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Abstract— Molecular communication via diffusion (MCvD) ex-
pects Brownian motions of the information molecules to transmit
information. However, the signal propagation largely depends on
the geometric characteristics of the assumed flow model, i.e., the
characteristics of the environment, design, and position of the
transmitter and receiver, respectively. These characteristics are
assumed to be lucid in many ways by either consideration of one-
dimensional diffusion, unbounded environment, or constant drift.
In reality, diffusion often occurs in blood-vessel-like channels. To
this aim, we try to study the effect of the biological environment on
channel performance. The Red-Blood Cells (RBCs) found in blood
vessels enforces a higher concentration of molecules towards the
vessel walls, leading to better reception. Therefore, in this paper
we derive an analytical expression of Channel Impulse Response
(CIR) for a dispersion-advection-based regime, contemplating the
influence of RBCs in the model and considering a point source
transmitter and a realistic design of the receiver.

Index Terms— Endothelium Cells, Flow-Based Molecular
Communication Systems, Molecule Reception Modelling,
Monte-Carlo Simulation, Red-Blood Cells, Targeted Drug De-
livery.

I. INTRODUCTION

Contemporary research activities focus on the pro-activeness of
disease detection and targeted drug delivery, and Molecular Commu-
nication (MC) ought to be one of the leading technologies of the
future contributing to the same in a very novel way. It is a promising
field because of its nano-networking and biological compatibility.
For specific applications, the transmission of information via Electro-
Magnetic (EM) waves like those in conventional communication may
not be suitable because of the size of the transmitter and receivers are
in the order of nanometers or the channel environment may not permit
proper utilization of EM waves [1] [2]. This has led to the introduction
of a novel paradigm of nanonetworks communication at the molecular
level. It is envisioned to have many major revolutionary applications in
the field of medical science, such as targeted drug delivery, and early-
stage disease detection through continuous monitoring of biomarkers.
It could also be used for various industrial applications such as tracking
chemical reactors and emissions of pollutants [2] [3]. Nonetheless,
accurate and relatable models are required to design the MC system
effectively.

Many different channel models are proposed in the current literature,
based on the propagation approach used to initiate a communicative
connection between the transmitter and receiver as discussed in [2].
In general, for any MC system, the information is transmitted through
molecules that are propagated through a fluidic environment and are
received by a receiver at the end of the communication process.
The MC system is differentiated by the various transmitter-receiver
designs, i.e., based on their structural characteristics such as point,
surface, volume, and channel environments. The channel environments
are diversified based on the type of propagation method that the
molecules experience such as free diffusion, molecular motor-driven
propagation, propagation through gap junctions, and bacterial motors
[1] [4]. Also, different encoding-decoding schemes are deployed based
on the quantity, identity, and time of release imparted on molecules to

encode information bits [2]. Nevertheless, Molecular communication
via diffusion (MCvD) is considered to be the most visionary aspect of
MC because of its biological compatibility, since no specific infras-
tructure or external energy is required to accomplish communication
unlike gap junctions and motor-based propagation. Hence, the scope
of this paper is limited to the diffusive model.

A. Previous Related Work
The channel modeling of any MC system excessively depends on

the transmitting, propagation, and receiving mechanisms. In the liter-
ature, various MC systems have been analyzed considering different
transmitter-receiver designs and channel characteristics. An extensive
survey based on these parameters is compiled and recorded in [5]. The
authors of [6] have studied a rectangular fluidic channel with different
flow profiles. In [7], MC systems without flow in a rectangular 2-D
environment with reflective walls are considered, with one absorbing
wall acting as a receiver. In [8], authors have analyzed a 3-D diffusion
molecular system in an unbounded environment without flow over
a transparent spherical receiver. The hitting probability of molecules
over an absorbing wall is estimated in a 3-D cuboid container without
flow in [9]. In [10], authors have considered a propagation model in a
vessel-like environment, similar to this work. However, they have not
incorporated the advection effect on the molecules existing because
of the flow in the environment. In [11], authors have studied a more
realistic 3-D propagation model with a feasible receiver design in a
duct flow, i.e. similar to blood vessels, with Poiseuille flow, commonly
observed in blood vessels. However, they have assumed a uniform
distribution of information molecules over the cross-section of the
duct flow, which is not reasonable to assume since the concentration
of molecules becomes constant over the cross-section after a certain
time, as observed in [12] with a similar environment; although the
authors in [12], have not reviewed a realistic or feasible design for the
receiver.

B. Motivation
The key motivation for this work is to analyze the realistic scenario

of an MC system deployed in a blood vessel-like environment. As
discussed above, to date, many MC systems have been proposed in
a microfluidic duct or cylindrical bounded channel. However, to the
best of our knowledge, it does not focus on a feasible and realistic
model whether it be the channel characteristic or the receiver design.
Hence, in this work we analyze a realistic channel by considering a
cylindrical duct filled with fluid exhibiting Poiseuille flow, as reviewed
in [5] and references therein, along with a feasible receiver design by
assuming it to be similar in structure with endothelial cells present
in the endothelium layer of the human blood vessel. Furthermore, we
also consider the existence of Red Blood Cells (RBCs) in the channel
environment.

The primary principle behind taking such a specific receiver design
is that many bodily bio-marker proteins like IL2, IL4, IL6, IL10,
and TNFα are received by the endothelial cells present in the en-
dothelium layer. Thus, modeling the reception of these bio-markers
is essential since it may aid in the early detection of diseases, as
discussed in [13], [14]. Nonetheless, reception at endothelial cells



2 IEEE TRANSACTIONS ON NANOBIOSCIENCE, VOL. XX, NO. XX, XXXX XXXX

Blood Flow Direction

x

Central Axis

Tx

R
x

dRx

Rout

Rrbc

rTx

y

(a) Axial View

Imaginary RBCs 
Boundary

Blood Vessel 
Boundary

y

z

Tx
x

(b) Cross-Sectional View

Fig. 1: Network model geometry: (a) axial view, and (b) cross-sectional view. In (a) the outer cylinder represents the blood vessel; the inner
cylinder is formed by RBCs radial distribution. In (b) the red gradient shows the radial distribution of RBCs in a cross-sectional view.

is also important to model because of their application in targeted
drug delivery. As discussed in [15], endothelial cells are a potent site
for pharmacological interventions such as sepsis, Acute Respiratory
Distress Syndrome (ARDS), blood clotting disorders, hypertension,
diabetes, and tumor growth. Targeted drug delivery to endothelial
cells is envisioned to reduce the above-mentioned severe pathological
diseases. Hence, it is important to model the molecule reception
at endothelial cells. Also, the receiver design has a drastic impact
on the channel impulse response. Consequently, generalized receiver
designs typically examined in previous literature may not be suitable
for targeted drug delivery or early detection of diseases. Thus, it is
essential to study an MC system by considering a receiver design in
correlation to the structure of endothelial cells. Moreover, monitoring
the drug delivery at the targeted site is also important, for which
various monitoring methodologies can be employed. For instance, [16]
has proposed an ultrasound imaging-based monitoring methodology
that can be used to monitor drug distributions in real time. Biosensors
can also be used to detect the concentration of drug molecules
at the targeted sites. Nevertheless, engineering ultrasound-responsive
drug carriers and biosensors can be a challenging task. While these
monitoring techniques present interesting research opportunities, this
work focuses on deriving the analytical expressions to model the
molecule reception at the targeted site.

Additionally, we also contemplate the existence of RBCs in the
environment as discussed in [17]. The existence of RBCs or any other
molecules larger than the information molecules causes mean-square
displacement of the information molecules towards the outer wall of
the cylindrical vessel, i.e., a blood vessel in our case. Therefore, it
may lead to a false negative channel impulse response when such a
system is deployed, if the existence of such larger molecules is not
considered in the system.

C. Contribution
In particular, the main contributions of the paper are as follows:
1) We propose a novel analytical propagation model for an MC

system with diffusion and advection in a bounded human blood
vessel-like environment with the interference of third-party
molecules into the system. The advection effect is incorporated
for Poiseullie flow.

2) We formulate an expression to estimate the radial distribution
and axial distribution of the information molecules or protein,
depending on the context used, considering the elastic collision
with the vessel boundary between the transmitter, receiver, and
the layer formed by the RBCs.

3) We derive an expression for the Channel Impulse Response
(CIR) or the fraction of molecules observed by the receiver,

designed similar to endothelial cells present in the endothelial
layer in human blood vessels capable of molecule reception on
its surface with the considered channel characteristics.

The remainder of this work is organized as follows. In Section II, we
introduce the network model and present a preliminary mathematical
formulation. Section III includes the mathematical derivation for
obtaining the closed-form expression of CIR. In Section IV, we include
simulation and numerical results and in Section V we draw the main
conclusions resulting from this work and suggest some ideas for future
works.

II. SYSTEM MODEL

The considered network model is described in Fig. 1. As shown,
we consider a straight impermeable cylindrical model similar to a
subsection of blood vessels of radius Rout. For the sake of formulating
the mathematical analysis more lucidly, we have incorporated a cylin-
drical coordinate system (r, x, θ), where r =

√
y2 + z2 ∈ (0, Rout]

is the radial distance, x ∈ (∞,−∞) is the axial distance, and θ
∈ [0, 2π) is the azimuth angle. We consider a point transmitter (TX )
at (rTx, 0, π/2) instantaneously releasing NTx number of molecules
at time t = 0. Nonetheless, the released particles are transported by a
Newtonian fluidic flow attributing properties of a Poiseullie flow and
performing Brownian motion in a dispersion-advection-based regime,
i.e., the integration of total displacement of molecules combining the
effect of cross-sectional and axial diffusion along with non-uniform
advection because of flow profile, which is non-uniform over the radial
position in the considered propagation model given by:

v(r) = v
(
1− r2

R2
out

)
(1)

where v is the average velocity at the central axis (r = 0) and r is
any arbitrary radial distance from the center axis of the cylinder. The
artificial receiver (RX ) has a shape similar to an endothelial cell in a
human blood vessel, i.e., attached to the blood vessel wall, which is the
endothelium layer. The receiver is assumed to be capable of detecting
the information molecule within its confined volume. The receiver is
assumed to be of the cylindrical shape of dimensions RRx, and XRx,
corresponding to height and diameter respectively; the receiver also
spans an angle of θRx, as shown in Fig. 1. Nevertheless, we assume
that the existence of the receiver does not affect the movements of the
information molecules. Also, the axial and radial distributions of the
information molecules are considered to be not changing across the
RRx, XRx and θRx of the receiver respectively, which is reasonable to
assume since the dimensions of the receiver are very small in relation
to the vessel radius.
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Additionally, we consider an extra imaginary layer of the cylin-
drical boundary formed due to the existence of RBCs or any larger
molecules, which potentially exist in any general MC systems designed
in a blood vessel as discussed in [18]. Moreover, it has been shown
and verified that the existence of Poiseullie flow in the system leads
to the formation of an annulus structure by the particle (RBCs) as
seen in [19]. Therefore, the RBCs would form an annulus shape in
3-D, which in general can be assumed to be a hollow cylinder, whose
inner radius is defined by Rrbc. The thickness of the RBC core region
changes across the central axis of the blood vessel as described in
[18], however, to this point we have only assumed constant thickness
throughout the considered portion of the blood vessel.

To this end, we do consider the standard approximations about
information molecules not interacting with each other, and their effect
on the velocity of the flow is ignored, due to other negligible physical
forces such as the force incurred because of the pressure gradient
across the particle due to varying velocity profile, since the dimensions
of the molecules are very small [20]. The receiver is assumed to
be capable to sense the number of information molecules within its
vicinity without discarding the molecules from the environment and
drive its decision based on it. Furthermore, since diffusion also exists
within the environment along with advection, the motion of each
particle could be modeled by the given expressions:

∆X = v(r)∆T +N(0, 2D∆T )

∆Y = N(0, 2D∆T )

∆Z = N(0, 2D∆T )

(2)

Where D is the diffusion coefficient. From Eq. (2), we can easily
infer that the radial displacement of molecules is pure because of
the diffusion. Hence, the radial displacement is independent of the
axial displacement for any molecules. However, the axial displacement
is dependent on the radial displacement because of the non-uniform
velocity flow profile across the radial space.

III. ANALYSIS OF THE CHANNEL IMPULSE RESPONSE

The channel impulse response for the cylindrical receiver can be
obtained as:

CIR =nhit(t|rTx, Rout, dRx)

=
∂

∂t

∫ ∫ ∫
VRx

p(x, r, t|rTx, Rout)dVRx
(3)

However, in order to estimate the CIR of the considered network
model, the joint probability distribution of radial, axial, and time
coordinates p(x, r, t|rTx, Rout) is to be estimated at first. From Eq.
(2) we can infer and express p(x, r, t|rTx, Rout) as follow:

p(x, r, t|rTx, Rout) =p(r, t|rTx, Rout) ·
p(x, t|rTx, Rout, r)

(4)

Once we have estimated the CIR, we can easily compute the total
number of observed molecules until time t as Nhit(t|rTx, Rout, dRx)
by integrating nhit(t|rTx, Rout, dRx) over time as:

Nhit(t|rTx, Rout, dRx)=

∫ t

0
nhit(τ |rTx, Rout, dRx)dτ (5)

However, we need to find the radial distribution p(r, t|rTx, Rout) first,
to compute the CIR.

A. Solving for the Radial Distribution p(r, t|rTx,Rout)

The radial distribution can be formulated by solving Fick’s law of
diffusion for the probability density function along the radial direction,
as shown in [12] and references therein, with appropriate boundary

conditions. Therefore, equation solving for the probability density
function can be written as:

D∆2P (r, t|rTx, Rout) =
∂P (r, t|rTx, Rout)

∂t
(6)

Here, P (r, t|rTx, Rout) is the probability density function of
molecules. Since the outer boundary or the blood vessel’s boundary
is considered to be reflecting, the probability of molecules moving
normally to the boundary would be equal to zero. Also, as all the
molecules are considered to be point release from the transmitter
at t = 0, the corresponding boundary conditions for Eq. (6) are as
follows:

∂P (r, t|rTx, Rout)

∂r

∣∣∣∣
r=Rout

= 0

P (r, t|rTx, Rout)
∣∣∣
t=0

=
δ(r − rTx)

2πr

(7)

Here, δ(.) is the Dirac delta function. We can solve for
P (r, t|rTx, Rout) using separation of variables into two new functions
ψ(θ, r), and ω(t) as follows:

P (r, t|rTx, Rout) = ψ(θ, r)ω(t) (8)

Since our network models follow angular symmetry, ψ(θ, r) only
depends on the radial distance of the molecules from the central axis,
i.e., it is independent of the angle θ. Therefore, ψ(θ, r) can be rewritten
as ψ(r). With this, Eq. (6) can be further solved as:

D
∆ψ(r)

ψ(r)
=
ω′(t)
ω(t)

≜ −µ2 (9)

Hence, we can derive that:

ω(t) = Ke−µ2t (10)

Here, K is a constant. Now, ψ(r) can be found by solving the
Neumann-eigenvalue problem for the Laplacian operator:

∆ψ(r) = −µ
2

D
ψ(r) (11)

Here, µ2

D represents the eigenvalues for the equation. Therefore, we
can rewrite the eigenvalue equation for polar coordinates as follows:

r2ψ(r)′′ + rψ(r) +
µ2

D
r2ψ(r) = 0 (12)

The above equation is the second-order Bessel differential equation
which has the general solution:

ψ(r) = J0

(
µ√
D
r

)
+ cY0

(
µ√
D
r

)
(13)

here, Jn and Yn are the nth-order Bessel functions of the first and
second kind respectively, and c is a constant defined by the boundary
condition. The coefficient constant for J0 is substituted as the overall
coefficient K from Eq. (10) as per the boundary conditions described
in Eq. (7). Nevertheless, for t > 0 the probability density function
P (r, t|rTx, Rout) converges for r = 0, i.e., (y, z) = (0, 0) thus
implying c = 0. Hence, the second term for Y0 is zero. Therefore, the
general solution for P (r, t|rTx, Rout) can be written as:

P (r, t|rTx, Rout) =

∞∑
n=0

CnJ0

(
µn√
D
r

)
e−µ2

nt (14)

Here, Cn and µn are defined by the boundary conditions. Therefore,
evaluating the first boundary condition as:

∂P (r, t|rTx, Rout)

∂r

∣∣∣∣
r=Rout

= 0 ⇒ J1

(
µn√
D
Rout

)
= 0 (15)
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However, the first order Bessel function J1(x) has an infinite number
of roots (βn). Therefore, µn√

D
Rout can be expressed as βn. Using the

second boundary condition given in Eq. (7), we can obtain Cn as:

Cn =
J0

(
βn

rTx
Rout

)
πR2

outJ
2
0 (βn)

(16)

Therefore, the final expression for the probability density function can
be written as:

P (r, t|rTx, Rout)=

∞∑
n=0

J0

(
βn

rTx
Rout

)
πR2

outJ
2
0 (βn)

J0

(
βn
Rout

r

)
e
−β2

n
Dt

R2
out (17)

Here, βn is the nth root of the Bessel function of order one, and
the first term represents the condition for uniform radial distribution
over the cross-section of the vasculature when t → ∞. However,
practically it takes much less time for the molecules to reach uniform
radial distribution. Therefore, the final probability distribution can be
expressed as follows:

p(r, t|rTx, Rout) = 2πr · P (r, t|rTx, Rout) (18)

So far in the presented analysis, we have not considered the existence
of third-party molecules in the system. However, while considering
third-party molecules, (i.e., RBCs in our assumption in the system)
we simply cannot consider Eq. (18) as the final radial distribution.
A non-negligible change can be observed because of this additional
assumption. In particular, the RBCs in our context form an annulus
(ring-shaped), and mostly all the molecules in consideration would
exist outside of this formed annulus structure depending on the
absorption and reflection rate of the additional layer formed by the
RBCs, i.e., the boundary of the annulus structure. Hence, the actual
total number of information molecules existing within the annulus
structure Pinside can be written as:

Pinside = ρ

∫ Rrbc

0

∞∑
n=0

CnJ0

(
βn
Rout

r

)
e
−β2

n
Dt

R2
out dr (19)

where Rrbc is the radius of the annulus structure, and ρ is the
correlation coefficient which varies with the absorption and reflection
rate as follows:

ρ ∝ absorption rate, ρ ∝ 1

reflection rate
(20)

As discussed ρ is contingent on the absorption rate and reflection
rate which can be explained as follows. When molecules collide with
the RBC layer it gets either reflected back inside the layer, i.e., the
molecule itself has collided with an RBC molecule and it is reflected
back (since the density of RBC is higher than the molecules), or it gets
absorbed, which means that while diffusing towards the RBC layer
molecule escaped the layer and did not collide with any RBC molecule
in the process. Likewise, a similar scenario can be observed when the
molecule collides with the RBC layer from outside. In reality, the
absorption and reflection rate itself depends on the number of RBCs
present in the blood, which can be termed as the concentration or
percentage volume of RBCs in the blood, i.e., hematocrit. Hence, the
value of ρ varies with the hematocrit value. Nevertheless, the value of
ρ also depends on the size of the information molecule relative to the
size of the RBCs (8µm). However, due to mathematical simplicity, we
are not considering the size as a factor in the analysis. Rather a general
case of information molecules smaller than the RBCs is considered.

Therefore, the effective radial probability density can be separated
for two different scenarios, i.e., for r > Rrbc and r < Rrbc, which

can be expressed as:

P (r, t|rTx, Rout) =

{
Pmean(r) + Poutside, if r ≥ Rrbc

ρ · Pmean(r), if r < Rrbc

(21)

where Pmean(r) can be defined by Eq. (17) and Poutside is defined
as the probability density of molecules outside of the annulus structure
formed by the RBCs, which can be formulated as below:

Poutside =

∫ Rrbc

0

∞∑
n=0

CnJ0

(
βn
Rout

r

)
e
−β2

n
Dt

R2
out dr

− ρ

∫ Rrbc

0

∞∑
n=0

CnJ0

(
βn
Rout

r

)
e
−β2

n
Dt

Routs
2 dr (22)

In particular, the probability density of molecules for r < Rrbc

is defined by multiplying it with ρ is based on the law of mass
conservation. Since no explicit assumption is taken for the degradation
of molecules and no new molecules are transmitted after time t = 0,
thus, the number of molecules pushed outside of the RBC boundary
is rejigged by the decrease in the number of molecules remaining
inside of the RBC boundary because of its reflective nature. Now,
before solving for Poutside, it is important to note that the integration
property of the Bessel function (equation 6.511.6 of [21]) is given as:∫ a

0
J0(x)dx = aJ0(a) +

πa

2
[J1(a)H0(a)− J0(a)H1(a)] (23)

where H(.) is a Struve function (such functions are solutions to
inhomogeneous Bessel differential equations). Hence, we could utilize
Eq. (23) in order to solve Eq. (22) by substituting the input to the
Bessel function as U = βn

Rout
. By applying the above variable change

we can rewrite Eq. (22) by limit and derivative change as follows:

Poutside =

∫ βnRrbc
Rout

0

∞∑
n=0

Cn
Rout

βn
J0 (U) e

−β2
n

Dt
R2
out dU

− ρ

∫ βnRrbc
Rout

0

∞∑
n=0

Cn
Rout

βn
J0 (U) e

−β2
n

Dt
R2
out dU (24)

= (1− ρ)

∞∑
n=0

An

[
RrbcJ0(

βn
Rout

Rrbc)

+
πRrbc

2

[
J1(

βn
Rout

Rrbc)H0(
βn
Rout

Rrbc)

−J0(
βn
Rout

Rrbc)H1(
βn
Rout

Rrbc)

]]
(25)

Here, An = Cne
−β2

n
Dt

R2
out . Henceforth, we can combine Eq. (21) and

Eq. (25) to compute the net effective P (r, t|rTx, Rout). Therefore, the
net radial distribution p(r, t|rTx, Rout) can be easily obtained as:

p(r, t|rTx, Rout) =

{
2πr [Pmean] + Poutside, if r ≥ Rrbc

2πr [ρ · Pmean] , if r < Rrbc
(26)

It is worth noting that for a shorter duration of time, the molecules
may or may not even reach the RBC layer. In such a case, there is no
need to bifurcate the radial distribution into two different scenarios,
i.e., Eq. (26) can directly be used to evaluate the radial distribution for
the case r < Rrbc without scaling it with ρ. Since the effect of the
existence of RBCs only matters if the molecules at least collide with
them. However, it is essential to approximate the time ω after which
a sufficient number of molecules have collided with the RBC layer
several times and the influence of RBCs in the system becomes vital to
consider because of a better understanding of molecular physics and its
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substantial application in the healthcare. Now, physical interpretation
of ω could be made as the time after which a subsequent number of
molecules must have passed the RBCs boundary. Therefore, ω can be
approximated as below:∫ Rrbc

0
2πr · P (r, ω|rTx, Rout)dr <

∫ Rout

Rrbc

2πr · P (r, ω|rTx, Rout)dr

(27)

B. Solving for the Axial Distribution p(x, t|r, rTx,Rout)

As the axial distribution of the molecules is dependent on the radial
distribution p(r, t|rTx, Rout), it is essential to have prior knowledge
of the radial distribution. Furthermore as demonstrated in [11] [12],
one can assume the molecules to be uniformly distributed across the
cross-section after a certain time t̂. As discussed in [22], if the radial
distribution of the molecules is uniform then the axial distribution
p(x, t|r, rTx, Rout) can be written as:

p(x, t|r, rTx, Rout) =
1√

4πDeff t
e

(
− (x− vt

2 )2

4Deff t

)
(28)

which is equivalent to a one-dimensional Brownian motion with an
effective diffusion coefficient Deff . As discussed in [23], Taylor-Aris
effective diffusion coefficient Deff followed by [22] can be written
as:

Deff = D

(
1 +

1

48

(
vRout

2D

)2
)

(29)

As explained before, to achieve uniform radial distribution, the channel
should have either a high diffusion coefficient, leading to faster
dispersion of molecules in the radial space or the duct could have
a small radius. However, a small amount of time t̂ is required before
p(r, t|rTx, Rout) becomes uniform. Furthermore, since t̂ is very small
as compared to the total time of diffusion, one can assume uniform
distribution in the radial space. Henceforth, p(x, t|r, rTx, Rout) can
be expressed by Eq. (28) for uniform radial distribution. Nevertheless,
before achieving uniform distribution, the displacement of individual
molecules is different because of the irregular radial displacement
(t < t̂). Hence, we need to estimate the mean displacement of a
molecule and substitute it into Eq. (28). The mean displacement of a
molecule xmean(t) for time t can be calculated as follows:

xmean(t)=

∫ t

0

∫ Rout

0
p(r, t|rTx, Rout)v(r)drdτ (30)

After evaluating xmean(t) the axial distribution followed by Eq. (28)
could be rewritten as follow:

p(x, t|r, rTx, Rout) =
1√

4πDeff t
e

(
− (x−xmean(t))2

4Deff t

)
(31)

C. Solving for the Fraction of molecules within the receiver
Nhit(t|rTx,Rout, dRx)

We have estimated the values of both radial and axial com-
ponents, which can be further used to calculate the channel im-
pulse response for the cylindrical receiver using Eq. (3). Thus, the
nhit(t|rTx, Rout, dRx) (CIR) could be estimated by differentiating
the following expression with respect to time, as mentioned above.

Nhit(t|rTx, Rout, dRx)=

∫∫∫
VRx

p(x, r, t|rTx, Rout) dVRx (32)

Note that it is irrelevant to consider the distribution of molecules in
radial space for r < Rrbc if Rrbc ≤ R − RRx. Therefore, we only
consider the spatial distribution for r ≥ Rrbc. Therefore, the final

expression for Nhit(t|rTx, Rout, dRx) can be written as follows:

Nhit(t|rTx, Rout, dRx) = −θRxRRx(RRx−2Rout)

4πR2
outErf


XRx
2 +dRx−

∞∑
n=0

Zn

2
√
De t

+ Erf


XRx
2 −dRx+

∞∑
n=0

Zn

2
√
De t




(33)

where Zn is:

Zn= Routv

1−e
−Dtβ2n

R2
out

 J0

(
rTxβn
Rout

)
{
Rrbc(ρ− 1)β2n

(
J0

(
Rrbcβn
Rout

)(
πH1

(
Rrbcβn
Rout

)
− 2

)
−πJ1

(
Rrbcβn
Rout

)
H0
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IV. SIMULATION AND NUMERICAL RESULTS

In this section, we describe our simulation framework which was
developed to verify our analytical expressions derived in Section
III. We conducted 3-D Monte Carlo simulations to verify the radial
distribution and number of received molecules rate. The simulation
followed Brownian motion where the position of each molecule is
updated at each time step according to Eq. (2). Furthermore, accurate
positions of each molecule are recorded throughout the simulation.
All the simulation parameters are listed in Table I. To validate our

TABLE I: System Parameters used for Numerical and Simulation
Results

Symbols Value Description

∆t 10−3s Simulation time step

Ntx 105 Number of released molecules

D 10−10m/s2 Diffusion coefficient

v 10−2m/s Blood flow velocity

Rout 15× 10−6m Blood Vessel Radius

Rrbc 5× 10−6m Inner radius formed by RBC

dRx 5× 10−3m
Axial distance between Tx and
Rx

rTx 0µm Radial displacement of the Tx

analytical results, we have plotted the distribution of molecules on the
Y-axis and the radial displacement on the X-axis. Different plots are
generated for discrete time instances, namely t = 200ms and t = 2s.
The results can be seen in Figs. 2, 3, 4, and 5.

In general, we can observe the discontinuity in Figs. 2, 3, 4, and 5
depending upon the varied values of ρ and different time instances
considered. This is plausible as well, since the radial distribution
current normal to the imaginary boundary formed by the RBCs, would
abruptly change about the boundary in practice. Also, we have plotted
the radial distribution in two different scenarios, uniform (t = 2s)
and non-uniform (t = 200ms), across the cross-sectional area of the
cylindrical vessel.

In Fig. 2 and Fig. 3, the radial distribution is plotted for different
values of ρ and t. Specifically, for ρ = 0.3, t = 200ms, and for ρ =
0.7, t = 2s, respectively. As shown, the proposed analytical equations
are verified by Monte Carlo simulations. Also, as can be seen in Figs.
2 and 3, the value of ρ greatly affects the discontinuous nature of the
radial distribution. Due to the fact that as the value of ρ increases, the
absorption rate and reflection rate of molecules getting absorbed into
the imaginary RBCs boundary and getting reflected back, respectively;
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Fig. 2: Radial distribution p(r, t|rTx, Rout) at ρ = 0.3 at non-uniform
distribution(t = 200ms).

Fig. 3: Radial distribution p(r, t|rTx, Rout) ρ = 0.7 at uniform
distribution(t = 2s).

start becoming akin to each other, and eventually leading to ρ = 1 in
which the absorption rate is equal to the reflection rate. Henceforth,
the greater difference between the absorption rate and reflection rate
leads to a smaller value of ρ; which results in a higher probability
of molecules being pushed outside of the RBCs boundary than being
collided back inside. Furthermore, this discontinuity remains constant
even after the uniform radial distribution is achieved t = 200ms.
To this point, we can conclude a drastic increase and decrease in
the distribution of the molecules for r ≥ Rrbc and r < Rrbc,
respectively. It is also worth noting that as the value of ρ → 0, the
discontinuity about Rrbc as well as the distribution of the molecules
outside of the annulus structure increases gradually. Nevertheless, we
can deduce that it is not ideal or realistic to consider the channel
environment completely free of third-party molecules, if so it would
lead to significant false negative errors in the radial distribution.

In Figs. 4 and 5, the radial distribution is represented to depict the
backward compatibility of our proposed analytical formula with the
existing literature. Note that ρ = 1 is a special case. In this case, even
if the RBCs or any other third-party larger molecules exist within the
system, their effect would be nullified as the absorption and reflection
rates would be equal. Nevertheless, in this case, the system would
be exactly identical to the system described in literature [12], except
for the different receiver design. Hence, for this case (ρ = 1) we get
the exact same results as discussed in [12], which shows the backward
compatibility of our newly derived analysis with the existing literature.
Furthermore, backward compatibility is observed in both scenarios,
uniform and non-uniform distribution. It was also observed that the
existence of the third-party molecules does not affect the time taken
for the radial distribution to attain uniformity in the radial space.

In Fig. 6, the fraction of molecules within the receiver is plotted
for ρ = 0.7. As the receiver is assumed to be capable of de-
tecting the number of molecules inside its proximity, the fraction

Fig. 4: Radial distribution p(r, t|rTx, Rout) at ρ = 0.7 and ρ = 1 for
non-uniform distribution (t = 200ms).

Fig. 5: Radial distribution p(r, t|rTx, Rout) at ρ = 0.3 and ρ = 1 for
non-uniform distribution (t = 2s).

Fig. 6: Fraction of molecules within the receiver
Nhit(t|rTx, Rout, dRx) at varied ρ.

of molecules Nhit(t|rTx, Rout, dRx) can directly be obtained by
integrating the spatial PDF of the molecule over the receiver vol-
ume. Nevertheless, the receiver’s proximity can be characterised by
(XRx, RRx, θRx), the axial, radial, and azimuth dimensions; where
XRx = Rout/2, RRx = Rout/2, θRx = π/6. It was observed that
with decreasing values of ρ the reception of molecules at the receiver
increases, which is a plausible explanation because as the value of ρ
decreases there is a higher probability of molecules being outside the
RBC region, i.e., near to the blood vessels boundary. That is because
more molecules are pushed outside of the RBC layer than getting
reflected back inside. Table II shows the closeness of our analytical
results with the simulation for Figs. 2-5 using three metrics, namely,
Root Mean Squared Error (RMSE), Median Absolute Percentage Error
(MAPE), and Kolmogorov–Smirnov distance (KSdist), respectively.
As observed through all the metrics, the analytical and simulation
curves are quite close to each other. The relatively high MAPE value in
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TABLE II: Closeness Metrics of Analytical Results with the Simulation

Figure Curve Parameters RMSE MAPE KSdist

Fig. 2 ρ = 0.3, t = 200ms 10.57× 103 9.054% 3.336%

Fig. 3 ρ = 0.7, t = 2s 2.90× 103 3.057% 0.660%

Fig. 4 ρ = 0.7, t = 200ms 4.64× 103 4.859% 1.830%

Fig. 4 ρ = 1, t = 200ms 2.77× 103 3.056% 0.727%

Fig. 5 ρ = 0.3, t = 2s 5.38× 103 4.867% 1.223%

Fig. 5 ρ = 1, t = 2s 2.60× 103 2.910% 0.367%

Fig. 2, is due to the transition zone around r = 0.5×10−5m. However,
the RMSE for this figure is about one order of magnitude lower than
the values in the figure itself and, additionally, the KSdist is around
3% as well, which suggests an overall good accuracy over the whole
domain of Fig. 2. Furthermore, the distribution current normal to the
RBCs boundary is large at high ρ (=0.3) in non-uniform distribution
(t = 200ms). Similarly, the decrease in current at uniform distribution
(t = 2s) exhibits closeness in analytical and simulation curves (Fig.
5).

V. CONCLUSION AND FUTURE WORK

This work has presented a novel analysis of a channel environment
with the existence of a third-party molecule that is relatively larger
than the information molecules (i.e., the RBCs in this case). The
model provides a more accurate and supports a more realistic scenario
as compared to previous research, which does not consider such
anomalous existence of other particles in the environment with a
realistic design of the receiver. Nonetheless, the proposed analysis
is generic, and can also be applied to any other MC system, where
the channel fluid follows a Poiseullie flow along with the existence of
third-party molecules larger in size than the molecules of interest in
a cylindrical vessel.

In this work, we have shown that the existence of larger
molecules drastically increases and decreases the radial displacement
of molecules across the radial space of the micro-cylindrical channel,
greatly affecting the CIR of the MC system with the receiver attached
to the inner surface of the channel, i.e similar to endothelium cells in
the human body. We observe that the fraction of molecules received
by such a receiver increases as ρ→ 0. Hence, the potential existence
of such molecules in the system should not be ignored. For instance,
in a system design problem for targeted drug delivery, If RBCs are not
taken into account, a patient may end up consuming higher dosages
of the drug, which may lead to adverse side effects. On the other
hand, by taking RBCs’ existence in the blood vessel into account
(which is also evident in nature) we could deliver a higher fraction of
the drug to the targeted sites, with minimal side effects (less dosage
of drug). To conclude, the presented analytical results are a good
match to the performed 3D Monte Carlo Simulations. Also, the results
provide accurate results, with pragmatic assumptions for the fraction of
molecules within a realistic designed receiver, i.e., targeted to get the
estimation of the effect of medicinal drugs on the infected endothelial
cells of human blood vessels.

The future extension of this work could be the incorporation of
multiple transmitters and receivers into the system, along with the
third-party molecules. Such scenarios are of significant interest to
study as they lead to direct application in emerging modern healthcare
applications.

REFERENCES

[1] T. Nakano, A. W. Eckford, and T. Haraguchi, Molecular communication.
Cambridge University Press, 2013.

[2] N. Farsad, H. B. Yilmaz, A. Eckford, C.-B. Chae, and W. Guo, “A com-
prehensive survey of recent advancements in molecular communication,”
IEEE Communications Surveys & Tutorials, vol. 18, no. 3, pp. 1887–
1919, 2016.
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