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Abstract

We propose to model the sovereign credit risk of five Euro area countries (Portu-
gal, Ireland, Italy, Greece and Spain) under a first passage structural approach,
replacing the classical geometric Brownian motion dynamics with a pure jump
Lévy process. This framework caters for skewness, fat tails and instantaneous
defaults, thus addressing some of the main drawbacks of the Black-Scholes model.

We compute the survival probability as the price of a discrete barrier option,
using an option pricing method based on the approximation of the transition
density as a Fourier-cosine series expansion. Assuming a deterministic recovery
rate, we calibrate the Carr–Geman–Madan–Yor (CGMY) Lévy model to weekly
Credit Default Swaps data and obtain the default probability term structure.
By drawing on the representation of the Variance Gamma process (a particular
instance of the CGMY model) as a time-changed Brownian motion, we accom-
modate dependency between sovereigns via a common time change. We then
illustrate a possible multivariate calibration procedure and simulate the joint
default distribution.

Keywords: Credit risk; Lévy processes; Sovereign debt; Credit Default Swaps; Default
probability; Fourier-cosine expansion; Time-changed Brownian motion.



Resumo

Propomos modelizar o risco de crédito soberano de cinco páıses da zona Euro
(Portugal, Irlanda, Itália, Grécia e Espanha) seguindo uma abordagem estrutural
de primeira passagem em que o movimento Browniano geométrico é substitúıdo
por um processo de Lévy regido apenas por uma componente de saltos. Deste
modo, introduzimos incrementos assimétricos e leptocúrticos e a possibilidade de
incumprimento instantâneo, removendo assim algumas das principais limitações
do modelo Black-Scholes.

Calculamos a probabilidade de sobrevivência como preço de uma opção bar-
reira discreta, utilizando um método de valorização de opções baseado na aproxi-
mação da densidade de transição como expansão em série de Fourier de cossenos.
Assumindo uma taxa de recuperação determińıstica, calibramos o modelo de
Lévy Carr–Geman–Madan–Yor (CGMY) utilizando spreads de Credit Default
Swaps semanais e obtemos a estrutura temporal de probabilidades de incumpri-
mento. Tiramos ainda partido da representação do processo Variance Gamma
(uma instância do modelo CGMY) como movimento Browniano modificado tem-
poralmente para considerar uma estrutura de dependência entre os riscos de
crédito soberanos através de uma modificação temporal comum. Em seguida,
ilustramos um posśıvel procedimento de calibração multidimensional e obtemos
a distribuição de sobrevivência conjunta via simulação.

Palavras-chave: Risco de crédito; Processos de Lévy; Dı́vida soberana; Credit Default
Swaps; Probabilidade de incumprimento; Expansão em série de Fourier de cossenos; Movi-
mento Browniano modificado temporalmente.
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Chapter 1

Introduction

The classical structural approach to corporate credit risk modeling describes the asset value
process as a geometric Brownian motion and defines default either as the equity value drop-
ping to zero at maturity (Merton 1974) or as the first passage time of an exogenous default
barrier (Black and Cox 1976). It establishes an intuitive relationship between default and the
value of a firm’s assets, and its dynamics allows the straightforward computation of survival
probabilities and the credit spread term structure. However, it is known that the Black-
Scholes framework used is unable to capture several well-grounded empirical evidences, such
as the skewed and leptokurtic distribution of returns. These shortcomings are rooted in the
assumption of Gaussian increments, that imply continuous sample paths. We can overcome
them by extending the modeling dynamics to the wider class of Lévy processes. In particu-
lar, we can then capture sudden shocks through the introduction of jumps in the asset value
process, thereby removing the local predictability of default.

The link between asset value and default is lost when we move from the corporate to the
sovereign credit risk realm. Indeed, the estimation of a sovereign asset value process from
sound economic fundamentals is still very much an open problem. Additionally, sovereign
default can be triggered from strategical political decisions. If a government manages to
bridge the gap between the burden of defaulting (such as raising future borrowing costs or
facing trade sanctions) and its benefits (immediate debt relief through renegotiation of the
original issuance terms), it might find a proper incentive to formally declare default.

In this work, we have not endeavored to address the problem of defining and estimating
a suitable sovereign value process. Instead, we co-opt the notion of corporate asset value
process and assume that the market price of sovereign default, as measured by the Credit
Default Swaps (CDS) spreads term structure, implicitly incorporates information on a latent
sovereign value process. We recognize that the rationale behind this assumption is weaker
than the one we could presumably reach had we attempted to devise an explicit sovereign
value model. However, as our results will show, this simplified framework will allow us to
accurately reproduce the CDS market data both under regular and distress circumstances.
We believe this fact upholds our modeling approach.

We propose to model the credit risk of five non core Euro area sovereign bonds (Por-
tugal, Ireland, Italy, Greece and Spain) following the COS method (Fang et al. 2010),
where a Black-Cox structural approach is taken under Lévy dynamics. We will focus on the
Carr–Geman–Madan-Yor (CGMY) process (Carr et al. 2002), introduced to support the
conjecture that the equity price process should be devoid of a diffusion component. The
CGMY model is then a pure jump process, allowing infinite or finite activity regimes. This
makes it flexible enough to cope both with high arrival rates of (mostly) small jumps, re-
flecting pure supply and demand shocks, and sudden, exogenous information shocks. By
doing so, we will implicitly be assuming that this asset pricing dynamics is also suitable for
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modeling the latent sovereign value process.
The COS method approximates the transition density as a Fourier-cosine series expan-

sion, obtainable from the process characteristic function. It requires only the analytical
knowledge of the latter and so provides a tractable and flexible way to compute the survival
probability and calibrate Lévy models from CDS market data.

Our main objective is the univariate calibration of the CGMY model and the computation
of the implied default probability term structure, spanning the period from January 2010 to
the end of February 2014. A secondary goal is the introduction of dependency between the
underlying sovereign value processes using the subclass of Lévy processes representable as a
time-changed Brownian motion. To this effect, we consider a common time change compo-
nent. The univariate calibration procedure can be easily adapted to the multidimensional
structure, and joint and conditional survival probabilities estimated via simulation.

We believe our work makes three relevant empirical contributions. First, even though we
make a strong (and, in a sense, exogenous) assumption on the modeling dynamics, it shows
that the CGMY model accurately captures the features of the CDS term structure. The fact
that we have used an extensive dataset spanning the main stages of the Euro area sovereign
debt crisis further supports the quality of the fit and the model’s flexibility. In particular, the
calibration has successfully captured extreme behavior under severe distress periods, such as
high peaks and inversion effects on the CDS spreads term structure. Secondly, our results
provide evidence illuminating the relationship between the data lifecycle and the process
structure: namely, a clear switch from an infinite to a finite activity regime under distress.
Finally, we provide an extension to a multidimensional setting, incorporating dependency,
and illustrate how it can be used to obtain the joint default distribution.

The outline of the text is as follows. Chapter 2 presents the main results of the classical
structural approach to corporate credit risk modeling and a brief literature review on possible
adaptations to sovereigns. Additionally, it justifies the use of Lévy processes in finance,
provides characterization results and introduces the CGMY model and the time-changed
Brownian motion representation. Chapter 3 addresses the Fourier-cosine series expansion
method underpinning the calibration procedure and the computation of default probabilities.
Chapter 4 describes the dataset used and Chapter 5 presents the univariate calibration
results. In Chapter 6 we will illustrate the calibration of a multivariate Lévy process by
extending the univariate time-changed Brownian motion representation of a specific form
of the CGMY process (the Variance Gamma model). Chapter 7 discusses the results and
points to future research routes.



Chapter 2

Structural credit risk modeling
under Lévy dynamics

2.1 The structural approach

Under the structural approach to corporate credit risk modeling, debt and equity are treated
as contingent claims on a firm’s asset value process.

2.1.1 The classical Merton approach

In Merton’s model (1974), the firm defaults on its debt if the value of the equity drops to
zero at the debt’s maturity T .1 The firm’s asset value process Vt is modeled as a geometric
Brownian motion,

dVt = µVtdt+ σVtdBt, V0 > 0⇒ Vt = V0 exp

{(
µ− 1

2
σ2
)
t+ σBt

}
,

where µ is the drift parameter, σ is the volatility and Bt is a standard Brownian.
As the increments of a Brownian motion are normally distributed, the computation of

the default probabilities is straightforward:

Pdef (T ) = Φ

 ln
(
K
V0

)
−
(
µ− 1

2σ
2
)
T

σ
√
T

 ,

where K denotes the notional value of the debt.
Merton’s model treats equity as a European call option on the value of the firm held by

the shareholders, with strike price equal to the outstanding notional value of debt.2 This
leads to Black-Scholes-type formulæ to value the equity and price defaultable bonds.

The limitations of this approach are clear: default can only occur at the debt’s maturity
T , and the firm value can be arbitrarily close to zero without triggering default.

2.1.2 The first passage approach

Black and Cox’s model (1976) overcomes these limitations by introducing an exogenous
default barrier D, following the empirical evidence of default events occurring before the
equity drops to zero. Default is redefined as the first time the value process Vt hits this
barrier. Under the geometric Brownian motion dynamics for Vt, default probabilities are

1I.e., if the firm’s asset value falls below the outstanding value of the debt.
2Likewise, the debt can be seen as a put option.
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also easily obtainable, as the distribution of the running minimum of a Brownian motion
with drift,

min
s≤t
{µs+ σBs} ,

is known to be Inverse Gaussian. This leads to the following default probability formula
(Lando 2004, 259-260):

Pdef (t) = Φ

 ln
(
D
V0

)
−
(
µ− 1

2σ
2
)
t

σ
√
t

+

(
D

V0

) 2(µ− 1
2σ

2)
σ2

Φ

 ln
(
D
V0

)
+
(
µ− 1

2σ
2
)
t

σ
√
t

 .

We can describe the survival probability as the price of a barrier option without discount-
ing. As a consequence, Black and Cox’s model is a natural framework for the application of
option pricing techniques.

2.1.3 Drawbacks and desirable properties

The structural approach is conceptually attractive by providing a clear link between default
and the firm’s asset value process. However, under the Brownian motion dynamics default is
locally predictable, leading to inconsistencies with intuition and empirical observation. The
most striking of these is the unrealistic behavior of the short-term end of the credit spread3

term structure, which will always approach zero.
A realistic credit risk model should first and foremost treat default times as locally un-

predictable, which would suggest modeling the firm’s asset value using a process with jumps.
These could reflect the arrival of new information leading to sudden shocks in the asset value,
a behavior that processes with continuous sample paths, such as the Brownian motion, can
not capture. Proceeding this way, we would be introducing a mechanism of instantaneous
default, thus avoiding artificial techniques to build it into the model such as, for example,
making the default threshold barrier stochastic.

In addition, empirical evidence from stock returns suggests that any process describing
the firm’s asset value should produce a returns distribution with skewness and positive excess
kurtosis (fat-tail behavior). This is not consistent with the Gaussian framework of the Black-
Scholes model.

Lévy processes, introduced in the next section, provide distributions with these charac-
teristics.

2.1.4 Modeling sovereign debt

We have been describing the structural approach framework under a classical corporate credit
risk setting. However, when applying such framework to the problem of modeling sovereign
credit risk, we can not interpret Vt as an asset value process in a strict sense, nor can we
easily define the default barrier in terms of the outstanding value of debt. This is the main
reason why the structural approach is a less trodden path in sovereign credit risk modeling.

A first strand of the literature attempts to define and estimate the sovereign value (or
a suitable proxy). Karmann and Maltritz (2003) and Clark and Kassimatis (2004) use the
present value of net exports as a measure of a sovereign’s market value. This approach might
suit developing countries, but it falls short of capturing the sovereign value in advanced
economies or countries within a monetary union. Currie and Velandia (2002) produce a
stylized government balance sheet: assets are the discounted values of fiscal revenues, for-
eign reserves and marketable securities; liabilities are the discounted values of government

3The difference between yields on defaultable and risk-free bonds.



2.2 Financial modeling with Lévy processes 5

spending, public debt and contingent liabilities (such as government guarantees, bailouts or
deposit insurance schemes). The latter are especially difficult to estimate, as they are linked
with the financial performance of the private sector, but the model as a whole is prone to
strong forecasting assumptions.

Another strand of the literature discards the direct estimation of the sovereign value and
introduces exogenous default indicator processes. Hui and Lo (2002) resort to the foreign
exchange rate; Moreira and Rocha (2004) develop accounting ratios involving macro-financial
variables. Oshiro and Saruwatari (2005) employ stock indexes as a measure of sovereign
“equity” under a classical Black-Scholes structural approach.

A sovereign default event can take several forms: non-payment of principal or interest
due, a debt exchange (for claims of lower value), a moratorium or an official repudiation
of debt. In contrast to the corporate case, a government might find incentives to default
on economic reasons other than the strict ability-to-pay argument that compares the asset
value to the outstanding notional of the debt. Strategic political concerns will also play a
major role, namely the reputational effect on future borrowing costs and a possible decrease
in economic output due to trade sanctions. Along these lines, the default indicator process
could reflect the difference between the costs and benefits of default (Eaton and Gersovitz,
1981; Calvo, 1988).

When setting the scope of the current work, we have pragmatically decided not to address
the direct estimation of a sovereign value process and focus mainly on the benefits of replac-
ing the geometric Brownian motion dynamics with a suitable Lévy process. As previously
mentioned, we will work under the assumption that Vt represents an unobservable sovereign
value process, that implicitly determines the CDS spreads term structure and so acts as a
default indicator. The default barrier will be redefined in terms of an assumed recovery rate
given default and the initial value of the process. Chapter 3 will detail this procedure. In
the next section, we address the problem of introducing a suitable Lévy dynamics to model
the latent value process Vt.

2.2 Financial modeling with Lévy processes

2.2.1 A brief historical background

Lévy processes have been successfully used in asset pricing models to address some of the
main limitations of the Brownian motion dynamics, such as the inability to account for the
negative skewed and leptokurtic distribution of log-returns, or the volatility smile4. They
are a natural generalization of the Brownian motion model, keeping the independence and
stationarity of increments, but crucially introducing jumps. These can capture real price dis-
continuity phenomena and incorporate sudden, unexpected information shocks. In addition,
they account for skewness and fat tails.

The non-normality of stock returns was a well established empirical fact as early as 1963,
when Maldelbrodt proposed the α-stable class of distributions for stock prices (Mandelbrodt
1963). The Normal distribution is obtained with α = 2 and the Cauchy distribution with
α = 1. When α < 2, the density is more peaked around the center than the Gaussian
distribution and the variance is infinite, implying fat tails. When α ≤ 1 the expected value
does not exist. The α-stable model is a Lévy model, but empirical evidence has rejected its
adequacy to describe stock price returns.

One of the first attempts at introducing discontinuities in the asset price process was the
jump-diffusion model of Merton, where a Compound Poisson process with Gaussian jumps

4The graphic representation of volatility against option strike prices, constant under the Black-Scholes
framework.
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is added to a diffusion (Merton 1976). We will briefly illustrate the properties of the jump-
diffusion strand of models in Section 2.3, resorting to the Kou model (Kou 2002), where the
jumps have a double exponential distribution.

Another strand of Lévy models relies on the Generalized Hyperbolic distribution, intro-
duced by Barndorff-Nielsen (1977) to model the grain size of wind-blown sand. Two partic-
ular models of this type are the exponential Hyperbolic motion (Eberlein and Keller 1995)
an the exponential Normal Inverse Gaussian (Barndorff-Nielsen 1998). Both have proved
capable of accurate fits to empirical stock prices log-returns. Eberlein and Prause (1998)
provide a comprehensive account of the family of Generalized Hyperbolic Lévy processes.

The Normal Inverse Gaussian model is a pure jump model with infinite activity5 and
finite variation. It dispenses with a diffusion component and so it has discontinuous sample
paths. Local price uncertainty is captured not trough a constant volatility parameter but by
the nature of the jumps, arising from pure supply and demand shocks.

More recent efforts have been focusing on the properties of infinite activity and infinite
variation pure jump processes. The Variance Gamma model (Madan and Seneta 1990) was
successfully used to describe Australian stock market data. The CGMY model (Carr et al.
2002) is an extension of the Variance Gamma model accounting for a finer structure of the
very small jumps. Interestingly, the pure jump CGMY model has been shown to outperform
a modified CGMY model with a diffusion component in describing equity index data.6 We
will use the CGMY dynamics to model the latent sovereign value process Vt and discuss
its properties in Section 2.4.2. Even though the CGMY model does not present a tractable
density function, its characteristic function has an analytic closed form representation. This
makes the application of the Fast Fourier Transform (FFT) option pricing method feasible
(Carr, Chang and Madan 1998). In fact, we will cast the survival probability problem as an
option pricing problem in Chapter 3.

Yet another flavor of the use of Lévy processes in finance is the stochastic volatility model
of Barndorff-Nielsen and Shephard (2001). It describes the volatility parameter as a station-
ary Ornstein-Uhlenbeck process driven by non-Gaussian Lévy increments and addresses the
problem of modeling the volatility smile.

An essential result for the multivariate default modeling technique we will develop in
Chapter 6 is the representation of a semimartingale as a time-changed Brownian motion
(TCBM) (Monroe 1978). In a TCBM, the deterministic time variable is replaced by an
independent subordinator.7 If we take a Lévy subordinator, the TCBM construction will
always lead to a Lévy process. This approach shifts the modeling focus to the time-change.
The latter can be seen as a stochastic “clock”, reflecting the intensity of the economic activity
(measured through the accumulated traded volume in the market) and the arrival of new
pieces of information (Clark 1973, Ané and Geman, 2000).

Although it is a topic we do not address in this work, we should note that consider-
ing independent increments might be too strong an assumption. The fractional Brownian
motion model incorporates dependency of increments through a “long-range” dependency
property. This means that the covariance between increments decays slowly to zero. How-
ever, the application of the fractional Brownian motion to asset pricing problems might be
problematic. In particular, the geometric fractional Brownian motion model allows arbitrage
opportunities (Rogers 1997).

We now move to define Lévy processes and present some of their basic properties.

5As we will detail in the next section, this means that on every compact interval the process has a.s. an
infinite number of jumps.

6The authors conjecture that possible diffusion components in individual prices are removed when indexes
are considered.

7An a.s. increasing process independent of the Brownian motion.
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2.2.2 Definition and characterization

We start by defining Lévy processes and will then present characterization results that will
provide insight into their properties. We will also give some examples widely used in applica-
tions to finance and motivate the choice of the CGMY model to describe the latent sovereign
asset value (or default indicator) process, Vt.

Let (Ω,F ,Q) be a filtered probability space and L = {Lt}t≥0 a càdlàg8 process.

Definition 2.1 (Lévy process). L such that L0 = 0 is a Lévy process if

• L has independent increments;

• L has stationary increments;

• L is stochastically continuous:

∀t>0, ε>0 lim
s→t

PQ (|Lt − Ls| > ε) = 0.

Let ∆Lt := Lt−Lt− be the jump size of the process at time t. The stochastic continuity
condition implies that the times where the jumps occur are random, i.e., we almost surely
have ∆Lt = 0. In general, the number of jumps up to time t will not be bounded.

Lévy processes can be identified with the class of infinitely divisible distributions:

Proposition 2.1 (Lévy processes and infinitely divisible distributions). Let L be a Lévy
process. Lt has an infinitely divisible distribution9 and, conversely, if X is an infinitely

divisible distribution, there exists a Lévy process L such that L1
d
= X.

The proof can be found in Sato (1999) (Corollary 11.6).
We will describe a Lévy process using its characteristic function,

φLt(ω) := E
[
eiωLt

]
=

∫
R
eiωxfLt(x)dx, (2.1)

which is simply the Fourier transform of the density fLt(x). The characteristic function can
be written as

φLt(ω) = etψ(ω),

where ψ is a continuous function referred to as the characteristic exponent (Cont and Tankov
2004, Proposition 3.2). Working with the characteristic function is convenient for application
purposes because, as we will see, it is easier to obtain analytic formulas for it than for the
transition density.

The Lévy measure ν is defined as

ν(A) := E [# {t ∈ [0, 1] : ∆Lt ∈ A}] , A ∈ B(R),

and can be interpreted as the expected number of jumps of size in a given Borel set A, per
time unit.

The following result is a central characterization of Lévy processes and provides the
intuition underpinning their properties.

Theorem 2.1 (Lévy-Itô decomposition). Let L be a Lévy process and ν its corresponding
Lévy measure. Then,

8Right-continuous with left limits.
9A random variable X is infinitely divisible if for all n ∈ N there exist n i.i.d. random variables X

(1/n)
j ,

j = 1, . . . , n, such that X
d
= X

(1/n)
1 + · · ·+X

(1/n)
n .
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• ν is a positive Radon measure on R such that

ν ({0}) = 0,

∫
|x|≤1

x2ν(dx) <∞,
∫
|x|≥1

ν(dx) <∞; (2.2)

• Lt can be decomposed in the following sum of independent components:

Lt = L
(1)
t + L

(2)
t + L

(3)
t ,

with

L
(1)
t := γt+ σBt

L
(2)
t :=

∫
|x|≥1, s∈[0,t]

xJX(ds× dx)

L
(3)
t :=

∫
|x|<1, s∈[0,t]

x [JX(ds× dx)− ν(dx)ds] ,

where
JX([0, t]×A) = # {s ∈ [0, t] : ∆Ls ∈ A}

is a Poisson random measure counting the number of jumps in A up to t.

L
(1)
t is a (continuous) Brownian motion with drift γ and volatility σ. Furthermore, every

continuous Lévy process is of this form. The second and third components, L
(2)
t and L

(3)
t ,

provide the jumps, as described by the Lévy measure ν. L
(2)
t is a compound Poisson process

and L
(3)
t is a square integrable martingale that can be seen as an infinite sum of compensated

Poisson processes with jump sizes x.
As a corollary of the Lévy-Itô decomposition, we have the following decomposition of the

characteristic function φLt(ω).

Theorem 2.2 (Lévy-Khintchine representation). The characteristic function of a Lévy pro-
cess φLt(ω) has the following representation:

φLt(ω) = etψ(ω),

where

ψ(ω) = iγω − σ2ω2

2
+

∫
R

(
eiωx − 1− iωx1|x|<1

)
ν(dx)

is the characteristic exponent of L1, i.e., φL1(ω) = eψ(ω).
The triplet (γ, σ, ν) is called the Lévy triplet. γ ∈ R is the drift term, σ > 0 is the

diffusion coefficient and ν is a the Lévy measure, as previously defined.

Details on the previous two results can be found in Cont and Tankov (2004), Section 3.4.
The characteristic exponent can be conveniently written as

ψ(ω) = ψ(1)(ω) + ψ(2)(ω) + ψ(3)(ω),

where

ψ(1)(ω) := iγω − σ2ω2

2

ψ(2)(ω) :=

∫
|x|≥1

(
eiωx − 1

)
ν(dx)

ψ(3)(ω) :=

∫
|x|<1

(
eiωx − 1− iωx

)
ν(dx)

are the characteristic exponents of, respectively, L
(1)
t , L

(2)
t and L

(3)
t .
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2.2.3 The Lévy measure

The Lévy measure satisfies (2.2) and so it has no mass at the origin, its mass away from the
origin is bounded and it can possibly have singularities around the origin. This means that
in any compact interval a Lévy process may have infinitely many “small” jumps and at most
a finite number of “large” jumps.

The Lévy measure also conveys information on the paths’ jumps and variation.

Proposition 2.2 (Lévy measure and the process activity). Let L be a Lévy process with
Lévy triplet (γ, σ, ν).

• If ν(R) <∞, L has finite activity, i.e., almost all paths have a finite number of jumps
on any compact interval;

• If ν(R) = ∞, L has infinite activity, i.e., almost all paths have a infinite number of
jumps on any compact interval.

Intuitively, we can interpret the fluctuations in a infinite activity process modeling the
value of a financial asset as arising from pure supply and demand shocks. In a finite activity
process the shocks would be sudden and mostly exogenous, thus incorporating an unexpected
arrival of information.

Proposition 2.3 (Lévy measure and the paths’ variation). Let L be a Lévy process with
Lévy triplet (γ, σ, ν).

• If σ = 010 and
∫
|x|≤1 |x|ν(dx) <∞, almost all paths of L have finite variation;

• If σ 6= 0 or
∫
|x|≤1 |x|ν(dx) =∞, almost all paths of L have infinite variation.

The proofs of the two previous results can be found in Sato (1999) (Theorem 21.3 and
21.9, respectively). For a comprehensive review of the material in this section, with refer-
ences to standard bibliography on Lévy processes and their application in finance, refer to
Papapantoleon (2008).

Having introduced and provided characterization results for Lévy processes, we now move
to present some examples relevant for the remainder of the work. Recalling that the key issue
in credit risk modeling is how to obtain the survival probability, we observe that to compute it
directly we would have to know the distribution of the process running minimum11, which will
not be available in general. However, we will show in Chapter 3 that, by taking advantage
of the representation of the characteristic function as a Fourier transform, we can use an
efficient algorithm to numerically approximate the transition density (and from it the survival
probability). This methodology will only require the knowledge of an analytic expression for
the characteristic function.

2.3 Jump-diffusion processes

We have previously mentioned that the Merton jump-diffusion model was one of the first
attempts to introduce discontinuities in the price process. Generally speaking, a jump-
diffusion Lévy process merges a diffusion component with a finite activity jump process (i.e.,
a process such that ν(R) <∞, by Proposition 2.2). Thereby, a jump-diffusion has the form

Lt = µt+ σBt +

Nt∑
k=1

Jk,

10I.e., there is no Brownian component.
11Or, equivalently, the distribution of its first passage time.
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where the term µt + σBt, µ ∈ R, σ > 0, is a Brownian motion with drift, and the term∑Nt
k=1 Jk is a Compound Poisson process with intensity λ: Nt ∼ Poisson(λt) counts the

number of jumps of Lt up to time t, and Jk
i.i.d∼ J is the distribution of the (independent)

jump sizes. Merton’s model assumes that J is normally distributed with mean µJ and
variance σ2J , and we write this as J ∼ N

(
µJ , σ

2
J

)
.

Kou’s model

In Kou’s model (2002), the jump size has a double Exponential distribution. The probability
density function is then given by

fJ(x) = pθ1e
−θ1x1{x>0} + (1− p)θ2eθ2x1{x<0},

where 0 ≤ p ≤ 1 and θ1, θ2 > 0, and we write J ∼ DExp (p, θ1, θ2). By the infinite divisibility
property of Proposition 2.1, the characteristic function can be written as φLt(ω) = {φL1(ω)}t,
with

φL1(ω) = exp

[
iµω − 1

2
σ2ω2︸ ︷︷ ︸

Brownian motion

+ λ

(
p

θ1
θ1 − iω

+ (1− p) θ2
θ2 + iω

− 1

)]
︸ ︷︷ ︸

Compound Poisson

. (2.3)

The Lévy triplet is simply
(
µ, σ2, λ× fJ

)
.

The density of L1 is not known in closed form. Kou (2008)12 provides an implicit way to
compute the distribution of the first passage time τ := inf {t ≥ 0 : Lt ≥ 0} using its Laplace
transform.

2.4 Infinite activity, pure jumps processes

In this section, we discuss processes with no diffusion component (i.e., with volatility pa-
rameter σ = 0) and an infinite activity, pure jump component (thus having ν(R) = ∞, by
Proposition 2.2).

We will start by describing the Variance Gamma process as a Gamma time-changed
Brownian motion. We will then present the alternative CGM parametrization, convenient
on two different accounts: on the one hand, it illuminates the properties of the underlying
Lévy measure; on the other, we can use it to build a natural extension to the CGMY
dynamics.

2.4.1 The Variance Gamma process

As a first step, we define the Gamma process G = {G(t)}t≥0 as a stochastic process with

stationary and independent, Gamma distributed13 increments, such that

• G(0) = 0;

• G(1) ∼ Γ(a, b)⇒ G(t)−G(s) ∼ Γ(a(t− s), b), 0 < s < t.

We will refer to (a, b) as the parameters of the Gamma process.

12Section 7.3. See also Kou (2002), and Kou, Petrella and Wang (2005).
13We use the parametrization of the Gamma distribution whose probability density function is given by

fΓ(a,b)(x) = ba

Γ(a)
xa−1e−bx, x > 0.
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Variance Gamma as a time-changed Brownian motion

Let B = {B(t)}t≥0 be a standard Brownian motion and G an independent Gamma process

with parameters
(
1
ν ,

1
ν

)
, ν > 0. The Variance Gamma process (VG) has parameters (σ, ν, θ),

σ > 0, θ ∈ R, and is defined as the Gamma time-changed Brownian motion with drift

LV Gt := θGt + σBGt . (2.4)

Following Hurd (2009) and Hurd and Zhou (2011), let us denote a Brownian motion with
drift by Xt := θt+ σBt and a non decreasing, independent Lévy time change by Gt. Let us
also consider the induced filtrations

Wt := σ {Bs : s ≤ t} ;

Gt := σ {Gs : s ≤ t} ;

Ft := σ {Xs, Gu : u ≤ t, s ≤ Gt} .

The characteristic function of Lt := XGt can be obtained by taking the conditional expecta-
tion

φLt(ω) = E
[
E
[
eiωLt |F0 ∨ Gt

]
|F0

]
= E

[
φXGt (ω)|F0

]
= φGt

(
θω +

1

2
iσ2ω2

)
,

as φXt(ω) = eiθωt−
1
2ω

2σ2t, using the first component of (2.3).
We can then obtain the characteristic function of the Variance Gamma process as

φLV Gt (ω) =
[
φLV G1

(ω)
]t

=

[
φG1

(
θω +

1

2
iσ2ω2

)]t
=

(
1− iθνω +

1

2
σ2νω2

)− t
ν

. (2.5)

By building the Variance Gamma process as a time-changed Brownian motion, we have
replaced the “calendar” time t by the time change Gt, a stochastic “business” time under
prevailing market conditions. In a credit risk setting, we can think of the time change as a
way to model the arrival of new information. As the market does not forget information, the
amount of information cannot decrease, hence the increasing condition on Gt. Intuitively,
Xt will represent a default indicator function and the time change Gt a default “intensity”.

As a simplifying assumption, we can consider that the amount of new information released
will not be affected by the amount of information already available (i.e., that the information
process should have independent increments). Moreover, it is also reasonable to require that
the information increment depends only on the length of the period involved (stationary
increments). This is the motivation behind the use of a non-decreasing information process,
with independent and stationary increments. We will be focusing on Lévy subordinated
Brownian motions, i.e., time-changed Brownian motions (TCBMs) arising by taking Gt to
be a non-decreasing, independent Lévy time change, of which the Variance Gamma process
is an example. This construction will always lead to a Lévy process.14

14Although this class of processes is not dense in the general class of Lévy processes (Hurd and Kuznetsov
2009).
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One can argue that independence between Bt and Gt is a somewhat restrictive condition;
notwithstanding, it provides a flexible enough family of processes for applications while
ensuring tractability.

Finally, it is worth mentioning that, as

E [G1] = 1⇒ E [Gt] = t, (2.6)

the expected value of the “business” time change equals the “calendar” time.
Under the TCBM construction we will not know in general the distribution of the first

passage time.15 However, if the time change is known explicitly (as is the case with the
Variance Gamma process), simulating the process sample paths is a straightforward task,
by the TCBM definition. In Chapter 6, we will illustrate a possible extension of the TCBM
approach to a multidimensional Variance Gamma framework, and use simulation to estimate
joint and conditional default probabilities.

The CGM parametrization

The Variance Gamma process can also be defined as the difference of two independent
Gamma processes the following way:

XV G
t = G

(1)
t︸︷︷︸

a=C, b=M

− G
(2)
t︸︷︷︸

a=C, b=G

,

with C,G,M > 0. An explicit mapping between the (σ, ν, θ) and (C,G,M) parameteriza-
tions can be found in Cariboni and Schoutens (2009). Using the latter, we can rewrite the
characteristic function (2.5) as

φLV Gt (ω) := ϕV G(ω)

=
{
φLV G1

(ω)
}t

=
(

1− i ω
M

)−tC(
1 + i

ω

G

)−tC
. (2.7)

The Lévy jump measure is given by

νV G(dx) =
C

|x|
[
e−Mx1{x>0}dx+ eGx1{x<0}dx

]
, (2.8)

and the Lévy triplet is (E [L1] , 0, νV G).
Comparing (2.7) with the Lévy-Khintchine decomposition of the characteristic exponent

(Theorem 2.2), we see that the VG model is a pure jump process, i.e., with no Brownian
component.

From the Lévy measure representation (2.8), we can gather the intuition behind the
(C,G,M) parameters. C controls the overall activity intensity, and so the process kurtosis.
G and M control the speed at which the jump arrival rates decline with the size of the move
(respectively, for negative and positive jumps). Thus they determine the skewness of the
process (positive if G > M , negative if G < M and zero if G = M).

As νV G(R) = ∞, on account of the singularity at the origin, we can infer from Propo-
sition 2.2 that the VG process has infinite activity. Lastly, because

∫
|x|≤1 |x|νV G(dx) < ∞,

Proposition 2.3 implies that it has finite variation.
The density of the Variance Gamma increments is known explicitly (Cariboni and Schoutens

2009).

15To our knowledge, no such result exists either for the Variance Gamma or the CGMY processes.
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2.4.2 The CGMY process

The Carr-Geman-Madan-Yor (CGMY) process is a pure jump process accommodating in-
finite or finite activity regimes. It is a natural extension of the Variance Gamma model,
flexible enough to capture both frequent small moves and rare, large jumps in the price
process. It was devised by Carr et al. (2002) and used to empirically rebut the need of a
diffusion component to adequately capture the small movements of asset returns.

It has four parameters, C > 0, G > 0, M > 0 and Y < 2. The characteristic function is
given by:

φLCGMY
t

(ω) := ϕCGMY (ω)

= exp
{
tCΓ(−Y )

[
(M − iω)Y + (G+ iω)Y −MY −GY

]}
. (2.9)

As was the case with the VG process, from the characteristic exponent we easily conclude
that it has no Brownian component.

The Lévy measure νCGMY admits the representation

νCGMY (dx) =
C

|x|1+Y
[
e−Mx1{x>0}dx+ eGx1{x<0}dx

]
, (2.10)

and the Lévy triplet is given by (E [L1] , 0, νCGMY ). Comparing (2.8) and (2.10), we see that
the introduction of the Y exponent extends the VG Lévy measure by providing an extra
measure of control over the fine structure of the process (i.e., the very small jumps, governed
by the behavior of the singularity around the origin). Parameters C, G and M play similar
roles as before. When Y = 0, we recover the VG process.

Observing that

• νCGMY (R) <∞ if and only if Y < 0;

•
∫
|x|≤1 |x|νCGMY (dx) <∞ if and only if Y < 1,

Propositions 2.2 and 2.3 show that the Y parameter also controls the process activity and
variation. Table 2.1 sums up this conclusion.

Parameter Y Properties of the CGMY process

Y < 0 Finite activity, finite variation
Y = 0 Variance Gamma process

0 < Y < 1 Infinite activity, finite variation
1 < Y < 2 Infinite activity, infinite variation

Table 2.1: The parameter Y

We will assume that the dynamics of the latent sovereign value process can be modeled
by the CGMY process. In particular, we will set Vt = V0 exp (Xt), where Xt is a CGMY
process.

In contrast to the VG model, there is no closed form expression for the density of the
increments. As a concluding remark, we mention the fact that the CGMY process also
admits a time-changed Brownian motion representation, albeit with a time change whose
characterization is not as easily attainable as the Gamma process.16

16The time change can be explicitly characterized through its Laplace exponent (Madan and Yor 2008).
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2.5 Jump-diffusions vs. infinity active, pure jump models

When choosing a model, the ability to capture empirical phenomena and the underlying
economic motivation must be taken into account. Moreover, we must strike a balance between
calibration tractability and the number of parameters used: an increase in the latter will
improve accuracy at the expense of the former, as several local optima might be found in a
non-linear optimization problem.

The jump-diffusion Kou model offers several advantages from this perspective. On the
one hand, it introduces jumps with a double exponential distribution, and so it provides both
high peaks (capturing the underreaction to new information the market receives) and heavy
tails (reflecting overreaction). On the other, it provides analytic tractability through the
Laplace transform of the first passage time distribution. However, by using a jump-diffusion
process we loose the flexibility a infinite activity process might afford.

We have chosen the CGMY model over a jump-diffusion of the Kou type taking into
account the following arguments:

• it captures the stylized empirical behavior of asset returns;

• the pure jump nature of the process is adequate both for stable (an infinite number of
“small” jumps in a given time interval) and sudden, low frequency changes in market
behavior (at most a finite number of “big” jumps in a given time interval);

• through parameter Y both finite and infinite activity processes are attainable, thus
possibly capturing breaches in prevailing market conditions through the crossing of
the activity regime;

• even though analytic tractability is lost, in Chapter 3 we will describe an efficient
numerical method for the computation of survival probabilities, requiring only the
explicit knowledge of the parametric characteristic function (2.9);

• it allies flexibility and numerical tractability to a lower number of parameters.17

Furthermore, we advocate that the pure jump, infinite activity modeling approach is
conceptually sounder than the jump-diffusion one. Indeed, the latter adds an orthogonal
jump component, essentially capturing “large”, rare jumps that introduce discontinuities, to
a diffusion, seizing frequent and small increments. Empirical evidence shows that this can
breach the density’s monotonicity, on either side of the increments’ distribution. A pure
jump, infinite activity model dispenses with this unconnected building block, effectively
merging the small scale behavior (an infinite number of “small” jumps on any compact
interval if the Lévy measure ν is not bounded around the origin) with the large scale jumps
(finitely many, as the Lévy measure is always bounded away from zero). This way, it favors
smooth, monotone densities on the right and left of the distribution, displaying skewness
and heavy tails.

17The CGMY model has four parameters, C, G, M and Y . Kou’s model has six parameters, p, θ1, θ2, λ,
µ and σ.



Chapter 3

Univariate default modeling: the
COS method

In this chapter we address the problem of computing the survival probability under a Lévy
first passage structural approach. We will also show how to price Credit Default Swaps
(CDSs) and calibrate the underlying model to CDS spreads market data.

Our modeling framework quite naturally casts the survival probability as the price of a
barrier option. As such, we can resort to numerical option pricing techniques to compute
it. We will apply the Fourier-cosine series option pricing method (Fang and Oosterlee 2008,
2009), henceforth simply referred to as the COS method. This method approximates the
transition density fXt|Xs(y|x), truncated to a suitably chosen closed interval [a, b], as a
Fourier-cosine series expansion.1 The crucial observation behind it is the fact that the
characteristic function is simply the Fourier transform of the probability density. To obtain
the Fourier cosine-series coefficients, we will only need to know an analytic expression for the
characteristic function. By using a grid of monitoring points, we can recursively compute the
survival probability. This approach is convenient as the Lévy density function fXt(x) might
not be known in closed form, whereas generally we can obtain the characteristic function
φXt(ω).

The material we cover closely follows Fang et al. (2010), where the COS method is used
to price CDSs and, through it, calibrate Lévy models. Although we will be applying the
COS method to the calibration of the CGMY model, using the parametric expression (2.10),
we should emphasize that it could be used at no further cost to any Lévy process whose
characteristic function is analytically obtainable.

3.1 Overview

Under a risk-neutral setting, we consider a latent sovereign value process {Vt, t ≥ 0}, where

Vt = V0e
Xt

and {Xt, t ≥ 0} is a Lévy process with X0 = 0. We say that Vt is an exponential Lévy
process.

For a given deterministic recovery rate R ∈ (0, 1), the time of default is defined as the
first-passage time for a barrier set at RV0:

τdef := inf {t ≥ 0 : Vt ≤ RV0} .
1The Fourier-cosine series outperforms the usual Fourier series expansion when approximating functions

with compact support (Fang and Oosterlee 2008).
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This modeling choice takes the following intuition into account: the larger the recovery rate
R, the lower the cost of defaulting incurred by the sovereign, and so the higher its incentive
to formally declare default.2

The survival probability up to time t is then

Psurv(t) = PQ

(
min
0≤s≤t

Xs > lnR

)
= EQ

[
1{min0≤s≤tXs>lnR}

]
, (3.1)

where Q denotes the risk-neutral measure. Equation (3.1) can be interpreted as the price
of a binary down-and-out barrier (BDOB) option without discounting, with maturity T and
barrier level h ≡ lnR. This option pays one unit currency if the trajectory of the process
{Xt} remains above h up to time T and zero otherwise. As discussed in Chapter 2, we should
note that the distribution of the running-minimum min0≤s≤tXs in (3.1) will not generally
be known.

3.2 Transition density

The following proposition is the main result behind the COS method.

Proposition 3.1 (COS formula for the transition density). Let {Xt, t ≥ 0} be a Lévy pro-
cess with characteristic function ϕlevy(ω, t) := φXt(ω). For 0 ≤ s ≤ t and x, y ∈ [a, b] ⊂
supp fXt|Xs, the Fourier-cosine series of the transition density fXt|Xs(y|x) can be approxi-
mated by

fXt|Xs(y|x) =
2

b− a

N−1∑
k=0

′
Re

{
ϕlevy

(
kπ

b− a
, t− s

)
eikπ

x−a
b−a

}
· cos

(
kπ
y − a
b− a

)
+ εf , (3.2)

where
∑ ′

means that the first term is halved. The error term εf comes both from truncating
the support of fXt|Xs to the interval [a, b] and taking only the first N terms of the series
expansion.

Appendix A.1 presents the proof of this result.

3.3 Survival probability

In this section we will show how the transition density approximation formula (3.2) can
be used to compute the survival probability Psurv(t) as the price of a discretely monitored
binary down-an-out barrier option.

We start by defining a set of M pre-specified observation dates,

T = {t0, t1, . . . , tM} , t0 < t1 < · · · < tM , tm = m ·∆t, m = 0, 1, . . . ,M,

where the value of the Lévy process {Xt, t ≥ 0} will be monitored and compared with the
barrier level set at h ≡ lnR. We will denote the final observation date by τ = tM .

The survival probability for the whole period

Psurv(τ) = EQ

[
M∏
m=0

1{Xtm>h}

]
(3.3)

2The default barrier is defined in terms of a relative decrease of the latent sovereign value process so as to
avoid the need to explicitly estimate V0. Following the remarks made in Section 2.1.4, we acknowledge the
fact that this choice is made on pragmatic grounds rather than economic or financial fundamentals.
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can be obtained recursively. Define

p(x, tM ) := 1{x>h}

p(x, tm) := EQ

[
1{Xtm+1>h}

∣∣∣Xtm = x
]

=

∫ +∞

h
fXtm+1 |Xtm (y|x)p (y, tm+1) dy, (3.4)

for m = M − 1, . . . , 0. Then, by taking conditional expectations on the values of Xtm in
(3.3), we get

Psurv(τ) = p(0, t0), (3.5)

because, from our definition of the sovereign value process Vt, X0 = 0.
We will now use the COS expansion of the transition density from the previous section

to approximate the recursive integral in (3.4).

Proposition 3.2 (COS formula for the survival probability). Plugging (3.2) into (3.4), we
get the following recursive relationship:

p(x, tm) =
N−1∑
k=0

′
φk(x)Pk(tm+1),

where

φk(x) := Re

{
ϕlevy

(
kπ

b− a
,∆t

)
eikπ

x−a
b−a

}
Pk (tm+1) :=

2

b− a

∫ b

h
cos

(
kπ
y − a
b− a

)
p (y, tm+1) dy.

The survival probability can then be approximated by

Psurv(τ) =

N−1∑
k=0

′
φk(0)Pk(t1). (3.6)

The proof can be found in Appendix A.2.
We should note that {Pk (t1)}N−1k=0 are simply the Fourier-cosine coefficients of p(y, t1).

In the next section we will show how these can be computed recursively.

3.3.1 Backwards recursion

The Fourier coefficients {Pk (tm)}N−1k=0 can be obtained from {Pk (tm+1)}N−1k=0 the following
way:

Pk(tm) =
2

b− a

∫ b

h
cos

(
kπ
y − a
b− a

)
p (y, tm) dy

=
2

b− a

∫ b

h
cos

(
kπ
y − a
b− a

)N−1∑
l=0

′
φl(x)Pl(tm+1)dy

=

N−1∑
l=0

′
Re

{
ϕlevy

(
lπ

b− a
,∆t

)
ωkl

}
Pl(tm+1),

where we have defined

wkl :=
2

b− a

∫ b

h
eilπ

y−a
b−a cos

(
kπ
y − a
b− a

)
dy.
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In matrix notation, the previous recursive relationship becomes

P (tm) = Re {ΩΛ}P (tm+1) , (3.7)

where

Ω = (ωkl)
N−1
k,l=0 and Λ = diag

{
ϕlevy

(
lπ

b− a
,∆t

)}N−1
l=0

is a diagonal matrix.
So, the computation of the survival probability up to τ = tM using the COS formula (3.6)

boils down to obtaining the vector of Fourier-cosine coefficients P (t1) from the backwards
recursion

P (t1) = Re{ΩΛ}M−1P (tM ) . (3.8)

The recursion base vector of Fourier-cosine coefficients for p(x, tM ) = 1{x>h}, P (tM ), can
be calculated explicitly as

Pk(tM ) =
2

b− a

∫ b

h
cos

(
kπ
y − a
b− a

)
p (y, tM )︸ ︷︷ ︸
1{y>h}

dy

=

{
2
kπ

[
sin (kπ)− sin

(
kπ h−ab−a

)]
k 6= 0

2
b−a (b− h) k = 0,

(3.9)

but getting the coefficients P (t1) using (3.8) is computationally expensive.
In the next section we will describe an alternative, more efficient way to compute (3.8)

using the Fast Fourier Transform (FFT) algorithm.

3.3.2 Computation using the FFT

The crucial observation is the fact that the matrix Ω can be expressed as the sum of two
matrices with special properties. To see this, first define

wj :=

{
iπ b−hb−a j = 0
exp(ijπ)−exp(ij h−ab−a π)

j j 6= 0.

Proposition 3.3 (Representation of Ω as the sum of Hankel and Toeplitz matrices). The
matrix Ω can be written as

Ω = − i
π

(H + T ) ,

where

H =


w0 w1 · · · wN−2 wN−1
w1 w2 · · · · · · wN
... . .

.
. .
.

. .
. ...

wN−2 wN−1 · · · · · · w2N−3
wN−1 · · · · · · w2N−3 w2N−2

 and T =


w0 w1 · · · wN−2 wN−1
w−1 w0 · · · · · · wN−2
...

. . .
. . .

. . .
...

w2−N w3−N · · · · · · w1

w1−N · · · · · · w−1 w0


are, respectively, a Hankel matrix3 and a Toeplitz matrix,4 both N ×N .

3A Hankel matrix H = (hij)
N
i,j=1 is a square matrix with constant positive slope diagonals, i.e., such that

hij = hi−1,j+1.
4A Toeplitz matrix T = (tij)

N
i,j=1 is a square matrix with negative positive slope diagonals, i.e., such that

tij = ti+1,j+1.



3.3 Survival probability 19

Details on the proof can be found in Fang and Oosterlee (2009), pp. 8-9.
The basic recursion for the recovery of the Fourier-cosine coefficients (3.7) can then be

rewritten5 as

P (tm) =
1

π
Im {(H + T ) u (tm+1)} , (3.10)

with u (tm+1) := (uj (tm+1))
N−1
j=0 such that

u0 (tm+1) :=
1

2
ϕlevy (0,∆t)P0 (tm+1) (3.11)

uj (tm+1) := ϕlevy

(
jπ

b− a
,∆t

)
Pj (tm+1) , j = 1, . . . , N − 1. (3.12)

Due to the structure of Hankel and Toeplitz matrices, their product by a vector can
be expressed as a circular convolution. This will allow us to recover P (tm) using the FFT
algorithm, thus significantly reducing the complexity of the computation.

Definition 3.1 (Circular convolution). Take two vectors of the same dimension, x and y,
and denote by D the discrete Fourier transform (DFT) operator. The circular convolution
of x and y is

x ~ y := D−1 {D(x) · D(y)} .

Proposition 3.4. Let H and T be, respectively, Hankel and Toeplitz N ×N matrices.

1. The matrix-vector product H · u can be obtained as

H · u = [wH ~ uH ]
←−
N

with the following vectors of dimension 2N

wH := [w2N−1, w2N−2, . . . , w1, w0]
T (3.13)

uH := [0, . . . , 0, u0, u1, . . . , uN−1]
T , (3.14)

where [x]
←−
N denotes taking the vector of the first N elements of x, in reversed order.

2. The matrix-vector product T · u can be obtained as

T · u = [wT ~ uT ]
−→
N

with the following vectors of dimension 2N

wT := [w0, w−1, . . . , w1−N , 0, wN−1, wN−2, . . . , w1]
T (3.15)

uT := [u0, u1, . . . , uN−1, 0, . . . , 0, ]
T , (3.16)

where [x]
−→
N denotes taking the vector of the first N elements of x.

The proof can be found in Fang and Oosterlee (2009) – first part – and Almendral and
Oosterlee (2007) – second part.

Remark (Decreasing the complexity of the computation of the Fourier-cosine coefficients).
The matrix-vector products in equation (3.7) involve O

(
N2
)

operations. Using (3.10) and
the previous proposition, we can reduce it to O(N log2N), as the complexity of the FFT
algorithm is of this order.

5z ∈ C can be written as z = |z|eiθ = |z| [cos(θ) + i sin(θ)], for a unique argument θ ∈ [0, 2π[, and so
Re(−iz) = |z| [sin(θ)− i cos(θ)] = |z| sin(θ) = Im(z).
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3.3.3 The COS algorithm

This sections outlines the main steps of the COS algorithm to compute the survival proba-
bility Psurv(τ), τ = tM .

Recursion base

Step 1 Compute P(tM ), the vector of Fourier-cosine coefficients of p(x, tM ), from (3.9);

Step 2 Build the vectors wH and wT from (3.13) and (3.15);

Step 3 Compute the FFTs dH = D(wH) and dT = D(wT );

Recursion loop

For m = M, . . . , 2, perform the following steps:

Step 4 Compute the vector u(tm) from (3.11) and (3.12);

Step 5 Compute uH(tm) from (3.14);

Step 6 Compute the matrix-vector products

H · u(tm) =
[
D−1 {dH · D [uH(tm)]}

]←−N
, T · u(tm) =

[
D−1 {dT · D [uH(tm)]}

]−→N
;

Step 7 Obtain P(tm−1) from (3.10);

At the end of the loop, we will have recovered P(t1), the vector of Fourier-cosine coeffi-
cients of p(x, t1).

Survival probability

Step 8 Compute the survival probability Psurv(τ) from (3.6).

Improving the computational efficiency

Coefficients wj The coefficients wj must be computed for

j = −(N − 1), . . . ,−1︸ ︷︷ ︸
N−1 terms

, j = 0, j = 1, . . . , N − 1︸ ︷︷ ︸
N−1 terms

, j = N, . . . , 2(N − 1)︸ ︷︷ ︸
N−1 terms

.

To do so in an efficient way, we note that, from the definition, w−j = −wj , and so we
can get wj for j = −(N − 1), . . . , 1 from wj , j = 1, . . . , N − 1. Additionally,

wj+N =
exp (iNπ) exp (ijπ)− exp

(
iN h−a

b−aπ
)

exp
(
ij h−ab−aπ

)
N + j

,

so the factors exp (ijπ) and exp
(
ij h−ab−aπ

)
need to be computed only once.

FFT As uH is simply uT shifted N positions to the right, the FFT dH can be computed
from dT , using the shift property of the discrete Fourier transform:

D (uH) = sgn · D (uT ) , sgn =
[
(−1)j

]
j=0,...,2N−1.
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3.4 Pricing Credit Default Swaps

In a Credit Default Swap (CDS) contract, the protection buyer transfers the credit risk of
a reference entity’s underlying asset to the protection seller by paying a premium until a
default event occurs or the maturity of the contract is reached. The protection seller makes
no payments in the latter case, while it covers the losses in case of default. The CDS spread
is the yearly rate paid by the protection buyer. It thereby provides the market a quantitative
measure of the implicit credit riskiness of the reference entity.

Let us denote by T the maturity of a CDS contract with yearly spread c. We will assume
a constant risk-free interest rate r in [0, T ], and that a deterministic recovery rate R ∈ (0, 1)
is known in advance.6

Proposition 3.5. The fair CDS spread can be approximated as

c∗ = (1−R)

[
1− e−rTPsurv(T )∑J

j=0wje
−rt̃jPsurv

(
t̃j
)
·∆t

− r

]
, (3.17)

where t̃j = j ·∆t, j = 0, . . . , J , ∆t = T
J , is a suitable discretization of the interval [0, T ], and

wj = 1
2 for j = 0, J , wj = 1 otherwise.

We prove this result in Appendix A.3.
Equation (3.17) shows that we can numerically approximate the fair CDS spread by

computing the survival probability Psurv(t̃j) for every t̃j . We will use the COS survival
probability formula (3.6) for a given Lévy process, as specified by its parametric characteristic
function. In the next section, we will define the procedure to calibrate the parameters of the
latter to market CDS spread data.

Remark (Simultaneous computation of survival probabilities). The choice of the points t̃j
used to approximate the integral on the CDS pricing formula can be made in such a way
that the computation of all the survival probabilities Psurv

(
t̃j
)

is achievable simultaneously.

For this, we simply need to ensure that the J points
{
t̃j
}J
j=1

lie in the set of M observation

dates {tj}Mj=0 used in the discretization of the barrier option. If t̃i < t̃j are two such points,

we have ti = k
M tj for some k ∈ N, and so the Fourier-cosine coefficients of the survival

probability Psurv(ti) were already obtained during the computation of Psurv(tj):

Pt̃i
(t1) = Pt̃j

(tM−k+1).

3.5 Calibration

Let ϕlevy(ω, t; θ1, . . . , θn) be the characteristic function of the underlying Lévy process {Xt}t≥0,
with parameters θ1, . . . , θn.

On a given day, we observe the market CDS spreads cmarket(Ti) for a set of m maturities
T1 < · · · < Tm. We will calibrate the Lévy model to the market data by minimizing the root
mean square error function

RMSE(θ1, . . . , θn) =

√√√√ m∑
i=1

(cmarket(Ti)− clevy(Ti))2

m
, (3.18)

where clevy(Ti) is computed using the COS formula (3.17). The optimal choice of parameters,

argminθ1,...,θnRMSE(θ1, . . . , θn),

will be obtained using the fmincon non-linear numerical optimization method in MATLAB R©.
6It is out of the scope of the present work to address the stochastic modeling of sovereign recovery rates.
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3.6 Parameters

Discretization parameters

Following the error analysis discussed in Fang et al. (2010), we use the authors’ proposed
choice of discretization parameters:

Parameter Description Value

N Terms in Fourier-cosine series expansion N = 210

M Monitoring dates for discrete BDOB option M = 48T

J Discretization points for CDS pricing J = M
4

Table 3.1: Discretization parameters

N The number of terms in the Fourier-cosines series expansion N is chosen as a power of
two to allow the use of the FFT algorithm; we use N = 210 = 1024 terms;

M We will be using weekly-monitored survival probabilities; M = 48T (or, equivalently,
∆t = 1

48) means we are considering 48 “trading weeks” in a year;

J The authors find the CDS pricing formula not to be very sensitive to this parameter; the
choice J = M

4 (as opposed to J = M) is used to improve computational efficiency.

Truncation range

The truncation range of the support of the transition density fXt|Xs should made be large
enough for the approximation error term in (3.2) to stem mainly from taking only N terms
in the Fourier-cosine series (Fang et al. 2010). The authors find the following definition to
be wide enough:

[a, b] :=

[
c1 ± L

√
c2 +

√
c2

]
,

where cj is the j-th cumulant of Xt (cf. Fang and Oosterlee 2009, appendix B) and parameter
L ∈ [7.5, 10]. We have used L = 10.

Recovery rate

We have decided from the beginning that taking a stochastic modeling approach to the re-
covery rate parameter R would be out of our work’s scope. Arguably, we could assume that
R follows a given parametric distribution, with minimal implementation effort.7 However,
such a modeling choice would be made mainly on practical arguments rather than sound eco-
nomic reasoning. Moreover, we would have to calibrate the distribution parameters making
some crude assumptions: data on sovereign loss given default is not only scarce, precluding
any statistically significant analysis, but also heterogeneous, as final recovery rates will be
determined by the specific economic and political circumstances leading to default.

Because we are strictly focused on Euro area sovereigns, we will use available data on the
2012 Greek and 2013 Cypriot defaults as a proxy for a non-deterministic Euro area recovery
rate. These default events have taken the form of distressed debt exchanges8, as opposed to
missing payments of coupons or principal. In its report on Sovereign Default and Recovery
Rates, 1983–2013 (Moody’s Investors Service 2014), Moody’s measures the recovery rate as

7Two possible models are the Beta distribution (with support [0, 1]) or an appropriate map of a distribution
with support R to [0, 1] (Schönbucher 2003, Section 6.1.6).

8Implying lower values of coupons or par amounts, lower seniority or longer maturities.
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the ratio of the present value9 of the new, restructured securities to the original ones. Table
3.2 presents the estimated recovery rates and the value of the restructured securities. The
latter is also expressed as a percentage of both the country’s total debt and its GDP.

Year Country R (%) % Total Debt % GDP Value ($bn)

2012 Greece 29 59 98 273
2012 Greece 40 9 15 42
2013 Cyprus 53 6 6 1.3

Table 3.2: 2012–2013 Euro area default events. Source: Moody’s Sovereign Default and
Recovery Rates, 1983–2013.

Taking into account the sheer dimension of the first 2012 Greek restructuring10, we will
choose a deterministic recovery rate of 30%. The data on the Cyprus default suggests that
our choice is possibly conservative.

9Using the original securities’ yield to maturity at the time of the exchange.
10The largest in history, measured as the nominal amount of debt exchanged, the percentage of total debt

and the ratio to GDP.



Chapter 4

The dataset

As we have seen in the previous chapter, to calibrate a Lévy model from market CDS spreads
we will need to minimize the root mean square error (3.18) of the theoretical spreads vis-
a-vis the observed ones. This means that, besides fetching market CDS data, we will need
information on the risk-free yield curve to use the pricing formula (3.17).

We have collected from Bloomberg the series of daily bid and ask USD-quoted CDS
spreads with maturities T ∈ {1, 3, 5, 7, 10} years (Y), spanning the period from 01-01-2010
to 28-02-2014, for the Euro-area Portuguese (PT), Irish (IE), Italian (IT), Greek (GR) and
Spanish (SP) sovereigns. This time frame covers the onset of the Euro-area sovereign debt
crisis, its peak, and the early stages of the ongoing recovery. To remove possible weekday
effects, our calibration will be based only on weekly Wednesday mid-quotes.

We used USD-quoted CDS spreads because the corresponding Euro-quoted ones did
not cover extensively neither the period in question nor a representative set of tenors.1

We recognize that, ideally, Euro-quoted CDS contracts should be used, as the underlying
sovereign debt is Euro-denominated. However, the USD dataset was judged preferable, as it
would lead to a statistically more significant calibration. We are thus taking the perspective
of an American investor in Euro-area sovereign debt. Furthermore, as the recovery rate R
is purely exogenous, we will assume that it covers not only the notional loss given default
but also any foreign exchange losses. This simplifying assumption will give leeway to the
use of USD-quoted spreads as a pure credit risk measure, free of any implicit currency risk
component.
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Figure 4.1: Daily mid-quotes for Portuguese (PT) and Irish (IE) CDS spreads

Figure 4.1 shows that the Portuguese and Irish CDS spreads had a somewhat similar

1Only the 5 and 10 years tenors were generally available. This is an indication of the Euro denominated
market’s lower liquidity and depth, when compared the USD one.
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behavior, the latter lagging the former, albeit with a lower short-term, 1 year maturity peak.
A clear term structure “inversion” effect is noticeable on both series around their peaks,
when the short-term spreads become significantly larger than the long-term ones. This is
consistent with the dramatic increase in short-term default expectations while the Euro area
sovereign debt crisis unfolded. Another noticeable feature is the almost parallel running of
most of the tenors before the “inversion” effect (onset of the crisis), and a clear separation
of the term structure afterwards (beginning of the recovery). These two empirical findings
suggest that we will need a flexible enough dynamics for the implicit sovereign value process,
an observation further supporting the choice of the CGMY model. Indeed, we should mention
that we have chosen this dataset as a means to investigate the relationship between the time
series features we have just described and the structural properties of the CGMY process.
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Figure 4.2: Daily mid-quotes for Italian (IT) and Spanish (SP) CDS spreads

The behavior of the Italian and Spanish spreads is also quite similar, although the “in-
version” effect does not take place. The “separation” effect at the end of the series is again
noticeable. The Greek series mimics the Portuguese CDS spreads lifecycle, with severe dis-
tress features: the short term 1 year CDS spread peaks at around 60%.2
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Figure 4.3: Daily mid-quotes for Greek (GR) CDS spreads.

We used the US Treasury yield data3, providing the daily treasury zero curve for terms{
1
12 ,

1
4 ,

1
2 , 1, 2, 3, 5, 7, 10, 20, 30

}
years. In the CDS pricing formula (3.17), r will be the rate

corresponding to the calibration date and the CDS tenor T .

2The series is broken between 2012-03-12 and 2012-04-10 and again between 2013-03-01 and 2013-05-20.
This correlates with the announcement of the first debt exchange proposal by the Greek government (on 24
February 2012) and the aftermath of December’s 2012 second default event (Moody’s Investors Service 2014).

3Retrieved from http://www.federalreserve.gov/datadownload/

http://www.federalreserve.gov/datadownload/
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Univariate calibration

We performed the calibration of the CGMY model parameters to the dataset by applying the
fmincon non-linear optimization function of MATLAB R© to (3.18), with suitable restrictions
C > 0, G > 0, M > 0 and Y < 2. We used weekly quotes from the beginning of 2010 until
the end of February of 2014, and the full structure of observed tenors T ∈ {1, 3, 5, 7, 10}
years (Y).

Figures 5.1 and 5.2 show that the CGMY model accurately captures the empirical features
of the CDS spreads term structure throughout the time series lifecycle, for the Portuguese
(PT), Irish (IE), Italian (IT) and Spanish (SP) sovereigns. The fit looses accuracy for the
Greek (GR) sovereign series around the peak of its short maturity tenors (from January
2012 to July 2012), when the calibration is based on the full set of available tenors. If the
calibration is restricted to the tenors T ∈ {1, 5, 10} years, the accuracy improves significantly.
Figure 5.3 illustrates this behavior.

01/10 01/11 01/12 01/13 01/14
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Date

S
p
re

a
d
 (

b
p
s
)

PT CDS Spreads

 

 

1Y (CGMY)

3Y (CGMY)

5Y (CGMY)

7Y (CGMY)

10Y (CGMY)

1Y (Data)

3Y (Data)

5Y (Data)

7Y (Data)

10Y (Data)

01/10 01/11 01/12 01/13 01/14
0

200

400

600

800

1000

1200

1400

1600

Date

S
p

re
a

d
 (

b
p

s
)

IE CDS Spreads

 

 

1Y (CGMY)

3Y (CGMY)

5Y (CGMY)

7Y (CGMY)

10Y (CGMY)

1Y (Data)

3Y (Data)

5Y (Data)

7Y (Data)

10Y (Data)

Figure 5.1: Calibration results: Portugal (PT) and Ireland (IE)

The precision of the model’s fit can be assessed in Figure 5.4, displaying the distribution
of the optimal absolute and relative root mean square errors (RMSE). The latter is computed
as the ratio of the absolute RMSE to the average CDS spread across all tenors.

Although some outliers can be observed, especially in the series where more volatility
and/or high spread values prevail, we can see that the third quartile of the relative RMSE
distribution is below 1.5% for the Portuguese, Irish, Italian and Spanish sovereigns. Taking
the Greek time series as a whole, only the calibration using the restricted set of tenor provides
accurate enough results. Table B.1, in Appendix B.1.2, details these results by presenting
key statistics of the RMSE distribution.
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Figure 5.2: Calibration results: Italy (IT) and Spain (SP)
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Figure 5.3: Calibration results: Greece (GR): calibration based on 1Y, 3Y, 5Y, 7Y and 10Y
tenors vs. calibration based on 1Y, 5Y and 10Y tenors.

It is important to emphasize that multiple optima might be found numerically. In fact, the
computational trials we performed showed that the optimization procedure is very sensitive
to the starting values used: usually, several runs were required to reach accurate enough
results. Furthermore, the objective function (3.18) does note cater explicitly for the stability
of the calibrated parameters.

We could possibly extended it using the amendment discussed in Fang et al. (2010),
where the regularization term

γ · ‖Θd −Θd−1‖ (5.1)

is added to the original RMSE (θ1, . . . , θn) objective function. Θd and Θd−1 are the parame-
ter vectors for the current calibration date, d, and the previous one, d− 1, respectively. The
scalar γ needs to be empirically calibrated.

Although we have not tried to investigate the stability of the calibrated parameters, we
plot their evolution over time in Appendix B.1.1 (Figures B.1 to B.5), against the backdrop
of the 5-year CDS spread. It is clearly noticeable that peak periods tend to be linked with
a fundamental switch in the model’s properties: namely, the Y parameter drops bellow zero
and so the process moves from infinite to finite activity, a behavior especially striking in the
Greek series (Figure B.5). This is consistent with market conditions leading to the arrival
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Figure 5.4: Calibration results: absolute and relative root mean square error (RMSE) dis-
tribution; the box plot displays the minimum, first quartile, median, third quartile and
maximum; observations considered as outliers are marked in red.

of a few sudden, large exogenous information shocks.
The default probability term structure, computed using the COS formula for the survival

probability (3.6), is shown in Figures B.6 to B.8 of Appendix B.1.3.
We can witness the reflection of the parameters instability over time on the relative lack

of smoothness displayed both by the default probability term structures and the series of
calibrated parameters.

In Appendix B.1.4 we compare the CGMY and the Brownian motion dynamics and
illustrate the drawbacks of the latter, as previously discussed in Chapters 1 and 2.

Remark (A note on the algorithm’s performance). Using a laptop with an Intel Core i5 2.4
GHz processor and 8 GB 1600 Mhz RAM running MATLAB R© R2014a, the simultaneous
computation of the calibrated model’s CDS spreads for tenors T ∈ {1, 3, 5, 7, 10} years and
the discretization of the survival probability function for the same time points takes an
average processing time of 0.54 seconds per date.



Chapter 6

Multivariate default modeling

In this chapter, we will model the latent sovereign asset value process using the Variance
Gamma (VG) model1, and take advantage of its time-changed Brownian motion represen-
tation to introduce correlation between sovereigns through a common Gamma time change
component. We will illustrate this technique by performing a joint calibration from CDS
market data, for an arbitrarily set date. By simulating dependent paths, we will then be
able to estimate joint and conditional survival probabilities. The calibration procedure is a
simple adaptation of the unidimensional COS method.

Our approach relies only on the explicit knowledge of the characteristic function (for
calibration purposes) and the time change distribution (for simulation purposes). In prin-
ciple, we could apply it as well to the more general CGMY model, previously used in the
univariate calibration. As we have briefly mentioned in Section 2.4.2, the latter also ad-
mits a time change Brownian motion representation, albeit implicitly defined by its Laplace
transform. We have opted to use the VG model in the extension of the COS method to a
multidimensional setting because the simulation procedure is straightforward. Additionally,
we will see that the marginal calibration is also quite accurate (although not as accurate as
the one achieved with the CGMY model, at the expense of an extra parameter). The work
we develop in this chapter simply aims to illustrate the joint calibration and simulation pro-
cedures, whereas previously we have conducted weekly marginal calibrations for an extended
time period, and each of the five sovereigns under study. The simulation of the CGMY pro-
cess as a time-changed Brownian motion would possibly require a numerical inversion of the
Laplace transform, an avenue we have not considered pursing within the scope of this work.

6.1 Multivariate Variance Gamma model

6.1.1 Common Gamma time change

Following Cariboni and Schoutens (2009), in Section 8.4, we start by considering:

• a N -dimensional Brownian motion with drift W =
(
W

(1)
t , . . . ,W

(N)
t , t ≥ 0

)
,

W
(i)
t = θit+ σiB

(i)
t , θi ∈ R, σi > 0, i = 1, . . . , N,

where B =
(
B

(1)
t , . . . , B

(N)
t , t ≥ 0

)
is a vector of (possibly) correlated standard Brow-

nian motions, with correlation matrix
(
ρBij

)
;

1Described in Section 2.4.1.
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• an independent, common Gamma time change G = {Gt, t > 0}, with parameters(
1
ν ,

1
ν

)
, ν > 0.

As we have seen previously, this construction implies that the marginal processes

X
(i)
t := W

(i)
Gt

= θiGt + σiBGt (6.1)

are Variance Gamma distributed with parameters (σi, ν, θi). Parameters σi and θi are id-
iosyncratic to each marginal process (respectively, its volatility and drift), while the common
parameter ν defines the single Gamma time change. The embedded dependency structure
has two different sources: the correlation between the Brownian motions and the common
time change. The latter is crucial to the construction, as it ensures that the marginal pro-
cesses’ jumps occur simultaneously.

We can calibrate the parameters ν, σi and θi, i = 1, . . . , N , by applying the COS method
toN Variance Gamma characteristic functions of the form (2.5), with a common ν parameter,
and then minimizing the root mean square error (RMSE) of the CDS spreads across all
sovereigns.

The correlation coefficients between components are computable in the time unit as

ρij =
E
[
X

(i)
1 X

(j)
1

]
− E

[
X

(i)
1

]
E
[
X

(j)
1

]
√
V
[
X

(i)
1

]√
V
[
X

(j)
1

] =
θiθjν + σiσjρ

B
ij√

σ2i + θ2i ν
√
σ2j + θ2jν

. (6.2)

This relationship allows us to solve for the correlation coefficients between the standard
Brownian motions, ρBij , from previously known (or estimated) correlation coefficients between
the asset value processes, ρij .

The simulation procedure would then run as follows:

Step 1 Perform a joint calibration of parameters (σi, ν, θi) on market CDS spreads data;

Step 2 Estimate (or define) the correlation matrix (ρij) between the marginal asset value

processes X
(i)
t ;

Step 3 Compute the Brownian motion correlation matrix
(
ρBij

)
from (6.2);

Step 4 Jointly simulate dependent paths of the marginal processes using the characteriza-
tion of the VG process as a time-changed Brownian motion.

Although empirical estimation of the correlation between the latent asset value processes
could be implemented2, we have elected to use as sole dependency source the common time
change.3 Consequently, we will skip step 2 of the simulation procedure and use the identity
matrix in step 3 (implied by independent marginal Brownian motions).

2Let us consider the independent increments ε := Xt+∆t − Xt. In the Variance Gamma model, the
distribution of ε is known, as there is a closed formula for its density, involving modified Bessel functions of
the third kind (Cariboni and Schoutens 2009). In other models, such as the CGMY, where the distribution of
the increments is not explicitly know, we could resort to the COS transition density approximation formula
(3.2). The correlation between increments could then be empirically estimated from the relationship

Xt+∆t −Xt = F−1
ε (P (t+ ∆t, t+ ∆t+ T ))− F−1

ε (P (t, t+ T )) ,

where P (t, t+ T ) = P (Xt+T ≤ lnR) is the survival probability in (t, t+ T ), i.e., the survival probability for
tenor T at time t, and Fε is the distribution function of the random variable ε.

3An approach supported by empirical tests where correlation was introduced only in the multivariate
Brownian motion process: the simulation results have shown no conclusive evidence of dependency on the
estimated joint and conditional default probabilities.
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Calibration results

As our purpose is simply to illustrate the application of the multivariate VG model, we will
work with a single, arbitrarily chosen date (2014-02-26, the same we use to compare the
CGMY process with the Brownian motion in Appendix B.1.4).

We start by calibrating the multidimensional, common time change VG model using the
full set of available CDS spreads (all 5 tenors – 1, 3, 5, 7 and 10 years – and all 5 sovereigns).

Figure 6.1 displays the CDS spreads implied by the multidimensional VG model against
the market data, as well as the survival probabilities. We can witness an overpricing trend
on the lower tenors (1 and 3 years) and an underpricing one on the higher tenors (7 and 10
years), for all sovereigns except Greece (GR). This behavior is especially clear in the case of
the Portuguese (PT) sovereign.
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Figure 6.1: Joint calibration of PT, IT, IE, GR and SP spreads, and implicit survival prob-
abilities. Calibration is achieved with an optimal RMSE of 20.46 basis points, comparing
with an average RMSE of 6.04 for the corresponding marginal calibrations. In relative terms,
these figures are 9.72% and 4.23%, respectively.

The calibration accuracy improves significantly (from 20.46 to 5.08 basis points) when
we restrict it to the 3 sovereigns with lower and more homogeneous CDS spreads, namely
Ireland (IE), Italy (IT) and Spain (SP). Figure 6.2 highlights this observation.

These results suggest that we could improve the fit by adding idiosyncratic, Gamma
distributed components to the time change for the remaining two sovereigns (PT and GR).
Their calibration would then be conditional on an optimal, common time change component,
previously obtained from the set of sovereigns whose CDS spreads are considered sufficiently
homogeneous (in our case, IE, IT and SP). The next section clarifies this procedure.

6.1.2 Gamma time change with common and idiosyncratic components

Given a common Gamma time change component, Gt, we introduce an additional indepen-

dent idiosyncratic component, G
(i)
t , also Gamma distributed, with parameters

(
1
νi
, 1
νi

)
, i.e.,

such that G
(i)
1 ∼ Γ

(
1
νi
, 1
νi

)
. We then set the full time change for sovereign i as

H
(i)
t := αiGt + (1− αi)G(i)

t , αi ∈ (0, 1). (6.3)

We can interpret the common and idiosyncratic time change components as proxies for
systematic and specific credit risk factors.

The previous definition implies that

E
[
H

(i)
1

]
= αiE [G1] + (1− αi)E

[
G

(i)
1

]
= 1⇒ E

[
H

(i)
t

]
= t,
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Figure 6.2: Joint calibration of IE, IT and SP spreads, and implicit survival probabilities.
Calibration is achieved with an optimal RMSE of 5.08 basis points, comparing with an
average RMSE of 6.59 for the corresponding marginal calibrations. In relative terms, these
figures are 4.39% and 5.98%, respectively.

thereby preserving the time change invariance property (2.6). Furthermore, under our con-

struction all three sources of randomness, Gt, G
(i)
t and B

(i)
t are independent. With this

assumption in mind, we can easily obtain the characteristic function of the time change:

φ
H

(i)
t

(ω) =
[
φ
H

(i)
1

(ω)
]t
,

where
φ
H

(i)
1

(ω) = φG1(αiω) · φ
G

(i)
1

((1− αi)ω) .

As a consequence, the multivariate process with marginals

X
(i)
t := W

(i)

H
(i)
t

= θiH
(i)
t + σiBH(i)

t
(6.4)

is also infinitely divisible.
Following the reasoning of Section 2.4.1, the characteristic function of the marginal pro-

cesses will be given by

φ
X

(i)
t

(ω) =
[
φ
X

(i)
1

(ω)
]t
,

with

φ
X

(i)
1

(ω) = φ
H

(i)
1

(
θiω +

1

2
iσ2i ω

2

)
=

[
1− iαiν

(
θiω +

1

2
iσ2i ω

2

)]− 1
ν

·

·
[
1− i(1− αi)νi

(
θiω +

1

2
iσ2i ω

2

)]− 1
νi

. (6.5)

The calibration of the multivariate VG model with common and idiosyncratic Gamma
time change components can then be described as follows:

Step 1 Calibrate the multidimensional VG model with a common time change from a ho-
mogeneous CDS spreads dataset, following the procedure detailed in Section 6.1.1. We
will then obtain parameters (σi, ν, θi) for i ∈ SC , the set of “homogeneous” sovereigns.
This will provide a common Gamma time change component, defined by parameters(
1
ν ,

1
ν

)
, to use in the following step;
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Step 2 Calibrate the remaining sovereigns by applying the COS method to the marginal
processes (6.4), whose characteristic functions are given by (6.5). We will then ob-
tain parameters (σi, θi, αi) for i ∈ SI , the set of sovereigns whose value processes are
modeled with the inclusion of an idiosyncratic time change component.

In our case, step 1 means we calibrate the multidimensional VG model with a common
time change Gt for sovereigns i ∈ SC = {IE, IT, SP}. In step 2 we calibrate the remaining
sovereigns i ∈ SI = {PT, GR}. For this, we weigh the common time change component

component previously obtained, Gt, with the idiosyncratic time change component, G
(i)
t ,

according to (6.3). So, given a calibration of parameters (σi, ν, θi)i∈{IE,IE,SP}, we reapply the
COS framework to (6.5) to calibrate the remaining parameters (σi, θi, αi)i∈{PT,GR}.

Calibration results

Figure 6.3 presents the calibration of the multivariate VG model with common and idiosyn-
cratic Gamma time change components, for the dataset used in the previous section. By
introducing an idiosyncratic component in the time change of the sovereigns with higher
CDS spreads (PT and GR), we improve the global accuracy of the fit from 20.46 to 10.28
basis points. For comparison purposes, we have also performed the marginal calibration of
the univariate VG model, for all sovereigns. The calibration accuracy, measured as relative
RMSE, has proven similar between both calibration procedures (4.89% for the multivariate
calibration vs. an average of 4.23% for the marginal, univariate calibrations). We observe
no significant qualitative difference between the survival probability functions.
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Figure 6.3: Joint calibration of IT, IE and SP CDS spreads and conditional idiosyncratic cal-
ibration of PT and GR CDS spreads; implicit survival probabilities. Calibration is achieved
with an optimal RMSE of 10.28 basis points (4.89% in relative terms).

Table B.4, in Appendix B.2.1, sums up the calibration results discussed in this and the
previous sections.

6.2 Estimation of joint and conditional default probabilities

Having achieved a joint calibration of the multivariate Variance Gamma model (possibly with
the inclusion of idiosyncratic components on the time change, as described in the previous
section), we can capitalize on the time-changed Brownian motion representation (6.4) to
simulate joint, correlated paths without difficulty. All we need is to take independent random
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draws from the standard Normal and the Gamma4 distributions. Appendix C presents a
detailed description of the simulation procedure.

Using the calibrated parameters for the multivariate Variance Gamma model with id-
iosyncratic components for sovereigns PT and GR (cf. Table B.4 in Appendix B.2.1, scenario
i = 8), we have simulated 100 000 correlated paths and estimated the joint and conditional
default probabilities up to T = 1, 5, 10 years, respectively

P
(

min
0≤t≤T

X
(i)
t < lnR, min

0≤t≤T
X

(j)
t < lnR

)
and P

(
min

0≤t≤T
X

(i)
t < lnR

∣∣∣∣ min
0≤t≤T

X
(j)
T < lnR

)
.

Figure 6.4 depicts one such simulation, clearly illustrating the simultaneous nature of the
jumps when a common time change is used (i.e., for sovereigns IT, IE and SP), and the joint
default of PT and GR within 10 years.

Tables B.5 and B.6, in Appendix B.2.2, present the estimated default probabilities for the
reference date 2014-02-26. For comparison purposes, marginal default probabilities are also
provided. The estimated conditional default probabilities show a clear dependency between
defaults.
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Figure 6.4: Multivariate VG model: a joint simulation of paths for reference date 2012-02-26.
The default barrier is set with recovery rate R = 0.3 for all sovereigns. For each of three
monitored time periods T (1, 5 and 10 years), a sovereign default is registered if the simulated
path crosses the default barrier h ≡ lnR up to time T . Default events are observable for
sovereigns GR and PT, just before 9 and 10 years, respectively. On a laptop with an Intel
Core i5 2.4 GHz processor and 8 GB 1600 Mhz RAM running MATLAB R© R2014a, each
batch of 1000 simulations takes an average time of 4.42 seconds.

4With parameters
(

1
ν
, 1
ν

)
and

(
1
νi
, 1
νi

)
, for the common (G1) and idiosyncratic (G

(i)
1 ) components of the

time change H
(i)
1 .



Chapter 7

Conclusions

In this work we have calibrated the Lévy CGMY model to selected Euro area CDS spreads
using the Fourier-cosine series expansion method of Fang et al. (2010), from which the
default probability term structure could then be inferred at no further computational cost.

The calibration procedure was implemented using the non-linear, constrained optimiza-
tion MATLAB R© function fmincon. It has displayed a significant degree of sensitivity to
initial conditions, as would be foreseeable given the nature of the numerical optimization
problem. Empirical evidence has shown that several local optima were reachable. On occa-
sion, this has forced us to run the calibration algorithm a number of times before attaining
optima whose accuracy matched the one of previous dates, especially under distress circum-
stances. As a consequence, some of the optima found might not suitably approximate the
optimal solutions, given the constrained parameter space. Notwithstanding this caveat, the
univariate calibration results have proven able to accurately reproduce the CDS market data
and adequately capture the different stages in its lifecycle.

The evolution of the calibrated parameters over time – depicted in Figures B.1 to B.5
of the appendix – provides some empirical insights into the nature of the underlying latent
asset value process, of which we emphasize the following:

• The C parameter, correlating with the global level of activity of the process (and so
its kurtosis), tends to move in tandem with the most liquid, 5 year CDS spread;

• Parameters G and M , controlling the skewness of the process increments, tend to move
in opposite directions whenever the CDS term structure is inverted, i.e., when the short
term spreads cross the value of the long term ones and we reach a stage where the CDS
spreads tend to increase with the decrease of the tenor;

• The Y parameter controls the behavior of the Lévy measure near zero, and so the
nature of the very small jumps. It allows to easily infer the process activity and
variation regimes. We could describe the data behavior with a qualitative rule of
thumb: stable periods (characterized by sustained low volatility, moderate historical
spread values and no inversion effect on the CDS spreads term structure) lead to a an
infinite variation, infinite activity regime (1 < Y < 2), where the jumps governing the
process would be mostly endogenous and “smooth”; the onset of a distress period moves
the process to a finite variation, but still infinite activity regime (0 < Y < 1); and the
full setting of distress conditions induces finite activity (Y < 0). This is intuitive, as
under the latter circumstances we can expect the arrival of sudden, exogenous shocks.
These shocks convey the notion that the market has incorporated new pieces of relevant
information about the credit riskiness of the underlying obligors.
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Figures B.1 to B.5 also clearly show that stress conditions displayed by the CDS spread
market data are prone to render the calibration unstable. We could tackle this hurdle by
introducing a stability penalization term in the optimization objective function, such as the
one suggested in (5.1). A sensitivity analysis of the implied CDS spreads on the model
parameters could achieve an adequate calibration of the parameter γ.

We have hinted at the computational efficiency of the COS method in Chapter 5. This
assessment could be further enhanced by comparing the average computation times we have
measured with the ones from other well established (barrier) option pricing techniques. A
benchmark method for this purpose is the Fourier transform inversion method using the FFT,
as introduced by Carr, Chang and Madan (1998) and applied to CDS pricing by Cariboni
and Schoutens (2008).

A secondary objective of this work was the illustration of a possible extension of the uni-
variate COS methodology to a multidimensional calibration setting, introducing dependency
between sovereigns. To this effect, we have resorted to the representation of the Variance
Gamma (VG) model (a particular instance of the CGMY model, with parameter Y = 0)
as a time-changed Brownian motion and modified the Gamma time change by adding an
idiosyncratic component to a common, systematic one. The MATLAB R© code developed for
the univariate calibration could then be reused with minimal changes. Using this representa-
tion, the simulation of dependent paths was straightforward and computationally efficient, as
was the estimation of joint and conditional default probabilities. Arguably, we could extend
the multivariate approach to the CGMY model through its time-changed Brownian motion
representation (Madan and Yor, 2008).

Our empirical work showed that adding dependency solely by correlating the underlying
Brownian motions did not reflect in any significant way either in the joint or the conditional
default probabilities. To break the (near) independent probabilities pattern, the simulta-
neous jumps introduced by taking a common time change component were crucial.1 The
results have also proven that the multidimensional calibration displayed a similar degree of
accuracy to the one of the marginal VG calibrations, with the added benefit of introducing
a dependency structure.

Further work avenues could address the analysis of the joint and conditional probability
structure over time. This would require applying both the joint calibration and simulation
procedures to our full dataset. Results could then be used to measure default contagion.
Suppose we are interested in assessing the impact of a default event for a specific sovereign
i. Then, for each sovereign j 6= i, we could consider the difference between the probability
that j defaults given that i defaults, and the probability that j defaults given that i does
not default. This would be a simple and intuitive proxy for default contagion.

We could also enhance the methodology by considering other Euro area sovereigns. How-
ever, we must recognize that some practical implementation issues would forcibly arise. First,
we expect the increase in the calibration procedure’s complexity to require a significant ex-
tra amount of running time. Secondly, as the computation of joint and conditional default
probabilities relies on a joint simulation of paths, we expect our methodology to become
burdensome when we start increasing the number of sovereigns. Thirdly, several ad hoc
modeling assumptions would have to be made (namely, the choice of sovereigns for which
an explicit idiosyncratic component would be introduced). We must emphasize that the
practical application of this approach to higher dimension problems (such as measuring the
credit risk of a portfolio) is necessarily limited.

1We can confront this with the well studied behavior of intensity based diffusion models, where even
perfectly correlated intensities are not enough to capture significant default correlation levels. Jump-diffusion
models considering simultaneous intensity jumps overcome this obstacle. We can intuitively compare the
intensity to the time change in our structural approach.



Appendix A

Auxiliary proofs

A.1 Proof of Proposition 3.1

Proof. For f : [0, π]→ R, the Fourier-cosine series reads

f(θ) =

+∞∑
k=0

′
Ak cos(kθ),

with the Fourier-cosine coefficients given by

Ak =
2

π

∫ π

0
f(θ) cos(kθ)dθ.

We start by considering a probability density function f with support supp f = [a, b].
We can write its Fourier-cosine series expansion from the previous expressions performing
the linear change of variables θ = x−a

b−aπ:

f(x) =
+∞∑
k=0

′
Ak cos

(
kπ
x− a
b− a

)
(A.1)

Ak =
2

b− a

∫ b

a
f(x) cos

(
kπ
x− a
b− a

)
dθ. (A.2)

Let us approximate the corresponding characteristic function φ by truncating the Fourier
integral (2.1) to [a, b]:

φ1(ω) :=

∫ b

a
eiωxf(x)dx '

∫
R
eiωxf(x)dx = φ(ω). (A.3)

Now,

φ1

(
kπ

b− a

)
=

∫ b

a
eikπ

x
b−a f(x)dx,

and so ∫ b

a
eikπ

x−a
b−a f(x)dx = φ1

(
kπ

b− a

)
e−ikπ

a
b−a . (A.4)

Comparing (A.2) and (A.4), we get the following approximation for the Fourier coefficients:

Ak '
2

b− a
Re

{
φ

(
kπ

b− a

)
e−ikπ

a
b−a

}
. (A.5)
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We now consider the transition density f(y|x) ≡ fXt|Xs(y|x) and rewrite (A.1) and (A.2)
as

f(y|x) =

+∞∑
k=0

′
Ak(x) cos

(
kπ
y − a
b− a

)

Ak(x) =
2

b− a

∫ b

a
f(y|x) cos

(
kπ
y − a
b− a

)
dθ.

The conditional characteristic function can be written as

φ(ω|x) =

∫
R
eiωyf(y|x)dy

= eiωx
∫
R
eiω(y−x)f(y|x)dy

= eiωx
∫
R
eiωzf(z + x|x)dz

= eiωxφ(ω|0),

by independence and stationarity of increments. The approximation for the Fourier coeffi-
cients (A.5) then becomes

Ak(x) ' 2

b− a
Re

{
φ

(
kπ

b− a
;x

)
e−ikπ

a
b−a

}
=

2

b− a
Re

{
φ

(
kπ

b− a
; 0

)
eikπ

x−a
b−a

}
=

2

b− a
Re

{
φXt−s

(
kπ

b− a

)
eikπ

x−a
b−a

}
=

2

b− a
Re

{
ϕlevy

(
kπ

b− a
, t− s

)
eikπ

x−a
b−a

}
,

and we obtain the COS formula to approximate the transition density:

fXt|Xs(y|x) =
2

b− a

N−1∑
k=0

′
Re

{
ϕlevy

(
kπ

b− a
, t− s

)
eikπ

x−a
b−a

}
· cos

(
kπ
y − a
b− a

)
+ εf . (A.6)

Remark (The error term εf ). As previously mentioned, two different causes contribute to
the error term εf .

First, the support of the transition density fXt|Xs(y|x) is truncated to [a, b] in (A.3) to
approximate the process characteristic function. As the condition for the existence of the
Fourier transform implies that the integrand decays rapidly to 0 as x → ±∞, a and b can
be suitably chosen to control this approximation error.

Secondly, we only consider the first N terms of the Fourier-cosine series expansion, but
the convergence of the series is fast enough for the error term due to this cause to be small.

A.2 Proof of Proposition 3.2

Proof. Let us start by once more truncating the integration domain:

p (x, tm) =

∫ b

h
fXtm+1 |Xtm (y|x)p (y, tm+1) dy + εp.
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Plugging the transition density formula (A.6) in the previous expression, we get

p (x, tm) =

N−1∑
k=0

′
Re

{
ϕlevy

(
kπ

b− a
,∆t

)
eikπ

x−a
b−a

}
︸ ︷︷ ︸

φk(x)

·

· 2

b− a

∫ b

h
cos

(
kπ
y − a
b− a

)
p (y, tm+1) dy︸ ︷︷ ︸

Pk(tm+1)

+εCOS

and so we can approximate p (x, t0) by

p(x, t0) =
N−1∑
k=0

′
φk(x)Pk(t1),

where the final error term εCOS includes εp, i.e., both the integral and the Fourier series
truncation effects. The survival probability is then simply the previous expression, evaluated
at x = 0:

Psurv(τ) =

N−1∑
k=0

′
φk(0)Pk(t1).

A.3 Proof of Proposition 3.5

Proof. To price the CDS contract, we take the present values of both the premium payments
(premium leg) and the payment made in case of default (loss leg):

PVpremium leg = cN

∫ T

0
D(0, s)Psurv(s)ds

PVloss leg = (1−R)N

∫ T

0
D(0, s)Psurv(s)µsds.

D(0, t) is the discount factor, Psurv(t) is the survival probability in (0, t) and

µt := − d

dt
lnPsurv(t) = −

d
dtPsurv(t)

Psurv(t)
(A.7)

is the hazard rate function.1 We should note that the term Psurv(t)µt in the integrand is
simply the default density d

dtPdef (t) = − d
dtPsurv(t), where Pdef (t) = 1−Psurv(t) denotes the

default probability up to time t.
The fair spread of the CDS contract is the spread c∗ that makes both legs equal, i.e.

c∗ = (1−R)

∫ T
0 D(0, s)Psurv(s)µsds∫ T
0 D(0, s)Psurv(s)ds

. (A.8)

Using D(0, t) = e−rt and (A.7), we can integrate by parts∫ T

0
e−rsdPsurv(t) =

[
e−rtPsurv(t)

]T
0

+ r

∫ T

0
e−rsPsurv(s)ds

= e−rTPsurv(T )− 1 + r

∫ T

0
e−rsPsurv(s)ds

1Also called force of mortality.
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to rewrite the fair spread formula (A.8) as

c∗ = (1−R)

[
1− e−rTPsurv(T )∫ T
0 e−rsPsurv(s)ds

− r

]
. (A.9)

Approximating the integral in the denominator using the trapezoidal rule∫ T

0
e−rsPsurv(s)ds '

J∑
j=0

wje
−rt̃jPsurv

(
t̃j
)
·∆t,

with weights

wj =

{
1
2 j = 0, J
1 j 6= 0, J,

(A.9) becomes

c∗ = (1−R)

[
1− e−rTPsurv(T )∑J

j=0wje
−rt̃jPsurv

(
t̃j
)
·∆t

− r

]
+ εc,

where εc is the error term from the integral approximation.



Appendix B

Calibration results

B.1 Univariate CGMY calibration

B.1.1 Parameters

This section presents the evolution over time of the calibrated parameters for the CGMY
model. Unless otherwise stated, all results pertain to tenors T ∈ {1, 3, 5, 7, 10} years. For
comparison purposes, the time series of the most liquid CDS tenor (5 years) is also shown.
Some outliers were omitted.
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Figure B.1: Calibrated parameters for the CGMY model: Portugal (PT)

Figure B.1 presents the calibrated parameters for the Portuguese sovereign and distinctly
illustrates the general conclusions previously drawn.

We start by noticing that the most liquid, 5 years CDS spread provides a yardstick for
the global level of activity of the process (measured by the C parameter); furthermore, we
see that sharp increases in its level lead to parameter instability.

Contrasting the series for parameters G and M with the dataset for Portugal (Figure 4.1),
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we can confirm the empirical relationship between the process skewness and the “inversion”
of the CDS spreads term structure. Indeed, within the calibration time frame, the period
where the CDS spreads clearly increase with the tenor (from January to September 2012) is
roughly linked to the period where G > M (positive skewness); likewise, the increase of the
CDS spreads with the tenor correlates with G < M (negative skewness).

The Y parameter mimics the stable behavior of parameter C for moderate levels of the
5 year CDS spread (for example, from October 2012 onward), with values within the infinite
activity, infinite variation range (1 < Y < 2). Notwithstanding, prevailing market conditions
from mid 2011 up to October 2012 led to stressed values of the CDS spread level, and we
can discern a clear switch to the infinite activity, finite variation regime (0 < Y < 1), yet
with occasional values within the finite activity, finite variation range (Y < 0).
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Figure B.2: Calibrated parameters for the CGMY model: Ireland (IE)

In Chapter 4, we noticed that the CDS spreads term structure for the Irish sovereign
behaved quite similarity to the Portuguese one, albeit with a distinct time lag and a less
pronounced peak. This is consistent with a qualitative behavior of parameters C and Y that
does not deviate significantly from the one previously described for the Portuguese sovereign.
Small differences are discernible, however. Figure B.2 shows that parameters G and M are
approximately equal from January to September 2012, suggesting a symmetric distribution
of increments that matches a near flat term structure. From that point on, the CDS spreads
increase with the tenor and we revert to positive skewness (G > M).

Results for the Italian and Spanish data series, presented in Figures B.3 and B.4, vouch
for a general increase in the stability of the C and Y parameters, stemming for comparatively
moderate values of CDS spreads. However, we should note that the calibration results for
Spain clearly display a sudden regime change between May and July of 2012: some of the
older dates lead to Y < 0 (finite activity), while on the remaining 0 < Y < 1 (infinite activity
but finite variation). This coincides with a sharp decrease in the spread values, that nearly
halve between June and August of 2012 (cf. Figure 4.2), and can then be a reflection of a
large exogenous shock to the sovereign “value” process.
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Figure B.3: Calibrated parameters for the CGMY model: Italy (IT)
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Figure B.4: Calibrated parameters for the CGMY model: Spain (SP)

Concerning the calibration results for Greece, it is worthwhile mentioning that, in ac-
cordance with previous insights, the distress period spanning October 2011 to August 2012
seemingly concurs with an extended finite variation regime. As foreseeable, given the nature
of the CDS data, the Greek series leads to the most unstable calibration, even though clear
trends can be observed on the C and Y time series.
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Figure B.5: Calibrated parameters for the CGMY model: Greece (GR)

B.1.2 Root mean square error (RMSE)

This section presents statistics of the root mean square distributions discussed in Chapter
5. Table B.1 displays the data underlying Figure 5.4.

RMSE Sovereign Minimum 1st Quartile Median 3rd Quartile Maximum Mean Standard
Deviation

PT 0.07 1.30 2.74 5.12 64.61 4.72 6.84
IE 0.09 1.10 1.71 3.15 16.60 2.86 3.18
IT 0.07 0.82 1.69 2.44 27.24 2.04 2.50
GR 1.58 10.43 29.10 130.31 13 497.81 413.96 1 434.86
SP 0.07 1.15 1.96 3.39 10.89 2.38 1.64
PT 0.02% 0.35% 0.60% 1.20% 5.11% 0.94% 0.99%
IE 0.04% 0.52% 1.03% 1.52% 3.08% 1.11% 0.73%
IT 0.02% 0.29% 0.63% 0.97% 5.22% 0.71% 0.68%
GR 0.37% 2.06% 3.21% 12.28% 49.92% 8.95% 11.47%
SP 0.02% 0.38% 0.66% 1.24% 3.32% 0.90% 0.74%
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Table B.1: Calibration of the CGMY model: descriptive statistics of the optimal root
mean square errors (RMSE), for the dataset of weekly CDS spreads with maturities
T ∈ {1, 3, 5, 7, 10} years, spanning January 2010 to February 2014.
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B.1.3 Default probability term structure

Figure B.6: Default probability term structure: PT and IE sovereigns

Figure B.7: Default probability term structure: IT and SP sovereigns

Figure B.8: Default probability term structure: GR sovereign
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B.1.4 A comparison with the Brownian motion dynamics

This section provides an empirical illustration of the shortcomings of the geometric Brownian
motion dynamics for Xt, when compared to the Lévy dynamics introduced by the CGMY
model.

Figure B.9 and Table B.2 present the calibration results for an arbitrarily chosen reference
date (2014-02-26). The recovery rate parameter is again set at R = 0.3. On the left, the
calibrated CDS spreads for both models are plotted against the market data; on the right,
the survival functions are compared.
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Figure B.9: Comparison of calibrated exponential CGMY and geometric Brownian motion
dynamics, for reference date 2014-02-26: CDS spreads and survival probabilities.

Model Parameter Calibration RMSE

Exponential CGMY

C 0.0132

1.32
G 0.0095
M 0.1679
Y 0.2035

Geometric Brownian motion
µ 0.0118

28.49
σ 0.3718

Table B.2: Comparison of calibrated exponential CGMY and geometric Brownian motion
dynamics, for reference date 2014-02-26: calibration parameters and optimal root mean
square error (RMSE). The calibrated CGMY model has negative skewness (as G > M),
infinite activity and infinite variation (as 1 < Y < 2). The Brownian motion has continuous
sample paths and infinite variation.

The root mean square error is once more used to gauge the accuracy of each model’s fit
to the data. We can see that the geometric Brownian motion underperforms severely against
the exponential CMGY model, failing to adequately capture the CDS spreads behavior,
especially for the 1 year, short term tenor. Even though the CGMY model has two extra
parameters, we can ascribe this fact to the fundamental difference in the dynamics of both
processes.

As compared with the CGMY model, the Brownian motion has higher survival proba-
bilities both for the short and long terms, leading to lower than expected CDS spreads for
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these periods (and also higher for intermediate tenors).
These empirical observations reflect the local predictability of defaults under the Brow-

nian motion model and are consistent with the remarks made in Chapter 2.
Table B.3 presents key statistics of the distribution of the absolute and relative RMSEs,

for a weekly calibration spanning January to February 2014.

Model RMSE Minimum 1st Quartile Median 3rd Quartile Maximum Mean Standard
Deviation

Absolute 0.20 0.80 1.08 1.70 2.41 1.22 0.72

Relative 0.10% 0.34% 0.44% 0.70% 1.04% 0.51% 0.30%

Absolute 28.49 34.81 36.76 39.81 40.54 36.48 4.01

Relative 13.74% 15.16% 15.54% 15.93% 16.33% 15.41% 0.79%
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Table B.3: Calibration of the exponential CGMY vs. geometric Brownian motion models:
descriptive statistics of the optimal root mean square errors (RMSE), for the dataset of
weekly CDS spreads spanning January 2014 to February 2014.

B.1.5 Transition density

Although the transition density approximation formula (3.1) is crucially employed in the
computation of the survival probability, we did not need to use it directly. However, as an
illustration, we now provide an example of numerically computed transition densities for the
CGMY process in Figure B.10.
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Figure B.10: Numerical estimation of the CGMY transition density for sovereign PT. Three
arbitrary dates in 2013 were chosen.
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B.2 Multivariate Variance Gamma calibration

B.2.1 Parameters

This section presents the multivariate Variance Gamma (VG) calibration results, for the reference date 2014-02-26. As previously discussed in
Sections 6.1.1 and 6.1.2, several calibration scenarios were considered.

Scenarios i = 1, . . . , 5 (marked with ‘M’, from ‘Marginal’) denote univariate VG calibrations, for each sovereign i ∈ {PT, IE, IT,GR,SP}.
The optimal parameters (σi, νi, θi) are obtained by applying the COS method to the VG characteristic function (2.5).

In scenario i = 6, we perform the joint, common Gamma time change calibration for all sovereigns. The optimal parameters (σi, ν, θi)
are also obtained using (2.5), with a single, fixed νi ≡ ν. The following scenario (i = 7) restricts the joint calibration to the set of sovereign
SC = {IE, IT, SP}. The final scenario (i = 8) extends the previous one. Sovereigns i ∈ SI = {PT,GR} are calibrated conditionally on the
common time change component ν. Parameters (σi, θi, αi) are computed from the COS method, using (6.5). In scenarios 6–8, the sovereigns
marked with ‘C’ (from ‘Common’) are calibrated with a joint, common Gamma time change of the form (6.1); the sovereigns marked with ‘I’
(from ‘Idiosyncratic’) are calibrated with the addition of an idiosyncratic Gamma time change component, following (6.3).

Common
Parameter

PT IE IT GR SP Absolute Relative ν σi νi θi αi σi νi θi αi σi νi θi αi σi νi θi αi σi νi θi αi
1 M - - - - 4.05 1.95% - 0.35 1.41 -0.03 -
2 - M - - - 6.65 7.85% - 0.31 2.48 0.03 -
3 - - M - - 6.03 4.35% - 0.25 2.67 -0.04 -
4 - - - M - 6.38 1.28% - 1.12 5.77 0.14 -
5 - - - - M 7.10 5.72% - 0.36 2.82 0.02 -
6 C C C C C 20.46 9.72% 5.83 0.44 - -0.01 1.00 0.32 - 0.02 1.00 0.31 - -0.02 1.00 1.12 - 0.14 1.00 0.40 - 0.03 1.00
7 - C C - C 5.08 4.39% 2.57 0.27 - 0.00 1.00 0.27 - -0.03 1.00 0.36 - 0.02 1.00
8 I C C I C 10.28 4.89% 2.57 0.35 0.81 -0.02 0.68 0.27 - 0.00 1.00 0.27 - -0.03 1.00 0.83 3.99 0.14 0.68 0.36 - 0.02 1.00

Calibration Scenario Calibration Results

i
Sovereign Idiosyncratic 

Parameters (PT)
Idiosyncratic 

Parameters (IE)
Idiosyncratic 

Parameters (IT)
Idiosyncratic 

Parameters (GR)
Idiosyncratic 

Parameters (SP)
RMSE

- - - -
- - - -
- - - -
- - - -
- - - -

- -

Table B.4: Calibration scenarios and results for reference date 2014-02-26.

Comparing the marginal calibrations (scenarios 1–5) with scenario 6, we see that the common time change parameter ν is significantly higher
that the marginal parameters νi, for all sovereigns except GR. The calibration of scenario 8 is achieved with the same sensitivity of the time

change H
(i)
t to the common Gamma component Gt for both sovereigns (PT and GR), namely αi ' 0.68.
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B.2.2 Joint and conditional default probabilities

This section presents the estimated joint and conditional default probabilities under the
multivariate VG model, using the observed CDS spreads at 2014-02-26. For comparison
purposes, marginal default probabilities are also provided.

Scale 3% 6% 9% 12% 15% 18% 21% 24% 27% 30% 33% 36% 39% 42%

PT IE IT GR SP

Time
Period

Marginal Default
Probability

Joint Default Probability

0.06% 0.13% 0.04%
IE 0.27% 0.02% NA 0.02% 0.05% 0.02%
PT 0.69% NA 0.02%

0.08% 0.04%
GR 5.07% 0.13% 0.05% 0.08% NA 0.12%
IT 0.50% 0.06% 0.02% NA

0.04% 0.12% NA

5 
Ye

ar
s

PT 11.25% NA 0.73% 1.36% 3.09% 1.17%

24.69% 3.09% 1.12% 1.99% NA

1 
Ye

ar

SP 0.63% 0.04% 0.02%

1.86%
SP 6.32% 1.17% 0.52% 0.90% 1.86% NA

IE 3.74% 0.73% NA 0.63% 1.12% 0.52%
IT 6.76% 1.36% 0.63% NA 1.99% 0.90%
GR

10
 Y

ea
rs

PT 27.46% NA 3.62%

SP 14.84% 4.66% 2.17%

6.33% 9.90% 4.66%
IE 11.13% 3.62% NA 3.02% 4.09% 2.17%

3.76% 5.52% NA

7.22% 3.76%
GR 35.31% 9.90% 4.09% 7.22% NA 5.52%
IT 19.58% 6.33% 3.02% NA

Table B.5: Joint default probabilities, estimated from a sample of 100 000 jointly simulated
paths. Entry (i, j) for time period T represents the estimated joint default probability of
sovereigns i and j, i, j ∈ {PT, IE, IT,GR,SP}, up to time T .

Scale 3% 6% 9% 12% 15% 18% 21% 24% 27% 30% 33% 36% 39% 42%

Conditional Default ProbabilityMarginal Default
Probability

PT
IE
IT
GR
SP

11.13%
19.58%
35.31%
14.84%

27.46%

0.69%

36.04%

6.24%
NA
6.52%

12.10%
27.44%

GR SP

3.34%
8.42%

18.87%

Time
Period

1 
Ye

ar
5 

Ye
ar

s

PT
IE
IT
GR
SP
PT
IE
IT
GR
SP

0.27%
0.50%
5.07%
0.63%

11.25%
3.74%
6.76%

24.69%
6.32%

PT
NA

NA

IE IT
2.57%
0.97%
1.62%

NA

8.68%

6.42%
18.49%

10.41%
NA
13.17%
23.05%

11.55%
3.39%

NA
16.33%

6.80%
3.48%
6.33%

18.51%
7.97%

20.12%
9.32%

NA
29.40%

32.50%
NA
27.17%
36.73%

19.60%
NA
16.83%
29.81%
13.84%

20.44%
NA
15.63%

13.31%
32.33%
15.44%
NA
36.86%

19.47%

NA
18.54%
8.20%

14.25%
29.46%

NA

2.31%
12.50%
4.52%
8.05%

NA
NA
31.42%
14.60%
25.35%

7.54%
28.03%
11.58%

8.30%

19.22%16.98%

10
 Y

ea
rs

37.18%

Table B.6: Conditional default probabilities, estimated from a sample of 100 000 jointly
simulated paths. Entry (i, j) for time period T represents the estimated conditional default
probability of sovereign i given the default of sovereign j (both up to time T ). The results
clearly show dependency between defaults. We can also see that sovereigns PT and IT are
more sensitive to the default of other sovereigns, and notice an increase in this sensitivity
when T decreases.



Appendix C

Simulating the Variance Gamma
process

This section describes the procedure we have followed to simulate the Variance Gamma (VG)
process as a Gamma time-changed Brownian motion (TCBM). The univariate simulation is
built from the TCBM formula (2.4). For the multivariate VG model, we use (6.4).

We start by defining a time span [0, T ] for the simulation of paths, and a time increment
∆t := T

N , where N is the number of discretization steps.

C.1 Univariate simulation

Set X0 = 0. For each k = 1, . . . , N , perform the following steps:

Step 1 Take independent draws ∆Gk and Zk from the random variables G ∼ Γ
(
∆t · 1ν ,

1
ν

)
and Z ∼ N (0, 1), respectively (independently of the previous step k − 1).

Step 2 For tk = k ·∆t, compute

Xtk = Xtk−1
+ θ∆Gk + σ

√
∆GkZk.

C.2 Multivariate simulation

Set X
(i)
0 = 0 for all sovereigns i. For each k = 1, . . . , N and each sovereign i, perform the

following steps:

Step 1 Take independent draws ∆Gk and Zk from the random variables G ∼ Γ
(
∆t · 1ν ,

1
ν

)
and Z ∼ N (0, 1), respectively (independently of the previous step k − 1). For each
sovereign i such that αi 6= 1 (i.e., such that it has an idiosyncratic time change compo-

nent), take an additional independent random draw ∆G
(i)
k from the idiosyncratic time

change component G(i) ∼ Γ
(

∆t · 1
νi
, 1
νi

)
;

Step 2 For tk = k ·∆t, compute the time change increment

∆H
(i)
k =

{
∆Gk , αi = 1

αi∆Gk + (1− αi)∆G(i)
k , α1 6= 1

and the marginal process value:

X
(i)
tk

= X
(i)
tk−1

+ θi∆H
(i)
k + σi

√
∆H

(i)
k Zk.
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[10] Cariboni J. and Schoutens W. (2009). Lévy processes in credit risk. Wiley Finance.

[11] Carr P., Chang E. C. and Madan D.B. (1998). The variance gamma process and option
pricing. Eur. Finan. Rev. 2, 79–105.

[12] Carr P., Geman H., Madan D. B., Yor M. (2002). The fine structure of asset returns:
an empirical investigation. J. Business 75, 305–33.

[13] Clark P. (1973). A Subordinated Stochastic Process Model with Fixed Variance for
Speculative Prices. Econometrica, 41, 135-156.

[14] Clark E. and Kassimatis K (2004). Country financial risk and stock market performance:
the case of Latin America. Journal of Economics and Business 56, 21-41.

[15] Cont R. and Tankov P. (2004). Financial Modeling with Jump Processes. Chapman &
Hall/CRC, Boca Raton, FL.



BIBLIOGRAPHY 52

[16] Currie E. and Velandia A. (2002). Risk management of contingent liabilities within a
sovereign asset-liability framework. World Bank Working Paper.

[17] Eaton J. and Gersovitz M. (1981). Debt with Potential Repudiation: Theoretical and
Empirical Analysis. The Review of Economic Studies 48, 289-309.

[18] Fang F., Jönsson H., Oosterlee C. W. and Schoutens W. (2010). Fast Valuation and
Calibration of Credit Default Swaps Under Lévy Dynamics. Journal of Computational
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