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ABSTRACT: In this study, we demonstrate how least square support vector machine (LSSVM) 

evolution with the shuffled complex evolution (SCE) ameliorates the predictability and reliability 

of the support vector machine as an estimation tool for thermodynamic of ionic liquids solutions. 

This strategy is applied to forecast the osmotic-coefficient of the 26 different ionic liquids by 

utilizing the 1409 available archival literature data points. Our methodology is the development of 

a hybrid SCE-LSSVM algorithm. Shuffled complex evolution is used to decide the hyper 

parameters of support vector machines so that all the initial weights can be searched and obtained 

intelligently. The evolution operators and parameters are carefully designed and set to avoid 

premature convergence and permutation problems. The results demonstrate that carefully designed 

SCE-LSSVM outperforms the structural risk minimization of support vector machines, predicting 

the properties of aqueous solutions in a way, even better than the available models. 

Key words: Osmotic coefficient, LSSVM, SCE, Ionic liquids, Intelligent models  

1. Introduction 

One of the most significant challenges of thermodynamic science is to develop an activity model 

for the solutions, thereby representing the non-ideal behavior of these solvents for matter of property 

estimation. The deviation of synthesized solvents from their ideal behavior is difficult to be 

determined, needing to estimate and considerations of too many interacting parameters. The key 

property for the representation of such non-ideality behavior of solvents is the osmotic coefficient 

[1]: 
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For calculation of osmotic coefficient, an accurate estimation of chemical potentials is essential 

which need the use of a robust thermodynamic models with taking too many fitting parameters into 
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account of consideration. Theoretically, osmotic coefficient is calculated by the Pitzer equations [2] 

or three-characteristic-parameter correlation (TCPC) [3]. For majority of solvents, especially smart 

synthesized solvents such as ionic liquids the problem is rather complex needing to find the 

properties of usually unknown molecular structures. Another simple but equality efficient approach 

is to estimate the non-ideality behavior of synthesized solvents from their available datasets. The 

artificial intelligence models are now beginning to be applied in property estimation of rather 

complex molecular structures such as ionic liquids. One of the strongest advantages of these models 

is that they can provide a generalized numerical scheme over a considered dataset giving the 

property estimator this ability to interpolate and extrapolate among the data [4-6], a perquisite that 

thermodynamic models could rarely afford. In addition, the artificial intelligent approaches could 

identify almost any mal-defined system, especially when the number of influential parameters are 

many, successfully outclassing any conventional estimators and predictive tools in engineering 

problems.   

Artificial intelligence are useful tools in the hands of process engineers to nearly characterize any 

ill-defined engineering problems. They have been increasingly applied to estimate the property of 

complex molecular structures of ionic liquids rather than the laboratory tests, which are usually 

difficult, expensive and time consuming. The capabilities of these synthesized solvents in separation 

processes of acid gases (H2S, CO2) from natural gases for instance have been successfully 

represented by intelligent approaches. The conventional use of the artificial intelligence is to use a 

network of neurons in several sublayers to establish a linear relationship among the sets of data. 

The use of such a network possess some limitations [7], such as determining the optimal values of 

the model parameters , arriving at local minima, having a low convergence speed, and exhibiting 

low generalization performance at some particular cases. The support vector machine (SVM) is a 
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recently developed interesting smart intelligent model that is able to present any nonlinear, 

mathematically ill-defined, complicated, and stochastic problems of various engineering and 

science disciplines in a more efficient way than artificial neural network. SVM is a robust regression 

approach that can be used for pattern recognition, classification, and regression [8]. SVM does not 

only possess the advantages of artificial neural network in defining an every mal-defined system 

but also obviate the obstacles associated with the ANN models. The least square support vector 

machine (LSSVM) is a revamped version of the SVM which use simpler and more time-efficient 

way in the computations. One of the main drawbacks of support vector machines is that the global 

outcome is acquired in presence of many local optima, the fact that makes the support vector 

machine techniques complicated and time consuming. Conventional support vector machines are 

prone to getting into the local optimum and convergence is slow. To overcome these drawbacks, 

this study intends to combine the shuffled complex evolution to the LSSVM approach, hindering 

the local minima and attaining rapid global convergence by searching in several regions 

simultaneously the way natural selection happens on earth. 

There are two main ways to apply SCE into LSSVM: one is to optimize the hyper parameters of the 

LSSVM approach, and the other is to optimize the outcome of the results. The former strategy will 

be applied in this study. The structural minimization of LSSVM approach is the dynamic process 

for continuous optimization of regression and functions. SCE is an optimization and search tool 

based on the principles of natural happenstances and selection. SCE has remarkable capabilities to 

solve non-smooth, non-continuous, non-differentiable fitness functions, thereby escaping from the 

local optima and maintaining a global optimization solution. 

SCE is found to be quite effective when LSSVM receives an extensive domain of data for 

exploration. In spite of other optimization tools, SCE is a type of evolutionary computation that is 
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rarely used in the architecture of support vector machines for purpose of optimization. This strategy 

is applied for the estimation of one of the ill-defined properties of ionic liquids. The applicability of 

least square support vector machines, as a modified version of SVM was tested, in conjunction of 

shuffled complex evolution is tested for estimation of osmotic coefficient of 24 different ionic 

liquids. The outline of this paper can be represented into three separate sections: First, in section 2, 

we identify the least square support vector machine model, the shuffled complex evolution, and the 

methodology to juxtapose real coded SCE with a SVM algorithm for finding the hyper parameters. 

The modelling results are given in the section 3 to demonstrate the efficacy and accuracy of the new 

proposed hybrid algorithm for osmotic coefficient of the ionic liquids compared with the 

conventional use of the LSSVM for the same observed data. The conclusions are discussed in the 

section 4. Finally, the proposed strategy was utilized for estimation of three main properties: vapor 

pressure drop, activity, and osmotic coefficient of the electrolyte solution with data point out of the 

considered dataset. 

2. Methodology 

In this part of the paper, the numerical algorithm of modelling is presented in four different parts. 

In the first section, an introduction to the support vector machines is given. The second part deals 

with the shuffled complex evolution. In the third part, the application of SCE to the LSSVM is 

discussed and fourth part shows the strategy used by SCE to optimize the performance of the 

LSSVM. 

2.1 Least square support vector machine 

The least square support vector machine methodology for the nonlinear regression are presented as 

follows [9-13]:  
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In least square support vector machine a classifier on a randomly selected train set -{ },k ky x , 

1, 2,3,...,k N= - should be constructed in the following form: 

( ) ( )T
ky x x bω ϕ= + ,  ,k bα ∈R , 0kα >  2 

(.)ϕ  is a nonlinear function that maps the input space into a higher dimensional space. This function 

cannot be explicitly constructed. To discover the classifier, the following equality should be met: 

( ) 1T
k k ky w x b eϕ + = −   3 

To meet the above equality, new variables ke  are introduced, resulting into the least square 

classification as follows: 

, ,
min
w b e

ℐ3(w,b,e) 2

1
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To minimize the ℐ3, the Lagrangian expression can be formed: 

ℒ3(w,b,e;α)= ℐ3(w,b,e) { }
1

( ) 1
N

T
k k k k

k
y w x b eα ϕ

=

 − + − + ∑  5 

kα  indicates the Lagrange multiplier. The Lagrange multiplier can be either positive or negative 

depending on the following equality constraints (Kuhn-Tucker condition [14]).  

 The Lagrange equation is optimized by the following conditions:  
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Here, satisfying above conditions lead to the set of linear equation.  
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where ( ) ( ) ( , )T T
k l k l k l k lZZ y y x x y y x xϕ ϕ ψ= =  is the kernel function that can be obtained by 

implementing the Mercer’s condition. For this test, the linear kernel function ( , )kK x x  is considered 

as follows: 

( , ) T
k kK x x x x=  7 

And finally a linear function based on LSSVM model is obtained: 

1
( ) ( , )

N

k k
k

y x K x x bα
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= +∑   8 

2.2 Shuffled Complex Evolution 

The shuffled complex evolution (SCE) is an effective, robust, efficient strategy for function 

optimization through concepts of probabilistic and deterministic, clustering, systematic evolution 

of the point spanning in the space, and competitive evolution. Two algorithms for the SCE 

optimization tool exists. The strategy of the SCE is to treat the global search similar to a process of 

natural evolution. In this algorithm, the dataset points are classified in a population with several 



 

8 
 

complexes or communities. The communities can autonomously evolve and after several number 

of generations they are forced to mix and as a result form new communities through shuffling.  

The members of the communities are potential parents with this ability to participate in the 

reproduction. To increase the competitiveness of the evolution, SCE conducts the better parents to 

contribute to the generation of offspring. The offspring are propagated at random locations of the 

feasible space under certain conditions to direct the evolution mellifluously without any deadlocks. 

This is imitation of mutation in biological evolution. The shuffled complex evolution algorithm 

allows each parents to participate in the reproduction at least once by replacing new offspring to the 

worst points of their complex rather than those in the entire population, thereby considering all 

information in the entire population. This numerical algorithm mimicked from natural evolution of 

species on earth was employed as an efficient optimization tool to acquire the hyper parameters of 

least square support vector machine.  

2.3 Optimization with the Shuffled Complex Evolution 

The shuffled complex evolution was utilized to estimate the hyper parameters of least square 

support vector machine using real coded programming in MATLAB®. The shuffled complex 

evolution executes the minimization of the mean square error (MSE) of the LSSVM model to attain 

the optimization goal. The size of complex (m) was considered 2n+1, where n is the dimension of 

problem or the numbers of input variables. The subcomplex with the size of n+1 is chosen for 

generation of an offspring (chosen based on [15]). The number of offspring β popping up from each 

independent evolving complex between consecutive shuffles equals with complex size (2n+1). For 

this analysis, only one step for evolution of complexes is allowed. After organizing the coded 

program, it was run for the defined data set points. The program was executed five times to eschew 

any premature convergence of the optimization and obtain the global optimal magnitude. 
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Figure 1 The flowchart showing how SCE operates alone and in conjunction to the LSSVM 
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Figure 1 presents how the flow chart of the SCE adjusts the hyper parameters of the leas square 

support vector machine, and how the overall algorithm of least square support vector machine 

evolves with shuffled complex evolution. 

2.4 Parameter optimization using hybrid SCE-LSSVM 

For parameter optimization, an objective function is defined to minimize the experimental and 

predicted quantities of OC. The objective function represents the proximity of the predicted values 

to experimental values: 

exp

exp

cal

OF abs ϕ ϕ
ϕ
−

=   9 

where ϕ  denotes the OC and superscripts cal and exp represent the calculated and experimental 

quantities respectively. 

The shuffled complex evolution tries to minimize the output of the above-defined OF. The SCE 

steps towards this end by finding the hyper parameters of the LSSVM in a specific range. For [δ  

2σ ], the upper and downer ranges [1 0.001] and [1000 0.5] were defined for SCE for localizing the 

optimum hyper parameters. To reduce the statistical errors, this optimization approach was iterated 

twice. 

 3. Case study 

The estimation of properties of ionic liquids are desirable in many industrial applications due to 

their high versatility and applicability. The molecular structures of ionic liquids could be extremely 

complex accommodating many elements according to what they were designed for.  This have made 

any developed model and property estimator specialized for specific type of ionic liquid only under 

certain pressure and temperature. Osmotic coefficient is one of the desirable properties of ionic 
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liquids, highly matter of interest to represent the behavior of these complex structures in the 

presence of impurities or as the main part of a solution. In the systems with several interacting 

components, osmotic coefficient represents the nonideality of the mixture of ionic liquid, thereby 

forming a key parameter for phase behavior identification of the system.  

Our primary objective was to develop a robust model that can successfully predict the osmotic 

coefficient based on the property of the system rather than complex molecular interactions and 

forces. Variables employed for the model development include: Tc, Pc, Vc, acentric factor, 

molecular weight, and molality and of ionic liquids, temperature and pressure of the system. To 

strengthen the model and increase its universality, a comprehensive repository including 1409 

osmotic coefficient data points for 26 different ionic liquids were built. Table 1 lists the detailed 

information about the constructed repository of data involving the name of ionic liquids, ranges of 

pressure, temperature, molality, osmotic coefficient and the reference from which these data have 

collected.  

Table 1 The range input data used for the model development 

Ref. Ionic liquid  No.  Osmotic Coeff. range  Molality range Pressure  Temperature 

[16] C6H12N2SO4 30 [0.864 0.994] [0.0323 3.2928] 101 kPa 313, 333 K 

[17] C11H20N4 33 [0.424 1.0519] [0.024 1.4962] 101 kPa 313, 323, 328 K 

[17] C9H20IN 27 [0.392 0.789] [0.0656 1.6508] 101 kPa 313, 323, 328 K 

[16] C8H15N2Cl 28 [0.8 0.993] [0.0566 3.15] 101 kPa 313, 333 K 

[18] C8H15N2Cl 80 [0.686 1.004] [0.0105 2.9617] 101 kPa 298, 308, 318, & 328 K 

[18] C8H15N2I 72 [0.362 0.91] [0.0133 2.5889] 101 kPa 298, 308, 318, & 328 K 

[16] C9H18N2SO4 30 [0.695 0.995] [0.0519 4.091] 101 kPa 313, 333 K 

[19] C9H18N2SO4 64  [0.743 0.923]  [0.0132 2.177] 101 kPa 298, 308, 318, & 328 K 

[19] C9H18N2SO5 72 [0.392 1.023] [0.012 2.0659] 101 kPa 298, 308, 318, & 328 K 

[20] C6H11N2Cl 27 [0.1847 4.1131] [0.855 0.97] 101 kPa 313, 333 K 

[19] C8H16N2SO4 80 [0.694 1.019] [0.0086 2.7627] 101 kPa 298, 308, 318, & 328 K 

[20] C10H17NO4S 26 [0.815 0.956] [0.1419 3.3025] 101 kPa 313, 333 K 

[16] C10H19N2Cl 34 [0.588 0.985] [0.0932 3.9846] 101 kPa 313, 333 K 

[21] C10H19N2Cl 34 [0.1399 3.0984] [0.672 0.9842] 101 kPa 298 K 
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[17] C12H23N2Cl 48 [0.479 1.046] [0.0346 1.7738] 101 kPa 313, 323, 328 K 

[22] C9H17ClN2 76 [0.771 0.949] [0.014 1.7972] 101 kPa 298, 308, 318, & 328  K 

[23] C7H13N2Br 80 [0.671 0.961] [0.0071 2.7049] 101 kPa 298, 308, 318, & 328  K 

[23] C9H17N2Br 80 [0.561 1.008] [0.0079 2.0049] 101 kPa 298, 308, 318, & 328  K 

[24] C8H16N2SO5 39 [0.836 0.914] [0.0122 1.3471] 101 kPa 308, 318, & 328  K 

[23] C10H19BrN2 76 [0.271 0.768] [0.0155 2.3976] 101 kPa 298, 308, 318, & 328  K 

[25] C15H34ClN 42 [0.14 0.9431] [0.009991 0.8645] 101 kPa 298 & 310 K 

[25] C15H34BrN 44 [0.107 0.9655] [0.009006 0.7876] 101 kPa 298 & 310 K 

[26] C10H24IN 34 [0.242 0.8694] [0.0575 3] 101 kPa 298 K 

[26] C9H22IN 36 [0.322 0.9221] [0.0542 2.344] 101 kPa 298 K 

[27] C13H30BrN 46 [0.524 0.873] [0.8404 1.0045] 101 kPa 283, 288, 293, 298 K 

[25] C18H40ClN 36 [0.154 0.9441] [0.01011 0.8026] 101 kPa 298 & 310 K 

[27] C11H26BrN 46 [0.524 0.873] [0.8404 1.0045] 101 kPa 283, 288, 293, 298 K 

[26] C7H18IN 35 [0.447 0.9283] [0.0539 1.6875] 101 kPa 298 K 

The thermodynamic properties for some ionic liquids which was not reported in the archival 

literature was estimated based on the Valderrama [28] group contribution method. Table 2 give the 

structure, IUPAC name, and properties of ionic liquids. It is notable that the average percentage of 

experimental errors for osmotic coefficient was about 5% based on their reports and method of 

analysis.  

Table 2 The name, chemical formula, abbreviations, and properties of the ILs 

Abbreviation Formula IUPAC Name Mw [gr/mol] Tc [k] Pc 
[bar] 

Vc [cm3/mol] ω 

[dmim] [MSO4] C6H12N2SO4 1,3-dimethylimidazolium methylsulfate 208.2 1040 52.9 545.6 0.3086 

[BMPYR][DCA] C11H20N4 1-butyl-1-methylpyrrolidinium dicyanamide 208.3 993.03 25.0767 705.13 0.79868 

[BMPYR][I] C9H20IN 1-butyl-1-methylpyrrolidinium iodide 269.17 826.005 29.3243 600.58 0.4381 

[bmim] [Cl] C8H15N2Cl 1-butyl-3-methylimidazolium chloride 174.7 789 27.8 568.8 0.4914 

[bmim] [I] C8H15N2I 1-butyl-3-methylimidazolium iodide 266.1 871.2 28.6 607.5 0.4835 

[bmim] [MSO4] C9H18N2SO4 1-butyl-3-methylimidazolium methyl sulfate 250.3 1081.6 36.1 716.9 0.4111 

[bmim] [BF4] C9H18N2SO5 1-butyl-3-methylimidazolium tetrafluoroborate 226 643.2 20.4 655 0.8877 

[emim] [Cl] C6H11N2Cl 1-ethyl-3-methylimidazolium chloride 146.6 748.6 34.2 454.5 0.4165 

[emim] [ESO4] C8H16N2SO4 1-ethyl-3-methylimidazolium ethyl sulfate 236.3 1067.5 40.5 659.8 0.3744 

[empyr][ESO4] C10H17NO4S 1-ethyl-3-methylpyridinium ethylsulfate 247.31 1023.78 42.9967 652.9 0.34118 

[hmim] [Cl] C10H19N2Cl 1-hexyl-3-methylimidazolium chloride 202.7 829.2 23.5 683 0.5725 

[moim] [Cl] C12H23N2Cl 1-methyl-3-octylimidazolium chloride 230.8 869.4 20.3 797.2 0.6566 
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[mpim] [Cl] C9H17ClN2 1-methyl-3-pentylimidazolium chloride 188.7 763.605 25.835 618.98 0.48214 

[mpim] [Br] C7H13N2Br 1-methyl-3-propylimidazolium bromide 205.1 769.363 33.4634 519.28 0.40054 

[pmim] [Br] C9H17N2Br 1-pentyl-3-methylimidazolium bromide 233.2 854.2 27.2 640.4 0.5292 

[prmim] [MSO4] C8H16N2SO5 1-propyl-3-methylimidazolium methylsulfate 236.3 1067.49 40.4626 659.78 0.37442 

[hmim] [Br] C10H19BrN2 3-hexyl-1-methyl-1H-imidazolium bromide 247.175 873.47 25.0137 697.49 0.57054 

- C15H34ClN dodecyldimethylammonium chloride 263.894 757.452 14.573 990.98 0.82138 

- C15H34BrN dodecyltrimethylammonium bromide 294.321 796.793 14.7863 1005.5 0.80143 

- C10H24IN heptyltriethylammonium iodide 285.231 720.5 20.6504 744.14 0.63148 

- C9H22IN hexyltriethylammonium iodide 271.231 698.575 22.1413 687.03 0.58812 

- C7H18IN N-methyltriethylammonium iodide 243.13 654.38 25.8651 572.81 0.5028 

- C13H30BrN N,N,N-trimethyl-1-decanaminium bromide 280.288 752.17 17.271 891.28 0.7527 

- C18H40ClN N,N,N-trimethyl-1-dodecanaminium chloride 305.97 826.738 12.718 1162.31 0.92178 

- C11H26BrN octyl trimethyl ammonium bromide 252.24 707.733 19.5117 777.06 0.66824 

- C7H18IN pentyltriethylammonium iodide 299.24 742.373 19.3451 801.25 0.67485 

 

4. Results and discussion 

To evaluate the optimization of the shuffled complex evolution within least square support vector 

machine, the LSSVM was applied for the same dataset points of the SCE-LSSVM. Fig. 2 gives the 

comparison between predicted and measured OC values at the training and validation phase for both 

LSSVM and hybrid SCE-LSSVM models using the experimental repository gathered from the 

literature for 24 different ionic liquids The SCE-LSSVM was constructed with a number of complex 

of 2, a number of subcomplex of 1, and a number of offspring twice the data numbers plus one. 

Only one step for evolution of complexes was allowed. The SCE-LSSVM was trained by 2 

generations, followed by a hyper parameter optimization approach. 
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Figure 2 Comparison between the measured and predicted osmotic coefficient 

The output of the model representing in Fig. 2, reveal a great match of simulated data with the target 

data for both LSSVM and SCE-LSSVM approaches. Apparently, the SCE-LSSVM outclasses the 

predictions of LSSVM by lowering the oscillation in the predicted data. The simulation performance 

for the two investigated algorithms was more comprehensively evaluated on the basis of the mean 

square error (RMSE) and efficiency coefficient 2R , average absolute relative deviation %AARD.  

The parameters RMSE =0.0319, 2R  = 0.97619, %AARD = 4.4335, STD = 0.2067 in contrast to 

RMSE = 0.0465, 2R  = 0.94931, %AARD = 5.8524, and STD = 0.2012 for validation phase attest 

to remarkable improvements in the performance of LSSVM in conjunction with SCE. However, the 

performance of both models are great in prediction of OC. In general, a 2R  more than 0.9 

demonstrates a great model prediction, in the range 0.8-0.9 indicates a good performance, and less 

than 0.8 signifies mal predictions [29].  
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Figure 3. The statistical parameters of LSSVM (upper subplots) and SCE-LSSVM (downer subplots)-blue dots: test set, red dots: train sets 
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Fig. 3 shows the accordance between the measured and predicted OC values by SCE-LSSVM and 

LSSVM in terms of scatter plots. It shows the predicted experimental data in relation to the measure 

data over y=x line, the relative deviation and error deviation (for definition see [30]). These graphs 

show that the SCE-LSSVM is capable of escaping from the traps of local optima which is likely 

due to the combination of global search ability of SCE and local search ability of LSSVM.
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Figure 4. predicted (blue dots) and measurements (solid line) (Above: LSSVM and below: SCE-LSSVM)
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Fig. 4 shows the prediction and experimental sets of data in the same graph for showing the accuracy 

of the models in giving the OC at higher and lower values. The below subplot in the figure 4 

corresponds to the SCE-LSSVM showing the predicted values-blue dots are more closely in the 

measured values-solid black lines compared to the above subplots for LSSVM.    

For a better comparison, the overall capability of models with statistical data are presented Table 3 

represents the RMSE = 0.0226, 2R  = 0.98868, %AARD = 2.9319, STD = 0.2045 for the two 

different models of the validation phases and their hyper parameters. It can be readily observed 

from these data that the performance of SCE-LSSVM is better than the sole LSSVM model.  

Table 3 The statistical errors of the models 

 
The most important question of about this approach is to what extent the model is well predictable 

in extrapolation and interpolation for a dataset out of that utilized in the article. To answer this 

question, a set of 15 OC experimental data for the [EMIM]H2SO4 was extracted from the Rafiee 

and Frouzesh [31] which is new in terms of material-ionic liquid: Mw=208.2 gr.mol-1, Tc= 1073.8 

K, Pc= 57.6 atm, Vc= 550.7 cm3.kg-1, ω=0.6411 (obtained from Valderama [32] Group Contribution 

approach)-and operating conditions (pressure=87 kPa, temperature=298.15 K). Fig. 5 authenticates 

that the application of SCE-LSSVM and LSSVM models are both just for prediction of OC, while 

Model 

Model’s 

Parameters 
Train Test 

γ σ2 R2 %AARD RMSE STD R2 %AARD RMSE STD 

LSSVM 160.23 0.0301 0.97703 3.9694 0.0320 0.2068 0.94931 5.8524 0.0465 0.2012 

SCE-LSSVM 34.55 0.0063 0.98868 2.9319 0.0226 0.2045 0.97619 4.4335 0.0319 0.2067 
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the SCE-LSSVM ability in extrapolation of OC through a system of data out of the initially 

considered values is comparatively stronger than the sole LSSVM. The calculated RMSE% for 

SCE-LSSVM and LSSVM are 0.0003728 and 0.001182, respectively showing that the SCE-

LSSVM model outclasses the LSSVM in OC estimation.   

OCexperimental [-]

O
C

pr
ed

ic
te

d [
-]

0.9 0.95 1 1.05

0.9

0.95

1

1.05

SCE-LSSVM
lSSVM
Y=X

 

Figure 5 Showing extrapolation ability of models in OC prediction (measurements from [31]) 

The SCE-LSSVM as an estimation tool is further analyzed by depicting its accuracy. The capability 

of our strategy over molality is shown in the Fig. 6. Fig. 6 represent the predictability ranges of the 

SCE-LSSVM by giving the scatter plots of model and experimental data in relation to each 

considered input variables. This graphs depicts the high accuracy of the SCE-LSSVM in prediction 

of the diluted ionic liquid solutions. This is the basis of the activity calculations for the ionic liquid 

solutions.  
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Figure 6. The SCE-LSSVM prediction of OC for different ionic liquids molality  

The results of SCE-LSSVM is now employed to calculated the mean molal activity coefficient and 

for comparison with available most accurate thermodynamic models. The models widely used for 

analyzing this coefficient are Pitzer: 
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Pitzer-Archer: 
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The modified Pitzer model: 
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And the Scatchard’s model: 

( ){ } ( ){ } [ ]{ }* 2
1

2 3
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2 3
02 03

ln ln ( 1) (1 ) / 2 [(1 ) / 2]

(1/ 2) (2 / 3)
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γ γ φ±± = + − + − − −

= + +

= +

 

where model constants are given in table 4. Other unidentified parameters not included in table 4 

are at T=298.15 K Debye-Hückel osmotic coefficient 0.39145Aφ =  [33], adjustable parameters 

1/22.0 ( / )kg molα =  and 1/21.2 ( / )b kg mol=  [34], 1/2
2 2.0 ( / )kg molα = , * ( )ILγ ±  is the activity 

coefficient of the pure ionic liquids, y is the ionic strength fraction of electrolytes, i iM iXZ Z Z= , 

iMZ  is the charge of the cation and iXZ  is the charge of the anion for the solute i. i iM iXv v v= +  is 

the total number of ions in the solute i. 

Now the results of the SCE-LSSVM model has been used to analyze osmotic coefficient, activity 

and vapor pressure depression of the ionic liquids solutions. The standard deviations or RMSE% of 
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the models are also given for the activity models in prediction of the OC for [BMIM]H2SO4. Even 

the best estimation of available thermodynamic models which is 0.002 by modified Pitzer model is 

around 40% more than the LSSVM alone. The shuffled complex evolution significantly improves 

the estimation ability of LSSVM approach leading to the lowest RMSE% 0.000373 among the 

considered models. 

Table 4 The parameters of the Archer expansion of the Pitzer correlation 

Model Model parameter Standard deviation (σ )  

Pitzer (0) 0.0337β = , (1) 0.3227β = ,  0.0010MXC
ϕ

=   0.003 

Pitzer-Archer (0)

0.1111MXβ = , (1)

0.0125MXβ = , (0) 0.0011MXC = −  

(1) 0.0546MXC = −  

0.003 

Modified Pitzer 2.224MXb = , 0.1148MXB = , 0.0021MXC = −  0.002 

Scatchard 

Binary Solution 

Pitzer 

Pitzer-Archer 

Modified Pitzer 

 

 

01 1.508b = − , 02 1.172b = , 03 0.152b = −  

01 1.399b = − , 02 1.116b = , 03 0.145b = −  

01 1.463b = − , 02 1.150b = , 03 0.1497b = −  

 

 

0.03 

0.03 

0.03 

The activity of the aqueous ionic liquid solution was also successfully predicted. Figure 7 gives the 

activity obtained from the experimentations and SCE-LSSVM. The RMSE% of SCE-LSSVM was 
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estimated 0.0000362123 which is acceptably low, making the SCE-LSSVM a reliable tool for the 

activity analysis of ionic liquids solutions.  
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Figure 7 Activity coefficient of ionic liquid solution versus molality 

The vapor pressure reduction is an incident happening during the formation of solutions because of 

the interactions among the solvent and solute. This is a very crucial solvent property which help 

counteracting the solvent loss during the separation processes. This event is more prevalent in 

electrolyte solutions where the interactions of solute-solvent are strong. To show the superiority of 

SCE-LSSVM in thermodynamic analysis, the vapor pressure depression of LiCl-[BMIM]H2SO4 

solution was calculated by this intelligent approach and was compared with the experimental data. 

To calculate the vapor pressure drop, the following relationship between the OC and activity of the 

solvent is formed: 

ln /w s wa vm Mφ = −   
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The calculated activity of the water is now used for the determination of the vapor pressure of the 

water in these solutions: 

( ) ( )( )* * *ln ln / /w wa p p B V p p RT= + − −  

In these two latter equations, ms denotes molality of the solution, Mw indicates the molar mass of 

the solvent and v is the stoichiometric number of the solute, B indicates the second virial coefficient 

of water vapor, *
wV  is the molar volume calculated from the density and *p  is the vapor pressure of 

the pure water. To calculate the second virial coefficient of the water B at different temperatures,  

The electrolyte variables ( 1/2 -1/2 1/2 -1/2 1/2 -1/2
1 2 3b = 3.2,  = 2 kg .mol ,  = 7 kg . mol ,  = 1 kg .molα α α ) 

reported to have the best fit for electrolytes solutions, were utilized in calculation of the activity 

coefficient. 
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Figure 8 Vapor pressure depression of aqueous ionic liquid solution versus molality 
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The activity of the mean molal activity coefficient calculation in the above equations strongly 

depends on the capacity of the models to describe the osmotic coefficient in the diluted regions. Fig. 

8 also confirms that the SCE-LSSVM is a reliable tool for estimation of vapor pressure depression 

of the aqueous ionic liquids solutions. The RMSE for the fig. 8 is 0.000115 which is desirably low 

for estimation of vapor depression. 

6. Conclusion 

In this paper, we introduced a shuffled complex evolution evolved least square support vector 

machine. Our strategy professes a shuffled complex based least square support vector machine 

(SCE-LSSVM), which effectively commingle the local searching ability of the shuffled complex 

evolution with the global searching ability of the least square support vector machine. The 

methodology of this work is that each initial point of LSSVM is chosen by a standard shuffled 

complex evolution, and the fitness of shuffled complex evolution is determined by the LSSVM. The 

shuffled complexes are carefully designed to optimize the LSSVM, to avoid premature convergence 

and permutation problems. The experiments of OC data have shown that the oracular performance 

of the implemented strategy is superior to the traditional least square support vector machine. This 

can be achieved by the changes of the hyper parameters γ and σ2 of the least square support vector 

machines. One significant problem associated with the combination of the least square support 

vector machines with the shuffled complex evolution is the estimation of a ranges within the hyper 

parameters were optimized. This range of parameters for SCE-LSSVM in this analysis was 

determined manually. A surrogate strategy is to implement the SCE for optimization of data ranges, 

which will be a part of our future work. After the development of SCE-LSSVM, it was used for 

estimation of the properties of aqueous ionic liquid solutions (activity, vapor pressure depression, 
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and osmotic coefficient) with characteristics out of the considered dataset for the model 

development.  
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	ABSTRACT: In this study, we demonstrate how least square support vector machine (LSSVM) evolution with the shuffled complex evolution (SCE) ameliorates the predictability and reliability of the support vector machine as an estimation tool for thermodynamic of ionic liquids solutions. This strategy is applied to forecast the osmotic-coefficient of the 26 different ionic liquids by utilizing the 1409 available archival literature data points. Our methodology is the development of a hybrid SCE-LSSVM algorithm. Shuffled complex evolution is used to decide the hyper parameters of support vector machines so that all the initial weights can be searched and obtained intelligently. The evolution operators and parameters are carefully designed and set to avoid premature convergence and permutation problems. The results demonstrate that carefully designed SCE-LSSVM outperforms the structural risk minimization of support vector machines, predicting the properties of aqueous solutions in a way, even better than the available models.
	Key words: Osmotic coefficient, LSSVM, SCE, Ionic liquids, Intelligent models 
	1. Introduction
	One of the most significant challenges of thermodynamic science is to develop an activity model for the solutions, thereby representing the non-ideal behavior of these solvents for matter of property estimation. The deviation of synthesized solvents from their ideal behavior is difficult to be determined, needing to estimate and considerations of too many interacting parameters. The key property for the representation of such non-ideality behavior of solvents is the osmotic coefficient [1]:
	  1
	For calculation of osmotic coefficient, an accurate estimation of chemical potentials is essential which need the use of a robust thermodynamic models with taking too many fitting parameters into account of consideration. Theoretically, osmotic coefficient is calculated by the Pitzer equations [2] or three-characteristic-parameter correlation (TCPC) [3]. For majority of solvents, especially smart synthesized solvents such as ionic liquids the problem is rather complex needing to find the properties of usually unknown molecular structures. Another simple but equality efficient approach is to estimate the non-ideality behavior of synthesized solvents from their available datasets. The artificial intelligence models are now beginning to be applied in property estimation of rather complex molecular structures such as ionic liquids. One of the strongest advantages of these models is that they can provide a generalized numerical scheme over a considered dataset giving the property estimator this ability to interpolate and extrapolate among the data [4-6], a perquisite that thermodynamic models could rarely afford. In addition, the artificial intelligent approaches could identify almost any mal-defined system, especially when the number of influential parameters are many, successfully outclassing any conventional estimators and predictive tools in engineering problems.  
	Artificial intelligence are useful tools in the hands of process engineers to nearly characterize any ill-defined engineering problems. They have been increasingly applied to estimate the property of complex molecular structures of ionic liquids rather than the laboratory tests, which are usually difficult, expensive and time consuming. The capabilities of these synthesized solvents in separation processes of acid gases (H2S, CO2) from natural gases for instance have been successfully represented by intelligent approaches. The conventional use of the artificial intelligence is to use a network of neurons in several sublayers to establish a linear relationship among the sets of data. The use of such a network possess some limitations [7], such as determining the optimal values of the model parameters , arriving at local minima, having a low convergence speed, and exhibiting low generalization performance at some particular cases. The support vector machine (SVM) is a recently developed interesting smart intelligent model that is able to present any nonlinear, mathematically ill-defined, complicated, and stochastic problems of various engineering and science disciplines in a more efficient way than artificial neural network. SVM is a robust regression approach that can be used for pattern recognition, classification, and regression [8]. SVM does not only possess the advantages of artificial neural network in defining an every mal-defined system but also obviate the obstacles associated with the ANN models. The least square support vector machine (LSSVM) is a revamped version of the SVM which use simpler and more time-efficient way in the computations. One of the main drawbacks of support vector machines is that the global outcome is acquired in presence of many local optima, the fact that makes the support vector machine techniques complicated and time consuming. Conventional support vector machines are prone to getting into the local optimum and convergence is slow. To overcome these drawbacks, this study intends to combine the shuffled complex evolution to the LSSVM approach, hindering the local minima and attaining rapid global convergence by searching in several regions simultaneously the way natural selection happens on earth.
	There are two main ways to apply SCE into LSSVM: one is to optimize the hyper parameters of the LSSVM approach, and the other is to optimize the outcome of the results. The former strategy will be applied in this study. The structural minimization of LSSVM approach is the dynamic process for continuous optimization of regression and functions. SCE is an optimization and search tool based on the principles of natural happenstances and selection. SCE has remarkable capabilities to solve non-smooth, non-continuous, non-differentiable fitness functions, thereby escaping from the local optima and maintaining a global optimization solution.
	SCE is found to be quite effective when LSSVM receives an extensive domain of data for exploration. In spite of other optimization tools, SCE is a type of evolutionary computation that is rarely used in the architecture of support vector machines for purpose of optimization. This strategy is applied for the estimation of one of the ill-defined properties of ionic liquids. The applicability of least square support vector machines, as a modified version of SVM was tested, in conjunction of shuffled complex evolution is tested for estimation of osmotic coefficient of 24 different ionic liquids. The outline of this paper can be represented into three separate sections: First, in section 2, we identify the least square support vector machine model, the shuffled complex evolution, and the methodology to juxtapose real coded SCE with a SVM algorithm for finding the hyper parameters. The modelling results are given in the section 3 to demonstrate the efficacy and accuracy of the new proposed hybrid algorithm for osmotic coefficient of the ionic liquids compared with the conventional use of the LSSVM for the same observed data. The conclusions are discussed in the section 4. Finally, the proposed strategy was utilized for estimation of three main properties: vapor pressure drop, activity, and osmotic coefficient of the electrolyte solution with data point out of the considered dataset.
	2. Methodology
	In this part of the paper, the numerical algorithm of modelling is presented in four different parts. In the first section, an introduction to the support vector machines is given. The second part deals with the shuffled complex evolution. In the third part, the application of SCE to the LSSVM is discussed and fourth part shows the strategy used by SCE to optimize the performance of the LSSVM.
	2.1 Least square support vector machine
	The least square support vector machine methodology for the nonlinear regression are presented as follows [9-13]: 
	In least square support vector machine a classifier on a randomly selected train set -, - should be constructed in the following form:
	,  ,  2
	 is a nonlinear function that maps the input space into a higher dimensional space. This function cannot be explicitly constructed. To discover the classifier, the following equality should be met:
	 3
	To meet the above equality, new variables  are introduced, resulting into the least square classification as follows:
	ℐ3(w,b,e) 4
	To minimize the ℐ3, the Lagrangian expression can be formed:
	ℒ3(w,b,e;α)= ℐ3(w,b,e) 5
	 indicates the Lagrange multiplier. The Lagrange multiplier can be either positive or negative depending on the following equality constraints (Kuhn-Tucker condition [14]). 
	 The Lagrange equation is optimized by the following conditions: 
	ℐ3)=0  5
	Here, satisfying above conditions lead to the set of linear equation. 
	  6
	where  is the kernel function that can be obtained by implementing the Mercer’s condition. For this test, the linear kernel function  is considered as follows:
	 7
	And finally a linear function based on LSSVM model is obtained:
	  8
	2.2 Shuffled Complex Evolution
	The shuffled complex evolution (SCE) is an effective, robust, efficient strategy for function optimization through concepts of probabilistic and deterministic, clustering, systematic evolution of the point spanning in the space, and competitive evolution. Two algorithms for the SCE optimization tool exists. The strategy of the SCE is to treat the global search similar to a process of natural evolution. In this algorithm, the dataset points are classified in a population with several complexes or communities. The communities can autonomously evolve and after several number of generations they are forced to mix and as a result form new communities through shuffling. 
	The members of the communities are potential parents with this ability to participate in the reproduction. To increase the competitiveness of the evolution, SCE conducts the better parents to contribute to the generation of offspring. The offspring are propagated at random locations of the feasible space under certain conditions to direct the evolution mellifluously without any deadlocks. This is imitation of mutation in biological evolution. The shuffled complex evolution algorithm allows each parents to participate in the reproduction at least once by replacing new offspring to the worst points of their complex rather than those in the entire population, thereby considering all information in the entire population. This numerical algorithm mimicked from natural evolution of species on earth was employed as an efficient optimization tool to acquire the hyper parameters of least square support vector machine. 
	2.3 Optimization with the Shuffled Complex Evolution
	The shuffled complex evolution was utilized to estimate the hyper parameters of least square support vector machine using real coded programming in MATLAB®. The shuffled complex evolution executes the minimization of the mean square error (MSE) of the LSSVM model to attain the optimization goal. The size of complex (m) was considered 2n+1, where n is the dimension of problem or the numbers of input variables. The subcomplex with the size of n+1 is chosen for generation of an offspring (chosen based on [15]). The number of offspring β popping up from each independent evolving complex between consecutive shuffles equals with complex size (2n+1). For this analysis, only one step for evolution of complexes is allowed. After organizing the coded program, it was run for the defined data set points. The program was executed five times to eschew any premature convergence of the optimization and obtain the global optimal magnitude. 
	Figure 1 The flowchart showing how SCE operates alone and in conjunction to the LSSVM
	Figure 1 presents how the flow chart of the SCE adjusts the hyper parameters of the leas square support vector machine, and how the overall algorithm of least square support vector machine evolves with shuffled complex evolution.
	2.4 Parameter optimization using hybrid SCE-LSSVM
	For parameter optimization, an objective function is defined to minimize the experimental and predicted quantities of OC. The objective function represents the proximity of the predicted values to experimental values:
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	where  denotes the OC and superscripts cal and exp represent the calculated and experimental quantities respectively.
	The shuffled complex evolution tries to minimize the output of the above-defined OF. The SCE steps towards this end by finding the hyper parameters of the LSSVM in a specific range. For [ ], the upper and downer ranges [1 0.001] and [1000 0.5] were defined for SCE for localizing the optimum hyper parameters. To reduce the statistical errors, this optimization approach was iterated twice.
	 3. Case study
	The estimation of properties of ionic liquids are desirable in many industrial applications due to their high versatility and applicability. The molecular structures of ionic liquids could be extremely complex accommodating many elements according to what they were designed for.  This have made any developed model and property estimator specialized for specific type of ionic liquid only under certain pressure and temperature. Osmotic coefficient is one of the desirable properties of ionic liquids, highly matter of interest to represent the behavior of these complex structures in the presence of impurities or as the main part of a solution. In the systems with several interacting components, osmotic coefficient represents the nonideality of the mixture of ionic liquid, thereby forming a key parameter for phase behavior identification of the system. 
	Our primary objective was to develop a robust model that can successfully predict the osmotic coefficient based on the property of the system rather than complex molecular interactions and forces. Variables employed for the model development include: Tc, Pc, Vc, acentric factor, molecular weight, and molality and of ionic liquids, temperature and pressure of the system. To strengthen the model and increase its universality, a comprehensive repository including 1409 osmotic coefficient data points for 26 different ionic liquids were built. Table 1 lists the detailed information about the constructed repository of data involving the name of ionic liquids, ranges of pressure, temperature, molality, osmotic coefficient and the reference from which these data have collected. 
	Table 1 The range input data used for the model development
	The thermodynamic properties for some ionic liquids which was not reported in the archival literature was estimated based on the Valderrama [28] group contribution method. Table 2 give the structure, IUPAC name, and properties of ionic liquids. It is notable that the average percentage of experimental errors for osmotic coefficient was about 5% based on their reports and method of analysis. 
	Table 2 The name, chemical formula, abbreviations, and properties of the ILs
	4. Results and discussion
	To evaluate the optimization of the shuffled complex evolution within least square support vector machine, the LSSVM was applied for the same dataset points of the SCE-LSSVM. Fig. 2 gives the comparison between predicted and measured OC values at the training and validation phase for both LSSVM and hybrid SCE-LSSVM models using the experimental repository gathered from the literature for 24 different ionic liquids The SCE-LSSVM was constructed with a number of complex of 2, a number of subcomplex of 1, and a number of offspring twice the data numbers plus one. Only one step for evolution of complexes was allowed. The SCE-LSSVM was trained by 2 generations, followed by a hyper parameter optimization approach.
	Figure 2 Comparison between the measured and predicted osmotic coefficient
	The output of the model representing in Fig. 2, reveal a great match of simulated data with the target data for both LSSVM and SCE-LSSVM approaches. Apparently, the SCE-LSSVM outclasses the predictions of LSSVM by lowering the oscillation in the predicted data. The simulation performance for the two investigated algorithms was more comprehensively evaluated on the basis of the mean square error (RMSE) and efficiency coefficient , average absolute relative deviation %AARD.  The parameters RMSE =0.0319,  = 0.97619, %AARD = 4.4335, STD = 0.2067 in contrast to RMSE = 0.0465,  = 0.94931, %AARD = 5.8524, and STD = 0.2012 for validation phase attest to remarkable improvements in the performance of LSSVM in conjunction with SCE. However, the performance of both models are great in prediction of OC. In general, a  more than 0.9 demonstrates a great model prediction, in the range 0.8-0.9 indicates a good performance, and less than 0.8 signifies mal predictions [29].  
	Figure 3. The statistical parameters of LSSVM (upper subplots) and SCE-LSSVM (downer subplots)-blue dots: test set, red dots: train sets 
	Fig. 3 shows the accordance between the measured and predicted OC values by SCE-LSSVM and LSSVM in terms of scatter plots. It shows the predicted experimental data in relation to the measure data over y=x line, the relative deviation and error deviation (for definition see [30]). These graphs show that the SCE-LSSVM is capable of escaping from the traps of local optima which is likely due to the combination of global search ability of SCE and local search ability of LSSVM.
	Figure 4. predicted (blue dots) and measurements (solid line) (Above: LSSVM and below: SCE-LSSVM)
	Fig. 4 shows the prediction and experimental sets of data in the same graph for showing the accuracy of the models in giving the OC at higher and lower values. The below subplot in the figure 4 corresponds to the SCE-LSSVM showing the predicted values-blue dots are more closely in the measured values-solid black lines compared to the above subplots for LSSVM.   
	For a better comparison, the overall capability of models with statistical data are presented Table 3 represents the RMSE = 0.0226,  = 0.98868, %AARD = 2.9319, STD = 0.2045 for the two different models of the validation phases and their hyper parameters. It can be readily observed from these data that the performance of SCE-LSSVM is better than the sole LSSVM model. 
	Table 3 The statistical errors of the models
	The most important question of about this approach is to what extent the model is well predictable in extrapolation and interpolation for a dataset out of that utilized in the article. To answer this question, a set of 15 OC experimental data for the [EMIM]H2SO4 was extracted from the Rafiee and Frouzesh [31] which is new in terms of material-ionic liquid: Mw=208.2 gr.mol-1, Tc= 1073.8 K, Pc= 57.6 atm, Vc= 550.7 cm3.kg-1, ω=0.6411 (obtained from Valderama [32] Group Contribution approach)-and operating conditions (pressure=87 kPa, temperature=298.15 K). Fig. 5 authenticates that the application of SCE-LSSVM and LSSVM models are both just for prediction of OC, while the SCE-LSSVM ability in extrapolation of OC through a system of data out of the initially considered values is comparatively stronger than the sole LSSVM. The calculated RMSE% for SCE-LSSVM and LSSVM are 0.0003728 and 0.001182, respectively showing that the SCE-LSSVM model outclasses the LSSVM in OC estimation.  
	Figure 5 Showing extrapolation ability of models in OC prediction (measurements from [31])
	The SCE-LSSVM as an estimation tool is further analyzed by depicting its accuracy. The capability of our strategy over molality is shown in the Fig. 6. Fig. 6 represent the predictability ranges of the SCE-LSSVM by giving the scatter plots of model and experimental data in relation to each considered input variables. This graphs depicts the high accuracy of the SCE-LSSVM in prediction of the diluted ionic liquid solutions. This is the basis of the activity calculations for the ionic liquid solutions. 
	Figure 6. The SCE-LSSVM prediction of OC for different ionic liquids molality 
	The results of SCE-LSSVM is now employed to calculated the mean molal activity coefficient and for comparison with available most accurate thermodynamic models. The models widely used for analyzing this coefficient are Pitzer:
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	Pitzer-Archer:
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	The modified Pitzer model:
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	And the Scatchard’s model:
	where model constants are given in table 4. Other unidentified parameters not included in table 4 are at T=298.15 K Debye-Hückel osmotic coefficient  [33], adjustable parameters  and  [34], ,  is the activity coefficient of the pure ionic liquids, y is the ionic strength fraction of electrolytes, ,  is the charge of the cation and  is the charge of the anion for the solute i.  is the total number of ions in the solute i.
	Now the results of the SCE-LSSVM model has been used to analyze osmotic coefficient, activity and vapor pressure depression of the ionic liquids solutions. The standard deviations or RMSE% of the models are also given for the activity models in prediction of the OC for [BMIM]H2SO4. Even the best estimation of available thermodynamic models which is 0.002 by modified Pitzer model is around 40% more than the LSSVM alone. The shuffled complex evolution significantly improves the estimation ability of LSSVM approach leading to the lowest RMSE% 0.000373 among the considered models.
	Table 4 The parameters of the Archer expansion of the Pitzer correlation
	The activity of the aqueous ionic liquid solution was also successfully predicted. Figure 7 gives the activity obtained from the experimentations and SCE-LSSVM. The RMSE% of SCE-LSSVM was estimated 0.0000362123 which is acceptably low, making the SCE-LSSVM a reliable tool for the activity analysis of ionic liquids solutions. 
	Figure 7 Activity coefficient of ionic liquid solution versus molality
	The vapor pressure reduction is an incident happening during the formation of solutions because of the interactions among the solvent and solute. This is a very crucial solvent property which help counteracting the solvent loss during the separation processes. This event is more prevalent in electrolyte solutions where the interactions of solute-solvent are strong. To show the superiority of SCE-LSSVM in thermodynamic analysis, the vapor pressure depression of LiCl-[BMIM]H2SO4 solution was calculated by this intelligent approach and was compared with the experimental data. To calculate the vapor pressure drop, the following relationship between the OC and activity of the solvent is formed:
	The calculated activity of the water is now used for the determination of the vapor pressure of the water in these solutions:
	In these two latter equations, ms denotes molality of the solution, Mw indicates the molar mass of the solvent and v is the stoichiometric number of the solute, B indicates the second virial coefficient of water vapor,  is the molar volume calculated from the density and  is the vapor pressure of the pure water. To calculate the second virial coefficient of the water B at different temperatures, 
	The electrolyte variables () reported to have the best fit for electrolytes solutions, were utilized in calculation of the activity coefficient.
	Figure 8 Vapor pressure depression of aqueous ionic liquid solution versus molality
	The activity of the mean molal activity coefficient calculation in the above equations strongly depends on the capacity of the models to describe the osmotic coefficient in the diluted regions. Fig. 8 also confirms that the SCE-LSSVM is a reliable tool for estimation of vapor pressure depression of the aqueous ionic liquids solutions. The RMSE for the fig. 8 is 0.000115 which is desirably low for estimation of vapor depression.
	6. Conclusion
	In this paper, we introduced a shuffled complex evolution evolved least square support vector machine. Our strategy professes a shuffled complex based least square support vector machine (SCE-LSSVM), which effectively commingle the local searching ability of the shuffled complex evolution with the global searching ability of the least square support vector machine. The methodology of this work is that each initial point of LSSVM is chosen by a standard shuffled complex evolution, and the fitness of shuffled complex evolution is determined by the LSSVM. The shuffled complexes are carefully designed to optimize the LSSVM, to avoid premature convergence and permutation problems. The experiments of OC data have shown that the oracular performance of the implemented strategy is superior to the traditional least square support vector machine. This can be achieved by the changes of the hyper parameters γ and σ2 of the least square support vector machines. One significant problem associated with the combination of the least square support vector machines with the shuffled complex evolution is the estimation of a ranges within the hyper parameters were optimized. This range of parameters for SCE-LSSVM in this analysis was determined manually. A surrogate strategy is to implement the SCE for optimization of data ranges, which will be a part of our future work. After the development of SCE-LSSVM, it was used for estimation of the properties of aqueous ionic liquid solutions (activity, vapor pressure depression, and osmotic coefficient) with characteristics out of the considered dataset for the model development. 
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