
Dissertação para obtenção do Grau de Mestre em  

Exercício e Saúde

Partial Scanning Techniques to Assess
Body Composition in Broad Individuals using DXA

A Validation Study for Hologic Explorer-W densitometers

 

Orientadora: Professora Doutora Analiza Mónica Lopes de Almeida Silva

 

Júri:

Presidente 

Professora Doutora Analiza Mónica Lopes de Almeida Silva 

Vogais 

Professora Doutora Maria Helena Santa Clara Pombo Rodrigues

Professora Doutora Diana de Aguiar Pereira dos Santos  
 

 

 

 
Andreia Vieira Moço  

2014 

 
 

 

 
 
 

 
  

 

 

 

Universidade de Lisboa

Faculdade de Motricidade Humana

 

 

 
 

 





Abstract

Background/Objectives: Dual-energy X-ray absorptiometry (DXA) is a standard technique

for whole-body composition analysis with a known limitation: the table dimensions of DXA

scanners prohibit the assessment of broad individuals. Newer DXA instruments have an

extended active scan area, but these devices are still unavailable in most research facilities

and clinics. To solve this methodological gap in the existing equipment, the aim of this study

was to validate and compare partial scanning techniques to assess whole-body composition

of broad individuals in Hologic Explorer-W densitometers.

Subjects/Methods: The sample consisted of 198 participants (27.8 ± 10.1 yrs; 61% women),

including normal weight, overweight and obese non-athletes and athletes (body mass index,

BMI: 17.0 – 40.1 kg/m2). A single scan was performed in an Hologic Explorer-W fan-beam

densitometer in each participant according to standard procedures. The whole-body scan

was analyzed to obtain estimates for the reference procedure. The same scan was reanalyzed

to obtain estimates for three partial scanning techniques: RSU) the left upper limb is set

equal to the right side limb; RSUL) the left upper and lower limbs are set equal to the right

side; HS) an half-scan is taken from the right side of the body and the contralateral side is

set equal to it. Bone mineral content (BMC), lean soft tissue (LST) and fat mass (FM, %FM)

were considered. Multiple regression analysis, mean group comparison, linear regression

and agreement analysis, including the inspection of the concordance coefficient of correlation

(CCC), were performed for the BMC, LST, FM and %FM compartments.

Results: RSU was the best performing strategy of this study. The estimates for BMC, LST,

FM and %FM from RSU were significantly different from those of the reference whole-body

scans, though differences were small (0.010 kg, 0.172 kg, -0.026 kg and -0.10% for BMC, LST,

FM and %FM, respectively). The alternative procedures explained more than 99% of the

variance of the reference scan with low limits of agreement (RSU: -0.010 to 0.031 kg, -0.109 to

0.453 kg, -0.219 to 0.167 kg, and – 0.35 to 0.15% for BMC, LST, FM and %FM, respectively).

The CCCs were greater than 0.99 for all compartments.

Conclusions: Regardless of BMI, athletic status and gender, partial scanning techniques are

valid and simple solutions to be used in individuals broader than the DXA scan area. RSU is

the recommended technique, followed by RSU. However, individual errors for BMC and LST

may be higher in athletes engaged in lateral dominant sports practice.

Keywords: DXA; body composition; athletes; obesity; partial scan.
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Resumo

Background/Objectivos: A densitometria radiológica de dupla energia (DXA) é uma técnica

standard para avaliação da composição corporal a nível de corpo inteiro com uma limitação

identificada: as dimensões da área de scan dos densitómetros impedem a sua utilização

em indivíduos largos. Apesar da largura dos equipamentos ter sido estendida em versões

recentes, os mesmos ainda não estão disponíveis na maioria dos laboratórios e clínicas.

Reconhece-se por isso pertinência no desenvolvimento de abordagens que solucionem esta

limitação metodológica nos densitómetros existentes, sendo o objectivo do presente estudo a

validação e comparação de técnicas de scanning parcial para avaliação da composição corporal

de indivíduos largos e em densitómetros QDR Explorer-W.

Sujeitos/Métodos: A amostra consistiu em 198 sujeitos (27.8 ± 10.1 anos; 61% mulheres),

incluindo atletas e não-atletas com peso normal, excesso de peso e obesidade (índice de massa

corporal, IMC: 17.0 – 40.1 kg/m2). Cada sujeito foi sujeito a uma avaliação de corpo inteiro num

densitómetro Hologic Explorer-W (fan-beam) de acordo com procedimentos estandardizados.

Os scans de corpo inteiro foram analisados para obter as estimativas de referência, e foram

novamente analisados para obter estimativas para três técnicas de scanning parcial: RSU)

assume-se que o membro superior esquerdo é igual ao direito; RSUL) os membros superior e

inferior esquerdos são considerados iguais aos direitos; HS) assume-se que a totalidade do

lado esquerdo, seccionado pelo plano sagital, é igual ao lado direito. As variáveis de interesse

do estudo foram conteúdo mineral ósseo (CMO), massa isenta de gordura e osso (MIGO)

e massa gorda (MG, %MG). Para cada uma destas, efectuou-se uma abordagem validativa

contemplando comparação de médias de grupos, regressão linear e análise de concordância,

incluindo o coeficiente de concordância da correlação (CCC) .

Resultados: RSU foi a técnica com melhor desempenho. As estimativas para CMO, MIGO,

MG e %MG por RSU foram significativamente diferentes dos valores de referência, ainda as

diferenças tenham sido pequenas (0.010 kg, 0.172 kg, -0.026 kg e -0.10% para CMO, MIGO,

MG e %MG respectivamente). As técnicas alternativas explicaram > 99% da variância dos

scans de referência, com baixos limites de concordância (RSU: -0.010 to 0.031 kg, -0.109 to

0.453 kg, -0.219 to 0.167 kg e – 0.35 to 0.15% para CMO, MIGO, MG e %MG respectivamente).

Os CCCs foram > 0.99 para todos os compartimentos e %FM.

Conclusão: Independentemente do IMC, tipo de prática desportiva e género, a técnicas de

scanning parcial são soluções válidas e simples para avaliar indivíduos largos em densitómetros

QDR Explorer-W. RSU é a opção recomendada, seguida por RSUL. No entanto, os erros

individuais para BMC e MIGO poderão ser superiores em praticantes de desportos pautados

pelo uso preferencial de membros dominantes.

Palavras-Chave: DXA; composição corporal; atletas; obesidade; partial scan.
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1Introduction

„An obese man is dead after he refused to have an X-ray

taken in a machine for zoo animals because he was too

large for one at a Hamburg hospital (. . . ) Because

[Thomas Lessmann, 230 kilos] couldn’t fit into the

hospital’s X-ray machine, doctors there recommended

that he go to the nearby Hagenbeck animal park (. . . )

“It sounded as if they wanted to mock us,” his wife

Petra Lessmann told the paper.

— The Local (2009)

Because DXA was primarily developed for the diagnosis of osteoporosis, the need for

scanning and analyzing broad subjects was not foreseen. Although the scanning width

of most DXA machines (60–69cm) is appropriate for the elderly, it makes it impossible to

evaluate individuals whose width exceeds the active area of these systems. This size cons-

traint can be problematic when one needs to assess broad individuals that would benefit

from accurate body composition analysis, namely the obese or muscular athletes, exam-

ples of which are bodybuilders and rugby players (Olds, 2001; van Marken Lichtenbelt

et al., 2004). Moreover, in research studies whose purpose is to characterize a population

and/or to develop population-specific field body composition equations, the exclusion or

improper evaluation of individuals that are too wide for the table of the equipment is

unacceptable. The general and athletic population’s trend of increasing body proportions

exacerbates this problem even further. In order to overcome DXA scan width limits for

broad subjects, manufacturers developed a system whose width limits are broader and

whose weight limit is higher (GE Helthcare, Inc., 2012). However, in many laboratories

and clinics, this equipment is not available. Alternatively, partial scanning techniques

have been proposed and validated. Such approaches do not attempt to measure body
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region(s) that do not fit into the active scan area of the densitometers; instead, the missing

region(s) are set equal to the symmetrical one(s) at the contralateral side. More complex

approaches based on partial scan summation —thereby requiring more than one scan—

have also been proposed and validated in athletic populations (Misic & Evans, 2006; Nana

et al., 2012). However, the need for more than one scan per subject comes at the cost of

increased evaluation times and also added complexity for scan analysis. These drawbacks

limit the practical interest of summation techniques and make it an unattractive option in

comparison to their partial scanning counterparts.

Attempts to measure broad subjects in normal size DXA systems were pioneered by

Tataranni & Ravussin (1995). The authors proposed an half-scan strategy that partitioned

the body in two halves according to a sagittal line positioned along the middle of the

body. In this manner, the whole-body measurements were estimated by doubling the

analysis results of just one side of the scan. With the advent of the iDXA densitometer

(GE Lunar Medical Systems, Madison, WI), these restraints have been shifted upward,

thereby making it possible to perform complete whole-body scans in broader and heavier

subjects. However, there are individuals who keep exceeding the table limits of the iDXA

and for whom partial scanning techniques are still appealing options; this reason explains

why Lunar densitometers include an half-scanning analysis mode in the iDXA devices. In

contrast, Hologic devices implement a “reflection” technique that only needs to exclude

left limb(s) from the scan (Hangartner et al., 2013; Sherman, 2011). Despite being already

available for automated use in commercial DXA analysis programs, validation studies on

this topic are scarce. For reflexion and half-scanning, only one abstract and three papers

were published that support the use of partial scanning in broad populations. However,

some studies would have benefited from higher sample sizes so as to account for the

variability of certain populations’s physiques, including muscular athletes. Also, by the

time results were published, the algorithms implemented for image acquisition and anal-

ysis were disclosed and not standardized across manufacturers (Shepherd et al., 2012a).

Therefore, the external validity of such studies is not guaranteed for other equipments

(and even software versions) than the tested ones.

2 Chapter 1 Introduction



Original contributions The methodological gaps mentioned motivated us to tackle the

issue of individuals that exceed the scan width of Hologic Explorer-W densitometers,

while taking the possible implications of gender and sports practice into account. Spe-

cifically, this investigation addressed partial scanning based techniques for determining

whole-body composition variables. Using a dataset comprising DXA scans from adult

athletes and non-athletes of both genders, the estimates derived from partial scans were

validated against reference (whole-body) scans. The central theme, present throughout

this investigation, was the validation and comparison of two partial scanning approaches:

half- and reflexion-scanning. These techniques are similar in the sense that they substan-

tiate its inferences on missing body regions by side-to-side symmetry. However, they are

conceptually different in the anatomical regions required for extrapolation to the contra-

lateral side; whereas half-scanning requires extrapolation of body composition data from

one “half-side” to another, reflexion-scanning only requires the estimates for the right

limb(s) to be “reflected” to the left side.

Published abstract The present investigation resulted in one poster communication:

Moço, A., Matias, C. N., Santos, D. A., Sardinha, L. B., & Silva, A. M. (2014). A Par-

tial Scanning Technique for the Assessment of Broad Individuals using DXA. The 12th

International Symposion on Body Composition (ISBC), Cascais, Portugal.

Thesis Structure This thesis comprises six chapters, including this introduction. Chap-

ter 2 sets the context for the application of DXA in the field of body composition, intro-

ducing the molecular level of analysis. Then, the physical principles and technological

advances of the DXA methodology are highlighted, as well as its inherent limitations.

A discussion follows on the validity and precision with which DXA systems determine

body compartments in different populations. The chapter also justifies the need for partial

scanning techniques to evaluate broad individuals in DXA machines, exploring where a

contribution to knowledge may be situated. In Chapter 3, the methodological approach

to this research project is described and explained. Firstly, considerations are made regar-

ding how DXA scans were collected. Then, this chapter describes the partial scanning

techniques that this thesis will address and describes the statistical approach that was ap-

plied to its validation. The main research findings are presented in Chapter 4, including

validation results. In Chapter 5, results are discussed and limitations are identified. To

conclude, Chapter 6 highlights the main findings and recommends further research.
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2Dual Energy X-Ray Absorptiometry

„Users do not care about what is inside the box, as long

as the box does what they need done.

— Jef Raskin

about Human Computer Interfaces

This chapter starts by providing a theoretical background on the field of body composition

research, with an emphasis on the molecular model of dual energy X-ray absorptiometry

(DXA). Fundamental physical principles and assumptions underpinning the application of

DXA for whole-body composition assessment are discussed in Sections 2.2 and 2.3. Since

validity and precision are paramount to the clinical value of body composition methods,

these concepts are addressed in Sections 2.4 and 2.5. In particular, the focus is on the

performance of DXA systems to determine body compartments in different populations.

Then, Section 2.6 revises the literature on partial scanning solutions to overcome the

width limit of DXA instruments. A brief discussion on morphological asymmetry was

also included, hoping that it contributes to a better understanding of the limitations of

the partial scanning techniques discussed throughout this thesis. The final portion of this

chapter is devoted to the objectives of this investigation.

2.1 Background
The study of human body composition is directed towards the in vivo quantification of

body components, their connections and also changes in these components as a response

to influencing factors such as nutrition, exercise, growth, development, aging and selected

diseases. Body composition variables, examples of which are percent fat (%FM), muscle

mass and bone content, have been proven effective in diagnosing and/or stratifying the

risk of numerous health conditions, including cardiovascular disease, diabetes, certain

types of cancers, osteoporosis and osteoarthritis (Sardinha & Teixeira, 2005). The field

of body composition can be subdivided into three distinct, interconnected areas: body

composition rules, methodology and biological factors that influence body composition
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(Heymsfield et al., 1997). The body composition rule area organizes body components

into distinct levels of increasing complexity, where the higher levels are obtained by

progressive subdivision of body mass into more compartments (Wang et al., 1992). As

shown in Table 2.1, five levels were proposed: atomic, molecular, cellular, tissue system

and whole-body. Each level refers to specific compartments and measurement techniques,

examples of which are also provided in Table 2.1.

Table 2.1: 5-Level Model of body composition research: components and examples of methods
used to their determination [APD, Air displacement plethysmography].

LEVELS COMPONENTS METHODS

Atomic O, C, H, other (N, Ca, P, K, Na, Cl) In Vivo Neutron activation analysis

Molecular Lipids, Water, Proteins, Multicompartment models (DXA,

Glycogen, Minerals ADP, Tracer dilution), DXA

Cellular Intracellular water Bioimpedance analysis

Extracellular Fluid and Solids Dilution techniques

Tissue system Adipose tissue, Skeletal muscle Computerized axial tomography, Mag-

Visceral Organs & Residual, Skeleton netic Resonance Imaging, Ultrasound

whole-body Weight, BMI, Skinfolds Anthropometry

The 5-level model provides the opportunity to clearly define the concept of body

composition steady state. Although each level and its multiple compartments are distinct,

unless the homeostasis of the body is interrupted, the assumption of stability implies that

biochemical and physiological connections exist, namely constant (or relatively constant)

relations between components across time, within an individual and between different

individuals. This concept is important to the application of methods for determining body

composition, since an unknown component can be estimated with another component or

measured property. An example is the application of DXA in body composition, where

the characteristic attenuation of X-rays by different tissues to low and high energy photons

make it possible to estimate its composition.

If the needs for reliable, easy-to-get and clinically relevant data were key reasons

for research in the field of body composition, the advent of new technologies provided

the opportunity to accomplish so. The result is an exponential increase in the amount

of publications on body composition over the last 60 years, most of them addressing

methodological issues (Sardinha, 2012). Heymsfield et al. (2005) define body composi-

tion methodology as “an area of investigation dedicated to the study and application of

methods used to quantify body components from atomic to whole-body levels”. The

6 Chapter 2 Dual Energy X-Ray Absorptiometry



in vivo quantification of body components and their quantitative variation in response to

various influencing factors such as nutrition, exercise, growth, aging and selected diseases

is an imperative aspect of contemporary practice of health, nutrition, exercise and sports

related professionals (Ellis, 2000; Heymsfield et al., 1997; Pietrobelli et al., 2001). Despite

having reached a “mature state” (Heymsfield et al., 2005), this field is still not without

unmet needs, particularly as it pertains to the assessment of individuals with extreme

phenotypes (Santos et al., 2014). The obese and athletes are among such paradigmatic

examples that still present technical challenges.

Increasingly obesogenic environments render difficult the adoption of healthy life-

styles, the consequence being the fast growing prevalence of obesity among the world

population. Obesity is a serious threat to public health, and is even regarded by the World

Health Organization as an epidemic in countries all over the world due to its associations

with chronic disease and loss of overall health (Chopra et al., 2002). An implication of

this scenario is the fact that the assessment of body composition of the obese has become

commonplace in the clinical setting and also in research facilities. On the one hand, sim-

ple indicators like Body Mass Index (BMI) and waist circumference have proven to be

effective indicators of health with functional implications to metabolic and cardiovascular

disease stratification (WHO Working Group, 1986). On the other hand, more powerful

imaging-based examinations have led to valuable additional insights for health status as-

sessment, as are the adipose tissue distribution and the diagnosis of states like sarcopenia,

osteoporosis or a combination of both (Ergun & Rothney, 2012). The urgency of effective

counteracting measures justifies active research on the development of strategies on diet,

physical activity, exercise adherence and health. Research on these topics often require

samples of obese individuals and the accurate assessment of their body composition is

paramount to the quality of the study designs (Silva et al., 2008).

Because sports performance is significantly affected by body composition, and be-

cause training induces body composition changes, there is also considerable interest in

the evaluation of body composition in sport (Ackland et al., 2012). Applications include

the assessment of the progress and effectiveness of nutrition and/or training interventions

which aim to assess fat or lean mass changes, and, to a minor extent, the characterization of

athletic populations and validation of body composition field methods (Burke & Deakin,

2010; Harley et al., 2011). Although frequently used in general populations, BMI alone or

even bioimpedance based methods are not suitable to characterize body composition in
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athletes, as their accuracy is compromised by deviations from the reference population

and the individual errors may be unacceptably high (Burke & Deakin, 2010). Anthropome-

try filled this methodological gap and established itself as the most popular field method

to assess body composition method in athletes, with 67% of the professionals surveyed by

the International Olympic Committee reporting its use (Meyer et al., 2013). However, this

approach requires specific population equations that convert skinfold thickness values

into whole-body percentage fat mass and these can only be developed based on criterium

methods, preferably the four compartment model (4C).

While the 4C model has been recommended for its accuracy and precision, there

are drawbacks that prohibit its implementation in clinical settings and even in some

research designs. The requirements for more equipment, time and tester expertise make it

advisable to look for alternatives that can also deliver “criterium” level performance while

allowing routine assessment of body composition. In this regard, imaging techniques are

the prime candidates, as they measure several independent compartments accurately in

just one evaluation moment. Among them, the only imaging methods that can accurately

estimate clinically relevant compartments are DXA, computed tomography (CT) and

magnetic resonance imaging (MRI). “However, DXA is low dose in comparison to whole-

body CT scanning and inexpensive compared to MRI” (Shepherd, 2014), thereby justifying

its relevance in body composition assessment. Time efficiency is an additional advantage

of the DXA method that also contributed to its use in research facilities, clinics and

even large multicenter studies, including the National Health and Nutrition Examination

Survey (Centers for Disease and Control, 2000a).

DXA at the molecular level of analysis Figure 2.1 depicts the DXA model. According to

the conceptual framework of Wang et al. (1992), the DXA methodology is at the molecular

level of analysis and provides simultaneous estimates for fat mass (FM), lean soft tissue

(LST) and bone mineral content (BMC).
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Figure 2.1: DXA three compartment (3C) molecular model comprising fat, lean soft tissue and
bone minerals. Adapted from Pietrobelli et al. (1996).
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Because water is not explicitly solved for in the DXA 3C model, the equipment

assumes that 73.2% of the free-fat mass (FFM) is water. However, concerns emerged

as to whether and to what extent variation in soft tissue hydration could cause errors

in fat estimates, particularly in altered hydration scenarios, where changes in hydration

could be incorrectly confounded with changes in lean tissue (Pietrobelli et al., 1998). In

a revision of five studies on changes in water content of FFM and its effect on %FM,

including Pietrobelli et al. (1998), Lohman et al. (2000) suggested that a 5% change in the

water content of FFM introduces small but systematic errors in whole-body %FM in the

order of 1 – 2.5%. Though to a minor extent, fluid balance changes may also impact on

the measurements the adipose tissue itself, since it comprises ≈ 10 % water (Fuller et al.,

1992; Wang & Pierson, 1976). The actual hydration of the FFM in healthy populations is

in between ≈ 72 – 74.5%, and it may indeed vary slightly from the assumption of 73.2%.

However, the impact of any over- or underestimation of these proportions is expected to

have a reduced effect in the overall DXA results (Lohman et al., 2000).

2.2 Physical Principles

Although densitometers differ in architecture and specific configurations (see Section 2.3.1

for details on pencil vs. fan beam based architectures), they share the same physical

principles. Contrast between tissues in X-ray images arises from differential attenuation

of the X-rays as they pass from the source through the body to the detector. Typically,

in a DXA scan, the energy source produces photons at “low” and “high” energy levels,

which pass through tissues and attenuate at rates related to their elemental composition.

The specific energy levels differ between manufacturers; the X-ray tubes of the Hologic

Inc. densitometers (Bedford, MA, USA) emit switched pulses at 100 kVp and 140 kVp1

to generate spectra with maximum photon energies at 45 and 100 keV. GE-Lunar Inc.

(GEHealthcare, Madison, WI, USA) and Cooper Surgical (Norland; Trumbull, CT, USA)

take a different approach: they use an X-ray source at constant voltage and a K-edge

filter to produce stable beams of X-rays at energies 40 keV / 70 keV and 40 keV / 80 keV,

respectively (Hull et al., 2009; Lohman & Chen, 2005; Pietrobelli et al., 1996).

1The peak kilovoltage (kVp) of the tube determines the amount of radiation that is delivered by the tube
(Bonnick & Lewis, 2006). Currently, the peak X-ray tube voltages used to generate the dual-energy images
for the Hologic systems are different between their current fan-beam systems (140 / 100 kVp) and previous
pencil-beam models (140 / 70 kVp) (Fan et al., 2010).
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X-ray attenuation is often characterized in terms of mass attenuation coefficients,

defined as the linear attenuation coefficient divided by the density of the tissues. Owing

to its significant amount of highly attenuating minerals (calcium and phosphorous), bone

has a higher mass attenuation coefficient than soft tissues, whose main components are

oxygen or carbon. The unique elemental profiles of BMC, FM, and LST allow for separate

analysis of these components. Bone is readily distinguished from soft tissues (fat and lean

tissue), which are mainly organic compounds (Pietrobelli et al., 1996). Fat is described

chemically as the lipids in our body and consists mostly of fatty acids and triglycerides

(Pietrobelli et al., 1996; Shepherd, 2014). The LST compartment includes body water,

protein, soft tissue mineral mass (i. e., non bone mineral mass) and glycogen. The amount

of glycogen in the body is neglected in the DXA model, as the overall amount stored

in the liver and muscle tissue accounts for just 1 kg of body weight in most individuals

(Heymsfield et al., 1997).

Based on the above properties, the DXA methodology assumes that BMC, LST

and FM can be distinguished based on its characteristic R-values, defined as the ratio-

of-attenuation to low and high incident photons. However, solving for three unknown

components with just two known R-values (low and high photon energies sources) is an

ill-posed problem. Consequently, DXA cannot estimate soft tissue composition in bone

containing pixels as it can only solve for two materials simultaneously (either lean + fat

mass or bone + soft tissue mass). This issue is addressed by pre-segmenting the image into

bone-containing pixels and pixels containing soft tissues only. This stage of processing is

error prone as, for the bone-containing pixels, it is necessary to assume that the soft tissue

it contains can be estimated from surrounding pixels. Algorithms can accomplish this task

by simply taking the average of the surrounding soft tissue composition or through more

complex approaches that also account for adipose and skeletal muscle distribution (Nord

& Payne, 1995; Pietrobelli et al., 1996). When there is not adequate soft tissue surrounding

bone regions, the accuracy of the estimates may become compromised, particularly at

head, hands, feet, and upper torso. In these cases, manufacturers turn to proprietary

methods to reference the soft tissue (IAEA, 2010). As an example, Hologic APEX v3.3

for the QDR series assumes that the head contains 17% fat tissue. Since bone is typically

contained in 40% or more of the body image pixels and algorithms are not standardized

across manufacturers, it is suggested that estimation of soft tissues in high bone-containing
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areas may be inaccurate, and when results from different software versions are compared

with one another, results may be different (IAEA, 2010). Even still, when the devices are

properly calibrated, the validity of DXA is generally acceptable in comparison with the

4C model, in different populations and devices (see Section 2.4 for details).

2.3 Technological advances

In a revision on the evidence regarding the trueness and precision of DXA body com-

position measurements, Toombs et al. (2012) highlighted that the technological advances

resulted in enhanced precision, large availability and low radiation dose, thus turning

DXA into a more convenient and useful diagnostic tool for body composition assessment.

In this regard, the improvements in beam technologies (Section 2.3.1) and the possibility to

assess body composition in broader patients (Section 2.3.2) merit special consideration.

2.3.1 Beam technology

Advances in DXA technology have resulted in the progressively replacement of pencil-

by fan-beam densitometers. Pencil-beam systems scan anatomical sites in a rectilinear

fashion, whereas fan-beam densitometers use a fan-beam X-ray source and a multiple-

element detector array so that the measurement of the whole-body can be made with

a motored table and sweeps of a “C”-shaped X-ray arm (Toombs et al., 2012). Not

surprisingly, scanning times for fan-beam beam systems are relatively faster that their

pencil-beam counterparts (≈ 5min vs. 10–20 min for total body, previously) (Barthe et al.,

1997; Tothill et al., 2001). Examples for each category include:

Pencil-Beam • Hologic QDR-1000/W and QDR-2000-pencil;

• GE Lunar’s DPX and DPXL series.

Fan-Beam • Hologic QDR-2000 fan, QDR-4500 A/W;

• Hologic QDR Explorer, Discovery W/A.

(Narrow) Fan-Beam • GE Prodigy, PDX-NT and MD+;

• GE iDXA.
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Currently, the “Hologic QDR” Series of densitometers employ fan-beam X-ray

sources. This family includes the Hologic Explorer2, which is depicted in Figure 2.2

alongside its main hardware specifications.

    
e

X-ray System

Bed Table
Scan Region: 196 x 65 cm
Weight Limit: 136 kg 

Detector System
Multi-element detector array

Scanning Method
Linear X-ray fan-beam 
(Motorized table and C-arm)

Switched-pulse dual-energy 
(100 kVp/140 kVp)

Figure 2.2: Main hardware specifications of Hologic Explorer-W. Explorer-W is a fan-beam DXA
system whose width limit is 65 cm (Hologic, Inc., 2014).

During image acquisition, the X-ray tube emits switched-pulses at two energies

(100 kVp/140 kVp). The overall scanning time in enhanced whole-body mode takes

approximately 7 min for a radiation dose of 12 µSv, and the resulting (whole-body) images

achieve a spatial resolution of 2 × 2 mm2. The major outcomes for body composition

analysis are BMC, LST and fat mass (absolute value and percentage). As for the regional

analysis, relevant regions include limbs, trunk and head, although subregions within the

hip and abdomen may also be reported for obesity research (Hologic, Inc., 2014).

Despite superior spatial resolution (0.8–2 mm for fan-beam densitometers vs. 1.5–

2.5 mm for pencil-beam densitometers), fan-beam systems may cause magnification errors

relative to the height of the subject above the scanning table. This effect implies that the

higher the body structure of the patient with respect to the radiation source, the smaller the

projected area, and it has been shown to affect bone and soft tissue measurements (Blake

et al., 1993; Ellis & Shypailo, 1998; Pocock et al., 1997). However, manufacturers were still

able to correct for this effect with software upgrades (Griffiths et al., 1997). In the validation

study of Visser et al. (1999), FFM was not affected by magnification effects with Hologic

QDR 4500 (fan-beam, software version 8.21). GE Healthcare addressed magnification

effects with the introduction of narrow fan-beam densitometers, the first of which was
2The software for body composition assessment with whole-body and regional analysis are optional upgrades to

the standard QDR Explorer configuration. In this thesis, we use the notation “Hologic Explorer-W” to mean
“Body composition with subregional composition analysis” was available in the existing densitometer of the
Faculty of Human Kinetics, Lisbon University, Portugal (Hologic, Inc., 2014).
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the GE Lunar Prodigy (GE Healthcare, Madison, WI). Narrow fan-beam densitometers

scan in a rectilinear fashion with a fan beam that is broader than the original pencil-beam

systems but still narrower than the fan-beams.

The most recent improvement in beam technology was led by GE Healthcare with

the introduction of the GE Lunar iDXA (GE Helthcare, Inc., 2012). Owing to multiar-

ray detectors with higher dimensions, this narrow-angle fan-beam densitometer provides

improved spatial resolution (1.05 × 0.6 mm2), thereby allowing for superior bone segmen-

tation and overall body composition assessment compared to earlier systems.

Considerations on radiation dose Dose is the amount of ionising radiation energy

absorbed by the body. The dose required for a DXA whole-body composition examination

differs, depending on the manufacturer, model and software configurations. Although the

radiation doses incurred during fan-beam DXA imaging are higher than with pencil-beam

systems, the overall range is still low (≈ 0.37 – 4.7µSv), though values up to≈ 28.3 µSv may

be required to scan thicker subjects (Shepherd, 2014; Silva et al., 2013). For comparison

purposes, the average dose due to natural background radiation is 6.2 µSv (EPA, 2012),

thus corroborating the fact that DXA methodology is classified as low dose and minimally

invasive. But, although small, dose still makes it unsuitable to pregnant women or for

regular monthly examinations (Hangartner et al., 2013; IAEA, 2010).

2.3.2 Assessment of broad individuals
In parallel to the technical developments that have resulted in improved image resolution

and faster scan times, there is also an ongoing trend for more robust devices that can

accommodate broader and heavier patients. This problem demanded bed tables with

extended limits, partial scanning solutions, and also algorithms and/or scanning modes

that compensate for the deterioration of the image quality as the patient’s thickness

increases (with respect to the anterior-posterior axis).

DXA Scan area The DXA table area dimensions prohibits its use in individuals with

extreme phenotypes. When an individual’s body dimensions exceed these limits, typically

in obese patients, the accuracy of the measurements may be compromised. The problem

of assessing athletes with larger trunk breadth and musculoskeletal development falls in

the same category. Recognizing an emerging need to measure body composition in obese
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individuals, manufacturers have been designing DXA tables with extended scan areas

and higher weight limits. Table 2.2 lists the weight limits and scan regions of commonly

used densitometers for whole-body composition assessment.

Table 2.2: Weight limits and scan regions of densitometers for various manufactures and
models. Adapted with permission from Silva et al. (2013).

EQUIPMENT WEIGHT (kg) SCAN AREA (cm2)

GE iDXA 204 197.5×76

GE Lunar Prodigy Advance 159 197.5×60

GE Lunar Prodigy 136 197.5×60

GE Lunar DPX-MD 136 196.8×57.6

Hologic QDR Explorer 136 195×65

Hologic QDR Discovery A/SL/W 159 195×65

Norland XR-46 114 193×64

Norland XR-26 114 193×64

It is apparent from Table 2.2 that Hologic provides only up to 65 cm in the QDR

devices. However, at least since the QDR Explorer/Discovery series were created, the

analysis results of limbs that could not be scanned could still be automatically copied

from the contralateral side(s). GE iDXA provides the highest weight limit and a broader

scanning space; the bed table of the iDXA can span 76 cm so that individuals can be

positioned off-side to perform a [right-side] half-scan. Is is also apparent from Table 2.2

that the assessment of subjects taller than 193–204 cm can be a problem. To address this

methodological gap, summation (head plus subtotal without head or more scans) and

patient positioning techniques (knees bended) have been proposed (Evans et al., 2005;

Misic & Evans, 2006; Nana et al., 2012; Silva et al., 2004).

Beam hardening As body thickness is increased, DXA may overestimate %FM (Prior

et al., 1997; van der Ploeg et al., 2003), while also affecting bone measures (Blake, 1992;

Laskey et al., 1992). This phenomena is the ultimate consequence of what is referred to in

the literature as “beam hardening effect”; this term is used to denote the artifacts that result

from the preferential loss of lower energy photons relative to high-energy photons. As a

result of increasing body thickness, the ratio between low and high energy gets distorted,

thereby affecting the estimation of the three DXA compartments (Webb, 2003). A practical

implication is that body composition results may be systematically different between a

thin and an obese person (e.g., lean endurance athlete vs. rugby player) (Prior et al.,

1997). Hologic and GE Lunar claimed to have addressed beam-hardening by performing

14 Chapter 2 Dual Energy X-Ray Absorptiometry



software upgrades that correct for tissue thickness and/or by providing special scan modes

for thick patients (Lohman & Chen, 2005):

GE

Healthcare

• Lunar DXP, DPX | v3.4R, v3.6 (v1.3y): Corrections for tissue thickness;

• Lunar Prodigy and PDX-NT and MD+ | v2.16, v3.50: Corrections for total

body thickness and increased number of tissue thickness points;

• iDXA | GE Encore 11.10: three scan modes that adjust the X-ray attenuation

for the thickness of each patient; automatic half-scanning mode.

Hologic • QDR-1000 W and QDR-2000 | v5.48–5.54: “Whole-body and enhanced

whole-body” and corrections for tissue thickness;

• QDR-4500 A/W | v8.1a–8.26: Corrections for magnification;

• QDR for Windows (Delphi and QDR 4500 A/W) | v11.2: “High-power

whole-body released for obesity research”.

In the proposed scan modes, the X-ray tube voltage settings remains the same, but

the X-ray flux is increased by higher currents or slower scan times. As an example, Hologic

currently holds a patent for an invention that optimizes scan parametric values of QDR-4500

systems. These are selected according to the thickness of the patient:

“An operator initially selects scan parametric values of a fast mode scan which is

the recommended default, and then commences the fast mode scan. At the initial

portion of the scan, the X-ray thickness of the patient is measured. If the measured

X-ray thickness is not greater than a predetermined limit of the fast mode scan,

the fast mode scan is continued. If the measured X-ray thickness is greater than

the predetermined limit of the fast mode scan, the X-rays are turned off, and the

operator is given a choice of continuing with the fast mode scan or restarting with a

slower mode scan. If the operator selection is to continue, the fast mode scan is

continued. If the operator selects restarting, a slower mode scan is commenced.”

(Patent US5687211)

By simply detecting when a thresholding value is exceeded, it provides the technologist with

an option to do a slow scan instead, thereby preventing beam hardening artifacts to affect

the quality of the resulting image (Berger et al., 1997). Since QDR v11.2, Hologic provides a

“high-power whole-body” scan mode that should be used if there is a noticeable increase in X-

ray noise in the torso region. In this case, the dose is tripled (from 8.5 to 28.3 µSv) (Shepherd,

2014). Recent GE systems will automatically warn the user to the need for the “thick”

scan mode if the patient’s weight exceeds a particular level and the dose is doubled. The
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GE iDXA system has three scan modes that adjust the X-ray attenuation for the thickness

of each patient: thin (<13 cm), standard (13-25 cm), and thick (>25 cm). The embedded

software (GE Encore 11.10) allows for adjustment of regions of interest including the sagittal

line demarcating left from right body sides. In addition, the software automatically detects

whether the subject is within the scan space and can be scanned according to standard

procedures, or if an half-scanning mode must be activated instead. While more complex

approaches are likely be devised in the future, mitigating beam hardening always comes at

the cost of more radiation dose to the patient and extended evaluation time.

2.3.3 Lack of standardization

Currently, the three major commercial manufacturers of densitometers are Hologic, GE

Medical Systems and Cooper-Surgical, for the QDR series, Lunar & iDXA, and Norland

devices, respectively. Some concerns on cross-validation between densitometers of different

manufactures arise, as hardware configurations and computer vision algorithms differ across

devices (Shepherd et al., 2012a; Toombs et al., 2012). On Section 2.1 it was informed that

manufactures apply photoelectric peaks at different energies: this aspect can be outlined

as the first evidence for lack of standardization among manufacturers. Different photon

energy levels result in different ratio-of-attenuation coefficients (predicted from elemental

composition), for the same tissues (Pietrobelli et al., 1996). As a result, the image processing

algorithms receive slightly different input images. A second obstacle to standardization is the

fact such algorithms are disclosed (Ackland et al., 2012), thus making it likely that images are

interpreted differently by different manufacturers and software versions. Although, for bone

measures, these aspects can be minimized by cross-calibration with phantoms, soft tissue

composition poses an added complexity; at bone containing pixels, soft tissue overlaying

bone can only be determined by relying on values of pixels from surrounding tissue. Since

bone is contained in 40% or more of the planar whole-body image, the extent of the impact

of differences in approaches to tackle missing data can be problematic. Finally, even the

recommendations for positioning subjects are slightly different across manufacturers. In

the GE iDXA, for example, hands are vertical (midsagittal position) to accommodate broad

subjects, whereas the remaining recommend hands prone. With respect to this matter, the

International Society for Bone Densitometry (ISBD, http://www.iscd.org/), recommends

that the patient’s arms are at their sides, palms down, with a separation from the thighs.
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However, if patients are large, and as long as there is a space between the patient’s arms

and sides, the ISBD endorses hands vertically next to the thighs (Hangartner et al., 2013). To

the best of my knowledge, the degree to which inconsistencies in different hand positioning

practices impact on whole-body composition results has not been throughly investigated.

Although cross-calibration and comparative studies have been undertaken using dif-

ferent devices for the DXA whole-body compartments (Oldroyd et al., 2003; Tothill et al.,

2001), until 2010, no attempt was made to standardize BMC (IAEA, 2010). At the time being,

only Shepherd et al. (2012b) undertook a standardization study for whole-body composition

using GE Lunar and Hologic DXA systems. At the 10th International Symposium on Body

Composition, the issue of the lack of standardization was raised by Arthur Stewart during

the highlighted session on “The expert view for the future of body composition”3.

2.3.4 Summary
The DXA methodology has lingering issues that deserve further research and standardization

efforts in order to improve accuracy of body composition measurements. Even still, owing to

the safety of its procedure for adults, relative inexpensiveness to carry out examinations and

capability of providing simultaneous estimates for three clinically relevant body components,

DXA has been gaining popularity and is now a standard tool for whole-body composition

analysis with recognized relevance for health and sports science (Andreoli et al., 2009; El

Maghraoui & Roux, 2008; Kelly et al., 2009; Shepherd, 2014).

Most currently marketed DXA instruments require a low effective radiation dose per

scan (0.37 – 4.7µSv), use standardized calibrations and scans are quick (4 –17 min). The ability

to analyze scans in an whole-body level or by regions of interest is helpful for studying body

fat and lean mass distribution and also regional bone mineral density (e.g. inspection of

the android/gynoid regions, bone density at spine) (Ergun & Rothney, 2012). However,

caution is advised when using or interpreting results obtained by the DXA methodology, as

it has pitfalls and a number of assumptions that raise concerns about the accuracy of this

methodology to specific populations, including very lean, obese, elderly populations, and

also in altered statuses of hydration (Brownbill & Ilich, 2005; Genton et al., 2006; Scafoglieri

et al., 2011). An appreciation of the validity of the DXA methodology is, therefore, appropriate

and will take place on the next section.
3“The expert view for the future of body composition: from atoms to anthropometry”. Contributions by:

Timothy G. Lohman, Marinos Elia, Manfred J. Muller, Dale A. Schoeller, Arthur Stewart and Zimian Wang
(USA, UK, Germany). International Symposium on Body Composition, Cascais – Portugal, 14th June 2014.
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2.4 Validity of DXA
Validity refers to the “degree to which any measurement approach or instrument succeeds in

describing or quantifying what it is designed to measure. It reflects systematic or constant

errors in measurement” (Weiner, 2007). The most accurate and direct validation technique for

DXA is dissection and direct comparison combined with bone ashing (Elowsson et al., 1998).

A review of the state of the art of carcass studies related to DXA reveals validation attempts

with small to medium size animals mostly based on chemical analysis (Scafoglieri et al., 2011).

Although the correlations between the two methods were generally high (Brommage, 2003;

Brunton et al., 1993; Lauten et al., 2001; Swennen et al., 2004), skepticism should be exercised

when attempting to translate findings on animals to humans. Not only is the distribution of

lean and fat mass different but also is anatomy and body size.

2.4.1 Comparison with the criterion technique
Due to the lack of cadaver studies, a four-compartment model (4C) of body composition

analysis has been used as the “gold standard” method in validation studies for DXA for body

composition (Wang et al., 2010; Withers et al., 1998). The 4C model includes the evaluation of the

main free-fat mass (FFM) components (water, bone mineral, protein), thus reducing biological

variability. Fat mass is estimated from body volume (generally measured by air displacement

plethysmography), while correcting for assumed total-body water and BMC using dilution

techniques and DXA, respectively (Wang et al., 2002, 2005). Figure 2.3 illustrates the concept

of validating DXA systems against the 4C model.

Subjects

DXA

4C
X4C

XWB

*PERFORMANCE CRITERIA:
Regression features 
(slope, intercept, r2, SEE); 
Agreement (bias, limits, trend) 
between %FM, FM and FFM 
from the 4C model and DXA.

STUDY*
VALIDATION

• Inherent Assumptions
• Measurement Noise
• Product Specifications
   

• Sports Practice
• Health Status
• Hydration Status
• Age
• Race
• Gender

``Gold Standard’’

``Black Box’’

Figure 2.3: Validation of DXA for whole-body composition assessment. The measurements ob-
tained by DXA are compared against the 4C model by statistical procedures that in-
clude regression and agreement analysis.
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The accuracy is often influenced by features of the subjects (e.g., age, race, gender, health,

sports practice, obesity status, biological variation, subject preparation) and by the DXA me-

thodology itself (e.g., inherent assumptions that hold for normal/reference populations). In

general, although users may know the physical principals and the general product specifica-

tions of a given DXA device, it is not possible to see its inner workings (because it is a closed

source program and the hardware details are generally out of the user’s expertise). The method

to be tested is, therefore, regarded as a “black box” method for which only the overall perfor-

mance needs to be examined (Beizer, 1995). In body composition research, validity testing for

DXA is used to check that the body composition results provided by a specific device are as

expected, given specific populations. As for the performance criteria, Lohman & Chen (2005)

highlighted the inspection of slope, standard error of the estimate (SEE) and the analysis pro-

posed by Bland & Altman (1986): “If two methods have theoretical validity and are properly

calibrated to estimate %FM [similar considerations hold for BMC, LST, FM], then the regression

line relating the values from the two methods should have a slope equal to 1.0. In addition,

a SEE between 2% and 3% and a systematic bias between criterium and DXA methods must

be uncorrelated by the mean value” (pp. 71). Widely used performance criteria include mean

group comparison, regression features (slope, intercept, coefficient of determination and SEE)

and the agreement (bias, limits and trend) between %FM, FM and FFM from the 4C model and

DXA (Santos et al., 2010). The following paragraphs provide an overview on linear regression

and agreement analysis for validation purposes.

Linear regression analysis Linear regression analysis involves applying the least mean

squares algorithm to find the best-fit line to the pairs of points (xDXA,i, x4C,i), for i = 1 . . .N

subjects. The outcome is a regression x̂4C,i = β1 xDXA,i + β0 such that the errors εi = x̂4C,i − x4C,i

are minimized in a least mean squares sense, for i = 1 . . .N subjects. It is desirable that

β1 ≈ 1 and β0 ≈ 0, meaning that x̂4C,i ≈ xDXA,i. In this regard, t-tests are useful to confirm

that β1 and β0 are in fact significantly different from one and zero, respectively. The Pearson’s

correlation coefficient r and the standard error of the estimate (SEE) are established parameters

for evaluating the fit of regression models. For a simple linear regression model, the Pearson’s r

squared is called the coefficient of determination. It is the fraction of the variation in the values

of x4C,i that is explained by least mean squares regression, x̂4C,i, on the input values xDXA,i, for

subjects i ∈ 1 . . .N. That is, r2
× 100 (%) is the “amount” by which DXA explains the reference

measurements. Magnitude values for r between 0.9 and 1.0 indicate very highly correlated

variables, whereas, in the opposite situation, correlation coefficients whose magnitude are less

than 0.3 have little or no linear correlation. We can readily see that 0.9 < |r| < 1.0 corresponds
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with 0.81 < r2 < 1.00 and 0.0 < |r| < 0.3 corresponds with 0.0 < r2 < 0.09 (Calkins, 2005; Iman,

1994). The concept of SEE is complementary to the Pearson’s r. It is the root mean square of the

individual errors εi, i = 1 . . .N, meaning that it can be regarded as a measure of the precision

with which the regression coefficients are determined.

Agreement analysis The agreement between the DXA procedure and the reference 4C

model is usually assessed by analyzing the 95% limits of agreement and by plotting the dif-

ferences against the mean of the methods (Bland & Altman, 1986). The presence of a trend

between the differences and the mean of the methods is examined using the coefficient of

correlation of the regression on the pairs of points ((xDXA,i + x4C,i)/2, xDXA,i − x4C,i), for i = 1 . . .N

subjects. The statistical significance of the coefficient of correlation (here referred to as trend) is

then determined. Some papers report the bias between methods within the framework of the

agreement analysis and test if it is significantly different from zero. However, others perform

mean group comparison (xDXA versus x4C) instead and only report if the measurements are

statistically different (Gately et al., 2003). This is also the case of studies at which validating

DXA is an intermediate step, but not the main objective of the study, and the agreement analysis

may not be reported (Gallagher et al., 2000).

2.4.2 Validation against the 4C model
Unfortunately, the process of undertaking multi-compartment models is expensive and time

consuming (Santos et al., 2010; Wang et al., 2005), the consequence being the relative scarcity of

validation studies comparing specific DXA systems and populations with the multi-compartment

models (Lohman & Chen, 2005; Toombs et al., 2012). This issue is worsened by the extensive

variety of DXA systems currently available, as well as differences in subject phenotypes: fea-

tures like hardware and software versions, or the obesity and/or athletic statuses of the sample

may compromise the extrapolation of validation studies to a particular system and individ-

ual. Indeed, an extensive literature review was conducted to select validation studies of DXA

against the 4C model, including their detailed validation parameters, but only eighteen studies

matched the selection criteria. Full search details are provided below and on the next page.

Protocol, search strategy and selection criteria The MEDLINE database (PubMed) was

searched for English language articles published in peer-reviewed journals, with the last search

run on 5 June 2014. The keyword terms included: dual-energy X-ray absorptiometry, DXA,

DEXA, 4C, 4-c, four compartment, Hologic, iDXA, Lunar and Norland. The search was solely

conducted on abstracts and titles according to Listing 2.1.
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Listing 2.1: Rules for searching validation studies of DXA vs. 4C model

Search I)

((((((((DXA[Title/Abstract]) OR DEXA[Title/Abstract]) OR dual-energy X-ray

absorptiometry[Title/Abstract]) OR Lunar[Title/Abstract]) OR iDXA[Title/

Abstract]) OR Hologic[Title/Abstract]) OR Lunar[Title/Abstract]) OR

Norland[Title/Abstract]) AND four compartment[Title/Abstract]

Search II)

((((((((DXA[Title/Abstract]) OR DEXA[Title/Abstract]) OR dual-energy X-ray

absorptiometry[Title/Abstract]) OR Lunar[Title/Abstract]) OR iDXA[Title/

Abstract]) OR Hologic[Title/Abstract]) OR Lunar[Title/Abstract]) OR

Norland[Title/Abstract]) AND 4c[Title/Abstract]

Search III)

((((((((DXA[Title/Abstract]) OR DEXA[Title/Abstract]) OR dual-energy X-ray

absorptiometry[Title/Abstract]) OR Lunar[Title/Abstract]) OR iDXA[Title/

Abstract]) OR Hologic[Title/Abstract]) OR Lunar[Title/Abstract]) OR

Norland[Title/Abstract]) AND 4-c[Title/Abstract]

The following characteristics and criteria were used:

• Healthy subjects;

• Validation of DXA against the 4C model in assessing FM, %FM, FFM or LST;

• Description of the statistical methods used to validate the procedure.

For the identification of the studies, the process included screening of the identified

records, examination of the full text of potentially relevant studies and application of the

eligibility criteria to select the included studies. Our search provided a total of 124 citations.

Of these, 104 studies were discarded, because, after reviewing the title and abstract, it was

apparent that these papers did not meet the criteria or it was impossible to have online access

to them. In the end, only a total number of eighteen studies were identified in the review.

The included studies cover detailed validation parameters for %FM (14 studies), FM

(5 studies) and FFM (5 studies) and are summarized in Tables 2.3 and 2.4, for %FM and

FM/FFM, respectively. Both tables provide information on densitometer specifications, sample

size and gender, surrogates of tissue thickness (e.g., %FM, BMI), linear regression parameters

(slope; intercept; standard error of the estimate, SEE; coefficient of determination, r2), limits of

agreement at the 95% confidence level and trend.

Our review of validation studies spans two decades; the first study found was Fuller

et al. (1992) and the last one was Santos et al. (2010). During this time-frame, the main

technological breakthrough was the transition from pencil- to fan-beam densitometers. Because

the architecture of these systems is not comparable, it was found appropriate to discuss them

in separate.
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Pencil-beam densitometers The agreement of pencil-beam systems against the 4C

model to determine %FM and/or FM was tested in six studies. For %FM, Bergsma-

Kadijk et al. (1996); van der Ploeg et al. (2003); Withers et al. (1998) found Lunar DPX-L

[pencil-beam] to underestimate %FM, but, in general, the bias was within –5% to –1%.

Two other studies — Fuller et al. (1992) also using Lunar DPX-L and Prior et al. (1997)

using Hologic QDR-1000 — reported no significant differences for %FM, and neither did

Goran et al. (1998) for FM. As such, pencil-beam DXA systems and the 4C model were

in agreement in terms of mean values. The coefficients of determination of pencil-beam

systems were in the range 0.73 – 0.88 for FM and 0.757% – 0.952% for %FM, thus indicat-

ing strong correlation (Gallagher et al., 2000; Prior et al., 1997; van der Ploeg et al., 2003).

Nevertheless, the range of individual differences could be large, particularly in studies

comprising >100 subjects; van der Ploeg et al. (2003), for example, observed individual

differences in healthy adults that could be as high as –2.6 – 7.3%, but, in a sample of

young collegiate athletes and non-athletes, Prior et al. (1997) found that the individual

differences could be even higher (–7.5 to 10%). More importantly, the magnitude of the

errors appeared to be dependent on the %FM level (van der Ploeg et al., 2003). Not only

did DXA underestimate the %FM of leaner individuals, it also overestimated it among

those with higher %FM. As an example, in lean to normal weight adults, van der Ploeg

et al. (2003) reported 1.8% lower %FM by DXA when compared to the 4C model.

Fan-beam densitometers For fan-beam densitometers, seven studies were reported for

%FM. With the exception being made to Bergsma-Kadijk et al. (1996) and LaForgia et al.

(2009), it was observed that first generation of fan-beam systems (e.g., Lunar Prodigy, Ho-

logic QDR-2000 fan and QDR-4500W) overestimated %FM by ≈ 2% – 3% when compared

to a 4C model (Gately et al., 2003; Moon et al., 2009; Santos et al., 2010; Williams et al., 2006;

Wong et al., 2002). Interestingly, Williams et al. (2006) observed that this overestimation

was accentuated in the obese. This research team compared body composition from the

Lunar Prodigy to a 4C model and reported a mean overestimation of %FM and FM up

to 0.6 % and 0.2kg higher in obese adults than in the non-obese. The differences for the

FM and FFM compartments were also higher in the obese group, though the over- and

underestimation for FM and FFM was below 1kg. This observation could partly explain

the result of Wong et al. (2002), whereby the bias for obese woman reached ≈ 4% in a

Hologic QDR-2000 fan-beam system. However, the same does not hold for the studies
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conducted by Moon et al. (2009) and Gately et al. (2003). Using the same densitometer

as Williams et al. (2006), but now in non-obese athletes, Moon et al. (2009) observed that

DXA overestimated %FM by ≈ 4%; this bias was even higher that the ≈ 2% reported by

Gately et al. (2003) for obese children, also in a Lunar Prodigy system (LaForgia et al.,

2009). Inline with these efforts, LaForgia et al. (2009) conducted a pilot study in an obese

cohort. The author’s purpose was to inspect the effect of surrogates of tissue thickness

(BMI, %FM and anterio-posterior chest distance) on the validity of DXA against the 4C

model. Despite bias was not significant, the correlation between 4C and DXA %FM val-

ues was high, meaning that DXA was less robust in the provision of accurate individual

values. For this reason, it was suggested that DXA could be unable to accommodate the

phenomenon of beam hardening at larger tissue thicknesses (LaForgia et al., 2009). Over-

estimation results have also been reported for athletic populations. In a sample comprised

of elite judo athletes, Santos et al. (2010) verified that, at the athlete’s stable period, %FM

was overestimated by ≈ 3 % when measured by a Hologic QDR-4500 and compared to

the 4C model. Likewise, using Lunar Prodigy Advance, Moon et al. (2009) observed a

mean underestimation of ≈ 4% in female athletes. An underestimation of %FM using

fan-beam DXA (Hologic QDR-4500) was only found by Deurenberg-Yap et al. (2001). For

the chinese and singaporean ethnic groups, the mean differences in %FM between DXA

and the 4C model were between 2.1% and 4.2%, thus suggesting that the higher density

of FFM in specific ethnic groups could compromise the accuracy QDR-4500.

With respect to the FM and FFM compartments, Table 2.4 reveals conflicting results.

While Williams et al. (2006) and Santos et al. (2010) found DXA to overestimate FM while

underestimating FFM, in a comparison of estimates obtained on a Hologic QDR-4500

versus the 4C model, Schoeller et al. (2005) observed that exact opposite. Conversely,

significant biases for FM and/or FM by DXA have not been consistently observed by

investigators comparing DXA-derived body composition outcomes to those obtained

from the 4C model. In samples comprising elderly subjects of genders, Salamone et al.

(2000) and Visser et al. (1999) found no significant differences for Hologic QDR-4500A.

It is worth point out that both studies were conducted with software version 8.21. As

previously mentioned on Section 2.3.1, this version was in the process of corrections

for magnification effects. This fact may partly explain the accuracy demonstrated in

these two studies, but it is not clear if it was just magnification issues that could have

compromised the accuracy of measurements in other studies at which this (or similar)
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software version was also available. The inspection of the trends could certainly provide

relevant information to clarify this aspect. However, the majority of literature listed

in Tables 2.3 and 2.4 did not report trends. And, among those who did, four out of five

studies reported a positive trend (two of them reached statistical significance), thus raising

suspicions on magnification effects that could have taken place.

Regarding strength of correlation, the coefficients of determination for fan-beam

systems were generally in the range 0.90 – 0.98 for FFM and 0.81–0.86 for %FM. However,

correlations may be lower in athletic populations (Santos et al., 2010).

As a final note of caution, the reported individual differences could be large (Prior

et al., 1997; van der Ploeg et al., 2003). Also, there were discrepancies between body com-

position measures; some studies underestimated DXA compartments or %FM, whereas

others reported the opposite or no differences. The reasons for the conflicting findings are

manifold. Firstly, although beam technologies were compared and discussed separately

in this review, there have been a mixture of hardware and software versions used in the

validation studies, and it is known that some of the errors associated with DXA, such as

the magnification effect, are expressed differently with the various technologies (van der

Ploeg et al., 2003). Second, these studies were also undertaken with different evaluation

protocols (or these were not reported), thus making direct comparison risky (Schoeller

et al., 2005). Third, the heterogeneity of the samples varied from study to study in terms

of %FM, age, gender, ethnicity and athletic status. The wide variation in the hydration

of FFM and %FM among these validation studies (%FM in the range 10-40%) may have

partly explained the equivocal results (Deurenberg-Yap et al., 2001; Moon et al., 2009).

2.4.3 Summary
The limited number of validation studies of specific DXA systems (hardware/software)

against the 4C model, as well as differences in subject phenotypes, may compromise the

extrapolation of validation studies to a particular system and individual. Even still, the

differences between DXA estimates of body composition and the criterium 4C model are

generally small. It is, therefore, assumed that the validity of DXA measurements for body

composition are acceptable, though individual differences may be higher for those with

extreme phenotypes, particularly athletes and the obese. As such, DXA can be considered

as a valid, practical and safe option to assess body composition.
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2.4.4 Accuracy for BMC measurements

Since the 4C model uses the estimates of DXA for the bone compartment, studies against

the 4C model leave unanswered the magnitude of errors arising in the estimation of

the bone mineral compartment. In case of BMC, it is generally accepted that the “true”

measurement is obtained by weighting the ashed weight of bone samples. Comparison

of in situ bone mineral density (BMD) measurements in cadavers with results of ashing

showed differences up to 15%, which may be partly explained by the fat content of bone

and bone marrow, or bone segmentation errors during image analysis (Bonnick & Lewis,

2006). Notwithstanding the fact that most validation studies on bone densitometry use

phantoms, DXA is well established as an imaging modality for bone mineral content and

bone mineral density (Ahmad et al., 2014). The bias that may exist for BMC is minimized

if DXA systems are regularly calibrated with phantoms (Hologic, Inc., 2014). Moreover,

small accuracy errors are a minor concern provided they remain constant. Often, what

is clinically relevant is the precision errors that may compromise the reproducibility of a

diagnostic technique or the measurement of changes. Precision is, therefore, an additional

key metrics that has to be put into context with the prospective use of the DXA system, be

it the assessment of changes during an intervention, screening or other application.

2.5 Precision of DXA

According to Bonnick & Lewis (2006), precision is the attribute of a quantitative technique

such as DXA imaging that refers to “the ability to reproduce the same numerical result in

the setting of no real biologic change when the test is repeatedly performed in an identical

fashion (pp. 190)”. Like all quantitative tests in medical trials, no DXA system is per-

fectly reproducible. Not even when whole-body scans are performed in exact accordance

with the manufacturer’s recommendations (Bonnick & Lewis, 2006). However, it is still

possible—and advisable—to assess body composition changes according to conveniently

standardized protocols that are congruent with the manufacturer’s recommendations. If

best practices are followed, then the technique becomes as reproducible as it possibly can

be (Nana, 2013). The precision of whole-body composition using DXA assumes great

importance when the technique is meant to follow changes over time.
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Because densitometry is not perfectly reproducible, the results on any given subject

are not expected to be identical, even if the composition of the individual has not actually

changed. The only way to be confident that a real biologic change has occurred is to

verify that the precision error of the DXA system has been exceeded. This means that

the precision must be quantified. Precision is usually assessed by performing multiple

repeated measurements using the same DXA instrument on the same patients. The

precision is generally reported as either as the technical error of measurement (TEM4) or

as the percentage coefficient of variation (CV5). TEM and CV are quality control metrics for

expressing the reliability of an observation and account for instrument error, protocol and

biological variability of the measured populations, and expertise level of the technologists

that performed scan acquisition and analysis (e.g.: positioning of subjects). TEM is the

standard deviation between repeated measurements taken independently by one observer.

For each DXA compartment, and for the specific case of just one observer, let K be the

number of repeated scans of the same subject. If the estimates for whole-body scanning

in the 1 . . .K sets are denoted as xWB. . . x(k)
WB . . . xK

WB, then the TEM is computed as follows

(Bonnick & Lewis, 2006):

TEM =

√√√
1

NTR

NTR∑
i=1

1
K − 1

K∑
k=1

(
x(k)

WB,i − mWB,i

)2
(2.1)

where mWB,i is the average difference between whole-body measurements in the K repeated

scans for subject i:

mWB,i =
1
K

K∑
k=1

x(k)
WB,i (2.2)

Due to radiation dose and time issues, it is generally not possible to perform more than

two consecutive DXA scans for each subject. For this reason, short-term precision studies

for body composition assessment generally require two consecutive scans (test-retest, TR)

per subject with repositioning in between. For statistical validity, the number of required

subjects in test-retest studies is thirty, so that the precision study have thirty degrees of

4Note: TEM is also referred to in the literature as root mean-square standard deviation (RMS-SD).
5Note: CV is also referred to in the literature as %CV or as root mean-square coefficient of variation (RMS-CV).

Bonnick & Lewis (2006); Sun & Chumlea (2005)
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freedom 6 (Bonnick & Lewis, 2006). By substituting K = 2 in Equation 2.1, it is possible to

arrive at a much simpler expression for TEM:

TEM =

√√√
1

NTR

NTR∑
i=1

(
xWB,i − mWB,i

)2 +
(
x′WB,i − mWB,i

)2
(2.3)

where mWB,i is the average difference between whole-body measurements in the first and

repetition scans for subject i:

mWB,i =
xWB,i + x′WB,i

2
(2.4)

Combining Equations 2.5 and 2.4 results in:

TEM =

√√√
1

NTR

NTR∑
i=1

(
xWB,i −

xWB,i + x′WB,i

2

)2

+

(
x′WB,i −

xWB,i + x′WB,i

2

)2

(2.5)

which is in fact the same expression as provided by Ulijaszeka & Kerra (1999):

TEM =

√√√
1

2 NTR

NTR∑
i=1

(
x′WB,i − xWB,i

)2
(2.6)

where the term
(
x′WB,i − xWB,i

)2
is the squared difference of the test and retest measurements

for subject i = 1 . . .NTR. TEM is expressed in grams or kilograms. Often, it is useful to

normalize TEM by the mean value of the observations, resulting in another metrics called

coefficient of variation (CV). CV is expressed in percentage (Sun & Chumlea, 2005). For

a test-retest [short-term] precision study with one observer and NTR subjects, CV (%) is

computed from TEM as follows:

CV = 100
TEM

1
NTR

∑NTR
i=1 mWB,i

(2.7)

The lower the TEM and the CV, the better the precision and the easier it is to detect

small changes in measurements. Based on 30 subjects (15 healthy males and females) with

6According to Bonnick & Lewis (2006), “Thirty degrees of freedom ensure that the upper limit for the 95%
confidence interval of the precision value is no more than 34% greater than the calculated precision value.”
(pp. 193)
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similar phenotypes as the included in the present study, the TEMs and CVs for whole-body

composition assessment in the Exercise and Health Laboratory are:

TEMEHLab) 0.02 kg for BMC, 0.36 kg for LST, 0.37 kg for FM, and 0.1 % for FM;

CVEHLab) 1.0%for BMC, 0.7% for LST, 2.8% for FM, and 0.6% for %FM.

In contrast to validation studies against the 4C model, precision studies of DXA

devices are relatively common. In fact, each laboratory is advised to conduct short-

term precision studies in subjects identical to its target populations. A search on titles

and abstracts on Pubmed with the keywords DXA, Norland, Hologic, iDXA and Lunar

resulted in 62 results, most of them valid. There have also been recent revisions of precision

studies, including Hangartner et al. (2013) / International Society for Clinical Densitometry.

The precision of DXA technology has been reported for whole-body assessment of the

general population, and, to a minor extent, obese and athletic populations. However,

results for regional body composition analysis are relatively scarce. Table 2.6 lists CVs

for several equipments, for whole-body %FM, FM, LST, BMC and also upper and lower

limbs. Overall, Lunar iDXA stands out as the most precise DXA system for whole-body

composition analysis (CVs < 1.5% for all compartments and <1% for %FM ). In general,

DXA devices provide high precision in BMC scans of 1–2%, even in athletic and obese

populations (Bilsborough et al., 2014; Carver et al., 2013; Cordero-MacIntyre et al., 2002).

We note, that the CV for BMC in the obese (1.1–1.7%) are higher than that of the athletes

(0.6%). This results seems to be in agreement with the finding of Knapp et al. (2014) about

the deleterious effect of obesity on precision errors in whole-body BMD (the same might

hold for BMC). In whole-body scans, CVs for LST and FM are in between 1–4%, and, for

%FM, short-term precision in non-athletic populations has been reported as low as 1–2%.

It is observed that results for FM and %FM are worse in athletes (≈ 2.5 %). Ackland et al.

(2012) provide an insightful explanation with respect to this matter:

“As training methods have become more sophisticated, each athletic group has become more

specialized, modifying its typical physique imperatives away from general morphological

norms. (. . . ) Furthermore, athletes are reluctant to interrupt what for many is a full-time

occupation for the sake of body composition assessment, thereby making the more involved

laboratory techniques less appealing. These factors all conspire against the scientist seeking

to make accurate [the same reasoning holds for precision] measurements on athletes, with

the inevitable consequence that data may be misleading, misinterpreted or perhaps used

inappropriately.” (pp. 230)
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Table 2.6: Precision of %FM measured by DXA

STUDY EQUIPMENT

(model/software)

SUBJECTS PRECISION [CV, %]

Hangartner et al. (2013);

Toombs et al. (2012)

%FM

various revision of artices 0.6 . . . 1.9%

Hind et al. (2011)

%FM

GE Lunar iDXA

sw enCORE v11.0

(narrow-fan beam)

52 M & F

(34.8 ± 8.4 yr;

BMI 16.7–42.7 kg/m2)

0.9%

Clark et al. (2004); Hind

et al. (2011)

%FM

2 studies combined 73 M Ath 2.4 – 2.5%

Carver et al. (2013)

%FM

GE Lunar iDXA

sw enCORE

narrow fan-beam

65 O (46 ± 11 yr,

BMI 49 ± 6 kg/m2).

0.8%

Hangartner et al. (2013)

FM

various revision of articles 0.7 . . . 3.4%

Buehring et al. (2014)

FM

GE Lunar iDXA

sw enCORE vs. 11.0-13.4

narrow fan-beam

30M Ath (20.6 ± 1.3 yr);

30F Ath (19.9 ± 1.3 yr);

M 0.64%; F 1.46%

Clark et al. (2004); Hind

et al. (2011)

FM

2 studies combined 73 M Ath 2.5%

Cordero-MacIntyre et al.

(2002)

FM

Hologic QDR-4500A

sw v8.21

20 F O

(40–70 yr)

1.2%

Carver et al. (2013)

FM

GE Lunar iDXA

sw enCORE

narrow fan-beam

65 O (46 ± 11 yr,

BMI 49 ± 6 kg/m2).

0.9%.

Franck & Munz (2000)

FM regional

Hologic QDR-2000

(fan beam)

165 F; 136 M

(43–80 yr)

3.4 . . . 10.9%

Cordero-MacIntyre et al.

(2002)

FM U/L

Hologic QDR-4500A

sw v8.21

20 F O

(40–70 yr)

11.4 / 3.9%

Lohman et al. (2009)

FM upper limbs

Lunar Prodigy 30 M (22–61 yr) 4.1 / 2.7%

Bilsborough et al. (2014)

FM U/L

GE Lunar DPX-L

sw v1.3z

(pencil beam)

22 M Ath

( 22.5 ± 1.3 yr)

4.3 / 2.3%

Buehring et al. (2014)

FM upper limbs

GE Lunar iDXA

sw enCORE vs. 11.0-13.4

narrow fan-beam

30M Ath (20.6 ± 1.3 yr);

30F Ath (19.9 ± 1.3 yr);

M 7.1–8.0%; F 3.9–4.3%
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Buehring et al. (2014)

FM lower limbs

GE Lunar iDXA

sw enCORE vs. 11.0-13.4

narrow fan-beam

30M Ath (20.6 ± 1.3 yr);

30F Ath (19.9 ± 1.3 yr);

M 2.2–3.3%;

F 1.5–2.1%.

Hangartner et al. (2013);

Toombs et al. (2012)

LST

various revision of studies 0.4 . . . 2.2%

Bilsborough et al. (2014);

Clark et al. (2004)

LST

2 studies combined 75 M Ath 1.0 . . . 1.3%

Cordero-MacIntyre et al.

(2002)

LST

Hologic QDR-4500A

sw v8.21

20 F O

(40–70 yr)

1.1%

Carver et al. (2013)

LST

GE Lunar iDXA

sw enCORE

narrow fan-beam

65 O (46 ± 11 yr,

BMI 49 ± 6 kg/m2).

1.1%.

Franck & Munz (2000)

LST regional

Hologic QDR-2000

(fan beam)

165 F; 136 M

(43–80 yr)

1.2 . . . 10.9%

Cordero-MacIntyre et al.

(2002)

LST U/L

Hologic QDR-4500A

sw v8.21

20 F O

(40–70 yr)

4.5 / 2.1%

Lohman et al. (2009)

LST U/L

Lunar Prodigy 30 M (22–61 yr) 4.8 / 9.1 %

Bilsborough et al. (2014)

LST U/L

GE Lunar DPX-L

sw v1.3z

(pencil beam)

22 M Ath

( 22.5 ± 1.3 yr)

2.7 / 1.3%

Bilsborough et al. (2014)

BMC

GE Lunar DPX-L

sw v1.3z

(pencil beam)

22 M Ath

( 22.5 ± 1.3 yr)

0.6%

Cordero-MacIntyre et al.

(2002)

BMC

Hologic QDR-4500A

sw v8.21

20 F O

(40–70 yr)

1.7%

Carver et al. (2013)

BMC

GE Lunar iDXA

sw enCORE

narrow fan-beam

65 O (46 ± 11 yr,

BMI 49 ± 6 kg/m2).

1.1%

Cordero-MacIntyre et al.

(2002)

BMC U/L

Hologic QDR-4500A

sw v8.21

20 F O

(40–70 yr)

5.6 / 2.3%

Abbreviations and Acronyms: FM, Fat Mass; LST, lean Soft Tissue; BMC, Bone Mineral Content; U/L, Upper/Lower limbs;

M/F, Males/Females; O, Obese; Ath, Athlete; CV, Coefficient of variation (%).

As for regional analysis, CVs are worst than the reported results for whole-body

measurements. BMC, LST and FM for limbs are generally in the range of ≈ 2–4%, though

values up to 9–11% have also be reported. Table 2.6 have also indicates that the CVs for

upper (U) limbs are higher than those of the lower (L) limbs (U: 3–11% vs. L: 2–4% )

(Cordero-MacIntyre et al., 2002; Franck & Munz, 2000; Lohman et al., 2009).
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Additionally, there are long-term precision studies that consider variations over months,

and others that study how well DXA tracks changes in body composition (Bonnick & Lewis,

2006; Nana, 2013). Also, the CV can be used to to determine the so called the least significant

change (LSC). The LSC is the minimum change in any of the 3C-DXA compartments that

constitutes a real biologic change and is useful to determine the minimum interval between

follow-up measurements (Bonnick & Lewis, 2006; Buehring et al., 2014).

2.6 Scanning solutions for broad individuals

As briefly mentioned in Section 2.3.2, some DXA systems restrict the width of individuals

to be scanned to 60-67 cm. This methodological problem may be overcome by solutions

that scan the body partially—such as half- or reflexion-scanning— or that take the sum of

two or more partial scans. As depicted in Figure 2.4, obese individuals and/or athletes un-

dertaking half- and reflexion-scanning only need to perform one whole-body composition

evaluation. In contrast, those undertaking summation scans are required to be scanned

twice. Partial scanning techniques can only handle width limitations, whereas summation

scans can be extended to solve both width and height limitations. Because of its relevance

to the scope of the present thesis, this section provides detailed information on validation

studies reported in the literature of scanning solutions for broad individuals.

Tataranni & 
Ravussin (1995)

HALF-SCANNING
Breithaupt et al. (2011); 
Rothney et al. (2009) Nana et al. (2013)

SUMMATION

Addresses width limits
Tested in Lunar DPX-1

Addresses width limits
Tested in Lunar iDXA

Width and height limits
Lunar Prodigy

Sherman et al. (2009)

REFLEXION

Addresses width limits
Hologic QDR-4500A

LR LR

L LR

Figure 2.4: Scanning solutions for assessing broad individuals in DXA systems.
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Partial scanning

The first study that addressed the width limitation of DXA devices was conducted by

Tataranni & Ravussin (1995) with the comparison of half-body scans to whole-body com-

position assessment (see Figure 2.4. The authors assessed 156 subjects that fitted within

the DXA scan (BMI 25.8 ± 4.1 kg/m2) table plus 27 subjects (12 females / 15 males; BMI

44.5 ± 4.6 kg/m2; 18–70 yr) wider than the DXA scan area. DXA measurements were per-

formed by using a whole-body scanner (DPX-l; Lunar Radiation Corp, Madison, WI). The

outcome variables were FM, LST, BMC, and percent FM. The operator performed a single

whole-body or two half-body scans according to his visual judgment of whether or not the

patient was fitting within the scanning area (197×58 cm). The subjects scanned once were

positioned according to Mazess et al. (1990). For the 27 subjects scanned twice, the central

line of the scanning area passed through the midpoint of the left or right clavicula for the

left and right half-body scans, respectively. Subjects were scanned from head to toes in

both cases, being displaced toward the left side of the table for the scan of the right body

side and toward the right side of the table for the scan of the left body side. To adjust for

differences in body thickness in the trunk region, scans were performed at three different

transverse speeds (slower for thicker individuals). The sagittal line was positioned by

the technologist based on anatomical reference points (skull, spine, pelvis, and legs). For

the subjects scanned twice, the sagittal line had to be repositioned each time on the two

scans. Note the half-scan region “splits” the head in two halves; this option is not elegant

nor practical since the head of obese individuals is never out of the scanning area. In a

subsequent study, Rothney et al. (2009) did not include the head in the definition of its

half-scan region, and neither did Breithaupt et al. (2011).

Rothney et al. (2009) validated the half-scan analysis using a newer DXA equipment

by comparing to the standard whole-body scans in a sample of 52 obese adults (37 females)

ranging in age from 19 to 63 years. DXA measurements were made using a total-body

scanner (Lunar iDXA; GE Healthcare, Madison, WI). As mentioned earlier, the iDXA is

a narrow fan-beam DXA instrument with a relatively wider scanning space (66 cm) and

an additional 10 cm in one side of the scanning table to allow half-body scans of larger

individuals. For the study, all scans were conducted in thick mode (thickness >25 cm),

which requires 13 min of scan time with an effective radiation dose of 3 µGy per scan.
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Scan analysis was performed using GE Encore 11.10 software. This software allows for

adjustment of regions of interest including the sagittal line, which controls the left-right

body distribution of tissue. This determination is corroborated by a trained operator. If the

subject’s body is not contained within the scan space, a half-scan analysis is automatically

performed by assuming symmetry of the body. Each whole-body image was analyzed,

including the manual placement of an sagittal line. Following this analysis, the authors

chose to re-analyze each scan as a right side scan and a left side scan. According to

Rothney et al. (2009), this procedure was adopted to eliminate the need of repositioning

and rescanning different sides which could introduce estimation errors such as those

observed in the previous study.

Breithaupt et al. (2011) determined the validity of a half-body scan methodology for

measuring body composition using GE Lunar Prodigy Advance (GE Healthcare, Madison,

WI, USA). The sample consisted of 34 obese children (7.7–18.1 yr; 18 girls / 16 boys) that

fitted in the active scan area of the scanner. Average scan time was 4.5 min with a

radiation dose of approximately 3 µSv. The software (GE encore 11.40) used in the study

could detect whether a subject was within the scanning region. If they are not within

the active scan region, an automatic half-scan analysis is performed instead. Similarly

to Rothney et al. (2009), the determination of the accuracy of the half-scan technique

was made in comparison with whole-body scans, so that subjects were only required to

perform a single scan.

For reflexion-scanning of the upper limb, Sherman (2011) evaluated 434 subjects

(ages 16 – 69 yr) from the NHANES study with repeat whole-body scans. Scans were

acquired on Hologic QDR-4500A systems. Linear regression and Bland-Altman analysis

were used to compare reflected vs. whole-body scans, and precision was assessed based

on TEMs and CVs. Since this study is an abstract, results are not provided.

Summation scanning
Nana et al. (2012) recruited 30 physically active subjects (ages 30 ± 7 yr; 50% females)

who would represent the range of physiques found among athletic sub-populations who

fit the scanning area. Each subject underwent one whole-body and 4 partial DXA scans

in a single testing session under standardized conditions of resting and fasting. Various

combinations of the partial scans were summed to estimate total body composition, ho-
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wever, in this review, we will only consider the configuration at which the right and left

half-scans are summed to obtain whole-body composition estimates of BMC, LST and FM.

Body composition was measured using a narrowed fan-beam DXA (Lunar Prodigy, GE

Healthcare, Madison, WI) with analysis performed using GE Encore 13.60 software (GE,

Madison, WI). All of the scans were undertaken using the standard thickness mode.

Accuracy of the Procedures
Half-scanning Tataranni & Ravussin (1995) reported that whole-body composition can

be accurately predicted from the results of half-body DXA scans in a group of 27 obese

subjects who did not fit completely in the scanning area. As observed in Table 2.7,

parameters of the predictive equations for whole-body composition using DXA half-body

scan are available, but SEEs and results of agreement analysis between procedures were

not provided by the authors. Data for both the right and left sides of the body were

available in 177 subjects who were scanned twice (once each on left and right side). The

overall symmetry between the left and right sides were: 0.03 ± 0.08 kg for BMC (r2 = 0.89),

−0.04 ± 0.62 kg for FM (r2 = 0.99), and −0.04± 0.86 kg for LST (r2 =0.97). However, in

comparison with the group who fitted the scan area, the obese (n = 21) had slightly larger

differences between sides for FM (0.72 ± 0.11 kg) and LST (0.30 ± 0.11 kg) but similar for

BMC (0.03 ± 0.09).

Table 2.7: Review of validation studies of alternative scanning techniques to assess body
composition of broad individuals in normal DXA systems, including right half-
scanning, reflexion and summation scanning. Adapted with permission from
Silva et al. (2013).

VALIDATION STUDIES OF RIGHT HALF SCANS

Components r2 SEE Slope Intercept Bias 95% LoA Trend

Tataranni & Ravussin (1995) in Lunar (DPX-1), N=27 (15M; 12F)

BMC 0.970 NA 1.87 0.18 NA NA NA

LST 0.990 NA 1.88 3.17 NA NA NA

FM 0.990 NA 1.93 1.46 NA NA NA

%FM 0.990 NA 1.00 -0.26 NA NA NA

Rothney et al. (2009) in Lunar (iDXA), N=52 (15M; 37F)

BMC 0.996 NA NR NR 0.03? -0.04;0.09 NS

LST 0.997 NA NR NR 0.05 -1.00;1.10 NS

FM 0.994 NA NR NR 0.00 -1.00;1.00 NS

%FM 0.998 NA NR NR 0.00 -0.50;0.50 NS
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Breithaupt et al. (2011) in Lunar (iDXA), N=34 (16B; 18G)

BMC 0.996 NR 0.983 0.0515 0.00 -0.10;0.10 NS

LST 0.999 NR 0.999 -0.0574 -0.08? -0.65;0.85 NS

FM 0.998 NR 1.001 -0.1234 -0.08? -0.60;0.65 NS

%FM 1.000 NR 0.999 0.0288 0.00 -1.50;1.50 NS

VALIDATION ABSTRACT OF (RIGHT) RSU

Sherman (2011) in Hologic QDR-4500, N=434 (16–69 yr)

“Small significant differences were observed for whole-body bone but no differences on the soft tissue

measures. (. . . ) [Because of reflected arm values on whole-body scans] (. . . ) there may be an impact

on the accuracy of bone measures.”

VALIDATION STUDY OF SUMMATION SCANS FOR BROAD SUBJECTS

Components r2 SEE Slope Intercept Bias 95% LoA Trend

Nana et al. (2012) in Lunar Prodigy, N=30 Athletes (15M; 15F)

BMC NR NR NR NR -0.2% NR NR

LST NR NR NR NR 0.3% NR NR

FM NR NR NR NR 0.1% NR NR

Abbreviations and Acronyms: BMC, bone mineral content; FM, fat mass; LST, lean soft tissue; r2, squared correlation

coefficient; SEE, standard error of estimation; Bias, mean difference between methods (calculated as the alternative minus the

reference values); LoA, limits of agreement; NR, Not reported; G/B, Girls/Boys; M/F, Males/Females. Significance levels: ?

Significantly different from 0, p < 0.05; NS, Not significant, p ≥ 0.05.

The results of Rothney et al. (2009) are also displayed in Table 2.7. The group diffe-

rences between half-scan simulations and the total-body DXA scan were not significantly

different in percent fat, FM, LST, or total body mass. In absolute terms, the BMC was

significantly different (p < 0.001) between each of the half-body scan estimates and the

whole-body, with the right side slightly overestimating BMC (23 ± 31 g). The differences

between men and women were similar. The between-individual measures of %FM, FM,

LST, and BMC estimated from right side was highly correlated (r2 > 0.99) and closely

comparable to the respective measurements from the whole-body. Bland-Altman analysis

revealed no significant magnitude bias in prediction of percent fat, FM, LST, or BMC.

The 95% confidence intervals were similar between the right and left side methods. The

left half-scan was also studied, but it was similar to the right half-scan for all metrics.

Rothney et al. (2009) indicated no significant differences between the estimated relative

and absolute FM and LST from half-scan compared to whole-body scan results. However,

the slight differences between right and left-scan BMC did reach statistical significance.

Although the group difference was small, 30 g or 1%, the individual variation ranged

from -66 to 95 g (-3.5 to 3.38%) compared to the whole-body BMC values. This is likely
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due to lateral BMC differences in right- vs. left-handed subjects. Rothney et al. (2009)

referred that handedness was not assessed, but since 90% of the general populations are

right-handed, the difference in BMC between right and left scans makes sense. The au-

thors further examined BMC differences in upper and lower limbs between right vs. left

sides and found that these were more pronounced for arms (right − left: 5.9 ± 9.17 g) than

for legs (2.99 ± 16.1 g). The small differences observed suggest that there is a low risk of

introducing systematic bias into a data set by utilizing both whole-body and half-body

scans within a single study. No significant trends in between-individual magnitude bias

in the differences between half-body and whole-body scans were found. This suggests

that the half-body DXA scan results can be comparable to whole-body scans even for

larger subjects.

Breithaupt et al. (2011) found no significant differences between half- and full body

DXA scans for percent fat, total mass, FM, LST and BMC, as observed in Table 2.7. Small

but insignificant differences in absolute values were present within the data between left-

and right-side scans. The authors showed that left-side half-body scans were found to

overestimate whole-body total mass by 0.14 kg, FM by 0.06 kg, and LST by 0.08 kg whereas

right-side half-body scans underestimated whole-body total mass by 0.17 kg, FM by 0.08

kg, and LST by 0.08 kg. No differences were observed between right- and left-side scans

for BMC. There was a very strong correlation for percent fat, total mass, FM, lean mass and

BMC (p < 0.01, r2 = 0.996 − 1.0) for both half-body side compared to whole-body scans.

Lower limits of agreement were observed between half-body estimates and whole-body

measurements for all body composition variables.

Reflexion and summation scanning According to Sherman (2011), as a consequence of

existing side-to-side differences for upper limbs, small significant differences resulted for

whole-body bone but no differences on the soft tissue measures, and it was concluded

that the reflected arm values on whole-body scans could impact impact on the accuracy

of bone measures. Conceptually, summation scans do not have this issue and Nana et al.

(2012) verified that body composition estimates for BMC, LST and FM from summed

half-scans of BMC were not substantially different to those of the reference whole-body

procedure; i.e. they were less than the respective smallest worthwhile effects7.

7 Nana (2013) defines smallest worthwhile effects as TEM (CV%). These were as follows: BMC 40 g (1.3%);LST
700 g (1.4%); FM: 340 g (2.3%).
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2.6.1 Evidence for side-to-side differences

Although side-to-side differences are neglected by partial scanning techniques, this simpli-

fication is not supported by publications from researchers in anthropology related fields,

physical therapy and neuroscience. This section explores what arguments have been

put forward about the influence of handedness, behavioral factors or others (eg.: gen-

der, sports practice, age group) on side-to-side differences in bone measurements at the

upper and lower limbs. Unfortunately, the lean soft tissue compartment has not been

thoroughly explored in the literature, but since exercise provides weight-bearing stimulus

to bone (Layne & Nelson, 1999), muscular and bone development are generally associated

(Ireland et al., 2013).

Effect of handedness Hand use patterns are complementary and differentiated, where

one hand executes complex tasks while the other performs low frequency tasks, such as

supporting an object. Humans are strongly biased towards a specific pattern of hand-use,

favoring the right hand (Uomini, 2006). “Right-handers” are thus defined as people who

prefer to adopt the precision role with the right hand and the support role with the left

hand. On average, the population-level right-handedness appears to remain relatively

constant around the 90% mark (Cashmore et al., 2008), although there is some variation in

the proportion of left-handers between groups ranging from ≈ 3 to 27 % (Llaurens et al.,

2009; McManus, 2009). As one would expect from the plasticity of body tissues, bone and

skeletal muscle adapt to repeated activity patterns involving mechanical loading (Layne

& Nelson, 1999). Accordingly, the differentiated roles of the opposing sides results in

side-to-side differences, particularly in the upper limbs (Steele & Mays, 1995).

Bilateral asymmetry in long bones of the human skeleton—particularly from upper

limbs—have been extensively studied researchers in archaeology, human origins and lin-

guistics. Using measurements of the living and fossil bones from archeological collections,

the most commonly compared dimensions have been the weight, lengths and/or breadths

of the major long bones of the limbs (humerus, radius, femur, and tibia) (Auerbach & Ruff,

2006; Ruff & Jones, 1981). In order to make inter-individual comparisons regardless of

the specific body size of the regions of interest, the quantification of asymmetries usually

involves the measurement of asymmetry indexes and statistical procedures (Auerbach &
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Ruff, 2006; Carpes et al., 2010; Cuk et al., 2001). One such index—and an extensively used

one—is the percentage directional asymmetry (DA%), which is given by:

DA% = 100

R − L
R + L

2

 (2.8)

where R and L are the right and left side measures, respectively. DA% also informs on

the direction of the asymmetry; negative sign implies left bias and positive implies right

side bias. Although derived from a diverse assortment of groups living under a variety

of environmental conditions, studies agree that upper limb bones are more bilaterally

asymmetric in all dimensions and weight than lower limb bones (Auerbach & Ruff, 2006).

Also, right upper limb bones average significantly longer (≈ 1-3%) and heavier (≈ 2-4%)

than left upper limb bones (Ruff & Jones, 1981).

Studies on fossil bones can only provide qualitative evidence for side-to-side adap-

tations (identifiable as directional asymmetry in long bone features) as a consequence of

bimanually differentiated and “tool using” activities (Uomini, 2009). But most of these

findings are supported by studies using DXA. Akar et al. (2002) investigated whether

handedness had an asymmetric effect on distal forearm BMC and BMD, and whether

there is an effect of gender on these variables. The mean BMCs and BMDs in bilateral dis-

tal forearms were compared in right-handed men and women. If it was the length, rather

than the structure of bone, that was different in right vs. left sides, it would be expected

that the BMC was higher on the right side. Conversely, differences in terms of BMD would

be minimal. Results were consistent with this hypothesis. The right-BMCs were found

to be significantly higher than left-BMCs for all regions of the bones studied. Results

indicated that the mean BMCs, but not BMDs, were significantly higher in the right than

in the left arm at different distal forearm regions, independent of gender. Kontulainen

et al. (1999) compared the playing and contralateral arms’ BMC of 13 competitive male

tennis players (≈ 25 yrs of experience) and 13 controls. It was observed that side-to-side

BMC differences were largest in the humeral shaft (25%) and proximal humerus (19%),

and the radial shaft and distal radius differences were 13 – 14%. In contrast, in controls,

the side-to-side BMC differences were small ( < 5%).

Crossed symmetry Some studies have reported left-bias in lower limb bone dimensions,

which, combined with the contralateral asymmetry in upper limbs, has been termed
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“crossed symmetry” (Auerbach & Ruff, 2006). In this case, the lower limb was expressed

by the stronger tibia usually on the opposite side of the dominant arm. Thus, right-

handers usually have a stronger left leg, left-handers a stronger right. For right-handers,

the long bones of the left lower limb (particularly femur) may be slightly longer and

heavier ( < 1%) than the right lower limb bones (Ruff & Jones, 1981), but, regardless of the

hand preference, the supportive limb is associated with greater development (Cuk et al.,

2001). Interestingly, more recent populations show a diminishing of the directionality and

magnitude of asymmetry, as well as less sexual dimorphism in asymmetry. In this regard,

Auerbach & Ruff (2006) suggest that influences from behavioral factors are implicated as

the source of these patterns, probably reflecting changes in exogenous factors, such as

industrialization and division of labor.

There are descriptive studies using DXA that provide evidence for crossed symme-

try in young non-athletic and athletic populations, particularly those engaged in lateral

dominant sports practice. Gumustekin et al. (2004) evaluated BMD in a sample compris-

ing 32 right- and 26 left-handed university students. The right and left, total and regional

proximal femur BMDs were measured and it was verified that the mean total BMD of

the total right-handers and the mean trochanteric BMD of the right-handed males were

greater in the left femur. Conversely, left-handers had higher mean intertrochanteric BMD

in the right side than in the left side. The results suggest that femur-BMD may be related

to hand preference. The results reported by Gumustekin et al. (2004) were not controlled

by gender and sports practice, but the study of McClanahan et al. (2002) does not have

these limitations; this research team investigated the effects of participation in various

sports on side-to-side differences in BMD of the upper and lower limbs. The subjects were

184 collegiate athletes of both genders who participated in baseball, basketball, football,

golf, soccer, tennis, cross-country, indoor/outdoor track, and volleyball. Results revealed

greater BMD of the right arms compared with the left arms for all teams, with the most

pronounced differences observed in men’s and women’s tennis and men’s baseball. Dif-

ferences in the lower limbs were only observed in lower limb BMD of male football and

tennis players, with the non-dominant leg having greater bone mass. The results for

football players are puzzling; it would be expected that the dominant lower limb would

be stronger because of shooting actions. However, Nazarian et al. (2010) confirmed that

it is indeed the non-dominant lower limb of football players that has higher BMD. It was
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shown that the non-dominant leg of these atheletes (n=15) had significantly higher BMD

than their dominant leg (1.34 vs. 1.29 g/cm2), whereas differences were not significant at

the control group (n=14). The superior BMD for the non-dominant leg was explained by

frequent engagement in take off, landing and stance in shooting. In addition to differences

at limbs, sports that require lateral dominance combined with increased spinal flexion and

rotation may also relate to structural asymmetry of the pelvis (Bussey, 2010).

Cyclic activities The rationale provided for crossed symmetry as a consequence of bal-

listic actions does not seem to hold for sedentary individuals who do nothing else but

ambulatory functions. In some studies, lower limbs are found to be similar to one another,

or the side-to-side differences do not reach statistical significance (Nazarian et al., 2010).

Rothney et al. (2009) examined BMC differences for upper and lower limbs between the

right vs. left sides in a sample of 52 obese subjects. Notwithstanding the BMC of the right

upper limb being higher (right − left: 5.9 ± 9.17 g), there were also small but positive

differences for BMC favoring the right lower limb (right-left: 2.99 ± 16.1 g), which were

postulated to be due to walking. Likewise, athletes engaged in cyclic activities may also

exhibit differences between lower limbs favoring the right side, particularly running and

cycling. In a revision of studies on running and cycling performance in healthy subjects,

Carpes et al. (2010) verified that evidence supporting symmetry is small. Regarding side

preference for the lower limb, literature is consistent in suggesting that only 25–45% of

people exhibit right leg preference in lower extremity actions (Cuk et al., 2001). However,

studies failed to show a general association between functional asymmetry during run-

ning and lateral preference for lower limbs. As for the bilateral assessment of pedaling,

cyclists have been shown to present frequent asymmetry. The extent of the asymmetries

can vary within subjects and is different for the upper and lower limbs. A finding that

is consistent throughout the literature is that the dominant leg, identified as the kicking

leg, can generally contribute more to generate propulsion regardless of cadence (Carpes

et al., 2010). Based on the current literature, it is not possible to ascertain the extent of

differences at the lean soft tissue compartment.

Gender and age factors Sexual dimorphism in asymmetry is present in some dimen-

sions, especially those of the upper limb, and may implicate differences in behavior and

growth. Females have more asymmetric and right-biased upper limb maximum lengths,

while males have greater humeral breadths, but the lower limbs demonstrate little sexual
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dimorphism (Auerbach & Ruff, 2006). Independent of gender, the pattern of asymme-

try decreases with age, primarily due to reduced physical activity and greater losses of

cortical bone (Ruff & Jones, 1981).

Summary Individual, lifestyle and sports related factors result in side-to-side adapta-

tions in bone tissue. There is qualitative evidence for side-to-side adaptations at the

upper limb as a consequence of handedness. Lateral dominant sports practice (eg.: tennis,

basketball, football) induce crossed symmetry, favoring the dominant upper limb and

contralateral lower limb. On the other hand, cyclic activities seem to induce superior

development at the right lower limb. There are also reasons to suspect that gender and

age group impact on the extent of side-to-side differences. Because weight-bearing stim-

ulus develops bone and skeletal muscle (Layne & Nelson, 1999), the qualitative evidence

provided for bone measurements may also hold for lean soft tissue at limbs.

2.6.2 Summary
This section pointed out that half-body scanning is a valid approach to assess individuals

wider than the DXA table. The outcome measurements for BMC, LST, FM and % FM

are closely comparable to whole-body scans using Lunar DPX-1 and the iDXA scanner in

children and adults. As for reflexion-scanning of the upper limb and summation scans of

two partial scanning, these also seem to work for Hologic QDR-4500A and Lunar Prodigy,

and non-athletic and athletic populations, respectively.

2.7 Objectives
This research aims to develop and validate reflexion scanning techniques to evaluate

whole-body composition of broad individuals in existing Hologic Explorer-W systems

(max. width: 65 cm). Procedure definition encompasses not only options to select and

combine body regions for image analysis, but also additional concerns with overall scan-

ning time, safety and comfort for the subject. Factors that can affect morphological asym-

metry, including gender, athletic status and being involved in lateral dominant sports are

also taken into consideration. A second objective to this study is to compare, at the group

and individual level, the performance of reflexion and half-scanning. This investigation

is circumscribed to healthy adult populations and to the three DXA compartments: BMC,

LST and FM (absolute value and %FM).
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3Methodology

„ “Divide & conquer” (divide et impera)

— Julius Ceasar
The principle of dividing something large into

smaller units, so it can be dealt with more easily.

This chapter contains an overall description of the approach taken in this thesis, inclu-

ding subjects, equipment and methods. Section 3.1 describes the sample and controlled

variables, while also providing technical specifications for the used DXA system and the

protocol for body composition examination. Sections 3.2 and 3.3 describe the partial

scanning techniques and statistical analysis that make up the core of this investigation.

3.1 Subjects
This study is ancillary to the “Promoção do Exercício e Saúde na Obesidade” (P.E.S.O.,

2005-2007) cohort study and also to the technical study of Santos et al. (2012). PESO, the

methodology of which in described in Silva et al. (2008), was a weight-loss randomized

controlled trial whose baseline population consisted of obese and overweight women (non-

athletes). Participants were followed up for one year and the body composition evaluation

moments took place and the beginning and at end of the intervention. Santos et al.

(2012) aimed to validate a technique for evaluating tall individuals in Hologic Explorer-W

densitometers. For that purpose, the recruited population consisted of non-athletes and

athletes engaged in dominant and non-dominant lateral sports practice. The athletic group

was comprised of national elite athletes of different sports: triathlon, judo, rowing, track

and field athletics, pentathlon, tennis, basketball and wrestling. Both studies collected

least one DXA whole-body scan per subject in an Explorer-W densitometer according

to the guidelines of Hologic. The Ethics Committee of the Faculty of Human Kinetics

approved both studies and all participants gave informed consent. In addition, fifteen

additional male rugby players were evaluated and analyzed. Eight additional subjects

that approached or exceeded the width limit of the DXA were also recruited to assist in the

protocol definition and assessment of the feasibility of the alternative scanning techniques

presented in Section 3.2.
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3.1.1 Body composition assessment

The protocol for determining body composition in DXA involved preparation/instructions

to subjects, anthropometrics and the actual DXA examination for scan acquisition. Overall,

each session lasted for approximately 30 minutes.

Preparation Each participant was instructed to fast for, at least, ≥ 3h before coming for a

morning visit at the study site (University of Lisbon, Faculty of Human Kinetics, Exercise

and Health Laboratory, Cruz-Quebrada – Lisbon) and to wear minimal clothing. They

were further asked to remove all objects that would interfere with image acquisition, such

as jewelry, watches, hair ornaments, glasses, keys and wallets. The following criteria were

used for excluding participants: a) Tests taken with radiographic contrast material in the

past 72 hours or participation in nuclear medicine studies in the past 3 days; b) Being

pregnant; and c) The participant’s weight exceeds 136 kg and/or his body dimensions in

the supine position are over the DXA table limit (height > 196 cm, width of trunk plus

arms >67 cm). All other subjects were asked to undertake a DXA examination.

Anthropometric data Prior to the DXA examination, weight and height were measured

with a calibrated scale (BOD POD, Cosmed, Inc., CA, USA) and a stadiometer (Seca,

Germany) according to the ISAK (2013) guidelines. Weight and height were measured

to the nearest 0.01 kg and 0.1 cm, respectively. These anthropometric variables, the

individual’s age, gender, and ethnicity were inserted into the interface of the DXA’s

analysis software and only then the actual DXA examination was initiated.

DXA examination An Hologic Explorer-W (software QDR for windows v13.3 with APEX

v3.3 for image analysis, MA, USA) narrow fan-beam system was used in whole-body

composition mode. Based on 30 healthy subjects (fifteen of each gender), the CVs in the

Exercise and Health Laboratory for BMC, LST, FM and %FM are 1.0%, 0.7%, 2.8% and

0.6%, respectively. The TEMs are 0.02 kg for BMC, 0.36 kg for LST, 0.37 kg for FM, and

0.1% for %FM. The manufacturer’s acquisition procedures were followed, implying that

participants laid flat in the supine position on the DXA table and each whole-body scan

took approximately 7 minutes. After acquisition, BMC, LST, FM and %FM were estimated

from the scans using Hologic’s proprietary software.
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3.1.2 Database construction

DXA scans of 198 eligible subjects were analyzed for this study, including athletes and

non-athletes of both genders whose overall phenotypes ranged from thin to obese (WHO

Working Group, 1986). The sample was described by age (years), weight (kg), height

(cm), gender, BMI (kg/m2), percent fat mass, athletic status (being a competitive athlete or

not) and, for athletes, a lateral dominant sports practice (LDSP) status. Lateral dominant

sports are those that induce morphological asymmetry as a consequence of preferential

use of dominant limbs for repeated actions, as happens in sports that require throwing

and shooting actions. Sports classified as lateral dominant were handball (n=15), rugby

(n=15), basketball (n=10), volley (n=6), tennis (n=2), running / barriers (n=2), and judo

(n=1). Non-lateral dominant sports are the ones that involve even use of limbs, namely

sports that involve cyclic activities like running, cycling, rowing and swimming. Within

this category, this study included triathletes (n=19), rowers (n=15), swimmers (n=14) and

sprint runners (n=2). The descriptives for athletes vs. non-athletes, males vs. females and

whole sample are reported in Table 3.1 as means ± standard deviations.

Exclusion Criteria Scans were set as invalid as a result of jewelry and other objects

not removed by participants; the presence of non-removable objects such as prostheses,

pacemakers, breast implants; extremities overlap or are outside the scan area of DXA; and

other reasons, including amputees. Different technicians positioned the participants and

performed the scans, but it was a single technician that analyzed them according to the

operator’s manual for the standard whole-body protocol (reference scan) and according

to the alternative techniques that are described in the Section 3.2.

Outcomes of Interest Soft tissue and bone measures reported by the software and rele-

vant for this study included BMC (g), LST (g), FM (g) and %FM. By configuring standard

the regions of interest (ROI) available in the manufacturer’s software, the analysis resulted

in whole-body and regional measures. Relevant ROIs are head, trunk and upper / lower

limbs. Measures were also obtained for a user-defined (half-scan) rectangular region at

the right-hand side of the body, including the right libs and trunk, but not the head (see

Figure 6.2 for details).
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3.2 Partial scanning techniques
Figure 6.2 depicts an whole-body reference scan of a subject alongside the investigated

partial scanning techniques (half-scan and two options for reflexion scanning). In all

representations, the body is segmented into limbs, trunk and head. For the half-scanning

protocol, an additional region of interest consists of an “halved” right-side trunk and

limbs. Black and grey pixels represent BMC and soft tissue, respectively, which is further

decomposed into LST and FM.

Whole Body Reflexion Scan - ULReflexion Scan - U Half-Scan

Figure 3.1: Partial scanning techniques for DXA analysis of broad subjects

As specified on Table 3.3, taking reflexion scans that only exclude the upper left limb

(RSU) is the most conservative approach, as it only needs to mirror the right upper limb.

However, it might still not be possible to scan both lower limbs in practical situations.

Thus, an alternative approach that does not require the left leg to fit within the scanning

area of the DXA — Reflexion Scan without the upper and lower left limbs (RSUL) — shall

also be considered. In contrast to the HS strategy proposed by Tataranni & Ravussin

(1995), neither RSU nor RSUL require the trunk to be halved.

Table 3.3: Compared partial scanning techniques for broad subjects.

TECHNIQUES REQUIRED ANATOMICAL REGIONS UNKOWN

Half-Scan Head , Left side of the body Right side of the body

RSU Head, Trunk, Right limbs, left lower limb Upper left limb

RSUL Head, Trunk, Right limbs Left limbs

Abbreviations: Reflexion Scanning (RS): RSU – upper left limb removed; RSUL– upper and lower left lims removed.
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For RSU and RSUL, insights were drawn from tests with wide individuals who

actually exceeded the width limits of the DXA systems, which were explored further

by questions in order to establish appropriate positioning and also to determine the

maximum subjects’ width for which the proposed procedures are recommended. Under

the symmetry assumption with respect to the right and left sides of the body, the estimates

for the DXA compartments and %FM can be obtained from the scanned anatomic regions

according to Equation 3.1:

xRSU = Head + Trunk + 2 ArmR + LegR + LegL (3.1a)

xRSUL = Head + Trunk + 2 ArmR + 2 LegR (3.1b)

xHS = Head + 2 Hal f _ScanR (3.1c)

%FM = 100 FM/Total_Weight (3.1d)

where the measurements for the DXA outcomes of interest (BMC, LST, FM, %FM) by HS,

RSU and RSUL are denoted in generic terms by xHS, xRSU and xRSUL, and subscripts R and

L denote right and left hand sides, respectively. In Equation 3.1c, Hal f _ScanR refers to the

right-side half of the [subtotal] body, comprising limbs and trunk.

Technical errors In addition to the same sources of error that affect a standard whole-

body scan (e.g., machine’s inherent noise, technologist’s positioning of subjects), partial

scanning techniques are also affected by the propagation of measurement errors that

Equations 3.1 entail. In this regard, the errors resulting from delimitation of ROIs during

image analysis, namely the segmental lines that demarcate arms/trunk and hips/pelvis,

should also be taken into consideration when referring to the reproducibility of total

body composition measurements performed on a DXA machine in partial scanning mode.

Accordingly, we investigated the short-term precision of total body composition measure-

ments performed in our laboratory using RSU and RSUL. Thirty adults (15 females, 15

males) was scanned twice with repositioning to determine intraobserver1 technical er-

rors of measurement and coefficients of variation for the estimates of BMC, LST, FM and

%FM. For RSU and RSUL, the TEMs and CVs for each compartment were calculated and

expressed as TEMxRSU or TEMxRSUL , respectively, with x ∈ {BMC,LST,FM,%FM}.

1The technologist was the same for all image analysis procedures undertaken in this investigation.
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3.3 Statistical analysis
Statistical analysis was performed using IBM SPSS Statistics version 20.0, 2011 (SPSS Inc.,

IBM, Chicago, Illinois, USA) and MATLAB R2011a (The Mathworks, MA, USA). Unless

stated otherwise, the statistical significance was set at p < 0.05.

Characteristics of the sample The sample was described (means± standard deviations)

in terms of whole-body BMC, LST, FM, and %FM by reference procedures, weight, height

and BMI (kg/m2). Normality was tested using the Shapiro-Wilk or the Kolmogorov-

Smirnov tests, depending on whether the subsample sizes were smaller or greater that 30

subjects, respectively. Independent sample t-tests were used for comparisons of subgroups

split by gender and athletic status. In addition, for BMD (g/cm2), BMC, LST and FM, we

also performed paired sample t-tests to compare [upper and lower] contralateral limbs

with one another of subgroups split by athletic status and lat. dom. sports practice.

Estimates from partial scans The validation approach of this thesis proceeded with the

calculation of estimates for whole-body BMC, FM, LST and %FM by the partial scanning

techniques (HS, RSU and RSUL; see Equations 3.1 for details). After this preliminary

step was concluded, we sought information on the accuracy with which xPS explained the

corresponding whole-body estimates for each compartment, with PS ∈ {HS,RSU,RSUL}

and x ∈ {BMC,LST,FM,%FM}.

Confounding factors In order to examine whether xPS interacted with confounds to

explain whole-body estimates (xWB), two-way ANOVA tests were conducted. For each

compartment, the interaction of gender, athletic status and lateral dominant sports practice

with each main predictors (xPS, estimates for BMC, LST, FM and %FM from the alternative

procedure) was tested in separate models:

xWB = β0 + β1 xPS + β2 gender + β3 gender xPS + ε (3.2a)

xWB = β′0 + β′1 xPS + β′2 athletic_status + β′3 athletic_status xPS + ε′ (3.2b)

xWB = β′′0 + β′′1 xPS + β′′2 LDSP + β′′3 LDSP xPS + ε′′ (3.2c)

If interactions were statistically insignificant or negligible, stepwise multiple regression

tests were further undertaken to investigate whether athletic status, gender and regular
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practice of lateral dominant sports introduced significant contributions to explain on the

outcome variables in HS, RSU and RSUL. The simplified models were:

xWB = β0 + β1 xPS + β2 gender + ε (3.3a)

xWB = β′0 + β′1 xPS + β′2 athletic_status + ε′ (3.3b)

xWB = β′′0 + β′′1 xPS + β′′2 LDSP + ε′′ (3.3c)

where the β coefficients were only included if they were significant, p < 0.05. Upon the

completion of tests for confounding factors, the approach for validating partial scanning

techniques against reference whole-body scanning proceeded as depicted in Figure 3.2.

Subjects DXA PS
XPSXWB

*PERFORMANCE CRITERIA:
• Regression features 
   (slope, intercept, r2, SEE); 

• Agreement between BMC,
   LST, FM, and FM from PS 
   and WB procedures
   (bias, limits, trend, CCC).

STUDY*
VALIDATION

• Healthy Adults
• Both genders
• Athletes and non-athletes
• Lateral and non-lateral
   dominant sports

Alternative

Reference

• HS
• RSU
• RSUL

Whole-body

Figure 3.2: Validation of partial scanning for whole-body composition assessment.

The relationship between alternative (half- or reflexion scanning), and reference (whole-

body) estimates was examined by linear regression and agreement analysis. Agreement be-

tween both methods was assessed by Bland & Altman (1986) analysis and by the inspection

of the concordance correlation coefficient.

Linear regression analysis Linear regression models were then developed for x ∈ {BMC,

LST,FM,%FM} and PS ∈ {HS,RSU,RSUL}. As expressed in Equation 3.4, the [reference]

whole-body measurements were the dependent variables and the [alternative] partial scan

measurements were the dependent ones:

xWB = β0 + β1 xPS + ε (3.4)

By the least mean squares algorithm, β0 and β1 were determined in order to minimize the

errors ε between xWB and the regression outcome x̂WB = β0 + β1 xPS. β0 and β1 are, hereafter,

referred to as intercepts and slopes, respectively. The coefficient of determination r2 and the

standard error of the estimate (SEE) were also determined for all outcome variables.
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Bland-Altman analysis To test of the agreement between methods for whole-body BMC,

FM, LST and %FM, the Bland-Altman analysis was conducted. First, the mean difference

of alternative (xPS) minus whole-body estimates, defined as bias, was calculated for PS ∈

{HS,RSU,RSUL}, and its statistical significance was tested with paired sample t-tests. Then,

the magnitude of individual errors of xPS were inspected based on the individual differences

∆PS,i = xPS,i − xWB,i, with i being the subject index of the sample, i = 1 . . .N and PS ∈

HS,RSU,RSUL (Bland & Altman, 1986). After the standard deviation of ∆PS was determined,

the 95% limits of agreement were determined by [−1.96 SD; 1.96 SD]. As for possible

trends with increasing values, linear regressions were performed on ∆PS (dependent variable)

against (xWB + xPS)/2 (independent variable). The statistical significance of the coefficient of

correlation (here referred to as trend) of the linear regression ˆ∆PS = f [(xWB − xPS)/2] was also

tested.

Concordance analysis The concordance correlation coefficient (CCC) was also computed

to evaluate the extent by which observations for xPS were in agreement with the correspon-

ding reference values xWB (Lin, 1989; McBride, 2005; McGraw & Wong, 1996). The concor-

dance correlation coefficient is a normalized parameter that consists of the product of the

Pearson correlation coefficient (r) with a bias correction factor (Cb). In this sense, r’s Pear-

son is the correlation obtained for the regression x̂WB = β0 + β1 xPS (see defining model in

Equation 3.4) and informs on precision, whereas the latter provides insight on how close the

points (xPS,i, xWS,i), i = 1 . . .N are to the ideal line xWB = xWB (a 45o line through the origin).

The practical interest of CCC stems from the existence of threshold values against which

xPS can be compared to infer the strength of agreement of the alternative techniques. As

suggested by McBride (2005), a possible descriptive scale comprises values of CCC < 0.90,

0.90 – 0.95, 0.95 – 0.99 and > 0.99 that indicate poor, moderate, substantial and almost perfect

strength of agreement, respectively.

Summary The statistical variables that shall be used for validation and comparison of

techniques are as follows: mean values for the measurements by the different techniques

(mean ± SD), parameters derived from linear regression analysis ( r2, SEE, Intercept, Slope)

and agreement analysis (Bias , 95% LoA, Trend, CCC, Pearson correlation coefficient r and

the agreement factor Cb).
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4Results

„“Bloom, o nosso herói. Eis o que faz primeiro: observa."

— Gonçalo M. Tavares

Viagem à Índia

This chapter was organized with the aim of providing relevant data for comparing and

validating the major solution concepts of this thesis. Firstly, we provide information

pertaining to the reliability of whole-body and regional body composition assessments

reported throughout this investigation. Accordingly, the TEMs and CVs specific to our

DXA machine (Hologic Explorer-W) and the conditions of its use are listed in Table 4.1.

The reported metrics were computed in thirty subjects with repositioning in between

scans, as recommended by Nana (2013) and Bonnick & Lewis (2006).

Table 4.1: TEMs and CVs por whole-body scanning and selected regions of interest.

TEM (kg) CV(%)

PS BMC LST FM %FM BMD BMC LST FM %FM

WB 0.023 0.362 0.370 0.063% 0.85 0.99 0.74 2.78 0.57%

MS_R 0.003 0.072 0.051 2.26 2.12 2.63 7.54

MS_L 0.003 0.070 0.052 1.71 2.26 2.70 7.51

MI_R 0.010 0.134 0.111 1.84 2.26 1.56 3.99

MI_L 0.009 0.156 0.140 2.05 2.13 1.89 5.13

Acronyms: TEM: Technical Error of the Measurement; CV, Coefficient of Variation; PS, Partial Scanning techniques; ROI,

Region of Interest; BMC, Bone Mineral Content; LST, Lean Soft Tissue; FM, Fat Mass.

Section 4.1 provides the participant’s characteristics, including comparisons of con-

tralateral limbs. Then, on Section 4.2, partial scanning techniques are examined from a

feasibility and practicality perspective. For this purpose, results are provided for prelim-

inary tests that were undertaken on subjects that did not fit into the DXA table, and the

TEMs/CVs that inform on the precision of partial scanning techniques for whole-body

composition assessment are also provided. Finally, Section 4.3 provides validation re-

sults for the half- and reflexion-scanning techniques according to the performance criteria

described in Chapter 3, as well as linear regression and Bland-Altman plots.
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4.1 Participant’s characteristics
Participants’ characteristics (N=198) are described in Table 4.2, including body weight,

BMC, LST, FM and %FM. The sample is subdivided according to gender and athletic status.

Independent sample t-tests revealed significant differences between all characterizing

variables except the body weight of athletes vs. non-athletes. Table 4.2 informs that the

mean body weight of athletes vs. non-athletes and body weight of males and females are

similar. However, the sample has a large variation of %FM (23.87±10.12%). As could be

expected, non-athletes have significantly more adiposity, less lean tissue and bone content

than athletes, and the same observations hold for the comparison of females vs. males.

Table 4.3 complements the former by providing details on side-to-side differences between

limbs. Data on asymmetry were inspected based on BMD and percentage directional

asymmetries (DA, %) (see Equation 2.8 on Section 2.6.1 for details). The sample was

analyzed collectively and separately, according to athletic status, lateral dominant sports

practice and gender1. Overall, Table 4.3 indicates that DA is higher for upper limbs and

favors the right-hand/dominant side. For a more throughout inspection of side-to-side

differences, we shall consider upper and lower limbs separately.

Upper limbs For subgroups (athletes vs. non-athletes; LDSP vs. non-LDSP; males vs.

females) and for the whole sample, DAs for LST and BMC in upper limbs are about

≈ 4–9% (significant and superior to the corresponding CVs; CVBMC, U and CVLST, U are

approximately 2%). Curiously, although the DAs for FM are below the CVs for FM ( ≈

-5 – -4%; CVFM, U: 7.5%), it tends to compensate body composition in the non-dominant

limb. DA in the upper limbs is also significant for BMD of the whole sample (1.3 ± 4.1%,

which corresponds to an average difference of just 10 grams favouring the right-hand

side) and subgroups. For bone measurements, DAs are most severe for athletes engaged

in lateral dominant sports practice For these, the DA for BMD was 3.4%± 4.5% (significant

value that corresponds to a bone mineral content of 16 ± 14 g or 8.9 ± 7.2%). Conversely,

those classified as non-LDSP had a low and non-significant DA for BMD of upper limb

(DABMD, U: 0.50 ± 3.71 % < CVBMD, U). For LST , DAs were significant for subgroups and

whole sample in the range ≈ 4 – 9%, where the smallest and greatest DAs were verified

for males and females, respectively. However, the DAs for BMD of handball players alone

was 7.1 ± 3.6 (corresponds to a DABMC, U of 25.2 ± 9.9 g or 13.5 ± 4.1%), and the maximum

DABMD, U was as high as 13.9% (results not reported in Table 4.3).
1Note: the sample was separated according to athletic status, lateral dominant sports practice and gender

because of the evidence collected and documented in Section 2.6.1.
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Lower limbs For subgroups and for the whole sample, the DAs for bone measurements

and fat mass for lower limbs are less than 4%. Most variables did not reach statistical

significance nor exceeded its respective CVs (1.9% for BMD, 2.2% for BMC, and 4.5% for

FM). It is interesting to note that the bone measures for athletes in the LDSP group have

the lowest (negative sign) results for DABMD, L, although it corresponds to just 3 grams.

In handball players, however, DABMC, U reached -22.4 ± 26.5 g (result not reported in

Table 4.3). For LST, the DALST, L was significant and superior to the CV for LST (CVLST, L:

1.9%), but also less than 4% for all subgroups and whole sample.

4.2 Preliminary tests
Eight additional subjects whose dimensions approached or exceed the limits of the DXA

table were recruited for preliminary tests meant to assess pertinence, comfort and safety for

the patient, along with feasibility and practicality of partial scanning techniques. Included

were 5 male rugby players (see Figure 4.1, case studies A – E, %FM 15.0 . . . 41.3 %) and 3

obese females (F: 39.9%FM; G: 46.5%FM and H: 39.9%FM). As the %FM of rugby athletes

varies from normal to obese (A – E), the width constraint of the DXA table becomes an

issue that eventually compromises proper whole-body scanning. For muscular athletes

whose weight ≈ 100 kg (B), regular scanning with palms facing the table may result in

inaccurate representation of upper extremities. When the width in excess is minor (1–2

cm), an option to solve these cases is asking the subject to place both hands in midsaggital

position (palms facing the hip). While this option seems to prevent hands and forearms

from falling outside the active scanning area in some cases, including obese women and tall

athletes (E), it seems to remain unable to provide a working solution for wide individuals

(C, D, F, G, H). For these, a partial scan that does not include the upper left arm can still

be obtained; F, G and H where positioned in such a way that their midsaggittal line was

offset from the midline of the table and to their left-hand sides. In this way, the right limbs

and trunk could be completely scanned and the software was then allowed to “mirror”

the results of the completely imaged side to the contralateral limb(s).

Figure 4.2 depicts zoomed shoulders from scans of different individuals, including

obese. It is apparent from these images that the demarcation of arms from trunk is not

always clear cut as most images are slightly blurred in this region. Moreover, obesity and

high muscularity turn cause overlap between trunk and arms.
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Figure 4.1: Preliminary tests of partial scanning techniques in wide individuals.
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In order to minimize technical errors and enhance consistency, the segments demar-

cating arms from trunk were always placed by the same technologist and intersected the

separation between scapula and humerus.

No bone ambiguity, Strength athlete.

I II III

Overlap of fat: limbs and trunk. Blurred image, Non-obese. Blurred image, Obese.

IV

Figure 4.2: Delimitation of upper limbs in obese and non-obese subjects.

Figure 4.3 depicts the analysis software for Hologic Explorer W systems (version

13.0). When the scanning field is exceeded, a window pops up automatically.

Figure 4.3: Graphic user interface for automatic reflexion-scanning analysis in Hologic Explorer-W
densitometers. The user can select RSU or RSUL.
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The user can then copy results of the upper, lower or both limbs. In Figure 4.3, Subject

H was analyzed without the upper limb only (RSU protocol). Scans A–D did not require

reflexion of the left limb nor going for half-scanning. We observed, however, that the

weight of the individuals that challenge the limits of the densitometers is lower for women,

owing to lesser muscle mass for the same body volume. consequently, it is possible that

women weighting ≈ 110 – 136 kg may still require reflexion of upper and lower limbs.

Subjects F–H felt comfortable when the scans were performed with an offset from midline

of the table. The maximum offset for which the left arm could still be safe and comfortably

accommodated over the side of the table was 10 cm. Subject D was near the weight

limit of the densitometer and was the only subject for which beam hardening artifacts

compromised the validity of the scan.

TEMs and CVs for reflexion-scanning In order to assist in the interpretation of the

precision of DXA results reported for reflexion-scanning techniques, its corresponding

TEMs and CVs were investigated in thirty subjects with repositioning in between scans.

Accordingly, as previously presented for whole-body and regional measurements, we

determined these parameters for Hologic Explorer-W densitometers and for the conditions

of this study. Table 4.4 lists these parameters for whole-body versus reflexion-scanning

techniques for BMC, LST, FM and %FM.

Table 4.4: TEMs and CVs for whole-body and reflexion-scanning techniques

TEM (kg) CV(%)

PS BMC LST FM %FM BMC LST FM %FM

WB 0.023 0.362 0.370 0.063% 0.99 0.74 2.78 0.57

RSU 0.022 0.387 0.388 0.074% 0.95 0.78 2.93 0.60

RSUL 0.027 0.458 0.401 0.092% 1.15 0.92 3.02 0.61

Acronyms: TEM: technical error of the measurement; CV, coefficient of variation; PS, Partial scanning Techniques; ROI,

Region of Interest; BMC, bone mineral content; LST, lean soft tissue; FM, fat mass.

It can be observed from Table 4.4 that the CVs for the studied reflexion-scanning

techniques are higher that the CVs for standard whole-body composition assessment. The

penalties are about 10% for RSU, but higher for RSUL (range 14-48%). The overall CVs

remain in the order or 1% (or less) for BMC and LST, 3% for FM and 0.6% for %FM.
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4.3 Validation results
According to the validation approach described in Section 3.3, Equations 3.2 were im-

plemented in SPSS to investigate whether possible confounding factors (gender, athletic

status, LDSP) interacted with the performance of partial scanning techniques. ANOVA

two-way and multiple regressions tests were performed to compute β3 for each tech-

nique and compartment. For HS and RSUL, no significant interactions were found. For

RSU, there were significant interaction terms for BMC (BMC . Sports_Practice, p=0.003,

and BMC . LDSP, p=0.019 ) and %FM (%FM . Sports_Practice, p=0.01). The relative

contribution of these terms to explain the overall BMCWB and %FMWB was, nonethe-

less, negligible in comparison with BMCRSU and %FMRSU. Indeed, β1 ≈ 1 whereas

|β3| ≈ 0.01 ( BMCRSU . Sports_Practice : β3 = 0.009 ± 0.003, (F(194, 1) = 9.278, p = 0.003) ;

BMCRSU . LDSP: β3 = 0.007±0.003 , (F(194, 1) = 5.571, p = 0.019); %FMRSU . Sports_Practice:

β3 = −0.014± 0.005, (F(194, 1) = 6.716, p = 0.01)). As such, interaction terms between each

main independent predictor (BMC, LST, FM and %FM from the alternative procedures)

with gender, LDSP and athletic status were not included in models for any partial scan-

ning technique. Table 4.5 lists results from multiple regressions tests that were conducted

to implement and test the models of Equation 3.3, for BMC, LST, FM and %FM from the

reference scan. The contribution of fixed factors was either statistically not significant or

small; for HS, the contribution of the athletic status accounts for 15 g and 214 goffset in

BMC and LST, respectively. In RSU, the influence of factors on the outcome variables

was only ≈ 5g, 42g and 0.3 – 0.4% for BMC, FM and %FM, respectively. Finally, in RSUL,

athletic status resulted in a 10g offset for BMC and gender 0.3% for %FM.

Table 4.5: Stepwise multiple regression models for alternative procedures.

PANEL A: MULTIPLE REGRESSION ANALYSIS FOR HS

Model Summary Variables βi S(βi) t p-value

BMC (g) F(2, 195) =

17628.2,

(Constant) 23.289 13.01 1.764 0.079

p < 0.001, BMC_HS 0.982 0.006 177.266 <0.001

R2 = 0.994, Ath. Status 15.194 5.698 2.667 0.008

Excluded Gender (p=0.57), LDSP (p=0.52)

LST (g) F(2, 195) =

30846.1,

(Constant) -256.343 215.591 -1.189 0.236

p < 0.001, LST_HS 1.002 0.004 230.484 <0.001
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R2 = 0.998, Ath. Status 214.133 93.165 2.298 0.023

Excluded Gender (p=0.36), LDSP (p=0.58)

FM (g) F(1, 196) =

109926.3,

(Constant) 459.331 55.685 8.25 <0.001

p < 0.001, FM_HS 0.999 0.003 331.55 <0.001

R2 = 0.999 Excluded Gender (p=0.69), Ath. Status (p=0.77), LDSP (p=0.97)

%FM F(1, 196) =

84246.5,

(Constant) 0.773 0.089 8.699 <0.001

p < 0.001, %FM_HS 1.014 0.003 290.252 <0.001

R2 = 0.998 Excluded Gender (p=0.44), Ath. Status (p=0.70), LDSP (p=0.94)

PANEL B: MULTIPLE REGRESSION ANALYSIS FOR RSU

Model Summary Variables βi S(βi) t p-value

BMC (g) F(3, 194) =

180217.3,

(Constant) -4.700 3.618 -1.299 0.195

p < 0.001, BMC_U 0.998 0.002 651.671 <0.001

r2= 1.000, LDSP -9.946 2.189 -4.543 <0.001

Athletic

Status

5.127 1.800 2.848 0.005

Excluded Gender (p=0.51)

LST (g) F(2, 195)

=1130189.1,

(Constant) -261.514 49.490 -5.28 <0.001

p < 0.001, LST_U 1.002 0.001 1063.10 <0.001

r2=1.000 Excluded Gender (p=0.36), Ath. Status (p=0.86), LDSP (p=0.89)

FM (g) F(2, 195) =

734757.4,

(Constant) 40.653 15.58 2.609 0.010

p < 0.001, FM_U 0.998 0.001 1008.92 <0.001

r2 = 1.000, Gender 42.263 16.97 2.491 0.014

Excluded Ath. Status (p=0.77), LDSP (p=0.96)

%FM F(4, 193) =

72370.9,

(Constant) 0.283 0.075 3.789 <0.001

p < 0.001, %FM_U 1.009 0.003 303.348 <0.001

r2= 0.999, Gender 0.270 0.060 4.504 <0.001

LDSP 0.230 0.058 3.985 <0.001

Ath. Status -0.151 0.059 -2.538 0.012

Excluded —

PANEL C: MULTIPLE REGRESSION ANALYSIS FOR RSUL

Model Summary Variables βi S(βi) t p-value

BMC (g) F(2, 195) =

43100.5,

(Constant) -2.883 8.536 -.338 0.74

p < 0.001, BMC_UL 0.993 0.004 277.236 <0.001
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r2 = 0.998, Athletic

Status

10.450 3.655 2.859 0.005

Excluded Gender (p=0.57), LDSP (p=0.52)

LST (g) F(1, 196) =

212040.6,

(Constant) -543.524 114.855 -4.732 <0.001

p < 0.001, LST_UL 1.002 0.002 460.479 <0.001

r2 = 1.000 Excluded Gender (p=0.36), Ath. Status(p=0.86), LDSP (p=0.90)

FM (g) F(1, 196) =

249760.6,

(Constant) 88.518 37.609 2.354 0.02

p < 0.001, FM_UL 0.993 0.002 499.761 <0.001

r2 = 0.999 Excluded Gender (p=0.69), Ath. Status (p=0.78), LDSP (p=0.97)

%FM F(2, 195) =

69124.8,

(Constant) 0.279 0.074 3.786 <0.001

p < 0.001, FM_UL 1.011 0.004 245.611 <0.001

r2= 1.000 Gender 0.265 0.085 3.117 0.002

Excluded Ath. Status (p=0.69), LDSP (p=0.94)

Abbreviations and Acronyms: HS, Half Scan; RSU/RSUL, Partial Scans with Upper/Upper and Lower Left Limbs re-

moved; Ath. Status, Athletic Status; LDSP, Lateral Dominant Sports Practice; BMC, bone mineral content; FM, Fat Mass;

LST, Lean Soft Tissue; βi, Unstandardized correlation coefficients for dependent variables i in main predictors (BMC, LST,

FM, %FM_alternative technique) or covariates (Gender, Athletic Status, LDSP); S(βi), Standard Error of βi; r2, squared corre-

lation coefficient; F (df1, df2), F value and the degrees of freedom for both the regression (df1) and the residual error (df2).

Significance level for inclusion of dependent variables in models: p < 0.05.

Subjects were grouped together and analyzed collectively. The complete set of

validation results is presented in Table 4.6, including mean group comparison of whole-

body vs. partial scanning estimates, least-squares linear regression (see Equation 3.4 for

details), Bland-Altman and concordance analysis.

Table 4.6: Validation of alternatives to assess wide individuals in DXA.

PANEL A: VALIDATION OF HS

BMC (kg) LST (kg) FM (kg) %FM

WB, mean ± s 2.43±0.51 51.2±10.8 16.9±8.4 23.9±10.1

HS, mean ± s 2.44±0.51 51.3±10.7 16.5±8.4 23.3±10.1

r2 0.9943 0.9968 0.9982 0.9981

SEE 0.039 0.616 0.354 0.44

Slope 0.986* 1.006* 0.9994* 0.9966*

Intercept 0.019 -0.345 0.459* 0.618*

CCC 0.99666 0.99834 0.99767 0.9976

r 0.99715 0.99838 0.99911 0.9991

Cb 0.99951 0.99996 0.99856 0.9986
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Bias (kg) 0.015 (0.6%)* 0.062 (0.1%) -0.45 (2.7%)* -0.54 (2.2%)*

95% LoA -0.061, 0.091 -1.15, 1.27 -1.14, 0.24 -1.40, 0.32

Trend 0.1450** -0.1241 -0.0063 0.0565

PANEL B: VALIDATION OF RSU

BMC (kg) LST (kg) FM (kg) %FM

WB, mean ± s 2.43±0.51 51.2±10.8 16.9±8.4 23.9±10.1

RSU, mean ± s 2.44±0.51 51.4±10.8 16.9±8.4 23.8±10.1

r2 0.9996 0.9998 0.9999 0.9999

SEE 0.010 0.142 0.098 0.12

Slope 0.995* 1.002* 0.999* 1.003*

Intercept 0.001 -0.262* 0.043* 0.02*

CCC 0.99958 0.99978 0.99993 0.99987

r 0.99980 0.99991 0.99993 0.99993

Cb 0.99978 0.99987 0.99999 0.99995

Bias 0.010 (0.4%)* 0.172 (0.3%)* -0.026 (-0.2%)* -0.10 (-0.4%)*

95% LoA -0.01, 0.03 -0.11, 0.45 -0.22, 0.17 -0.35, 0.15

Trend 0.2149** -0.1374 0.0822 -0.2667*

PANEL C: VALIDATION OF RSUL

BMC (kg) LST (kg) FM (kg) %FM

WB, mean ± s 2.43±0.51 51.2±10.8 16.9±8.4 23.9±10.1

RSUL, mean ± s 2.44±0.51 51.7±10.8 17.0±8.4 23.7±10.1

r2 0.9977 0.9991 0.9992 0.9991

SEE (kg) 0.025 0.328 0.242 0.31

Slope 0.9961* 1.002* 0.993* 1.003*

Intercept -0.006 -0.544* 0.089* 0.067*

CCC 0.99835 0.99863 0.99958 0.99942

r 0.99882 0.99954 0.99961 0.99953

Cb 0.99953 0.99909 0.99997 0.99989

Bias (kg) 0.016 (0.7%)* 0.459 (0.9%)* 0.034 (0.2%) -0.143 (-0.6%)*

95% LoA -0.033, 0.064 -0.18, 1.10 -0.44, 0.51 -0.76, 0.47

Trend 0.0559 -0.0688 0.2375** -0.1182**

Abbreviations: BMC, bone mineral content; FM, fat mass; LST, lean soft tissue; r2, coefficient of determination; SEE, stan-

dard error of estimation; CCC, concordance correlation coefficient; Bias, mean difference between methods; LoA, limits of

agreement; r, Pearson correlation coefficient; Cb, bias correction factor. Significance levels: * p < 0.001; ** p < 0.05.

Figures 4.4, 4.5 and 4.6 depict results for the validation of HS, RSU and RSUL.

Subfigures (a), (c) and (d) are the linear regression plots for BMC, LST and FM, and (b),

(d) and (f) are the corresponding Bland-Altman plots for each compartment. Figures 4.7

(a)–(f) refer to the validation of HS, RSU and RSUL for %FM.
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Figure 4.4: Regression and Bland-Altman plots for HS.
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Figure 4.5: Regression and Bland-Altman plots for RSU.
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Figure 4.6: Regression and Bland-Altman plots for RSUL.
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The remaining paragraphs of this chapter highlight the information available for

linear regression, Bland-Altman and concordance analysis.

Linear regression analysis Subfigures 4.4, 4.5, 4.6 and 4.7 (b, d, f) represent the

associations between the reference (dependent variable) and the alternative (independent

variable) scans for BMC, LST, FM and %FM. Linear regression analysis showed that the

alternative procedures explained more than 99% of the variance of BMC, LST, FM and

%FM (Table 4.6). However, RSU was the best performing technique (r2 = 0.9996 – 0.9999)

followed by RSU and, lastly, HS (r2 = 0.9943 – 0.9982). The slopes of the regressions for all

alternatives were all close to unit ( > 0.99 ), and t-tests confirmed that they were indeed

not different to unity. Additional t-tests indicated that intercepts for BMC (≈ 10 – 15g)

were not significantly different from zero for all techniques. However, the same was not

the case for soft tissue variables. In fact, for FM and %FM, the intercepts were significant

for all techniques, but whereas these values were below the corresponding TEMs for the

reflexion-scanning techniques, for HS the intercepts were still below 0.5 kg / 1%FM. For

LST, the intercept values were not significant (for HS), and significant but still less than

the TEMs for LST (RSU: -0.263 ± 0.049 kg < TEMLST, RSU=0.387 kg; RSUL: -0.544 ± 0.115 kg

< TEMLST, RSUL=0.458 kg ). SEEs were lower than 2.1% of the mean measurements for all

compartments under HS, RSU, RSUL, and also for %FM (range of absolute values for SEE:

BMC ≈ 10–40 g, LST ≈ 0.1–0.6 kg, FM ≈ 0.1–0.5 kg and %FM ≈ 0.1 – 0.4%). Specifically,

SSEs were about 1.6–1.8% for HS, 0.6–1% for RSU and 0.3–0.5% for RSU, which stood out

as the best performing technique.

Bland-Altman analysis As evidenced in Table 4.6, the bias between the alternative tech-

niques and the reference whole-body estimates is either not significant or small in most

cases. For BMC, partial scanning techniques significantly overestimated BMC by ≈ 10

– 16g, which corresponded to less than 1% of the mean BMC and is less than the TEMs

for BMC (TEMRSU, BMC = 23 g; TEMRSUL, BMC = 27 g). For LST, HS did not overestimate

this component, but RSU and RSUL significantly overestimated whole-body composition

measurements by 0.3% (absolute bias: 0.17 kg < TEMLST, RSU) and 0.9% (absolute bias:

0.46 kg = TEMLST, RSUL ), respectively. The bias for fat measurements was significantly

underestimated by HS by 2–3% (absolute bias: -0.45 ± 0.35 kg, -0.5%). %FM was also

significantly underestimated by reflexion-scanning techniques by ≈ 0.5%, but these were

insignificant or close to its corresponding TEMs for %FM (≈ 1%).
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Bland-Altman plots (Subfigures 4.6 and 4.7 (b, d, f) showed that the reflexion-

scanning techniques had narrower limits of agreement than half-scanning (HS vs. RS:

0.15kg / 2.5kg / 1.4kg / 1.7% vs. 0.04–0.1kg / 0.6–1.3kg / 0.4–1.0kg / 0.5–1.2% for BMC / LST

/ FM / %FM). Also, absolute ranges of the 95% limits of agreement were generally higher,

but still within the order of magnitude as the corresponding TEMs (TEMs RSU–RSUL:

BMC, ≈ 0.02–0.03kg; LST, 0.4–0.5kg; FM, 0.40kg; %FM, 0.1%).

There were outliers for all techniques and compartments, and these were not ex-

cluded from the data sample. The absolute individual errors are higher among athletes

engaged in lateral sports practice, particularly handball. The maximum individual errors

registered for handball players were as follows:

• HS:

– BMC, 0.09 kg;

– LST, 1.72 kg ;

– FM, -0.7 kg (%FM, -1.0%);

• RSU:

– BMC, 0.04 kg;

– LST, 0.60 kg;

– FM, 0.15 kg (%FM, -0.3%);

• RSUL:

– BMC, 0.07 kg;

– LST, 1.02 kg;

– FM, 0.45 kg (%FM, +/-0.4%).

As for trends of the differences between the mean of both methods, Bland-Altman

analysis reveals significant and positive trends for BMC in HS and RSU, as well as a

positive tendency in RSUL estimates. For soft tissue measurements, the trend is not

significant for LST, whereas, for fat measurements, the trend is only significant for FM in

RSUL (positive trend) and %FM in both reflexion-scanning techniques (negative trend).

Concordance Analysis Panel A of Table 4.6 evidences that the concordance correlation

coefficient (CCC) values were higher than 0.99 for BMC, LST, FM and %FM for all tech-

niques, and the same holds for the bias term Cb and Pearson’s r, which inform (favorably)

on accuracy and precision, respectively.
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5Discussion

„Only professional mathematicians learn anything from

proofs. Other people learn from explanations. (. . . )

Experienced parents realize that when a child says

“Why?” it just wants more conversation.

— Ralph P. Boas

1912–1992

Due to the need of evaluating athletes and obese patients whose dimensions exceed

the width of the DXA scan area, the ability to circumvent this limitation has become a

very useful capability for DXA systems (Sherman, 2011). Partial scanning techniques like

“Half” and “Reflection” scanning are being used by manufacturers to estimate whole-body

values even when body region(s) fall outside the scan window. Morphological symmetry

is an implicit assumption to this family of solutions, as missing body regions must be

estimated from those that were actually scanned. In this study, we sought to compare the

aforementioned techniques to one another in terms of accuracy of estimates for BMC, LST,

FM and %FM. We also asked what effect gender and sports practice, particularly lateral

dominant sports, had on validity. Since the quality of partial scanning inferences seems

to be scanner dependent (Hangartner et al., 2013), we narrowed the scope of this project

to Hologic QDR Explorer-W densitometers (software QDR APEX vs. 13, Hologic Inc).

For validation purposes, an whole-body scan was the reference criteria and three

partial scanning options were tested: the half-scan, which measures half of the body and

assumes the opposite side is equal, and two more conservative alternatives at which only

left limb(s) are left out of the scan (RSU, reflection scan – upper left limb removed and

RSUL, reflection scan – upper and lower limbs). In the RSU technique, only the left upper

limb is excluded from the scan, whereas in RSUL both the left upper and lower limbs are

excluded and assumed to be equal to the contralateral ones.
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A partial scan can be performed in less than 10 minutes and the Hologic and Lunar

software versions already include an automatic mode for reflexion or half-scans, respec-

tively. As such, the time required to evaluate a subject and to analyze its scan by either

RSU, RSUL or HS is similar to the standard procedures. Using whole-body scans as the

reference criteria, results demonstrated that all partial scanning techniques are valid and

accurate options to evaluate wide individuals.

Using a diverse sample of athletes and non-athletes of both genders, and including a

broad range of phenotypes, results indicated that RSU was the best performing technique

in terms of overall accuracy of estimates for whole-body DXA compartments and %FM.

Specifically:

a) The RSU estimates differed slightly from those of the reference procedure (bias: 0.010±

0.010 for BMC, 0.17 ± 0.14 kg for LST, -0.03 ± 0.10 kg for FM, -0.10 ± 0.12 for %FM).

However, the differences were within the technical errors of measurement (TEM) of

the equipment for each compartment (0.02 kg, 0.39 kg, 0.39 kg and 0.1% for BMC,

LST, FM and %FM, respectively).

b) RSU explained more than 99% of the variability in body composition assessed by the

reference scan, thereby suggesting a very strong correlation(Iman, 1994), and the

standard errors of estimation were low;

c) The Person’s correlation coefficient r, agreement factor Cb and concordance correlation

coefficient (CCC > 0.99) indicate excellent accuracy, very high correlation and an

almost perfect strength of agreement (McBride, 2005);

d) Bland-Altman analysis revealed 95% limits of agreement ranging from -0.01to 0.03 kg

for BMC, -0.11 to 0.45 kg for LST, -0.22 to 0.17 kg for FM, -0.35 to 0.15% for %FM. The

limits of agreement were close to or within the technical errors of measurement (TEM)

for the aforementioned compartments. Trends were significant for BMC (positive

trend) and %FM (negative trend), therefore meaning that the more mass individuals

have, the greater the overestimation or underestimation errors are expected to be for

BMC and %FM, respectively.

f) Individual errors can be significant and largely exceed TEMs for BMC and LST, parti-

cularly in lateral dominant sports. Handball players fall in this category.
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As for the comparison of techniques, we observed that reflexion-scans are superior

to the conventional half-scanning approach in terms of accuracy of estimates for whole-

body DXA compartments and %FM. The relative performance of the techniques was, in

descending order: RSU, RSUL and HS. This result is not surprising since the more area is

used from the DXA scan, the more accurate the estimates for the DXA compartments are

likely to be, since less data needs to be extrapolated from contralateral regions. However,

techniques that require more scanning information are likely to be applicable to a narrower

range of physiques, which is also a critical aspect that deserves consideration. Preliminary

tests performed in three individuals with extreme phenotypes (see Figure 4.1 on page 60)

shown that those who are near the weight limit of the DXA table (≈ 140kg) can be properly

assessed by RSU and that RSUL might be used less frequently than RSU.

There are two last points that favor HS in comparison to either RSU or RSUL,

which are its inferior radiation and time requirements. These aspects are relevant to

the assessment of the obese patients as, for these, the radiation required to prevent beam

hardening might be threefold the standard dose for an whole-body composition asessment

(Shepherd, 2014). In this regard, if DXA scans are only performed occasionally throughout

the year, the radiation levels are still safe for the patient, but there will be less evaluations

that can performed in an annual basis for the same accumulated dose. Also, the diminished

evaluation time required by HS reduces in one half the penalty time required to overcome

beam hardening in obese/thick patients. Time efficiency is pivotal in settings where

multiple evaluations need to be scheduled for one morning and where delays compromise

the number of subjects being scanned. Nevertheless, since HS is not implemented in the

existing Hologic’s Explorer-W software, it is not possible to reap the time and radiation

benefits of scanning just one side of the body, and the evaluation time is actually larger

since there is an additional half-scanning region of interest that needs to be created by

the technologist during scan analysis. Thus, reflexion-scanning techniques are definitely

preferable to half-scanning.

Insights from the literature To our knowledge, eight previous studies have discussed,

validated and/or reviewed procedures to assess whole-body BMC, LST and FM or BMC

in individuals broader than the DXA scan area (Breithaupt et al., 2011; Brownbill & Ilich,

2005; Misic & Evans, 2006; Nana et al., 2012; Rothney et al., 2009; Sherman, 2011; Silva et al.,

2013; Tataranni & Ravussin, 1995). However, among these, only four actually attempted to
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validate HS or RSU with specific devices and populations (Breithaupt et al., 2011; Rothney

et al., 2009; Sherman, 2011; Tataranni & Ravussin, 1995).

For RSU, Table 2.7 informs that Sherman (2011) reported small significant differences

for whole-body bone but no differences on soft tissue measures. In contrast, our study

indicated that reflexion-scanning protocols resulted in significant differences for bone, lean

and fat measurements. For HS, Table 2.7 summarizes the results of such validation studies

in [right-side] HS. A general appreciation of the results indicates that the coefficients

of determination are all > 0.99, which is in agreement with our results. The reported

magnitudes for side-to-side differences in HS are in the order of ≈ 10 − 30 g for BMC

and ≈ 1kg for LST and FM. These results are higher than the ones obtained in this study,

which is not surprising if we take into account the higher levels of adiposity of the subjects

reported by Breithaupt et al. (2011); Rothney et al. (2009); Tataranni & Ravussin (1995).

However, if we attend to percent bias, results are similar. Even still, HS in our sample

performed relatively poorly in terms of bias for fat measurements. This shortcoming

did not compromise the overall validity of the proposed half-scanning based solutions

and the same holds for the current investigation, although individual differences were

exacerbated in lateral dominant sports. It should also be recalled that the participants

recruited for the present study were mostly sports science students and physically active

obese women. Hence it seems reasonable to assume that the sample we considered is

more active than sedentary obese adults and children, and this aspect may impact on

side-to-side differences induced by lifestyle.

Considerations on side-to-side differences Across all partial scanning results there

was a systematic bias between dominant and non-dominant upper limbs, as indicated

by the positive bias and negative intercept values for LST and BMC. This result in not

surprising given the information presented on Section 2.6.1 about studies documenting

and providing rationale for side-to-side differences in limbs. In short, it is known that

humans display a species wide lateralized hand preference with 90% of individuals in

all populations being right-handed for most manual actions (Auerbach & Ruff, 2006).

Thus, the increased muscular development and bone content of right upper limbs that

characterize the crossed symmetry pattern is a plausible consequence of the mechanical

loading placed by throwing and grabbing actions as those involved in lateral dominant

sports. Likewise, it is known that cyclic activities are associated with higher power
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production by dominant limbs; thus, in endurance athletes and also in non-athletes, side

differences stem from the duality function-shape adaptations.

The extent to which side-to-side differences are explained by daily living tasks or

sports practice is not possible to ascertain based on the current literature (Auerbach & Ruff,

2006; McClanahan et al., 2002; Steele & Mays, 1995). Anthropological studies on fossil

bones can only provide qualitative evidence for side-to-side adaptations (identifiable as

laterality differences in the BMC and LST compartments) as a consequence of handedness

(Uomini, 2009). Likewise, to the best of my knowledge, the influence of sports or lifestyle

activities on side-to-side differences in body composition has not been thoroughly inves-

tigated and reported in the literature using DXA, although some descriptive studies exist

for specific sports (Ireland et al., 2013; McClanahan et al., 2002).

The data collected in this study shows that athletes have higher directional bias (DA)

towards the right-hand side. Nor surprisingly, these are the same for which bias between

partial scanning and whole-body scanning techniques indicated superior errors in either

mean group comparison or Bland-Altman analysis. This observation is clear among

athletes engaged in lateral dominant sports, specially handball players. For these, the

crossed symmetry pattern dominates. Handball involves jumping with the non-dominant

leg to perform throwing actions with the dominant hand. The repetition of this movement

might explain the outliers found for BMC and LST—favoring the right-hand side upper

limb—, as well as superior BMD for the non-dominant leg. As a consequence, the right

upper limb is stronger (in terms of lean tissue and bone measures) than the contralateral

side, and the bias for BMC and LST is significant and positive for RSU. In this study,

the DAs for BMD were 3.4 ± 4.5% in LDSP and just 0.50 ± 3.7% (non-significant) in non-

LDSP. Sherman (2011) reported results for RSU using scans representative of the general

american population (NHANES study). Since these are non-athletes, it was expected that

DAs would also be non-significant. However, the authors observed that the DA for BMD

of upper limbs was 3.4% (significant), a result that is similar to the LDSP group from

our study; this finding raises suspicion on the accuracy of bone measures under reflexion-

scanning protocols and also population variability. For non-athletes and endurance sports

athletes, partial scanning estimates also overestimated BMC and LST. Rothney et al. (2012),

in the obese, observed absolute side-to-side differences for BMC at the upper and lower

limbs that favored the right-hand side, and these differences where higher for upper limbs.
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Its causes was attributed to handedness and walking. The findings of Rothney et al. (2012)

seem to be in agreement with ours for non-athletes and non-LDSP, where the right limbs

were also stronger. An opposite trend was also verified for the fat mass compartment in

the non-dominant upper arms for RSU and left lateral side for RSUL. This phenomena

remains to be explained.

Through questioning to coaches during the examination sessions or posteriorly, it

was known that the evaluated athletes do complementary work at the gym at a weekly

basis (2-5 times/week), the exceptions being made to basketball and handball athletes.

Also, handball athletes only train 2–3 times/week, which means that the individual errors

may be smaller in athletes classified in the LDSP group, but who perform weight training

regularly. Conversely, errors may be even higher in high-level and professional athletes

who train daily but do not compensate induced side-to-side asymmetries in limbs (sources:

Dr. Anna Volossovich, July 2013; Dr. Fernando Gomes, July 2014; Francisco Assis, June

2013, Faculty of Human Kinetics, Portugal).

Should this discussion discourage the application of partial scanning techniques

because of its reliance on symmetry assumptions? Probably not for most individuals. For

most non-athletes, daily-living activities or occasional sports practice are not expected to

compromise the validity of partial scanning, as these are only likely to induce negligible

side-to-side differences. The same rationale may not hold for all athletes, particularly those

engaged in DLSP. But even in such sports, strength training for injury prevention and/or

muscular development is currently among the training paradigms (Bompa & Haff, 2009),

which helps the symmetry assumption hold. However, it is recommendable that those

suspicious of side-to-side imbalances take summation scans instead. Examples include in-

dividuals recovering from an injury requiring immobilization of limbs or athletes engaged

in LDSP who do not perform preventive training for sports induced imbalances.

Considerations on reproductibility Reflexion and half-scanning protocols require par-

titioning the body according to different regions of interest. As such, in addition to

side-to-side differences between limbs, whole-body estimates obtained by partial scan-

ning are also affected by the skill of the technologist in delimiting regions of interest (head,

trunk and limbs) during scan analysis. This issue seems more relevant for the reflexion

algorithms implemented in Hologic QDR Explorer-W densitometers than by their GE Lu-

nar iDXA counterparts; the later includes a visible midsagittal line printed the DXA table
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to allow correct positioning and performs automatic selection of the right half-scan region,

thereby reducing intra- and inter-observer error sources (GE Helthcare, Inc., 2012).

Even when systematic errors are minimized by the adoption of standardized pro-

cedures, there remains an error margin in reflexion techniques due to need to separate

pelvis from hips and trunk from arms. Here a question arises as to whether the overall

precision of the reflexion techniques reported in this research was significantly affected by

the intervention of the technologist that analyzed scans. The investigation of the suscep-

tibility of RSU and RSUL to random mismatches in scan analysis recommends inspecting

the corresponding TEMs and CVs (%).

Recall from Section 2.5 that TEMs or CVs are precision metrics that take into account

equipment, protocol, characteristics of the measured populations and expertise level of

the technologist(s) that perform scan acquisition and analysis. Table 4.4 lists results for

the TEMs for reflexion techniques1. In order to compute them, 30 subjects were evaluated

twice with repositioning in between. The technologist was the same for all analysis pro-

cedures required for this investigation. For each technique and DXA compartment, the

TEMs and CVs for standard whole-body scanning, RSU and RSUL were computed. At

the end, it was verified that the error metrics for RSU were only slightly worse than for

whole-body scanning. The CVs (%) for BMC / LST / FM / %FM for WB are 0.99 / 0.74 / 2.78

/ 0.57, whereas for RSU these are up to ≈ 7% higher. Similarly, for RSUL, the penalty is ≈

8 – 25%. As such, it is reasonable to assume that, for all compartments, CVWB ≈ CVRSU.

The feasibility of this equivalence adds simplicity to RSU, since, for experienced techno-

logists, precision studies are not required. The adoption of standardized procedures for

placement of markers and prior training are recommended practices to reduce intra and

inter-observer errors due to mismatches (Hangartner et al., 2013) and might explain this

good result. Indeed, for this study, the same technologist analyzed almost 50 scans for

training prior to analyzing the 198 scans reported in this investigation. All scans were

obtained and analyzed according to the guidelines of the manufacturer (Hologic, Inc.),

which are in agreement with those of the Exercise and Health Laboratory / Faculty of Hu-

man Kinetics, Lisbon. It is therefore recommended that similar practices are undertaken

by those wishing to replicate the reflexion techniques discussed in this thesis.

1Due to time constraints, it was not possible to perform the same study for HS.
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Limitations
Despite the encouraging findings reported so far, this study is not without limitations.

Up to 10 cm Firstly, the proposed partial scanning techniques are only applicable to

individuals who exceed the width limit of the DXA table by up to 10 cm (evaluated in

the coronal plane). However, tests on subjects that actually do not fit in the DXA table

revealed that those in excess of 10 cm of the DXA scanning table are unlikely to be within

weight limit of the system (136Kg).

Standartization Second, the lack of standardization among different manufacturers and

models of DXA systems restricts the practical interest of our results to laboratories whose

DXA systems are of the same hardware and software as the ones we used in this investiga-

tion (Hologic Explorer-W System, fan-beam mode, software APEX for Windows version

13.3; Hologic,Waltham, MA). For the time being, unless conversion equations are availa-

ble to calibrate variables from one instrument to another (e.g.: Shepherd et al. (2012b)) it

cannot be guaranteed that the results here reported hold under different software versions,

scan modes or among instruments from different manufacturers.

Generalizability Third, our sample comprised mostly young healthy adults that were

normal or overweight (World Health Organization, 2013). Consequently, the generaliza-

bility of the findings is threatened by the fact that the selected sample does not include

subjects who actually do not fit within the DXA size limits.That implies imprecision due

to the assumption of allometric scaling and beam hardening distortion that affects the

accuracy of the DXA system for thick subjects. Another limitation of this study concerns

the method used as a reference, i.e., an WB performed in the same equipment as the

partial scanning strategies. In order to overcome some of the aforementioned limitations,

validation studies at which the reference results are collected in a different DXA system

whose width is large enough to accommodate wide individuals to whom the proposed

partial techniques are meant are, therefore, worthy of future investigation.

Specific sports Fourth, although the selected sample size (N=198) is in agreement with

the literature, whereby the number of subjects measured in validation studies of partial

scans for broad subjects ranged from 30 to 183 (Nana et al., 2012; Santos et al., 2012;

Tataranni & Ravussin, 1995), the sample size was not large enough to allow for individual
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sports analysis. Instead, we could only investigate the dihcotomic classification according

to the statuses of athletic practice and lateral dominant sports practice. The possibility that

different sports may induce morphological asymmetries in varying degrees of severity,

was, therefore, not accounted for in this study (Bussey, 2010; Ireland et al., 2013; McClana-

han et al., 2002). Thus, it may be prudent at this time to exercise caution when using DXA

among athletes engaged in a specific lateral dominant sport (e.g.: tennis, handball), as

the individuals errors might exceed the accuracy and precision errors reported for partial

scanning strategies.

Characterization of the sample Fifth, it was based on a post-hoc analysis of an RCT

and a technical study not specifically designed to study the validity of half- and reflexion-

scans. Although the evaluation procedures and equipment are the same as in this study,

handedness information, record of previous injuries and detailed sports practice, were not

collected, preventing us from drawing firm conclusions about the extent of side-to-side

bias in specific athletic populations or individuals. 85% of individuals in all populations

are right-handed for most manual actions, whereas only 5% and left-handed Uomini (2009).

As such, although it was advantageous to have handedness available, not controlling for

this variable might have a minor impact on the overall results.

Body dissatisfaction Furthermore, partial scanning images might not be well perceived

by patients. Many women (and arguably many men as well) feel dissatisfied with their

body image. According to Carraça (2012), this concept refers to “how someone personally

experiences his or her own embodiment. More than a mental representation of the body,

it reflects one’s personal relationship with its encompassing perceptions, beliefs, thoughts,

feelings, and behaviors” (pp. 17). Body dissatisfaction results in pressure to achieve thin

ideals and might be more pronounced for overweight and obese women. Predictably, poor

body image is often associated with diminished quality of life in obese individuals and may

constitute an obstacle to successful weight management. In fact, a prior study conducted

with participants from the PESO Trial revealed that body image change mediates changes

in weight (Palmeira et al., 2009). Concerns might emerge at this point: how will partial

scan images be perceived by weight sensitive individuals? Do they contribute to worsen

body image? It is imperative that the patient does not derive the interpretation that partial

scans are an evidence that he or she was too fat for the machine. Stated another way, the

patient must not get the implicit messages that the machine was designed for “normal”
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individuals, and that excludes him or her. These might be damaging to their health

and well-being by invoking feelings of shame and inadequacy, particularly in weight

sensitive patients. Moreover, if body composition assessments are performed during

obesity treatments that proactively address body image investment features as part of

their protocols, as recommended by Carraça et al. (2011a,b); Palmeira et al. (2009), then

a misinterpretation of the DXA report may jeopardize the interventions. To better deal

with this issue, the technologist should be careful when delivering DXA reports to obese

patients or print them without image.
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6Conclusion

„’You have nearly finished it, Mr. Frodo!’ Sam

exclaimed. ’Well, you have kept at it, I must say.’

— J.R.R. Tolkein

The Lord of the Rings

Considering the need for accurate body composition assessment of individuals who are

wider than the DXA scan area, three solutions requiring a single partial scan were com-

pared and validated: HS, left hand side of the body removed; RSU, upper left limb

removed; RSUL, upper and lower left limbs removed. The scope of this investigation

included BMC, LST, FM and %FM. The exploration of factors that could affect morpholo-

gical asymmetry, including gender, athletic status and being involved in lateral dominant

sports practice were also taken into consideration.

Overall, findings demonstrate that the reflexion-scanning approach is accurate, min-

imally invasive, and therefore is suitable for the obese and/or athletes engaged in sports

at which superior width dimensions translate to performance gains.

RSU is superior to RSUL, and both reflexion techniques outperform half-scanning.

RSU is the recommended option for practitioners working with Hologic Explorer-W den-

sitometers, although RSUL might also be worthy in extremely broad individuals. Either

reflexion-scanning protocol can compensate a width deficit of approximately 10 cm (eva-

luated in the coronal plane).

Although differences due to gender and sports practice were found non-significant

or small, caution should be exercised when evaluating athletes suspicious of abnormal

side-to-side differences as individual errors are likely to be exacerbated.
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Future work
This section recommends future research to assess the validity and reliability of partial

scanning solutions to assess body compartments, percent fat and bone mineral density.

Also included are: approaches to avoid partial scanning (based on the positioning of

hands); improve the validity of reflexion-scanning (based on corrective equations) and

also summation scanning for individuals at which side-to-side differences are expected to

be higher or at which tracking regional body composition is a requirement.

Validation against a 4C model The results reported in this investigation used an whole-

body scan as a reference. Future research on partial scanning solutions should be directed

towards the overall accuracy of these techniques, using the 4C model as a reference.

Figure 6.1 illustrates the proposed concept, whereby the measurements obtained by partial

scanning techniques (reflexion and half-scanning) are compared against the 4C model by

statistical procedures that include regression and agreement analysis.

Broad
Subjects

DXA-PS

     4C
X4C

XPS

 STUDY*

 VALIDATION

• HS
• RSU
• RSUL
   

Obese individuals
Muscular athletes
• Sports Practice
• Health Status
• Age
• Race
• Gender
• Handedness
• Previous injuries

4C model w/ DXA WB Scans

Reference

Alternative

*PERFORMANCE CRITERIA:
• Regression features 

• Agreement between BMC, 
   LST, FM and %FM from 
   DXA-PS and the 4C model.

Figure 6.1: Validation of DXA-PS techniques for whole-body composition assessment.

The sample would consist of individuals whose width actually exceeds the limits

of Hologic Explorer-W (65 cm), while remaining below its weight limits (136 kg). Ac-

cordingly, the 4C model and the DXA-PS methods would require different densitometers:

one at which the obese and/or muscular athletes can be assessed using standard whole-

body scans and the actual Explorer-W at which the partial scanning techniques are to

be tested. Since it is unlikely that Hologic, Inc. would produce an adapted Explorer-W

with extended width limits for the sake of one validation study, a GE Lunar iDXA (76 cm)

84 Chapter 6 Conclusion



would be required for this purpose. Due to variations between devices, if cross-calibration

equations did not exist for BMC, LST and FM in these systems, this study would have

to be preceded by a calibration study similar to those of Oldroyd et al. (2003); Shepherd

et al. (2012b) (an additional sample, with individuals that can fit in both scanners, would

be required for this preliminary study).

Reliabilty Studies on partial scanning did not inspect the short-term precision of partial

scanning solutions, in obese and non-obese populations. Future studies should address

this topic for bone and lean tissue measurements, including whoie-body BMC, BMD, LST,

FM and %FM. Reliability is important for applications at which the main purpose of DXA

is to assess changes in body composition over time (from one semester to several years),

and possibly with different technologists.

Bone mineral density Despite the focus of validation studies of partial scans is typically

narrowed to %FM or the DXA compartments, the clinical relevance of bone mineral density

for risk-stratification of sarcopenic and obese patients also recommends its inclusion in

the set of variables to be validated (Gallagher et al., 2000; Petak et al., 2013). Misic & Evans

(2006) was the only study published so far that reported validation results for summation

scans to obtain estimates for whole-body BMD and BMC. Their summation protocol for

wide individuals required the summation of three scans (subtotal without upper limbs

plus two subregions for upper limbs) and was accurate; mean values were close to the

whole-body reference values, correlations were strong and individual errors were within

the coefficient of variation for BMD (≈ 0.9%), as indicated by Bland-Atman analysis.

Unfortunately, the proposed summation technique is plagued by added complexity for

the technician and a threefold increase in the overall time required to complete a body

composition evaluation. In contrast to summation, Sherman (2011) reported results for

the more practical RSU in BMD. In a large sample from the NHANES Study comprising

four hundred and thirty four scans of adults acquired on Hologic QDR-4500A systems

(Centers for Disease and Control, 2000b), the bone tissue of the right arm was found to be

slightly denser (3.4%) than the left one. Although this bias had no impact on whole-body

precision, it could still affect the accuracy of bone measures. It is unclear whether these

results hold for different systems and specific populations. More research is needed to

validate partial scanning approaches for BMD, and preferably taking into account lifestyle

or sports related factors that may impact on increased side-to-side differences.
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When partial scanning can be avoided In situations where the body in excess of the

DXA table is small (1 – 3 cm), it is possible to avoid the need for partial scanning by positing

subjects with palms facing the hip. Figure 6.2 illustrates the proposed concept. Region

R1, in Scan 1, is the right hand-side hand positioned according to the recommendations of

the manufacturer. R2, in scan 2, is the same hand, but with palms facing the hip. Region

L depicts the left hand in standard position.

  Scan 2       Scan 1

R2 L

Note: Scans 1 and 2 were obtained with 
          same subject at the same session.

R1

Figure 6.2: Alternative scanning protocol with palms facing the hip.

Future research on this topic should also address whether positioning aids could

be used to to standardize the subject hand’s positioning at every scanning time point.

Figure 6.3 depicts a prototype (custom-made foam block) purposely designed and recom-

mended by Nana (2013) therefore improving consistency in positioning subjects.

Despite its apparent simplicity and inexpensiveness, this solution is useful to stan-

dardize the subject’s positioning at every scanning time, thereby contributing to minimize

TEMs/CVs Nana (2013). Foam blocks were effective in combination with the summation

techniques proposed and validated by Nana et al. (2012). However, caution should be

exercised when translating these findings to densitometers that are not Lunar iDXA, since

placing hands in midsaggital position is the standard/recommended positioning of Ge-

neral Electric for this specific equipment and not other manufacturers. More tests are

needed to ensure that image processing algorithms of Hologic and Norland, for example,
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Figure 6.3: Positioning aid to be used in scanning protocols with palms facing the hip. Copied with
permission from Nana (2013).

can robustly handle this approach without compromising the validity of whole-body and

even regional body composition measurements.

Automated summation scan Partial scanning solutions may compromise the accuracy

of measurements of whole-body composition and do not allow regional distribution anal-

ysis (at least of the upper limb). These drawbacks make the concept of summation scan-

ning appealing, particularly in athletic populations for whom individuals errors could

be higher. Also, following changes in lean tissue is useful for training monitoring and

performance optimization. Accordingly, as future work, I propose two versions of sum-

mation scanning at which two partial scans are summed. These are based on the best

performing technique of this study, RSU, and that of Santos et al. (2012), that addresses

the complementary problem of assessing taller individuals.

In version A of Figure 6.4, the upper left limb is scanned whereas the remaining

body goes in the second scan. In the version B—meant for simultaneously wide and tall

individuals—the head and upper left limb are scanned first, whereas the rest of the body

is measured in the second scan. For both versions, subjects will need to be repositioned

(offset in the horizontal or also in the vertical direction). An advantage of this summation

strategy in comparison with the solutions of Nana et al. (2012) is that the region of the

shoulder is less sensitive to human error in delimiting a segment for arm trunk than the

spine. Moreover, the head does not need to be halved in any of the proposed versions,
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B: Wide and tall subjects

Scan I) Left upper limb 
            and head; 
Scan II) Whole body 
             except head &
             upper left limb. 

II

A: Wide subjects

SUMMATION

Scan I) Left upper limb;
Scan II) Wh. body except 
             upper left limb.

I

I/II

Figure 6.4: Alternative scanning protocol with palms facing the hip.

thus reducing summation errors even more. If the software provided support for such

strategies, then the first scan could include only the region(s) of interest that will actually

be needed and the overall evaluation time of two partial scans would be less than that

of two whole-body scans. The summation process could be performed automatically by

content-aware, feature-based matching and merging algorithms, thus also minimizing the

scan analysis time requirements (Lowe, 2004; Szelinski, 2010).
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