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Abstract Recently there has been a lot of effort to model extremes of spatially
dependent data. These efforts seem to be divided into two distinct groups: the study of
max-stable processes, together with the development of statistical models within this
framework; the use of more pragmatic, flexible models using Bayesian hierarchical
models (BHM) and simulation based inference techniques. Each modeling strategy
has its strong and weak points. While max-stable models capture the local behavior
of spatial extremes correctly, hierarchical models based on the conditional indepen-
dence assumption, lack the asymptotic arguments the max-stable models enjoy. On
the other hand, they are very flexible in allowing the introduction of physical plau-
sibility into the model. When the objective of the data analysis is to estimate return
levels or kriging of extreme values in space, capturing the correct dependence struc-
ture between the extremes is crucial and max-stable processes are better suited for
these purposes. However when the primary interest is to explain the sources of
variation in extreme events Bayesian hierarchical modeling is a very flexible tool
due to the ease with which random effects are incorporated in the model. In this
paper we model a data set on Portuguese wildfires to show the flexibility of BHM in
incorporating spatial dependencies acting at different resolutions.
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1 Introduction

Suppose we have observations x(si , t), si ∈ A ⊂ R2 , t = 1, 2, ..., T , i = 1, ..., nt

from a non-stationary space-time process X (s, t), continuous in space and discrete in
time. Based on such a data set, how can we make inference on the extremal properties
of X (s, t)? Specifically, we may want to estimate probabilities, such as

•

P

(
max
s∈A

X (s, T + 1) > u

)
,

•

P

(
max

1≤t≤T
max
s∈A

X (s, t) > u

)
,

•

P
(

X
(
s∗

1 , T + 1
)

> u1, ..., X
(

s∗
p, T + 1

)
> u p

)
,

for some high thresholds u1,...,u p and at any locations s∗
1 ,...,s∗

p.
Let us start with the simpler case of extremes of a spatial process X (s), s ∈ A ⊂

R2. As in univariate and multivariate extreme value theory, it makes sense to base
inference on asymptotic models. However, since in most applications A is limited, it
may not make sense to look for asymptotics by expanding the space indefinitely, as
in the case of temporal extremes. Hence, there are two alternatives:

1. Start with n iid replicates Xi (s) and look at the convergence in distribution of
max1≤i≤n Xi (s), as n → ∞, for all s ∈ A upon suitable normalization

Yn(s) = an(s)
−1

(
max

1≤i≤n
Xi (s) − bn(s)

)
→D Y (s). (1)

2. Start with a sufficiently fine grid (lattice) over A, characterize the extremal prop-
erties of the process X (s) over this fine grid, and obtain asymptotics by letting
the grid sizes go to 0. This method is often called the double sum method of
Pickands (see for example, Piterbarg 1996) and is used extensively to get lim-
iting results for extremes of continuous time processes. See Leadbetter et al.
(1983) and Albin (1987, 1990). See also Piterbarg (1996) for the extension of
this method to obtain limiting results for Gaussian random fields.
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The two approaches above can broadly be described respectively as constructive
and descriptive studies of extremal characteristics. In constructive studies, the starting
point is to give a good, parametric representation of the underlying process, possibly
depending on a few parameters to permit statistical inference on the most important
characteristics of the process. In descriptive studies, the starting point is a process
of a fairly general type specified in terms of characteristics not directly linked to
extremal properties. The object is to study what extremal properties such a process
can be expected to have, and under what conditions. Although the results may be
valuable in showing that for a wide class of processes under mild conditions the
standard extreme value distributions are still relevant, they may not be very suitable
for modeling purposes.

The approach in this paper will be in the constructive spirit. The structure of the
paper is as follows: In Section 2, we look at the relationship between the max-
stable models and Bayesian hierarchical models (BHM). In Section 3, we look at
the hierarchical modeling strategies for extremal data. In Section 4, we look at a
specific data set on Portuguese wildfires. Large fires tend to occur under specific, rel-
atively uncommon synoptic meteorology conditions acting on large spatial scales and
typically involving variable combinations of high temperatures, prolonged drought
and strong winds. However, small scale spatial variations, such as land topography
and fire prone vegetation distribution, are also very important factors on large fire
regimes. One of the main objectives of this study is to understand the relative impor-
tance of these small scale and large scale variations in producing extreme fires. In
order to achieve this objective, we suggest a BHM for fire size excesses.

2 Max-stable processes and hierarchical models

2.1 Max-stable processes

For a fixed s0 or for a finite collection of locations s1, .., sp, the conditions for the con-
vergence of (1), as well as the possible asymptotic models are well known and part of
the univariate and multivariate extreme value theory. The convergence of the stochas-
tic process in (1) is more complicated, but the results are also complete. See for
example, de Haan and Ferreira (2006) or de Haan and Pereira (2006). Convergence
is assumed to occur with non-degenerate margins and when (1) converges weakly to
a stochastic process Y (s), s ∈ A, (or any compact subset of an Euclidean space) then
the limiting process Y (s) is a max-stable process, having non-degenerate, univariate
marginal GEV distributions. In order to obtain mathematically tractable results and
representations, the process in (1) is transformed to have standard marginal distribu-
tions: If the functions an(s), bn(s) are chosen in such a manner that for every s, the
marginal limiting distribution have the form

lim
n→∞ P

(
Yn(s) ≤ y

) = exp

[
−

(
1 + k(s)

σ (s)
(y − μ(s))

)−1/k(s)
]

,
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then Y (s) is transformed to

V (s) =
(

1 + k(s)

σ (s)
(Y (s) − μ(s))

)1/k(s)

, (2)

so that the limiting transformed max stable process has unit Frechet margins
given by

P(V (s) ≤ v) = exp
(
−v−1

)
.

Here, k(s) is called the index (shape) function, σ(s) and μ(s) are scale and loca-
tion functions. In statistical applications, either all these functions are assumed to be
known or, if estimated, a plug-in method is used so that their sampling variations are
ignored in order to get tractable representations.

When the limit exists, the max-stable process V (s) with unit Frechet margins has
the following very useful representation:

V (s) =D ∨∞
i=1Ui Wi (s), (3)

where Ui are the points of a point process defined on (0, ∞) with mean mea-
sure r−2dr and Wi (s) are i.i.d. replicates of an arbitrary positive spatial process
W (s), s ∈ A, satisfying some conditions to ensure that the marginal distribution
of V (s) for each s is a unit Frechet distribution. Hence, W (s) is a process such
that E(W (s)) = ||A||, for every s ∈ A and E(sups∈A V (s)) < ∞. Here the mean
measure r−2dr corresponds to the exponent measure of the unit Frechet extreme
value distribution, quantifying the size of the process, whereas, Wi (s) can be seen
as the independent and identical replicates of a spatially dependent latent random
effect, quantifying the spatial dependence structure of the large values. Construction
of max-stable processes is not restricted to unit Frechet margins. The process

η(s) = ∨∞
i=1

(
Ui + Wi (s) − σ 2(s)/2

)
, (4)

where Wi (s) are independent copies of an intrinsically stationary Gaussian process
with variance σ 2(s) and variogram γ (s), and Ui are the points of a Poisson point
process on the real line with intensity e−ydy, independent of W (s), is a stationary
max-stable process with standard Gumbel margins (Kabluchko et al. 2009). See also
Fougères et al. (2009) for a class of max-stable processes which are constructed by
mixing extreme value distributions over positive stable distributions.

Transformation (2) is crucial for the representation (3). To our knowledge, there
is no mathematically tractable representation for max stable processes with non-unit
Frechet margins. This is due to the fact that the point process U in the representation
(3) has to be replaced by a non-homogenous point process on R2 ×(0, ∞) with mean
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measure depending on the spatially varying index, scale and location functions. Nec-
essary conditions on W (s) to render a Frechet marginal distribution to V (s) at every
point s ∈ A would then be intractable. Hence, in order to infer on the representation
(3) as a model for extremes of non-stationary spatial data, the following steps are
taken (see for example, Buishand et al. 2008),

1. Fit locally k(s), σ(s) and μ(s) using (temporal) block maxima data at each
location s, assuming that such temporal data at each location exist.

2. Transform the data using (2), substituting k(s), σ(s) and μ(s) by the estimated
values.

3. Assume a specific parametric model for W (s). Buishand et al. (2008) suggest
using an exponential martingale, having a single parameter which represents the
degree of dependence of large values of the process at two spatial locations.
Another alternative is to use a spatial Gaussian process (see Schlather 2002 for
details).

4. Estimate the parameters of this latent process (see de Haan and Pereira 2006;
Ribatet 2009).

The point process representation for max-stable processes given in (3) permits the
use of all the relevant extreme observations in the inference, and therefore, it permits
a data efficient inference. See Coles (2001) for the point process representation of
extremes of time series and its relation to modeling threshold excesses. However,
the representation (3) and the consequent statistical inference turns out to be quite
difficult since the joint distributions of spatial extremes beyond bivariate distribu-
tions are mathematically intractable. In order to overcome this problem, Padoan et al.
(2009) suggest a likelihood-based inference for max-stable processes, derived from a
composite-likelihood approach. Moreover the introduction of explanatory variables
and other underlying physical characteristics of the process that generates the data,
although possible, is not easy.

Ideally, we would like to use more flexible models which overcome at least
partially these difficulties, and at the same time are equally data efficient.

2.2 Bayesian hierarchical models

BHM and simulation based inference techniques are now accepted as the main prin-
cipal tools for modeling spatial, non-stationary data. See for example Banerjee et al.
(2004) for the general introduction to BHM. Typically, if we have block maxima
data y(si ), i = 1, ..., p, where each y(si ) represents the maximum of observations
at location si over a time interval, we may want to model {y(si ), i = 1, ..., p} by a
Bayesian hierarchical model, assuming that conditional on the realization of a generic
latent spatial process W (s) and a set of explanatory variables chosen in accordance
with the physical process governing the extremes, the data are independent and have
a G EV (k(s), σ (s), μ(s)) distribution. Here the spatially varying (random) model
parameters depend on the latent process W (s) as well as the explanatory variables
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through properly chosen link functions. Once a proper parametric model for this
latent process is chosen (often a spatial Gaussian process) and prior distributions
are assigned to the model parameters and hyper-parameters, then simulation based
inference techniques can be applied to make inference on the posterior distributions
of the model parameters, including the latent process, as well as the on joint pre-
dictive distributions of (Y (s∗

1 ), ..., Y (s∗
p)) at any (unobserved) locations (s∗

1 , ..., s∗
p).

Such models are very flexible and recently their use in modeling extreme data has
been increasing. See for example, Fawcett and Walshaw (2006), Cooley et al. (2006,
2007), Mendes et al. (2008). Methodological study of strategies for Bayesian hier-
archical models for block maxima data, can be found in Sang (2008). The principal
starting point for using these modeling strategies is that we want to use as a model
a spatial process whose univariate marginal distributions (conditional on the model
parameters) are generalized extreme value distributions with space dependent param-
eters, having an arbitrary dependence structure. This dependence structure is then
modeled by a latent spatial process through the model parameters. Typically, data,
conditional on the realizations of this latent process as well as other explanatory
variables, are assumed to be independent, but not identical, although more compli-
cated Markov structures can also be assumed (Fawcett and Walshaw 2006). See also
Sang (2008) for ways of introducing dependence structure in the likelihood using a
Gaussian copula.

However, there are some questions regarding these modeling strategies. First,
these models are not max-stable hence they will not be compatible with the asymp-
totic theory. Second, BHM models based on GEV distribution can be seen as inferior
compared to the point process model (3), since not all the relevant data is used in
the inference. A third objection which is often raised is the conditional indepen-
dence. The main assumption behind conditional independence is that the dependence
structure of the process is inherited from that of exploratory variables as well as
spatially dependent latent factors through the model parameters. How reasonable
this assumption is will depend on each data set, and careful judgement is needed to
see if this assumption is compatible with the physical mechanism that generates the
data. However, conditional independence is a very powerful tool with which physical
characteristics of the underlying process can be introduced into the model.

We will argue that, although the Bayesian models explained above are not max-
stable, they are mixtures of max-stable processes, due to spatially varying parameters
and in that sense are compatible with the asymptotic theory. We will also suggest
using Bayesian models with a GPD as a basis to overcome the second problem raised
above.

Assume that {Y (s)} is a process with non-unit GEV margins and that, conditional
on a generic latent process W (s), the components are independent. Then, for any
spatial locations s1, s2, ..., sp

P
(
Y

(
s1

)≤ x1, .., Y
(
sp

)≤ x p
)=

∫
w

P
(
Y

(
s1

)≤ x1, .., Y
(
sp

)≤ x p|W = w
)
d PW (w)

=
∫

w

p∏
j=1

P
(
Y

(
s j

) ≤ x j |W
(
s j

) = w j
)
d PW (w). (5)
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Marginally, each P(Y (s j ) ≤ x j |W (s j ) = w j ) are GEV and satisfy the max-stability
condition, hence the product

p∏
j=1

P
(
Y

(
s j

) ≤ x j |W
(
s j

) = w j
)

will also satisfy the max-stability condition. Therefore, although our (conditionally
specified) model is max-stable, the unconditional process will be a mixture of max-
stable processes.

We also note that, the model suggested by Buishand et al. (2008) is a max-stable
process conditional on the values of the estimated parameters. Once the parameters
are estimated, their model results in a conditionally specified model given by

V (s)|k̂(s), σ̂ (s), μ̂(s), �̂

where k̂(s), σ̂ (s), μ̂(s), are the model parameters, estimated marginally at each loca-
tion and �̂ are the estimated parameters of the latent process W (s) in (2). However,
the unconditional distribution FV (s)(v) of V (s), obtained by integrating out

V (s)|k̂(s), σ̂ (s), μ̂(s), �̂

with respect to the sampling variation of the estimators

k̂(s), σ̂ (s), μ̂(s), �̂

need not have GEV margins and hence can not be max-stable, but is also a mixture
of max-stable processes. This observation is important in understanding that, in a
Bayesian context, it is difficult to construct max-stable processes in the sense that
their predictive distributions satisfy conditions of max-stability. It would be highly
useful to have classes of max-stable processes which are independent conditional on
a latent process, having conditional marginal distributions which are extreme value.
Such models would then benefit the inferential ease of hierarchical modeling, and at
the same time capture correctly the dependence structure of spatial extremes. One
such class of max-stable processes is given by Fougères et al. (2009), which are
obtained by mixing extreme value distributions over positive stable distributions.
However, further work is needed before using these processes as models for spatial
extremes.

3 Bayesian hierarchical modeling strategies for spatial extremes

3.1 Hierarchical GEV model

Sang (2008) gives alternative strategies for implementing hierarchical GEV models
for space-time data sets observed over a discrete grid: Let Y (si , t) denote the block
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maximum over some time period (say, one year) at some areal units or grid cells (or
observation stations) si . Then, using the conditional independence assumption, the
data can be modeled by

Y
(
si , t

)|μsi ,t , σsi ,t , ksi ,t ∼ G EV
(
μsi ,t , σsi ,t , ksi ,t

)
.

Sang (2008) assumes a somewhat simplified dependence structure for the
parameters:

• k(si , t) = k,

• σ(si , t) = σi are spatial random effects,

so that the space-time dependence interactions are modeled only through the location
parameter.

μ
(
si , t

)|β, W
(
si , t

)
, τ 2 ∼ xT

i β + W
(
si , t

) + ε
(
si , t

)
,

where xi are site specific explanatory variables, β regression coefficients, W (si , t) is
a spatio-temporal random effect and ε(si , t) are iid random variables with variance
1/τ 2, representing the nugget effect.

There are many alternative ways of modeling the spatial, temporal variation in
W (si , t). One possibility is to assume the simple additive model

W
(
si , t

) = φi + δt ,

δt = ψδt−1 + wt ,

wt ∼ N
(

0, W 2
0

)
.

Sang (2008) suggests modeling σi and φi jointly by using coregionalization CAR
model:

• log σi = σ0 + λi ,
•

(λi , φi )
t = (A)(V1,i , V2,i ),

• (V1,i , V2,i ) are two independent CAR models,
•

A =
(

a11 0
a12 a22

)
. (6)

More complicated space-time structures for the scale and location parameters can
be given (Sang 2008). However, it is doubtful that the extremal data will be rich
enough to support such complicated structures. The choice of prior distributions are
discussed in Sang (2008). The choice of these prior distributions is crucial. Choosing
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non-informative priors for all the hyper-parameters may not work, resulting in non-
convergence of the chain.

If

yT +1 = (
Y

(
s1, T + 1

)
, ..., Y

(
sp, T + 1

))

represent the annual maxima of the process at the grid cells for the next time period,
then they can be obtained by updating samples from the predictive density

p
(

yT +1|Data
) =

∫
p
(

yT +1|�
)

p(�|Data)d�,

where � are all the model parameters. Implementation of these models, using
Metropolis-Hastings algorithm is given in Sang (2008).

The conditional independence assumption, by its nature, produces non-smooth
response surfaces. In order to remedy this situation and to relax the conditional inde-
pendence assumption, Sang (2008) suggests using the following equation for the first
stage of the hierarchy to obtain a smoother response surface:

Y (s, t) = μ(s, t) + σ(s, t)

k

(
V (s, t)k − 1

)
. (7)

Here, the conditional independence assumption implies that V (s, t) are i.i.d. unit
Frechet random variables. Sang (2008) suggests introducing extra dependence
structure in the likelihood through Gaussian copula by assuming that

V (s, t) = G−1 (
�

(
Z∗(s, t

))
,

where G is the unit Frechet, � is the unit Normal distribution function and Z∗(s, t)
is a spatio-temporal Gaussian process. Here, μ(s, t), σ(s, t), k are then modeled in
the usual manner explained above. Note that V (s, t) are standard Frechet random
variables and their dependence structure is completely determined by the Gaussian
copula

Cv

(
u1, u2, .., u p

) = Fv

(
�−1(u1

)
, ..., �−1(u p

))
,

where F(.) is the multivariate Gaussian distribution. This method of introducing
dependence is computationally very convenient, as there are many efficient compu-
tational algorithms on spatial Gaussian processes. It may also be a convenient way of
introducing dependence structure directly in the data, when the conditional indepen-
dence assumption cannot be justified. However, this Gaussian copula based approach
reduces the dependence structure between extreme values to second order moments
and has little connection with the asymptotic properties of multivariate extreme value
theory.
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3.2 Hierarchical GPD model

The fundamental drawback of using the conditionally specified GEV model is that
rarely there is available time-block maxima data. Often, we do not have sufficient
time replicate data at each location to construct block maxima data for inference
on the GEV model on each observation site. Also, BHM based on the GEV model
are not data efficient in the sense that they do not use all the relevant extremal data
coming from the tails. However, there is a very useful duality between modeling
peaks over a high threshold and block maxima, equivalently between the generalized
Pareto distribution (GPD) and the generalized extreme value distribution (GEV) in
classical extreme value theory. This duality extends to spatial extremes, permitting
more efficient use of spatial data, as Buishand et al. (2008) suggest: Consider the
following GPD-process

V1(s) = Y W (s), (8)

where Y is a random variable with Pareto distribution function

P(Y ≤ y) = 1 − 1

y
, y > 1.

Writing this distribution in the form

P(Y ≤ y) = 1 − (1 + (y − 1))−1 , y > 1

we see that this is GPD distribution with k = 1, σ = 1 and and a location parameter
μ = 1. Buishand et al. (2008) call this random variable, the unit GPD random vari-
able. Now, let W (s) be the latent spatial process in the representation (3). V1(s) is in
the domain of attraction of the unit max stable process given in (3) (Buishand et al.
2008), hence the asymptotic dependence structure of the max-stable processes V (s)
in (3) and V1(s) in (8) are identical and either process can be used for inference.

Note that the distribution of V1(s) conditional on W (s) = w(s), is given by

P (V1(s) ≤ v|W (s) = w(s)) = 1 −
[

1 + 1

w(s)
(v − w(s))

]−1

, v > w(s),

a GPD with k = 1, σ = w(s) and location parameter μ = w(s). Hence, W1(s)
introduces dependence as well as spatial variability to V1(s) through the scale and
the location (threshold) parameter of the GPD.

Note also that, for any s1 and s2 in A,

P
(
V1

(
s1

)≤v1, V2
(
s2

)≤v2|W
(
s1

)=w1,W
(
s2

)=w2
)= P

(
Y ≤min

(
v1/w1, v2/w2

))
,
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collapsing to the total dependence case. The dependence structure of the bivari-
ate random variable (V1(s1), V1(s2)) is then introduced through integration of this
degenerate distribution with respect to the joint distribution of W (s1), W (s2) by

P
(
V1

(
s1

)≤v1, V2
(
s2

)≤v2
) =

∫
P

(
Y ≤min

(
v1/w1, v2/w2

))

× d PW (s1),W (s2)

(
w1, w2

)
.

We would prefer not to work with the unit max-stable process V (s) or the process
V1(s) given in (8) which belong to the domain of attraction of this unit max-stable
process, but to work on a conditionally independent, hierarchical GPD process as
given below.

There will be many variations on how one can construct hierarchical models based
on excesses as will be shown for a specific data set in Section 4, but the following
hierarchical model can serve as a basis for other variations.

Suppose that X (s) is a spatial process and Z(s) is the excess of X (s) over a
sufficiently high but fixed threshold u, with

P (Z(s) ≤ z) = 1 −
(

1 + k(s)

σ (s)
z

)−1/k(s)

, (9)

Assume that the shape parameter k(s) in (9) is random but spatially static, whereas
the scale parameter is a spatially varying random function, resulting in the following
hierarchical model:

1.

p
(
z
(
s1

)
, ..., z

(
sp

)|k, σ
(
si

)
, i =1, ..., p

)

=
p∏

i=1

1

σ
(
si

)
(

1 + k

σ
(
si

) z
(
si

))−(1/k)−1

, (10)

2. Assume that we have some prior information for k, given in the form of the
density function p(k|α) for −∞ < k < ∞, where α are the hyper-parameters of
this prior distribution.

3. We model the scale parameter in (10) by

log σ
(
si

) = σ0 + x
(
si

)
β ′ + W0

(
si

)
,

where, W0(si ) is a Gaussian process N (0, �) and x(si ) are explanatory variables
and β are random regression coefficients having some specified prior distribu-
tions. � is a covariance matrix based on a valid, parametric covariance structure.
See for example, Banerjee et al. (2004) for a list of these valid covariance
structures.
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Once prior distributions for the hyper-parameters of the model are specified, the
above model becomes a fully specified hierarchical model, and well established
simulation based inference techniques can be used to estimate the model parameters.

In model (10), spatial dependence and variation are only introduced through the
scale parameter. However, it is possible to introduce extra spatial dependence and het-
erogeneity to the model through the shape parameter by adding another link function
of the form

k
(
si

) = k0 + αx′(si
) + W1

(
si

)
,

where W1(s) is another latent, Gaussian spatial process which may or may not be
independent of the latent process W0(s). One possible dependence structure for
W0(s) and W1(s) is to start with two independent Gaussian processes G1(s) and
G2(s) and write

W0(s) = G1(s),

and

W1(S) = a1G1(s) + a2G2(s),

for some parameters a1 and a2. This is the coregionalized CAR model (Banerjee et al.
2004).

Note that we are modeling the excesses over a high threshold, that is, we model

P
(
X

(
s1

)
> z1 + u, ..., X

(
sp

)
> z p + u|X(

s1
)

> u, ..., X
(
sp

)
> u

)
,

for any collection of locations s1, ..., sp and for some high, fixed threshold u. In
general, we may want to make the inference conditional on at least one component
exceeding the fixed threshold. However, implementation of the hierarchical model,
due to the complications in the likelihood (see Coles 2001) can be difficult. One
alternative is to start with a conditional approach to multivariate extremes suggested
by Heffernan and Tawn (2004) and adapt these methods to spatial extremes.

Often, one needs to make inference on the joint probability P(X (s∗
1 ) > u +

z1, .., X (s∗
p) > u + z p) for arbitrary locations s∗

1 ,...,s∗
p and in this case, apart from

estimating the joint distribution of the excesses, one will need an estimate of the joint
probability

P
(
X

(
s1

)
> u, ..., X

(
sp

)
> u

)
.

Empirical methods for estimating this probability may not be straightforward, thus
further extension of conditional independence assumption is needed to implement
simpler modeling strategies.
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Assume that there is a latent process W (s) such that conditional on W (s), large
values of X (s) over the threshold are independent, so that

P
(
X

(
s1

)
> u + z1, ..., X

(
sp

)
> u + z p|W

(
s1

) = w
(
s1

)
, ..., W

(
sp

) = w
(
sp

))
= P

(
Z
(
s1

)
> z1, ..., Z

(
sp

)
> z p|W

(
s1

) = w
(
s1

)
, ..., W

(
sp

) = w
(
sp

))
× P

(
X

(
s1

)
> u, ..., X

(
sp

)
> u|W (

s1
) = w

(
s1

)
, ..., W

(
sp

) = w
(
sp

))

=
p∏

i=1

P
(
Z
(
si

)
> zi |W

(
si

) = w
(
si

))
P

(
X

(
si

)
> u|W (

si
) = w

(
si

))
. (11)

Writing η(si ) = P (X (si ) > u|W (si ) = w(si )) as a spatially varying random param-
eter, we suggest the following hierarchical model for making inferences on the joint
posterior probability P

(
X (s1) > u + z1, ..., X (sp) > u + z p

)
:

1. Likelihood:

p
(
x
(
s1

)
, ..., x

(
sp

)|k, σ
(
si

)
, η

(
si

)
, i = 1, ..., p

)

=
p∏

i=1

η
(
si

) 1

σ
(
si

)
(

1 + k

σ
(
si

) z
(
si

))−(1/k)−1

, (12)

2. Since η(si ) ∈ (0, 1), η(si ) can be connected to the latent process W (si ) through
the logit function:

log
η
(
si

)
1 − η

(
si

) = η0 + W
(
si

)
.

Specification of the other parameters would be the same as in the previous model.
Note that for any si , in principle, η(si ) is a small positive number, hence prior
distributions of the parameters in the link function need to be finely tuned, oth-
erwise it is very unlikely that the chain would converge. In general, we would
recommend simplification by assuming that η(si ) = η and η ∼ Beta(0.1, 10).

The choice of prior distributions may have a big impact on convergence and it
may not be possible to use vague priors for all the parameters and hyper-parameters.
Another possible complication is the large dimension of the data set, although, in
principle, this should not be a problem for data sets appearing in extreme value prob-
lems. However, data sets having more than 150 observations will involve inversion of
matrices more than 150 × 150 in each updating iteration, which often results in fail-
ure in convergence. Banerjee et al. (2004) discuss ways of overcoming this dimension
problem.

4 A case study

In many fire regimes, a small number of very large fires is responsible for the vast
majority of the area burned and of the social and environmental damage caused.
Therefore, large wildfires are a relevant public policy issue, especially considering
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that the frequency of extremely severe fire weather may increase as a consequence
of global warming. A review of the study of wildfire extremes can be found in de
Zea Bermudez et al. (2009) and Mendes et al. (2008), where Bayesian hierarchical
modeling strategies are discussed.

The data consist of 36180 records of wildfires larger than 5ha, observed in
Portugal between 1975 and 2005. Fire perimeters were mapped from Landsat 5
Thematic Mapper and Landsat 7 Enhanced Thematic Mapper satellite imagery, with
30 m spatial resolution, to a geographical scale of 1:100.000. About 170 satellite
images, acquired annually after the end of the summer fire season, were analyzed
over the 31-year period.

The study area corresponds to mainland Portugal (see Fig. 1) located between
37◦N and 42◦N latitude and between 6◦W and 10◦W longitude. The study area is
stratified into 18 regions, representing a compromise between the Portuguese Forest
Service standard procedure of organizing statistical fire data by administrative units
and the natural regions classification of Portugal.

A similar data set was previously analyzed in Mendes et al. (2008). However, we
revisit the data set and extend this study in different directions:

1. During the exceptional fire season of 2003, several large fires coalesced into
huge, continuous fire scars, corresponding to multiple individual fire events. It is

Fig. 1 18 Administrative
regions of Portugal.

Map of Portugal
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16−Viana

3−Braga

2−Beja

1−Aveiro

4−Bragança

5−Castelo Branco

6−Coimbra

7−Évora

9−Guarda

10−Leiria

11−Lisboa
12−Portalegre

13−Porto

14−Santarém

15−Setubal

17−Vila Real

18−Viseu
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unfeasible, using post-fire season Landsat imagery, to split these composite fire
scars into their individual components. Field data from both the Forest Service
and the Civil Protection Service were also found to be inadequate to accomplish
this task, due to geographical and/or temporal inaccuracies and missing informa-
tion. Thus, extra work was carried on using daily NOAA/AVHRR imagery, at
1km spatial resolution to unravel these cases. All fire scars larger than 1000 ha
in the database were checked, and these very influential outliers were split. We
believe that this improved data set will give more reliable results in estimating
the tails. Also data for 2005 became available and is now introduced into to the
model.

2. In Mendes et al. (2008), it is assumed that the shape parameter k should lie in
(0, 1). This prior information was introduced to the model by using a logit link
function for the spatially varying shape parameter in the hierarchy. This prior
information was due to the expert opinion that the fire size distribution is heavy
tailed but a fire size distribution with infinite mean would not be compatible with
their beliefs. However, there is very strong empirical evidence that in Portugal the
fire size distributions have heavy tails (de Zea Bermudez et al. 2009), which are
compatible with infinite mean fire size distributions. Reed and McKelvey (2002)
also give theoretical justification for possible heavy tailed behavior for fire sizes.
They show that as x → ∞

P(X (s) ≥ x |X (s)is finite) ∼ x−α,

if and only if as x → ∞

x
ν(x)

μ(x)
→ x−α,

where, ν(x) and μ(x) are respectively the extinguishment and growth rates of
a fire with size x . It is clear from this necessary and sufficient condition that
even fire regimes whose extinguishment rates are larger that their growth rate can
produce heavy tailed fire size distributions. When the problem is introduced in
this form, experts agree on models which accommodate heavy tailed fire sizes,
possibly with infinite means. Hence, in this paper, we substitute the logit link
function for the shape parameter by the logarithmic link function.

3. An areal model (typically a spatial Markov chain) based on 18 regions would be
sufficient to capture the spatial variation due to synoptic meteorology conditions
(Mendes et al. 2008). We now provide a more complicated hierarchical model
with extra latent spatial structure to take into account smooth changes within
each region representing small scale variations such as land topography, land use
and fire prone vegetation.

4. There is strong empirical evidence that the extreme fire sizes change over time
and show temporal (annual) dependence. It is believed that this is due basically to
the availability of fire-prone vegetation throughout the years. In this version, we
also add to the model, latent temporal random effects to account for this temporal
variation.
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4.1 Model

Let N j (t) denote the number of fires with sizes over 250 hectares, observed in region
j , during year t . The threshold of 250 hectares is chosen after careful analysis as
the best compromise between threshold stability and number of data points for infer-
ence. In this paper we will not attempt to model the point process of fires above 250
hectares but only the excess fire sizes over the threshold of 250 hectares conditional
on the observed counts (N j (t) = n j (t), j = 1, ..., 18, t = 1, ..., 31), the number of
fires in excess of 250 hectares in each region between 1975–2005. See Mendes et al.
(2008) for Poisson-GPD models.

Let z(si j , t) denote the excess over 250 hectares of the i th fire in the j th region
in year t , located at si j ,which is the centroid of the observed fire scar. Let z(s) =
{z(si j , t), i = 1, 2, ..., n j (t), t = 1, ..., 31; j = 1, ..., 18},
1. Level 1: likelihood

p
(
z(s)|(n j (t), k

(
si j , t

)
, σ

(
si j , t

)
, j = 1, ..., 18, t = 1, ..., 31

)

=
31∏

t=1

18∏
j=1

n j (t)∏
i=1

p
(
z
(
si j , t

)|k(
si j , t

)
, σ

(
si j , t

))
, (13)

where,

p
(
z
(
si j , t

)|k(
si j , t

)
, σ

(
si j , t

))=G P D
(
k
(
si j t

)
, σ

(
si j , t

))

= 1

σ
(
si j , t

)
(

1+ k
(
si j , t

)
σ
(
si j , t

) z
(
si j , t

))−(1/k(si j ,t))−1

.

(14)

2. Level 2: link Functions

(a)

log
(
σ
(
si j , t

)) = σ0 + ησ ( j) + δσ (t) + Wσ

(
si j , t

)
(15)

(b)

log
(
k
(
si j , t

)) = k0 + ηk( j) + δk(t), (16)

where

• k0 and σ0 are independent a priori with flat priors, that is, they are uniformly
distributed over the real line.

• ησ ( j), ηk( j) are independent, nearest neighbor CAR models (Banerjee et al.
2004) with precision hyper-parameters τσ and τk , representing the large scale
spatial variations.
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• δσ (t) and δk(t) are independent latent processes representing temporal
(annual) variations, having precision hyper-parameters τδσ and τδk respec-
tively. We use a second order random walk prior given as car.normal
distribution in GeoBUGS (Thomas et al. 2004). Temporal dependence is
assumed to exist due basically to the annual availability of fire prone veg-
etation. For example, one may expect that a year with a high rate of large
fires would be followed by a year with smaller fires due to the unavailability
of fire prone vegetation. Since in Portugal the cycle of growth for fire prone
vegetation is around 2–3 years, a second order random walk is preferred to
first order random walk.

• Wσ (si j , t) is a latent spatial moving average process representing the small
scale variation, such as the local land topography and concentration of fire
prone vegetation in each year, given by

Wσ (s, t) =
�∑

k=1

ϕ
(
s, sk,t

)
ε
(
sk,t

)
, (17)

where, ε(sk,t ) are iid N (0, τε) and sk,t , k = 1, 2, .., � are � excess fire loca-
tions (possibly from different regions) nearest to the excess fire location s in
year t . For computational convenience, we chose � = 5. Alternatively, one
could choose all fires within a fixed distance from the fire located at s, but
this would unnecessarily complicate the analysis. The weights are Gaussian
kernels given by

ϕ
(
s, sk,t

) = 1

b2
exp

[
− 1

b2

∥∥s − sk,t
∥∥2

]
.

Note that for each year, the location of excess fires, namely s as well as the
nearest five neighbors sk,t , are different and are generated by a random point
process in space. For simplicity, we call Wσ (s, t) the moving average kernel.

3. Level 3: hyper-parameters
τσ τk , τδσ , τδk and τε are all independent precision hyper-parameters. We

assume diffuse Gamma priors for all these parameters except for τε . For (τε)
−1,

we use an informative uniform distribution over (0.01, 0.20). A non-informative
prior on this parameter causes non-convergence of the chain. This prior distribu-
tion allows Wσ (s, t) to have a scale of variability in the same order as the other
random effects ησ (s) and δσ (s). For the band-width parameter b, we assume a
uniform distribution between 1 and 12 kilometers. This is a reasonable bandwidth
for small scale variation.

More complicated space time dependence structures can be given in the link
functions See for example, Sang (2008). However, we will not pursue these
structures.

The choice of priors evidently affects the convergence of the MCMC method.
Banerjee et al. (2004) suggest also that assuming noninformative priors for all the
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Fig. 2 Estimated shape
parameter (posterior means)
by region and by time.
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hyper-parameters may result in non-convergence of the chain. They suggest infor-
mative priors for the precision hyper-parameters. Chavez-Demoulin and Davison
(2005) suggest re-parametrization of the GPD parameters by τ = σ(1 + k), whereas
Castellanos and Cabras (2006) look at the effect of this re-parametrization on the
MCMC method used. A small sensitivity analysis showed that changes in priors
for the hyper-parameters do not have an impact on the estimated values of k. How-
ever, careful choice of the prior for τε is needed since it affects the variability in the
posterior distribution of σ .

4.2 Results

Apart from the model given in Section 4.1, we have implemented several other alter-
native models to evaluate the impact of the small scale and the temporal latent factors,
as well as the log-link function versus logit function for the shape parameter k(s, t).
The benchmark model given in Section 4.1 performed better than other alternatives.1

We will not represent results on comparative studies; however, they are available
upon request.

Yearly estimated shape parameters (means of the corresponding marginal poste-
rior distributions) for the 18 regions show that Region 8 (Faro) stands alone with
its very heavy tailed behavior. Consistently it has values of k above 1. Also region
12 (Portalegre) has estimated values of k between 0.5 and 1. There are clusters of
regions according to the values of k; see Fig. 2 which shows the variation of the
posterior means of k (Bayesian estimated values) for each region during 31 years.
The analysis of these 31-year time series of the estimated shape (k) parameters does

1A more detailed and complete analysis of this data set can be found in an unpublished research report by
the authors available by request.
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not seem to indicate annual, trend like movements. However, it suggests a cyclical
behavior of extreme fire sizes, with a frequency of 2 to 3 years, although a longer
time series may be needed to assess the robustness of this pattern by using formal
statistical procedures. If it really exists, it is more likely to result from post-fire vege-
tation response dynamics than from meteorological or anthropogenic factors. See de
Zea Bermudez et al. (2009) for similar findings.

Figure 3 shows the spatial variation of the estimated shape parameters which
reports the posterior means and posterior standard deviations of k, averaged over
31 years.

Posterior means and standard deviations for σ are higher in the regions of the
center and costal areas between region 11 (Lisbon) and 13 (Porto). Figure 4 shows
the spatial variation of the estimated scale parameter (posterior means) σ , averaged
over the 31 years.

Year 29 (2003) had many large fires above 250 hectares with large variability in
size, particularly in regions 5, 12 and 14. This variability is captured by the latent
moving average kernel, explaining the small-scale variation. Note that the shape
parameter is common to all fires within a region for a given year, and without the
moving average kernel in the model there would have been no internal variation in
the estimated quantiles.

Figure 5 reports on the posterior means of latent temporal components (δk, δσ ).
We observe clearly the cyclical temporal effect both for k and σ . The increasing

temporal effect on the values both for k and σ during the recent years may be due
to the fact that both in 2003 and 2005, there were many large fires. Note also that
there is an apparent negative relation between the temporal effects of k and σ . This

Fig. 3 Spatial variation of the
estimated shape parameter.
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Fig. 4 Spatial variation of the
estimated scale parameters.

Posterior means 
 of sigma averaged over time

under 270
270 − 350
350 − 400
400 − 450
over 450

Posterior standard deviation 
 of sigma  averaged over time

under 90
90 − 120
120 − 150
150 − 250
over 250

is expected since, increasing the scale parameter lengthens the tail as does increasing
the shape parameter and so if one parameter is increased the other needs to decrease to
roughly unchange the upper tail, consequently they will be negatively dependent (See
Coles and Tawn 1996). The latent temporal effects clearly capture this dependence.

Fig. 5 Latent temporal effects. temporal effects for sigma and k
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4.2.1 Characterization of the sources of variability
Different sources of variability in the large fire sizes can be studied by a strategy
similar to that proposed by Gelman and Pardoe (2005). See also Cocchi et al. (2007).
The decomposition of the variance according to the different sources of variability
can be studied by decomposing the expected variation in each of the state equations
k and σ in the second hierarchy:

E
[
var

(
log k|Data

) = E
[
var

(
k0|Data

)] + E
[(

var
(
ηk |Data

)] + E
[
var

(
δk |Data

)]
+ Respective covariances, (18)

and

E
[
var

(
log σ |Data

) = E
[
var

(
σ0|Data

)] + E
[(

var
(
ησ |Data

)] +
= E

[
var

(
δσ |Data

)] + E
[
var

(
Wσ |Data

)]
+ Respective covariances. (19)

Note that, while the respective terms a priori are independent, they may be depen-
dent a posteriori. However, careful analysis of the samples from these posterior
distributions showed that these covariances are negligible, so that the variances in
(18) and (19) help us to evaluate the percentage explained by the spatial and temporal
effects. Calculation of the posterior variances revealed that

1. The percentage of variation in log k explained by k0 is 11.7%, the percent-
age of variation explained by the spatial latent factor ηk is 55.3%, whereas the
percentage of variation explained by the temporal latent factor δt is 33%.

2. The percentage of variation in log σ explained by σ0 is 0.49%, whereas the influ-
ence of the temporal latent factor δσ is 2.7%. The influence of the large scale
variation CAR model for the regions is 4.4%, whereas the influence of the small
scale moving average kernel is 92.4%.

High value of percentage explained by the kernel is due to the fact that the shape
parameter is fixed in each region and hence the only way the model can adapt to
the data is by varying the scale parameter. Note that the model without the local
moving average kernel would attribute the same risk for sites in the same region,
regardless of their location, since not only k, as well as σ estimates would be only
region dependent. For instance, for the year 2003, the probabilities P(X > 1000|X ≥
250), using the model without the moving average kernel were estimated as

P
(
X > 1000|X ≥ 250

) =
⎧⎨
⎩

0.412, Region 5;
0.414, Region 12;
0.381, Region 14.

The effect of the kernel is visible in the estimation of the probabilities. Without this
small scale random effect in the model, the risk of a large fires would have been
underestimated.
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4.2.2 Final conclusions
Conditional independence which is the basis of hierarchical modeling is a very strong
assumption which may not be easily verified, and it may not represent correctly the
local extremal behaviour. When the objective of the data analysis is to estimate return
levels or kriging of extreme values in space, capturing the correct dependence struc-
ture between the extremes is crucial and max-stable processes are better suited for
these purposes. However in this work, our primary interest is to explain the sources
of variation in extreme fires and in this case, Bayesian hierarchical modeling is a
very flexible tool due to the ease with which random effects are incorporated in the
model. Therefore, the choice of the modeling strategy will depend on specific data set
and the purpose of the study and the benefits of using each of the strategies must be
carefully weighted. For example, since in our case study, the data are not generated
at fixed observation locations, the model parameters can not be estimated locally to
transform the data. On the other hand, spatial heterogeneity is too strong to ignore.
Hence, it is not clear how one can make inference on a max-stable process based on
this data set. The conditional independence assumption on which we base our hierar-
chical model cannot be verified, but overall it is seen as being fairly consistent with
the mechanism that generates the data. Therefore, it is our belief that the hierarchical
modeling strategy is more suitable for the data set that we analyze.

In our model, we used simple, separable space-time dependence structures,
although more complicated structures can be used. The important advantage of the
use of these simple structures is that the models can be run by using the WinBUGS
software (Lunn et al. 2000). Ideally, one should use a point referenced local model in
dealing with small-scale variations. However, this would bring a very heavy compu-
tational burden on the model. The purpose of the model, we suggest, is to explain the
sources of variation in extreme fire events; it is not particularly suited for predictive
purposes. For prediction, one should have information on explanatory variables such
as land topology, land use, spatial and temporal variation of fire prone vegetation as
well as on meteorological variables such as temperature, wind speed, wind direction,
humidity etc. In principle, introduction of these explanatory variables in the model
through the link functions would not create extra difficulty. However, at present no
such information was available for the study.
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