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ABSTRACT: One of the most highly important applications of ionic liquids is for separation 

of the components of water/alcohol azeotropic mixture. The use of ionic liquids for this purpose 

creates a ternary system for which the determination of thermodynamic behavior and physical 

properties is highly matter of interest in design and operation of effective separation plants. In this 

work, the density of the aqueous ionic liquid ternary system is modelled based on three intelligent 

connectionist approaches. For the modeling, 1663 experimental density data points for ternary 

systems including 17 different ionic liquids in four aqueous alcohols (methanol, ethanol, propanol, 

and pentanol) solution were analyzed and taken into account at temperature range [288 343] K 

and pressure ranges [100 3000] kPa. The Shuffled complex evolution (SCE) algorithm was 

employed for optimization of the model parameters and constants. Four statistical parameters of 𝑅2, AARD, RMSE and STD were calculated for the connectionist models to compare their 

performance in the degree of comprehensiveness and accuracy. The highly matched results of the 

modelling with experimental demonstrates that the intelligent approach provides a suitable 

replacement for conventional thermodynamic models and equation of states which need too many 

fitting parameters. 

  Key words: Density, Alcohol water, Azeotropic mixture, Ternary system, LSSVM, SVM, ANN, 

SCE 

1- Introduction 

The purification of the alcohol is a major challenge in the industrial separation units such as 

distillation processes, because the components of aqueous alcohols have close boiling points, 

thereby forming azeotropic mixtures [1]. There are many methods available for doing separation a 

similar constituents of a mixture such as: distillation, extraction [2], membrane technology [3-5], 
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and etc. Extractive distillation is widely used in industry to separate these azeotropic mixtures. In 

this type of distillation, the separation of azeotropic mixture is obtained by adding a third 

component (the entertainer) as a mass agent for changing the relative volatility [6, 7]. There are 

many disadvantages of common entertainers (solid salts and organic compounds) used in 

extractive distillation such as corrosion, toxicity, volatility and high energy. Therefore, it is 

necessary to find another environmentally friendly entertainer for extractive distillation with easy 

regeneration and good performance in altering the relative volatility of the azeotropic mixtures. 

Nowadays, the use of green renewable commodities is now beginning to enter into a wide range 

of applications in industry. Fuels [8-19], solvents [20-22], catalysts [23, 24] are now developing to 

ameliorate the quality of the human life one earth, whilst preserving the human resources for the 

future generations. The ionic liquids are considered as environmentally attractive alternatives for 

organic solvents [25]. They are type of salts with melting points below 100 °C. Ionic liquids are 

composed of two parts-an anion and a long chain cation. One of the strongest advantages of the 

use ionic liquid is that their properties can be easily manipulated by changing in cation or anion 

for a specific application. Negligible vapor pressure, non-flammability, high heat capacity, 

chemical and thermal stability are other main properties of ionic liquids [26] which makes them 

suitable as green solvents. There are a lot of studies that considered the ionic liquids as nonvolatile 

entertainers for separation processes of azeotropic mixtures.  

The proper estimation of characteristics of ternary system is matter of thermodynamics. It is 

necessary to develop separation processes. There are many studies experimentally evaluating the 

physicochemical properties of the systems including water/alcohol/ionic liquid [27-42]. Therefore, 

it is highly matter of interest to have a simple and robust model to accurately predict the 

physiochemical properties such as density for water/alcohol/ionic liquid ternary systems. In the 
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recent years, intelligence methods are used as appropriate alternatives for the conceptual models, 

physically based models, and conventional statistical models. Artificial neural network (ANN), 

support vector machine (SVM) and least square support vector machine (LSSVM) are some 

examples of intelligent models. The models based on these intelligent approaches are now 

beginning to enter and solve variety of engineering problems [43-45]. ANN model, a 

computational system based on the operation of biological neural networks, has become popular 

as feasible tool in a variety of fields of study in recent years [46-50]. Lashkarbolooki et al. [51] 

evaluated the capability of ANNs for correlating the binary density of the ILs systems containing 

methanol for 426 data points. They concluded that their proposed ANN model was able to 

correlate the density of ionic liquid + methanol systems. Dopazo et al. [52] developed different 

ANNs to predict the density, viscosity and refractive index of binary and ternary mixtures of ionic 

liquids. SVM model is another intelligence model, proposed by Vapnik in 1995 [53], increasingly 

gained popularity to be employed in various engineering and science disciplines [54, 55]. The 

results of SVM model are obtained through quadratic programming (QP). Finally, the LSSVM 

method, introduced by Suykens and Vandewalle [56] as a modified version of conventional SVM, 

has the idea of the equality constraints which is the major advantage of LSSVM over the original 

SVM. 

In this study, the density of water/alcohol/ionic liquid ternary systems has been predicted by 

intelligence methods including ANN, SVM and LSSVM models. These methods have been 

constructed by wide range of experimental data gathered from literature (1663 data points) for this 

ternary system with 17 different ionic liquids. The shuffled complex evolution (SCE) has been 

applied to obtain the adjustable parameters of SVM and LSSVM models. The accuracy of 

intelligent models was evaluated by common statistical parameters including average absolute 
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relative deviation (AARD), root mean square error (RMSE), standard deviation error (SDE), and 

coefficient of determination (R2). These developed models could be reliable tools for density 

estimation of water/alcohol/ionic liquid ternary system, even more efficient than thermodynamic 

models as they are generalized for several alcohols and ionic liquids and they offer a less 

prediction error compared to the thermodynamic models. 

2. Model development 

To develop a generalized model for density of alcohol/water/ionic liquid ternary system, a 

comprehensive repository of density data points for covering different ionic liquids and alcohol is 

required. For this purpose, data points available in the literature was collected and employed for 

the model development. In the next section, the data gathering is described with more detailed 

information about the materials and range of data points. 

2-1. Data acquisition 

The comprehensive experimental data covering wide range of material and operating points are 

required to have an accurate and precise model. Therefore, the experimental density data of water 

+ alcohol + ionic liquid system at wide range of temperature and pressure were gathered from 

published studies in the literature over the years. Note that the data includes the density of both 

raffinate and extract phases. In this study, a data set consisting of 1663 data points for 17 different 

ionic liquids and four alcohols have been collected. Table 1 gives the characteristics of data points 

for the model development including the reference from which data was captured, type of alcohol 

and ionic liquid for each reference, number and range of density data points for each ternary 

system, ranges of temperatures and pressures, ranges of mass fractions of alcohol, water, and ionic 

in each ternary systems. The 17 ionic liquids were those widely implemented for the separation of 
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alcohol form the water. Table 2 shows the IUPAC names and chemical formulas of studied ionic 

liquids. 

The density model development is also generalized for several types of ionic liquids and alcohols. 

To this end, the types ionic liquids and alcohol was taken into account of model development by 

assigning some input variables for them. The properties of ionic liquids including 𝑀𝑊, 𝑇𝑐, 𝑃𝑐 and 𝜔 and molecular weight of alcohol was considered as input variable for model development. For 

those types of ionic liquids without the critical properties reported in the literature, the properties 

were estimated using Valderrama group contribution method [57, 58].   

  After gathering the required data, estimating the properties of ionic liquids and alcohols, data 

were classified into an input and output sets to develop the models. The input data are 

temperature, pressure, mole fraction of components (𝑥1, 𝑥2 and 𝑥3), molecular weight of alcohol 

and properties of ionic liquid, and the output parameter is density of water/alcohol/ionic liquid 

ternary system. The range of input and output parameters have been shown in Table 3. 

2-2. Data normalization 

For this study, data are scaled prior to the model development to remove the negative effects of 

the larger data on the smaller ones. For this purpose, all the inputs and output were normalized 

between 0 and 1. The normalization has been performed by the following equation: x𝑛 = ( x1.5×x𝑚𝑎𝑥) × 0.8 + 0.1 (1) 

where x𝑛 is normalized data, x𝑚𝑎𝑥 is the maximum value of the data and x is the experimental 

data. The normalized values have been finally converted to their original values. 

2-3. Mathematical model 
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To model the density of the alcohol/water/ionic liquid ternary systems including multilayer 

perceptron (MLP) neural network, support vector machines (SVM), least square support vector 

machine (LSSVM) were employed. The shuffled complex evolution was used for purpose of the 

optimization of SVM and LSSVM parameters. For ANN, trial and error strategy was utilized to 

obtain the optimized structure of a network for density estimation. The structure of the MLP 

neural networks is depicted in Figure 1. Input layer, hidden layer(s), and output layer are the main 

parts of MLP neural networks. Each layer is composed of some neurons defined as fully 

interconnected processing units. It should be mentioned that the number of neurons in the input 

and output layers are the same with number of input and output data, respectively. In constructing 

an optimized structure of networks, it is of interest to determine the minimum number of hidden 

layers and neuron therein which provides a reasonable accuracy for the density estimation. A trial 

and error method was used to obtain the number hidden layers and neurons in hidden layer. All 

input signals are received by input layer and transmitted to other neurons for processing in hidden 

layer. Then, the output layer received the information from hidden layers. The parameters of such 

network are synaptic weights and biases. These parameters are adjusted by using network error as 

a benchmark through receiving the input data within the training algorithm. An iterative 

optimization procedure starting with random guesses on synaptic weights and biases has been 

applied to train MLP neural network. This training process continues to reach a minimum value in 

squared weights and errors over several iterations. 

SVM model is the second employed mathematical tool for density estimation. In this 

mathematical tool, a train sample of N data samples with input vector x and a dimension of N × n 

(n is the number of input parameters) is correlated to the relevant target samples 𝑦𝑘 via a 

regression function. The regression function of SVM is defined based on the following equation: 
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𝑓(x) = 𝑤𝑇𝜑(x) + 𝑏 (2) 

where 𝑓(x) denotes the regression function. The 𝑤𝑇represents weight vector, 𝜑(x) indicates the 

kernel function, and b is a bias term. The parameters of this regression function (𝑤𝑇 and b) can be 

optimized from the following cost function [53]:  

𝐶𝑜𝑠𝑡 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 12  𝑤𝑇 + 𝑐 ∑ (𝜉𝑘 − 𝜉𝑘∗)𝑁𝑘=1   (3) 

The abovementioned cost function should be satisfied the following condition: 

{ 𝑦𝑘 −𝑤𝑇𝜑(xk) − 𝑏 ≤ 𝜀 + 𝜉𝑘          𝑘 = 1, 2, … ,𝑁𝑤𝑇𝜑(xk) + 𝑏 − 𝑦𝑘 ≤ 𝜀 + 𝜉𝑘         𝑘 = 1, 2, … , 𝑁   𝜉𝑘. 𝜉𝑘∗ ≥ 0                                           𝑘 = 1, 2, … ,𝑁  (4) 

where xk and 𝑦𝑘 represent the input vector at the train sample k and the relevant target sample, 

respectively. The ε denotes a fixed precision of the approximation function and 𝜉𝑘 (or 𝜉𝑘∗) is slack 

variable. The variable c is the deviation from the desired ε in Eq. (3) considered as the tuning 

parameter of the SVM model. The cost function is minimized by Lagrangian as follows: 

𝐿(𝑎. 𝑎∗) = − 12  ∑ (𝑎𝑘 − 𝑎𝑘∗ )(𝑎𝐼 − 𝑎𝐼∗)𝐾(xk, xI)𝑁𝑘.𝐼=1 − 𝜀∑ (𝑎𝑘 − 𝑎𝑘∗ )𝑁𝑘=1 + ∑ 𝑦𝑘(𝑎𝑘 − 𝑎𝑘∗ )𝑁𝑘=1  (5) 

∑ (𝑎𝑘 − 𝑎𝑘∗ )𝑁𝑘=1 = 0     .     𝑎𝑘. 𝑎𝑘∗ ∈ [0, 𝑐] (6) 

𝐾(xk. xI) = 𝜑(xk)𝑇𝜑(xI)       𝑘 = 1, 2, … ,𝑁 (7) 

where 𝑎𝑘 and 𝑎𝑘∗  are Lagrangian multipliers. The SVM regression function is obtained as: 

𝑓(x) = ∑ (𝑎𝑘 − 𝑎𝑘∗ )𝑁𝑘.𝐼=1 𝐾(x, xk) + 𝑏 (8) 

The unknown variables (𝑎𝑘, 𝑎𝑘∗ , and b) are obtained by solving a quadratic programming problem. 

The parameters ε, c and those in the kernel function are the adjustable parameters of SVM model. 
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The LSSVM is another mathematical approaches utilized for modelling of the density. The 

LSSVM is the least square modification of SVM through introducing a system of equations 

instead of a nonlinear quadratic programming in original SVM [56]. The LSSVM method 

represents a new optimization issue as: 

Cost function = 12 wTw + 12  γ∑ek2N
k=1  (9) 

where γ  is the factor of regularization which is as an adjustable parameter .𝑒k represents the error 

of LSSVM in train data set. The equation (8) is optimized by the following equality constraint: 

𝑦k = 𝑤𝑇𝜑(xk) + 𝑏 + 𝑒k (10) 

The Lagrangian is utilized to find the solutions of the optimization in equation (9) along with its 

constraint introduced in Eq. (10) as follows: 

𝐿(𝑤. 𝑏. 𝑒. 𝑎) = 12𝑤𝑇𝑤 + 12𝛾∑𝑒𝑘2𝑁
𝑘=1 −∑𝑎𝑘(𝑤𝑇𝜑(xk) + 𝑏 + 𝑒𝑘 − 𝑦𝑘)𝑁

𝑘=1  (11) 

where 𝑎𝑘 are support values or Lagrange multipliers. The derivatives of Eq. (10) should be 

equated to zero to acquire the solution as follows: 

{   
  
    
 𝜕𝐿𝜕𝑤 = 0 ⇒ 𝑤 =∑𝑎𝑘𝜑(xk)𝑁

𝑘=1                                                   𝜕𝐿𝜕𝑏 = 0 ⇒∑𝑎𝑘𝑁
𝑘=1 = 0                                                               𝜕𝐿𝜕𝑒𝑘 = 0 ⇒ 𝑒𝑘 = 𝛾𝑒𝑘   𝑘 = 1,2, … , 𝑁                                   𝜕𝐿𝜕𝑎𝑘 = 0 ⇒ 𝑤𝑇𝜑(xk) + 𝑏 + 𝑒𝑘 − 𝑦𝑘 = 0   𝑘 = 1,2, … ,𝑁

 (12) 
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Eq. (12) shows 2N + 2 equations and 2N + 2 unknown parameters (𝑎𝑘, 𝑒𝑘, 𝑤, and b). Thus, the 

parameters of LSSVM can be obtained by solving the system of equations defined in Eq. (12). 

The system of linear equations can be rewritten in matrix form as: 

[ 0 1𝜈𝑇1𝜈 Ω + 𝛾−1𝐼] [𝑏𝛼] = [0𝑦] (13) 

where 𝑦 = [𝑦1… 𝑦𝑁]𝑇, 1𝑁 = [1…  1]𝑇, 𝛼 = [𝛼1… 𝛼𝑁]𝑇, I is an identity matrix, and Ω = 𝜑(x𝑘)𝑇 

in which 𝜑(x𝑙) = 𝐾(x𝑘, xl)  ∀ 𝑘, 𝑙 = 1,2, … ,𝑁. 𝐾(x𝑘. xl)  is the kernel function considering the 

account the Mercer limitation [59]. The radial basis function (RBF) Kernel has been used in this 

study as follows: 

𝐾(x. xk) = exp (−|| xk − x||2𝜎2 )   (14) 

where 𝜎2 is squared bandwidth. The function estimation of LSSVM model is: 

𝑦(x) = ∑𝛼𝑘𝐾(x, xk) + 𝑏𝑁
𝑘=1  (15) 

Finally, it should be mentioned that the parameters 𝜎2 and γ are the adjustable parameters of 

LSSVM model. 

2-4. Computational procedure 

The 1663 data points were randomly classified into two subsets, namely train and test data sets, to 

develop all three studied intelligent models. For this work, 75% of data points were used to train 

the intelligent models and increase their capability in prediction of density. The remaining 25 % 

of data points have been applied for test set to investigate the validity of models’ prediction. 
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Temperature, pressure, mole fraction of components (𝑥1, 𝑥2 and 𝑥3), molecular weight of alcohol 

and properties of ionic liquid (𝑀𝑊, 𝑇𝑐, 𝑃𝑐 and 𝜔) have been used to develop the intelligent models. 

The best structure of ANN model was determined through evaluating different networks. The 

adjustable parameters of SVM (c, ε, and 𝜎2) and LSSVM (γ and 𝜎2)  have been obtained by SCE 

[60] through the experimental train data. SVM and LSSVM models have been constructed after 

finding the optimum parameters. The prediction data were obtained by replacing the test data 

sample into these models. The validity of models can be evaluated through these predictions. 

2-5. Accuracy of intelligent models 

The accuracy and reliability of studied intelligent models have been checked by several statistical 

and graphical error analyses such as coefficient of determination (𝑅2), average absolute relative 

deviation (AARD), root mean square error (RMSE), and standard deviation error (STD). The 

formulation of these statistical parameters are as follows: 

𝑅2 = 1 − ∑ (𝜌𝑃𝑟𝑒𝑑(𝑖) − 𝜌𝐸𝑥𝑝(𝑖))2𝑁𝑖=1∑ (𝜌𝑃𝑟𝑒𝑑(𝑖) − 𝜌̅𝐸𝑥𝑝(𝑖))2𝑁𝑖=1  (16) 

% 𝐴𝐴𝑅𝐷 = 100𝑁 ∑|𝜌𝑃𝑟𝑒𝑑(𝑖) − 𝜌𝐸𝑥𝑝(𝑖)|𝜌𝐸𝑥𝑝(𝑖)𝑁
𝑖=1  (17) 

𝑅𝑀𝑆𝐸 = (∑ (𝜌𝑃𝑟𝑒𝑑(𝑖) − 𝜌𝐸𝑥𝑝(𝑖))2𝑁𝑖=1 𝑁 )0.5 (18) 
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𝑆𝑇𝐷 =∑((𝜌𝑃𝑟𝑒𝑑(𝑖) − 𝜌̅𝐸𝑥𝑝(𝑖))2𝑁 )0.5𝑁
𝑖=1  (19) 

where 𝜌𝐸𝑥𝑝 and 𝜌𝑃𝑟𝑒𝑑 represent the experimental and predicted density, respectively. The 𝜌̅𝐸𝑥𝑝 

denotes the average of the experimental data values of density. 

3- Results and discussion 

The first intelligent approach verified to describe the density of the mixture of aqueous alcohol in 

ionic liquid was MLP ANN. The ANN is system of interconnected neurons that is able to predict 

the density of the desired ternary system based on the series of input variables. For analyzing the 

performance of MLP ANN, an optimum network for prediction of density was constructed. Our 

primary trial and error analysis reveals that the networks with one hidden layer and thirteen 

neurons have the less computational costs among other intricate structures while it maintains an 

acceptable accuracy with low error. Figure 1 depicts the constructed structure of MLP ANN 

model.  

The SVM and LSSVM were also employed for density estimation according to the step-by-step 

numerical algorithm which is shown in fig. 2. The adjustable parameters of SVM and LSSVM 

were needed for construction of models based on these intelligent approaches. The SCE 

mathematical optimization tool was employed to obtain the c, ε, and 𝜎2 in SVM and γ and 𝜎2 in 

LSSVM for the extracted density data bank. The SCE estimated the optimized values 𝑐 =766.421, 𝜀 = 0.0010, and 𝜎2 = 0.3226 for the SVM. The optimized parameters 𝜎2 = 0.4936  
and 𝛾 = 9998.59  were obtained by SCE optimization tools for LSSVM. 

After finding the optimum structure of MLP ANN and parameters of the SVM and LSSVM, the 

efficacy of these initiatives in density estimation of the water/alcohol/ionic liquids was verified. In 
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order to visualize the validity of studied intelligent models, crossplot and error distribution curves 

were sketched and interpreted. The predicted density values of intelligent models are shown 

versus the experimental density values in crossplot curve. The accumulation of data points around 

the 45° line (y=x) as the perfect model line confirms the high accuracy of model. The 

concentrations of data points around the y=x line for MLP ANN is more than the SVM and 

LSSVM algorithms. An overall same behavior for SVM and LSSVM numerical algorithm was 

observed - when the density of the alcohol/water/ionic ternary system is low, SVM and LSSVM 

density estimation deviates from the real density values.  

In y=x graphs (crossplots in figure 3) where the predicted and experimental density values were 

brought in relation to each other, the error of the modelling can be discussed only in a qualitative 

term and no comment can be made regarding the absolute quantity of error. More comprehensive 

accuracy analysis can be made by reporting the accuracy of the models in quantitative prospects. 

To this end, the error distribution curves for MLP ANN, SVM, and LSSVM are given in the figs 

4-5. The error trend can be well observed by showing error distribution around the zero error line. 

Two types of quantitative errors are discussed for the modelling purposes. Figure 4 represents the 

error of data bank in terms of error deviation: 

(Error deviation)𝑖 = 𝜌𝑃𝑟𝑒𝑑(𝑖) − 𝜌𝐸𝑥𝑝(𝑖) (20) 

The error deviation gives the difference of absolute values of data predicted from its real 

experimental data. It shows how much the density of water/alcohol/ionic liquid was over-

predicted or under-predicted by the current intelligent modelling. For MPL ANN, the error 

deviation varies from -30 to 50 kg/m3 in the case of test data. However, this error type for SVM 

and LSSVM both are in the range [-70 70] kg/m3. More precisely, the error deviation ranges of 
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density were almost −30 𝑡𝑜 45, −65 𝑡𝑜 65 and −70 𝑡𝑜 65 for ANN, SVM and LSSVM models, 

respectively. 

Figure 5 represents the error of data bank in terms of relative deviation: 

(Relative deviation)𝑖 = 𝜌𝑃𝑟𝑒𝑑(𝑖) − 𝜌𝐸𝑥𝑝(𝑖)𝜌𝐸𝑥𝑝(𝑖)  (21) 

The relative deviation is also reported for the density of the ternary system to provide the relative 

amount of error associated with each mathematical models. The relative deviation is the absolute 

quantity of error or error deviation divided by the real quantity of data for the density. The relative 

deviation for ANN model was almost in range of −0.04 𝑡𝑜 0.05 while these ranges for SVM and 

LSSVM models were almost −0.08 𝑡𝑜 0.12 and −0.08 𝑡𝑜 0.10, respectively. For the MLP ANN, 

the relative deviation remains low over all the predicted densities. However, the relative deviation 

for LSSVM and SVM approaches are high for low quantities of the densities. The number of data 

points for low density aqueous alcohol systems containing ionic liquids were not as many as the 

data for dense systems. Lack of enough information for light water/alcohol/ionic liquid systems 

results in the low accuracy of intelligent models in density estimation. The error analysis graphs 

can qualitatively approve that the ability of MLP ANN, SVM, LSSVM are in respective better in 

density estimation of mixture of ionic liquid and aqueous alcohols.  

The statistical parameters were utilized to evaluate and compare the accuracy of the developed 

models quantitatively. They are tabulated in the table 4 for test and train datasets. A better 

comparison can be made by considering the statistical parameters of the test datasets. The 

obtained values for test set confirmed the effectiveness of studied models for globalization of 

results in presence of unseen data. Table 4 shows that the 𝑅2 values were 0.9966, 0.9893 and 
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0.9916 for ANN, SVM and LSSVM models in train sets, respectively. These values for test sets 

were 0.9945, 0.9852 and 0.9798 for ANN, SVM and LSSVM models, respectively. The amount 

of statistical parameters RMSE, %AARD, and STD are also reported in the table 4, all confirms 

that the strength of the constructed MLP ANN is somewhat more than the SCE-SVM, and SCE-

LSSVM in prediction of the density. It can be inferred from the values of four statistical 

parameters in Table 4 that the density has been successfully estimated with studied intelligent 

models. 

4- Conclusion 

The density of water/alcohol/ionic liquid ternary system was predicted by three mathematical 

intelligent models. The models include the multi-layer perception artificial neural networks (MPL 

ANN), support vector machine (SVM), and least square support vector machines (LSSVM). The 

models were generalized over 1663 experimental data for four alcohols and seventeen ionic 

liquids. Using trial and error, an optimum structure including 1 hidden layer with 13 neurons was 

obtained for MPL ANN. For this structure of artificial networks, a high possible accuracy is 

obtained while the network possesses an optimum computational costs in density prediction. To 

develop the SVM and LSSVM, design parameters of these models are obtained by shuffled 

complex evolution (SCE) over the datasets. The results in form of both graphical and statistical 

error parameters showed good consistency between experimental data and predicted values for the 

constructed networks. All three intelligent models provided an accurate prediction of the density 

against experimental data for studied ternary systems.  The well choice of model parameters and 

input variables in the development of the studied models are main reasons for the good accuracyin 

density prediction. Finally, it can be concluded that all studied intelligent methods can be used as 

invaluable tools for the estimation of density instead of thermodynamic conventional approaches.  
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Nomenclature 

Abbreviations 

AARD Average absolute relative deviation 

ANN Artificial neural network 

IL Ionic liquid 

LSSVM Least square support vector machine 

MLP  Multilayer perceptron 

QP  Quadratic programming 

RBF Radial basis function 

RMSE  Root mean square error 

SCE  Shuffled complex evolution 
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STD  Standard deviation error 

SVM  Support vector machine 

 

Variables 𝑎𝑘 (𝑎𝑘∗ ) Lagrangian multiplier 

C  Adjustable parameter of SVM model 𝑒k  Error of LSSVM in training phase 𝑃𝑐  Critical pressure of ionic liquid 𝑇𝑐  Critical temperature of ionic liquid 𝑤𝑇  Weight vector  𝑥1  Composition of water 𝑥2  Composition of alcohol 𝑥3  Composition of ionic liquid xk  Input vector at the train sample k x𝑛  Normalized data 𝑦𝑘  Target vector at the train sample k 

 

Greek symbols 

γ  Regularization parameter 

ε  Adjustable parameter of SVM model 𝜉𝑘 (𝜉𝑘∗)  Slack variable 𝜌  Density 𝜎 2  Squared bandwidth 
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𝜑(x)   Kernel function 𝜔  Acentric factor of ionic liquid  

Subscripts 

Exp  Experimental 

Max  Maximum value 

Pred  Predicted 
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Figure captions 

Figure 1. Structure of studied MLP neural network. 

Figure 2. Schematic presentation of SCE-SVM and SCE-LSSVM models. 

Figure 3. Crossplot of density predictions versus experimental densities for studied models at both 

train and test sets. 

Figure 4. The error distribution between experimental and predicted density data point for studied 

models. 

Figure 5. The relative error distribution between experimental and predicted densities for studied 

models. 

Figure 6. Comparison between the experimental data and the results of intelligent models for all 

data points: a) ANN model; b) SVM model and c) LSSVM model 
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Figure 2- 
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Figure 3- 
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Figure 5- 
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Table 1- List of experimental data points used in this study (density data covers both raffinate and 
extract phase of the ternary system alcohol/water/ionic liquid). 

Re

f. 

Numb

er of 

data 

points 

Alcoh

ol 

Ioni

c 

liqui

d  

inde

x 

Temperature, 

K 

Pressure, 

Kpa 

Mole 

fraction 

H2O  

Mole 

fraction 

Alcohol 

Mole 

fraction 

Ionic liquid 

Density 

min max min Max min max min max min max min max 

[27
] 

46 C2H6O IL-9 
298.1

5 
298.1

5 
100 100 

0.039
5 

0.826
6 

0.099 
0.946

9 
0.006

9 
0.747 

857.8
6 

1297.
7 

[28
] 

71 C2H6O IL-14 
298.1

5 
298.1

5 
101 101 

0.029
2 

0.935
7 

0.032
5 

0.945
9 

0.005
7 

0.480
2 

814.0
4 

1076.
43 

[29
] 

71 C2H6O IL-14 
298.1

5 
298.1

5 
101 101 

0.029
2 

0.935
7 

0.032
5 

0.945
9 

0.005
7 

0.480
2 

814.0
4 

1076.
4 

[30
] 

71 C2H6O 
IL-11 

,12 
298.1

5 
343.1

5 
101 101 

0.095
7 

0.705
2 

0.106
8 

0.846
5 

0.048
5 

0.532
3 

894.4 
1067.

1 
[31
] 

237 C2H6O IL-13 
298.1

5 
323.1

5 
100 

3000
0 

0.023
9 

0.746
7 

0 
0.941

6 
0.014

8 
0.755

6 
989.5 

1181.
9 

[32
] 

72 C3H8O IL-13 
298.1

5 
298.1

5 
101 101 

0.008
6 

0.890
8 

0.092
6 

0.981
7 

0.008
1 

0.786
4 

807.7 
1176.

8 
[33
] 

133 C3H8O IL-15 
298.1

5 
298.1

5 
101 101 

0.035
3 

0.901
1 

0.029
6 

0.956
5 

0.005
7 

0.765
1 

812.4 
1215.

3 
[34
] 

44 C2H6O IL-2 
298.1

5 
298.1

5 
101 101 

0.040
8 

0.903 0 
0.947

6 
0.003 

0.458
7 

857.5 
1033.

7 
[35
] 

46 C2H6O IL-17 
298.1

5 
298.1

5 
100 100 

0.047
5 

0.825 
0.082

3 
0.940

9 
0.005 

0.701
2 

814.6
8 

1192 

[36
] 

100 C5H12O 
IL-6 

,8 
298.1

5 
298.1

5 
101 101 

0.039
1 

0.882
8 

0.046
3 

0.948
5 

0.004
7 

0.707
9 

816.0
7 

1195.
9 

[37
] 

93 C2H6O IL-16 
298.1

5 
298.1

5 
101 101 0 0.952 0 

0.954
1 

0 
0.939

8 
791.0

6 
1342.

1 

[38
] 

70 C2H6O 
IL-

1,5,1
5 

298.1
5 

298.1
5 

101 101 
0.042

5 
0.966

7 
0.013

4 
0.949

3 
0.004

3 
0.737

8 
816.8 

1218.
1 

[39
] 

216 C3H8O 
IL-3 
,10 

293.1
5 

333.1
5 

100 100 0.044 0.455 0.043 0.451 0.1 0.913 904 1215 

[40
] 

39 CH4O IL-4 
298.1

5 
313.1

5 
101 101 

0.110
1 

0.707
8 

0.053
2 

0.883
5 

0.001
9 

0.521
2 

811.8 
1215.

6 
[41
] 

287 C5H12O IL-7 288 308 101 101 
0.000

4 
0.003

9 
0.989 

0.999
3 

0 
0.007

7 
994.9 

1008.
7 

[42
] 

67 C5H12O IL-8 
288.1

5 
308.1

5 
101 101 

0.000
9 

0.000
9 

0.985 
0.998

7 
0.000

4 
0.014

1 
731 982 
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Table 2- Names and chemical formulas for ionic liquids of ternary systems used in this study. 

IUPAC name 
Index 

number 
Chemical formula 

1-ethyl-3-methylpyridinium ethylsulfate IL-1 C10H17NO4S 

1-hexyl-3-methylimidazolium chloride IL-2 C10H19ClN2 

1-ethyl-3-methylimidazolium diethylphosphate IL-3 C10H21N2O4P 

1-ethyl-3-methylimidazolium 2-(2-methoxyethoxy) ethylsulfate IL-4 C11H22N2O6S 

1-octyl-3-methylimidazolium chloride IL-5 C12H23ClN2 

N,N,N-trimethyl-1-decanaminium bromide IL-6 C13H30BrN 

N,N,N-trimethyl-1-dodecanaminium bromide IL-7 C15H34BrN 

N,N,N-trimethyl-1-tetradecanaminium bromide IL-8 C17H38BrN 

1,3-dimethylimidazolium methyl sulfate IL-9 C6H12N2O4S 

1,3-dimethylimidazolium dimethylphosphate IL-10 C7H15N2O4P 

1-ethyl-3-methylimizazolium dicyanamide IL-11 C8H11N5 

1-ethyl-3-methylimizazolium acetate IL-12 C8H14N2O2 

1-butyl-3-methylimidazolium tetrafluoroborate IL-13 C8H15BF4N2 

1-butyl-3-methylimidazolium chloride IL-14 C8H15ClN2 

1-ethyl-3-methylimidazolium ethylsulfate IL-15 C8H16N2O4S 

tris(2-hydroxyethyl) methylammonium methylsulfate IL-16 C8H21NO7S 

1-butyl-3-methylimidazolium methylsulphate IL-17 C9H18N2O4S 
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Table 3. Type and range of studied data points. 

Type of data Property Minimum Maximum 

Inputs 

Temperature, K 288 343.15 

Pressure, 𝑘𝑃𝑎 100 30000 𝑥1 0 0.9667 𝑥2 0 0.9992 𝑥3 0 0.9398 

Tc ,K 643.18 1156.29 

Pc, bar 14.04 52.90 

W 0.2509 1.5198 

Mw of IL 170.21 336.39 

Mw of alcohol 32.04 88.15 

Output Density 731 1342.1 
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Table 4- Values of statistical parameters for intelligent models. 

Model 
Train Test 𝑹𝟐 RMSE % AARD STD 𝑹𝟐 RMSE % AARD STD 

ANN 0.9966 5.6754 0.3777 97.8059 0.9945 7.2242 0.4336 97.8379 

LSSVM 0.9916 8.9148 0.4704 97.2675 0.9798 13.7381 0.8345 96.6767 

SVM 0.9893 9.975 0.4462 96.5604 0.9852 11.765 0.6381 96.6246 
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Graphical abstract  
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Highlights 

 The density of water/alcohol/IL ternary systems are predicted. 

 The ANN, SVM and LSSVM models have been applied as intelligent models. 

 Total 1663 data points for 17 different ionic liquids are collected. 
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