enefits of this method and taxonomy are discussed at length in
ection 6 . 
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PPENDI X  A :  TAG  DEFI NI TI ONS  

he below are the tags which will be used in RGZ EMU, as discussed
n Section 4.5 . Here, we present the same definitions of the tags as
e are planning on providing to the citizen scientists: 

(i) Amorphous : having no clearly defined shape or form. 
(ii) Bent : curved or having an angle. 
(iii) Bridge : a structure that connects from one side to another (not

 jet; see below). 
(iv) Core : a central part distinct from the enveloping part. 
(v) Hourglass : shaped like an hourglass. 
(vi) J et : a narro w stream of material appearing to emanate from a

elestial object. 
(vii) Lobe : a roundish projecting part of something divided by a

ssure/gap. 
(viii) Merger : multiple separate things, which appear to be con- 

ected or connecting. 
(ix) Plume : a long cloud of smoke or vapour resembling a feather

s it spreads from its point of origin. 
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(x) Tail : resembling an animal’s tail in its shape or position,
ypically extending downwards or outwards at the end of a thing. 

The tags which are proposed for algorithmic assignment according
o Table 1 are not defined here. They will likely be defined when
espective algorithms are developed. 

PPENDIX  B:  STAR-FORMING  G A L A X I E S  

I T H O U T  ‘ TRACES  H O S T  G A L A X Y ’  TAG  

ig. B1 presents the sources which were classified (abo v e 60 per cent
greement) as star-forming galaxies, but were not tagged with ‘trace’
NRAS 522, 2584–2600 (2023) 
n our synthetic catalogue, as described in Section 5.1 . Table B1
resents the optical morphologies of the sources listed in Table 3
roduced by Walmsley et al. (in preparation), and made with Zoobot 9 

initially described in Walmsley et al. 2022 ). Here, source numbers
lign with those presented in Table 3 . 

https://github.com/mwalmsley/zoobot
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Figure B1. Composite images of SFG sources not captured by the ‘trace’ tag, as discussed in Section 5.1 . EMU contours following Fig. 1 with optical DES 
RGB backgrounds as in Fig. 8 . Cutout centre coordinates are presented on the image along side their respective source numbers associated with Tables 3 and 
B1 . The radio beam size for all panels is shown in the lower left-hand of the figure; all cutouts are 3 

′ × 3 
′ 
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Table B1. Optical morphologies from Walmsley et al. (in preparation) of the SFG sources not captured by the ‘trace’ tag, as discussed in Section 5.1 and 
presented in Table 3 . 

No. Coordinates (J2000) GZ morphology predictions 

1 20 h 32 min 03 s -53 ◦44 
′ 
35 

′′ 
Featured (74 per cent; not edge-on), face-on (98 per cent), spiral (76 per cent), no bar (59 per cent), small bulge 
(59 per cent) 

2 20 h 34 min 13 s -54 ◦01 
′ 
30 

′′ 
Featured (72 per cent), face-on (99 per cent; not edge-on), spiral (70 per cent), no bar (60 per cent), no bulge (69 per 
cent) 

3 20 h 36 min 30 s -57 ◦07 
′ 
19 

′′ 
Featured (89 per cent), face-on (97 per cent; not edge-on), spiral (98 per cent), small bulge (85 per cent), tight arms 
(76 per cent) 

4 20 h 44 min 36 s -57 ◦37 
′ 
29 

′′ 
Not in catalogue. 

5 20 h 32 min 59 s -55 ◦38 
′ 
04 

′′ 
Featured (87 per cent), face-on (98 per cent; not edge-on), spiral (98 per cent), no bar (77 per cent), small bulge 
(83 per cent), tight arms (84 per cent) 

6 20 h 33 min 34 s -54 ◦31 
′ 
22 

′′ 
Featured (70 per cent), face-on (95 per cent; not edge-on), no spiral (68 per cent) 

7 20 h 34 min 49 s -54 ◦12 
′ 
39 

′′ 
Featured (82 per cent), face-on (97 per cent; not edge-on), spiral (85 per cent), no bar (76 per cent), moderate bulge 
(58 per cent), tight arms (63 per cent) 

8 20 h 41 min 41 s -56 ◦10 
′ 
21 

′′ 
Featured (53 per cent), face-on (96 per cent; not edge-on), no spiral (77 per cent), no bar (84 per cent), merger 
(67 per cent) 

9 20 h 46 min 26 s -54 ◦00 
′ 
51 

′′ 
Featured (83 per cent), face-on (98 per cent; not edge-on), spiral (85 per cent), small bulge (57 per cent) 

10 20 h 55 min 12 s -54 ◦31 
′ 
25 

′′ 
Not in catalogue. 

11 20 h 56 min 44 s -56 ◦37 
′ 
48 

′′ 
Featured (83 per cent), face-on (96 per cent; not edge-on), spiral (92 per cent), no bar (52 per cent), moderate bulge 
(59 per cent), tight arms (68 per cent) 

12 21h 02 min 57 s -54 ◦29 
′ 
35 

′′ 
Smooth (67 per cent), cigar shaped (88 per cent) 
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PPENDIX  C :  TAG  R A N K I N G S  

o demonstrate the contributions of our tags to the classification of a
iven science class, we present Fig. C1 , which shows the sorted most
NRAS 522, 2584–2600 (2023) 

Figure C1. Class wise top Shapley value r

his paper has been typeset from a T E 

X/L 

A T E 

X file prepared by the author. 
mportant tags for the SFG class. Equi v alent plots for each class are
vailable in our public repository: https://github.com/mb010/Text2
ag/data/AppendixB . 
anked tags for the SFG science class. 

as/article/522/2/2584/7115324 by guest on 01 August 2024
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