
Invariant Sylow subgroups and solvability of
finite groups

Antonio Beltrán

Abstract. Let A and G be finite groups of relatively prime orders and
assume that A acts on G via automorphisms. We study how certain
conditions on G imply its solvability when we assume the existence of a
unique A-invariant Sylow p-subgroup for p equal to 2 or 3.
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1. Introduction

The number of Sylow p-subgroups for a prime p is restricted arithmetically by
the properties of a finite group G and reciprocally. An immediate consequence
of the Feit-Thompson Theorem, on the solvability of odd order groups, is
that every finite group G that has a normal Sylow 2-subgroup, i.e., with
ν2(G) = 1, is necessarily solvable. Also, by using the well-known property
(see [6] for a proof) that the only non-abelian simple finite groups whose
order is not divisible by 3 are the Suzuki simple groups, Sz(q), with q = 2r

and r > 1 odd, one can easily prove (by induction on the order) that if a
group G satisfies ν3(G) = 1 and has no composition factor isomorphic to the
simple group Sz(q), then G is solvable too.

We suppose that the group G is acted on by an automorphism group A
and investigate what information on the number of A-invariant Sylow sub-
groups of G can imply the solvability of G. This is especially relevant within
the coprime action scenario, that is, when (|A|, |G|) = 1, which becomes quite
a usual situation in Finite Group Theory. In this case, it turns out that G al-
ways has A-invariant Sylow p-subgroups for every prime p (dividing the order
of G) and there exists exactly one A-invariant Sylow p-subgroup P if and only
if P is normalized by the fixed point subgroup, C = CG(A). Precisely, under

This research is supported by Universitat Jaume I, grant P11B2012-05, and by the Valen-
cian Government, Proyecto PROMETEOII/2015/011.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/61473993?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 A. Beltrán

the assumption of the existence of exactly one A-invariant Sylow p-subgroup
in G for certain primes p, we obtain certain conditions on the structure of G
that characterize the solvability.

Theorem. Suppose that a finite group A acts coprimely on a finite group G.

a) Assume that G has exactly one A-invariant Sylow 2-subgroup. Then G
is solvable if and only if G has no composition factor isomorphic to
PSL(2, 3r), with r ≥ 5.

b) Assume that G has exactly one A-invariant Sylow 3-subgroup. Then G
is solvable if and only if G has no composition factor isomorphic to
either PSL(2, 2r), with r ≥ 5, or Sz(q) with q = 2r and r > 1 an odd
integer.

If the action is not coprime, then the result is simply not true. It is easy
to find examples of simple groups which are acted on by other groups in such
a way that they only have one A-invariant Sylow p-subgroup for p = 2 or 3.
For instance, let G = Alt(5) and let A = NG(P ), with P a Sylow p-subgroup
of G, where p = 2 or 3. If we consider the action of A on G by conjugation,
it turns out that G has exactly one A-invariant Sylow p-subgroup, for p = 2
or 3, respectively.

The proof of our main result employs the Classification of the Finite
Simple Groups (CFSG), and we use [2] to compute the normalizers of the
Sylow subgroups of certain simple groups.

2. Preliminaries

We start with some background on coprime action as well as some useful
results. Nevertheless, we refer for the non-familiarized reader to Chapter 8
of [4] for instance, which compiles the main properties of coprime action in
detail. Under the coprime action hypothesis, a group A acting on a group
G, we define νAp (G) to be the number of A-invariant Sylow p-subgroups of

G for each prime p. We recall that νAp (G) = 1 if and only if there exists an
A-invariant Sylow subgroup of G which is normalized by CG(A). In order to
establish certain divisibility properties of these A-invariant Sylow numbers
we need the following.

Lemma 2.1. Suppose that A is a finite group acting coprimely on a finite
group G, and let H be an A-invariant subgroup of G. Let C = CG(A). Then
|C : C ∩H| divides |G : H|.

Proof. This is Lemma 2.1 of [5]. �

Lemma 2.2. Suppose that A is a finite group acting coprimely on a finite
group G and let C = CG(A). Then, for every prime p,

a) νAp (G) = |C : NC(P )| for every A-invariant Sylow p-subgroup P of G.

b) νp(C) divides νAp (G) and νAp (G) divides νp(G).
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c) if N is an A-invariant normal subgroup of G, then νAp (N) and νAp (G/N)

divide νAp (G).

Proof. a) Let P be an A-invariant Sylow p-subgroup of G. Then a) follows
from the fact that the A-invariant Sylow subgroups of G are all C-conjugate,
so νAp (G) is exactly the number of distinct C-conjugates of P , and this is
exactly equal to |C : NC(P )|.

b) If P is an A-invariant Sylow subgroup of G, then by coprime action
properties P ∩C is a Sylow p-subgroup of C and obviously, NC(P ) ⊆ NC(P ∩
C). Hence νp(C) = |C : NC(P ∩ C)| divides νAp (G) = |C : NC(P )|. On the
other hand, by applying Lemma 2.1 to the A-invariant subgroup NG(P ), we
get that νAp (G) = |C : NC(P )| divides νp(G) = |G : NG(P )|.

c) If P is an A-invariant Sylow p-subgroup of G, then PN/N is an
A-invariant Sylow subgroup of G/N and by a) and 8.2.2 of [4] we have

νAp (G/N) = |CG/N (A) : NCG/N (A)(PN/N)| =

= |CN/N : NCN/N (PN/N)| = |CN/N : NC(P )N/N |,
which certainly divides νAp (G) = |C : NC(P )|.

On the other hand, observe that P ∩ N is an A-invariant Sylow p-
subgroup of N and then

νAp (N) = |C ∩N : NC∩N (P ∩N)| = |(C ∩N)NC(P ∩N) : NC(P ∩N)|.
Now, by the Frattini argument, we write G = NNG(P ), so by 8.2.11 of [4],
we have C = (C ∩N)NC(P ). As NC(P ) ⊆ NC(P ∩N), in particular we get
C = (C ∩ N)NC(P ∩ N). Therefore, νAp (N) divides |C : NC(P )| = νAp (G),
as claimed. �

The following result establishes some properties of the action of a group
on a direct product and of the behavior of the invariant Sylow subgroups.
Note that the coprime hypothesis is not needed in the first two properties
but it is required in the last one.

Lemma 2.3. Suppose that a finite group A acts on a finite group G which
allows a direct decomposition G = H1 × . . .×Hn, that is A-invariant under
A, i.e., Ha

i ∈ {H1, . . . ,Hn} for all a ∈ A and all i ∈ {1, . . . , n}. Assume
further that A acts transitively on {H1, . . . ,Hn}. Let H ∈ {H1, . . . ,Hn}, let
B = NA(H), and let S be a transversal for the cosets of B in A. Then

a) CG(A) = {
∏

s∈S e
s | e ∈ CH(B)}.

b) The projection π of CG(A) on H is a monomorphism. In particular,
CG(A) ∼= CH(B).

c) Suppose that (|A|, |G|) = 1. For every prime p, we have νAp (G) = νBp (H).

Proof. a) This is exactly 8.1.6.a of [4].
b) Let c1, c2 ∈ CG(A). By a) we can write c1 =

∏
s∈S e

s
1 and c2 =∏

s∈S e
s
2 with e1, e2 ∈ CH(B), and notice that such factorizations are unique.

Then

π(c1c2) = π(
∏
s∈S

es1
∏
s∈S

es2) = π(
∏
s∈S

(e1e2)s) = e1e2 = π(c1)π(c2),
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so π is an homomorphism from CG(A) into CH(B). Moreover, if e ∈ CH(B),
then c =

∏
s∈S e

s is a preimage of e. If π(c) = 1, then clearly c = 1, so π is
bijective.

c) Let p be a prime, and let P be an A-invariant Sylow p-subgroup of
G. For every s ∈ S, it is clear that P ∩Hs is a Sylow p-subgroup of Hs and
that P =

∏
s∈S(P ∩Hs). Then

NG(P ) =
∏
s∈S

NHs(P ∩Hs).

Now, if c ∈ NCG(A)(P ), then by a) we can write c =
∏

s∈S e
s, with e ∈

CH(B) ∩ NG(P ∩ H). Thus, when the projection π of b) is restricted to
NCG(A)(P ), we get a monomorphism into H. In fact, as in b), we deduce
that

NG(P ) ∩CG(A) ∼= NH(P ∩H) ∩CH(B).

Therefore, by applying b) and Lemma 2.2.a, we obtain

νAp (G) = |CG(A) : NCG(A)(P )| = |CH(B) : NCH(B)(P ∩H)| = νBp (H),

so the lemma is proved. �

3. Proof

Proof of the Theorem. Suppose that G has exactly one A-invariant Sylow 2-
subgroup and that G is solvable. It is certainly true that G cannot possess any
composition factor isomorphic to the non-abelian simple group PSL(2, 3r),
with r ≥ 5. In fact, further information can be deduced. Since by hypoth-
esis the action of A is coprime, G cannot have as a composition factor any
such simple group for those integers r such that PSL(2, 3r) admits nontrivial
coprime action. The same happens for proving the direct sense of part b).
One only has to consider those r for which PSL(2, 2r) and Sz(2r) allow a
nontrivial and coprime automorphism group.

Conversely, in order to prove the “if” part in a) and b), we argue by
induction on |GA|, where GA denotes the semidirect product of G by A. We
assume that p is 2 or 3. Suppose that N is a proper A-invariant normal sub-
group of G. As νAp (G) = 1, by Lemma 2.2 b) we have νAp (N) = νAp (G/N) = 1.
Moreover, N and G/N have no composition factors isomorphic to the corre-
sponding simple groups of the statements of a) and b), so by the inductive
hypothesis, N and G/N are solvable. Thus, G is solvable too and the proof
is finished.

Consequently, we can assume that G has no proper A-invariant normal
subgroup. In this case, we know that G is either elementary abelian, and the
proof is finished, or G = H1×· · ·×Ht, where the subgroups Hi are isomorphic
non-abelian simple groups. We will show that this leads to a contradiction.
Notice that A acts transitively on the set {H1, . . . ,Ht}. Let H = H1, and let
B = NH(A). We are in the situation of Lemma 2.3, and then there exists an
isomorphism π : CG(A) −→ CH(B), given by the projection of CG(A) into
H. If t > 1, then by Lemma 2.3.c, we get νBp (H) = 1, and of course, H cannot
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have any composition factor isomorphic to one of the simple groups that
appear in the statement. Thus, by induction, H is solvable, a contradiction.

As a result, in the following we can assume that t = 1, that is, G is
non-abelian simple. Also, we can assume that A acts faithfully on G. If not,
we consider Ā := A/CA(G), where CA(G) is the kernel of the action of A on
G. As the set of A-invariant Sylow p-subgroups of G coincides with the set
of Ā-invariant Sylow p-subgroups of G, the cardinality of both sets coincide,
so by induction we get that G is solvable, a contradiction.

The alternating groups and the 26 sporadic simple groups do not admit
nontrivial coprime action, as one can check by looking up the correspond-
ing outer automorphism groups in [2]. Then we can assume, by using the
CFSG, that G is a simple group of Lie type, defined over some finite field
F . Furthermore, if we replace A by some conjugate in Aut(G), the group
A can be assumed to be induced by a group of automorphisms of F . Now,
if |A| = r, it follows that |F | = qr for some prime power q. Following the
notation of [1], we can write G = G(qr), the group of Lie type “G”, and
then C := CG(A) = G(q), where G(q) is the Lie group of the same type as
G, but is defined over the field of q elements. We prove that when G is a
simple group of Lie type, except the cases described in the statement, then
it has more than one A-invariant Sylow subgroup for p = 2 or 3. In fact, all
the above groups of Lie type are simple in almost all the cases, except in
exactly eight cases, and consequently, they satisfy ν2(C) > 1 and ν3(C) > 1,
if we also exclude the Suzuki group 2B2(2r). This group must be ruled out
because it is the only non-abelian simple group satisfying ν3(G) = 1, as 3
does not divide its order (see [6]). Then, by Lemma 2.2.b, for all these groups
we would have νAp (G) > 1, for p = 2 and 3, which is a contradiction.

We analyze the cases in which C is one of the eight non-simple groups
mentioned above, which are the following: A1(2) ∼= Sym(3); A1(3) ∼= Alt(4);
2A2(22) ∼= PSU(3, 22), which has of order 72; 2B2(2) ∼= Sz(2), the Frobenius
group of order 20; B2(2) ∼= Sym(6); G2(2) which has order 12096 and the
derived subgroup is isomorphic to PSU3(32); 2G2(3) of order 1512 and its
derived subgroup is isomorphic to PSL2(23); 2F4(2) whose derived subgroup
is simple of order 211.32.52.13. All of them satisfy that ν2(C) > 1 except
Alt(4). Therefore, we obtain νA2 (G) > 1, a contradiction, except at most in the
case G = A1(3r) ∼= PSL(2, 3r). Moreover, in this latter case, when r < 5 then
G does not admit nontrivial coprime action, so νA2 (G) = ν2(G) > 1. Hence, we
conclude that G = A1(3r), with r ≥ 5. As we are assuming in the hypotheses
that this possibility cannot occur, we obtain the final contradiction for p = 2
and a) is proved. Analogously, all of the above eight groups satisfy that
ν3(C) > 1 except Sym(3) and Sz(2). Therefore, νA3 (G) > 1, which contradicts
our assumptions, except at most when G = A1(2r) for some integer r > 1 or
G = Sz(qr) with r > 1 odd. Moreover, if G = A1(2r) and r < 5, then G does
not admit nontrivial coprime action, so νA3 (G) = ν3(G) > 1, a contradiction.
Thus, we can assume r ≥ 5 in the case G = A1(2r). Since these possibilities
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are excluded in the hypotheses, we achieve the final contradiction and part
b) is proved.

Remark 3.1. The condition on the composition factors in the Theorem cannot
be much improved. In fact, let GF(3r) be the field with 3r elements, which
is the underlying field of the group G = PSL(2, 3r). Let us consider A to be
the Galois group of the extension GF(3r)/GF(3), which is a cyclic group of
order r and induces a group action on G. Then C := CG(A) ∼= PSL(2, 3).
Since |G| = 3r(3r − 1)(3r + 1)/2, if we take r such that (r, |G|) = 1 (so
the action is coprime), it easily follows that |G|2 = 4. Therefore, a Sylow 2-
subgroup P of C is also an A-invariant Sylow 2-subgroup of G. Then νA2 (G) =
|C : NC(P )| = ν2(C) = 1, that is, G has exactly one A-invariant Sylow 2-
subgroup.

Analogously, let G = PSL(2, 2r) and let A be the Galois group of the
field extension GF(2r)/GF(2), which induces an action on G. We have |G| =
2r(2r−1)(2r+1), and if we take r such that (r, |G|) = 1, then in particular we
have (r, 6) = 1 and this implies that |G|3 = 3. Hence, the Sylow 3-subgroup
P of C ∼= PSL(2, 2) is an A-invariant Sylow 3-subgroup of G. By applying
Lemma 2.2.a, we have νA3 (G) = |C : NC(P )| = ν3(C) = 1, that is, G has
exactly one A-invariant Sylow 3-subgroup.
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