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Abstract

This paper is aimed to address the study of techniques focused on the use of a
family of anomalies based on a family of geometric transformations that includes
the true anomaly f , the eccentric anomaly g and the secondary anomaly f ′

defined as the polar angle with respect to the secondary focus of the ellipse.
This family is constructed using a natural generalization of the eccentric

anomaly. The use of this family allows closed equations for the classical quan-
tities of the two body problem that extends the classic, which are referred to
eccentric, true and secondary anomalies.

In this paper we obtain the exact analytical development of the basic quan-
tities of the two body problem in order to be used in the analytical theories of
the planetary motion. In addition, this paper includes the study of the mini-
mization of the errors in the numerical integration by an appropriate choice of
parameters in our selected family of anomalies for each value of the eccentricity

Keywords: Celestial mechanics. Orbital motion. Ordinary differential
equations. Computational algebra.
2000 MSC: 70F05, 70F10, 70F15,70M20.

1. Introduction

The study of the motion in the solar system is one of strengths of Celestial
Mechanics. This issue involves the development of planetary theories and the
motion of artificial satellites around the earth. In this paper, we deal with both
topics.
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To construct a planetary theory two major ways can be considered: the use
of a numerical integrator [8], [6] or the use of analytical methods to integrate
the problem [2], [22], [23], [26].

The analytical methods are based on the solution of the two body problem
(Sun-planet) through a set of orbital elements, for example the third set of
Brower and Clemence [1] (a, e, i,Ω, ω,M), where M = M0 + n(t− t0), n is the
mean motion, t0 is the initial epoch whose value are constant in the unperturbed
two body problem and Mo the mean anomaly in the initial epoch t0. This
solution can be considered as a first approximation of the perturbed problem
and we can use the Lagrange method of variation of constants to replace the
first elements by the osculating ones given by the Lagrange planetary equations
[13]
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σ is a new variable defined by the equation:

M = σ +

∫ t

t0

n dt (2)

and it coincides with M0 in the case of the unperturbed motion. R is the

disturbing potential R =
N
∑

k=1

Ri due to the disturbing bodies i = 1, ..., N . It is

defined as [13]

R =

N
∑

k=1

Gmk

[(

1

∆k

)

− x · xk + y · yk + z · zk
r3k

]

(3)

where ~r = (x, y, z) and ~rk = (xk, yk, zk) are the heliocentric vector position of
the secondary body and the kth disturbing body respectively, ∆k is the distance
between the secondary body and the disturbing body, and mk the mass of the
disturbing body.

In order to integrate the Lagrange planetary equations through analytical
methods it is necessary to develop the second member of the Lagrange planetary
equations as truncated Fourier series, which is a classical problem in celestial
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mechanics [26], [9], [1], [3], [12]. The analytical methods provide very long
series solution and it is suitable to obtain more compact developments using as
temporal variable an appropriate anomaly.

To obtain the expansions according to an anomaly Ψi it is necessary to
obtain for each planet i the developments of the coordinates and the inverse
of the radius in Fourier series of Ψi. Then, the integration of the Lagrange
planetary equations with respect to the Ψi anomalies requires to compute the
corresponding Kepler equation Mi = Mi(Ψi) [15], [14], [16].

When using numerical integration methods it is more appropriate to consider
the equation of motion in the form of the second Newton law. The efficiency
of the numerical integrators can be improved through an appropriate change
in the temporal variable. In this paper we will study the performance of the
previous family of anomalies. To this aim, we select the problem of the motion
of an artificial satellite around the Earth. The relative motion of the secondary
with respect to the Earth is defined by the second order differential equations

d2~r

dt2
= −GM

~r

r3
− ~∇U − ~F (4)

where ~r is the radius vector of the satellite, U the potential from which the
perturbative conservative forces are derived and ~F includes the non-conservative
forces. To integrate the system (4) it is necessary to known the initial values of
the radius vector ~r0 and velocity ~v0.

In order to uniformize the truncation errors when a numerical integrator is
used there are three main techniques:

1. The use of a very small stepsize.

2. The use of an adaptative stepsize method.

3. The use of a change in the temporal variable to arrange an appropriate
distribution of the points on the orbit so that the points are mostly con-
centrated in the regions where the speed and curvature are maxima.

This paper follows the third technique. Several authors have already studied
this question. See for instance, Sundman [24], who introduced a new tempo-
ral variable τ related to the time t through dt = Crdτ , Nacozy [21] proposed
a new temporal variable dt = Cr3/3dτ , Brumberg [4] proposed the use of the
regularized length of arc and Brumberg and Fukushima [5] introduced the ellip-
tic anomaly as temporal variable. Janin [10], [11] and Velez [25] extended this
technique defining a new one-parameter family of transformations α called gen-
eralized Sundman transformations dt = Q(r, α)dτα, where Q(r, α) = Cαr

α. The
function Q(r) is normally known as partition function. A more complicated fam-
ily of transformations was introduced by Ferrandiz [7]Q(r) = r2/3(a0+a1r)

−1/2.
López [18] introduces an new family of anomalies, called natural anomalies as
Ψα = (1−α)f ′+αf , α ∈ [0, 1] where f, f ′ are the true and secondary anomalies
it is the angle between the periapsis and the secondary position taking as origin
the primary focus F or the secondary focus of the ellipse f ′ respectively. Ana-
lytical and numerical properties of generalized Sundman anomalies and natural
have been studied by López et al. [17], [19], [20].
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The generalized Sundmand family and the natural anomalies involve several
inconveniences: the main quantities of the two-body problem, such as the orbital
coordinates (ξ, η), the radius vector and the generalized Kepler equation cannot
be written by means of a closed formula except for a small set of values of the
parameter α. In general, the coefficients of the necessary developments for the
construction of analytical theories of the planetary motion cannot be written
using closed formulas, either. Finally, these anomalies have not an easy geomet-
rical interpretation. In this paper we define a new family of anomalies through a
geometric family of transformations in order to solve the latter inconveniences.
We propose for this family the name of generalized eccentric anomaly.

The rest of this article is organized as follows: In this section the general
background has been introduced. In section 2 the properties of generalized
eccentric family of anomalies will be described. In addition, we will obtain the
differential equations of motion using an arbitrary anomaly from this family. In
section 3 the analytical properties of the generalized eccentric anomaly will be
studied. This study contains the expansions of eccentric anomaly g, sin g, cos g,
Kepler equation r

a and a
r according to the generalized eccentric anomaly. So, an

appropriate use of them suffices to obtain the development of the mean anomaly
with respect to the generalized eccentric anomaly. It is the Kepler equation. In
section 4 a set of numerical examples about the two body problem will be
considered. In section 5 the main conclusions and remarks will be exposed.

2. Generalized eccentric anomalies

In this section a new family of anomalies depending on one parameter is
defined. We represent in figure 1 the elliptic orbit corresponding to the motion
of the two body problem. This ellipse is defined by its major semiaxis a = OQ

and its eccentricity e = c
a , 0 ≤ e < 1 where c is the focal semidistance c = FF ′

2
,

and the minor semiaxis b is defined as b = a
√
1− e2. Let O be the center of the

ellipse, F the primary focus, F ′ the secondary focus (also called equality point).
Let us define Fα as the point of coordinates (α e a, 0), α ∈ [−1, 1], Q the

periapsis and P the position of the secondary in the orbit. The point Fα is
the primary focus of an ellipse with the same center and major semiaxe as the
orbit and the minor semiaxe α e a where e is the eccentricity of the orbit and
α ∈ [−1, 1]. Notice that in this point Fα = F ′ if α = −1, Fα = O if α = 0 and
Fα = F if α = 1. Let us define the orbital coordinates (ξ, η) referred to the
primary focus, and let r and r′ be the distance between the secondary P and
the primary focus F and the secondary focus F ′ respectively. The angle g is
called eccentric anomaly, the angle f is called true anomaly and for the angle
f ′ we propose the name of secondary true anomaly.

Let P the position of the secondary on the orbit, S the orthogonal projection
of P on the major semiaxis and N , R the corresponding points on the ellipses
of minor semiaxe OB = a

√
1− α2e2 and the major circle of the orbit. In this
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Figure 1: Elliptic motion
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family of ellipses we have the relationship:

SP

OA
=

SN

OB
=

SR

OC
(5)

The vector radius of point
−−−→
FαN is defined by its module rα and the value of

the anomaly Ψα. The radius rα is related to Ψα through

rα =
a(1− α2e2)

1 + αe cosΨα
. (6)

On the other hand OF = a e, OFα = αa e and taking into account (5), the
coordinates (ξ, η) of the secondary are related to Ψα as

ξ = rα cosΨα − ae(1− α), η =

√
1− e2√

1− α2e2
rα sinΨα (7)

and so

ξ = a

[

(1 − α2e2) cosΨα

1 + αe cosΨα
− (1− α)e

]

, η = a

√

1− e2

1− α2e2
(1− α2e2) sinΨα

1 + αe cosΨα
.

(8)
To link g with Ψα we consider the classical relations

ξ = a(cos g − e), η = a
√

1− e2 sin g, (9)

and operating we have

cosΨα =
cos g − α e

1− α e cos g
, (10)

and

sinΨα =

√
1− α2e2 sin g

1− α e cos g
, (11)

and from (10), (11) it is easy to get

cos g =
cosΨα + α e

1 + α e cosΨα
, (12)

and

sin g =

√
1− α2e2 sinΨα

1 + α e cosΨα
. (13)

To evaluate the orbital velocity according to the anomaly Ψα we consider
the well-known equations

ξ̇ = − na sin g

1− e cos g
, η̇ =

na
√
1− e2 cos g

1− e cos g
, (14)

and taking into account (12) and (13) we obtain

ξ̇ = − na
√
1− α2e2 sinΨα

1− αe2 + (1− α)e cosΨα
, η̇ =

na
√
1− e2(cosΨα + αe)

1− αe2 + (1 − α)e cosΨα
. (15)
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Finally, replacing (12) in the classical equation r = a(1 − e cos g), we have for
the vector radius

r = a
(1− α e2)− e(1− α) cosΨα

1 + α e cosΨα
, (16)

and taking into account (6) we obtain

rα = a(1− α) + α r. (17)

The anomaly Ψα is related with eccentric anomaly by means of:

tan
Ψα

2
=

√

1 + α e

1− α e
tan

g

2
. (18)

To connect dΨα and dM we proceed derivating (10)

− sinΨαdΨα = − (1− α2e2) sin g

(1− α e cos g)2
dg, (19)

and, taking into account (11) and operating we obtain

dΨα =

√
1− α2e2dg

1− α e cos g
, (20)

replacing in this equation (16) we get

dΨα =
√

1− α2e2
a

rα
dg, (21)

and taking into account that dg = a/rdM we obtain

dM =
rrα

a2
√
1− α2e2

dΨα. (22)

Which can be written as dM = Q(r)dΨα where Q(r) is the partition function

Q(r) =
r rα

a2
√
1− α2e2

=
r(1 − α)a+ α r2

a2
√
1− α2e2

, (23)

notice that the partition function Q(r) is symmetric in its first form.

3. Analytical developments

In order to integrate the Lagrange planetary equations using analytical or
semi-analytical methods it is necessary to develop their second member as
Fourier series according to the selected anomalies for each couple of planets.
To this aim, it is necessary to obtain the expansions with respect to the selected
anomaly of the two-body problem quantities g, sin g, cos g, r/a, a/r, and M . In
the rest of this section we write Ψ instead of Ψα to ease the notation.
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To obtain the development of g according with Ψ we consider in the first
place the equation (18). From this equation we have

tan
g

2
=

√

1− α e

1 + α e
tan

Ψ

2
. (24)

let us define q by
√

1− α e

1 + α e
=

1 + q

1− q
, (25)

we have [26]

g = Ψ +

∞
∑

k=1

2qk

k
sin kΨ, (26)

where q = −αe/(1 +
√
1− α2e2), and so:

g = Ψ+

∞
∑

k=1

(−1)k

k

2αkek

(1 +
√
1− α2e2)k

sin kΨ, (27)

To obtain the expansions of sin g, we employ equation (13). Let us define a new
complex variable z = exp(

√
−1Ψ), the values of sin g and cos g are related to

the new variable by

sin g =

√
1− α2e2√

−1

z2 − 1

α e z2 + 2z + α e
=

√
1− α2e2√

−1

z2 − 1

α e(z − z1)(z − z2)
, (28)

where z1 = −α e/(1 +
√
1− α2e2), z2 = −(1 +

√
1− α2e2)/(α e) are the roots

of the equation α e z2 + 2z + α e = 0. For |α e| < 1 , ∃r1, r2 > 0 such that 0 <
|z1| < r1 < 1 < r2 < |z2| and the we can expand (28) as Laurent series sin g =

∞
∑

k=−∞

akz
k in the ring H = {z ∈ r1 ≤ |z| ≤ r2}. Notice that the circumference

of radius one is contained in the ring. On the other hand, we replace z by z−1 in
equation (28) and we obtain the development of − sin g, and then ak = −a−k,
k = 0, 1, . . .. Let γ be the circumference in the complex plane centered in the
origin and radius one; the coefficient a−k is given by

a−k =
1

2π
√
−1

∫

γ

√
1− α2e2√

−1

z2 − 1

α e(z − z1)(z − z2)
zk−1dz, (29)

let us define

Gk(z) =

√
1− α2e2√

−1

z2 − 1

α e(z − z2)
zk−1, (30)

this function is holomorphic in a disk containing the circumference γ and so,
the value of a−n is given by a−k = Gk(z1).

ak = −a−k =
(−1)k

2
√
−1

(

α2e2

(1 +
√
1− α2e2)2

− 1

)

αk−1ek−1

(1 +
√
1− α2e2)k−1

, (31)
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and thus

sin g =
∞
∑

k=1

2(−1)k
(

α2e2

(1 +
√
1− α2e2)2

− 1

)

αk−1ek−1

(1 +
√
1− α2e2)k−1

sin kΨ. (32)

To obtain cos g we can proceed similarly, replacing z = exp(
√
−1Ψ) in (12) we

obtain

cos g =
z2 + 1 + 2α ez

α ez2 + 2z + α e
=

z2 + 1 + 2α ez

α e(z − z1)(z − z2)
, (33)

cos g is holomorphic in the ring H and so, it can be developed as Laurent series

as cos g =
∞
∑

k=−∞

bkz
k and due to symmetry ak = a−k. For k = 0 we have

b0 =
1

2π
√
−1

∫

γ

z2 + 1 + 2α ez

(α ez2 + 2z + α e)z
dz =

1

2π
√
−1

∫

γ

z2 + 1 + 2α ez

α e(z − z1)(z − z2)z
dz =

=
1

2π
√
−1

∫

γ

z2 + 1 + 2αez

α e(z − z2)(z − z1)
z2dz −

1

2π
√
−1

∫

γ

z2 + 1 + 2α ez

α e(z − z2)z
z2dz =

=
z2
1
+ 1 + 2α e z1
α e(z1 − z2)

z2 +
1

α e
=

α e

1 +
√
1− α2 e2

(34)

and for k 6= 0 we have

bk = b−k =
1

2π
√
−1

∫

γ

z2 + 1+ 2α ez

α ez2 + 2z + α e
zk−1dz =

1

2π
√
−1

∫

γ

z2 + 1 + 2α ez

α e(z − z1)(z − z2)
zk−1dz,

(35)
and so

bk =
z2
1
+ 1 + 2α e z1
α e(z1 − z2)

zk−1

1
= (−1)k−1

√
1− α2e2

(1 +
√
1− α2e2)k

αk−1ek−1 (36)

consequently

cos g =
α e

1 +
√
1− α2 e2

+
∞
∑

k=1

2(−1)k−1

√
1− α2e2

(1 +
√
1− α2e2)k

αk−1ek−1 cos kΨ,

(37)
Finally, after replacing (27) and (32) in the Kepler equation M = g− e sin g

it is easy to obtain its the development for the anomaly Ψ. Taking into account
(37), we obtain the expansion of r/a = 1− e cos g as Fourier series according to
Ψ.

To develop of a/r we consider (16) and from this equation we have

a

r
=

1 + α e cosΨ

(1− α e2)(1− β cosΨ)
, (38)

where β = e(1 − α)/(1 − α e2). It is easy to demonstrate that 0 ≤ β < 1 if
e ∈ [0, 1[ and α ∈ [−1, 1]. Replacing cosΨ = (z + z−1)/2 in (38) we obtain

a

r
=

2z + α e z2 + α e

(1− α e)(2z − βz2 − β)
= − 2z + α e z2 + α e

(1− α e)β(z − z3)(z − z4)
, (39)

9



where z3 = (1 −
√

1− β2)/β, and z4 = (1 +
√

1− β2)/β. Note that 0 ≤ z3 <
1 < z4 and so a/r is a holomorphic function in a ring centered in the origin that
contains the circumference γ. Following a method similar to the one used to
expand cos g we obtain

a

r
= c0 +

∞
∑

k=1

ck cos kΨ, (40)

where

c0 = − α

1− α
+

β + α e

(1 − α)e
√

1− β2
, (41)

and

ck =
2(α e+ β)

(1− α)e
√

1− β2

βk

(1 +
√

1− β2)k
, (42)

it is easy to demonstrate that lim
α→1

c0 = 1/(1 − e2), lim
α→1

c1 = e/(1 − e2) and

lim
α→1

ck = 0 for k > 1.

These results are necessary to expand the second member of planetary La-
grange equations. It is worth to remark that the coefficients of these develop-
ments are given in closed form.

4. Numerical examples

In general, the perturbative forces are small, for this reason it is convenient
to test the numerical methods applying them to the well-known two body prob-
lem, referred to the orbital coordinate system (x, y, 0), in order to select an
appropriate new temporal variable with the aim of minimizing the distribution
of the truncation errors on the orbit. Let us define a generic family Ψα of
anomalies depending on a parameter α as dt = Qα(r)dΨα, for each α we have

d

dt
= n

d

dM
= n

d

dΨα

dΨα

dM
=

n

Qα(r)

1

dΨα
(43)

so

dx

dΨα
=

Qα(r)

n
vx,

dvx
dΨα

= −Qα(r)

n

[

GM
x

r3
+

∂V

∂x
− Fx

]

dy

dΨα
=

Qα(r)

n
vy,

dvy
dΨα

= −Qα(r)

n

[

GM
y

r3
+

∂V

∂y
− Fy

]

(44)

In order to test the performance of this method we use a fictitious artifi-
cial satellite with the same elements than HEOS II used by Brumberg [4]
(a = 118363.47Km, e = 0.942572319, i = 28o.16096, Ω = 185o.07554, ω =
270o.07151, M0 = 0o), except for its eccentricity, that is changed in order to
study the optimum value of α depending on the value of the eccentricity e. In
figure 2 we show a sample of twenty points for Ψα with homogeneous distribu-
tion over the orbit.
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(a) M (b) f ′

(c) g (d) f

Figure 2: Points distribution for M, f ′, g, f

Table 1 shows the minimum of the errors for this fictitious satellite with the
same elements (a, e, i,Ω, ω,M) than HEOSII and several values of parameter
α = −1.00,−.95, . . . , 0, . . . , 1. This table has been carried out using a classic
fourth order Runge Kutta integrator with 10000 uniform steps. In this table
we see the dependence of the errors in position and velocity with respect to the
value of the parameter α.

Table 2 shows the minimum of the errors in position (in Km) and velocity
(in Km/s) for this fictitious satellite with the same a) than HEOSII , Ω = ω =
i = M0 = 0, and different values of eccentricity (e = 0.0, 0.05, . . . , 0.95). This
table has been carried out using a classic fourth order Runge Kutta integrator
with 1000 uniform steps. In this table, we see that the value of α where the
errors in position reach their minimum depends on the eccentricity. Notice
that the values contained in table 2 improve the ones obtained using Sundman
generalized anomalies [19] and the natural anomalies [18].

The value of α that minimize the error position can be fit by means of a fifth
order polynomial:

α(e) = 0.554 + 0.326x− 0.609x2 + 1.196x3 − 1.204x4 + 0.755x5. (45)

Figure 3 shows the difference between the calculated values and the least square
fit.

Figures 4,5,6,7 show the local integration errors, in position and velocity,
for a satellite with a = 118363.47Km and e = 0.8 for the values of α =
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Table 1: Errors in Heos II position in Km and velocity in Km/s for several values of α.

α |∆~r| |∆~v| α |△~r| |△~v|
M 9.536e+00 7.709e-03 0.00 1.120e-05 9.076e-09

-1.00 2.597e+00 2.099e-03 0.05 8.025e-06 6.506e-09
-0.95 2.916e-01 2.357e-04 0.10 5.751e-06 4.664e-09
-0.90 7.246e-02 5.857e-05 0.15 4.111e-06 3.336e-09
-0.85 2.564e-02 2.073e-05 0.20 2.916e-06 2.367e-09
-0.80 1.108e-02 8.960e-06 0.25 2.057e-06 1.672e-09
-0.75 5.449e-03 4.405e-06 0.30 1.433e-06 1.165e-09
-0.70 2.929e-03 2.368e-06 0.35 9.928e-07 8.085e-10
-0.65 1.680e-03 1.358e-06 0.40 6.742e-07 5.498e-10
-0.60 1.012e-03 8.182e-07 0.45 4.546e-07 3.714e-10
-0.55 6.334e-04 5.122e-07 0.50 2.934e-07 2.404e-10
-0.50 4.087e-04 3.305e-07 0.55 1.883e-07 1.547e-10
-0.45 2.702e-04 2.185e-07 0.60 1.170e-07 9.659e-11
-0.40 1.822e-04 1.474e-07 0.65 7.030e-08 5.843e-11
-0.35 1.248e-04 1.009e-07 0.70 3.766e-08 3.169e-11
-0.30 8.661e-05 7.008e-08 0.75 1.996e-08 1.705e-11
-0.25 6.073e-05 4.914e-08 0.80 8.703e-09 7.807e-12
-0.20 4.290e-05 3.473e-08 0.85 3.362e-09 3.265e-12
-0.15 3.052e-05 2.471e-08 0.90 9.436e-10 1.255e-12
-0.10 2.179e-05 1.765e-08 0.95 1.928e-10 2.923e-13
-0.05 1.562e-05 1.265e-08 1.00 9.146e-10 2.947e-13

Figure 3: Dependence of α on e

0, 0.5 , 0.75, 1.0. These errors have been obtained by comparison of the val-
ues obtained integrating one step the differential equations (44) with the initial
conditions given by (8) and (15) for each Ψα = i ∗ h where h = 2π/1000, i =
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Table 2: Optimal α for e

e α |△~r| |△~v| e α |△~r| |△~v|
0.00 0.554 3.73e-07 2.90e-12 0.50 0.663 1.71e-07 5.92e-10
0.05 0.570 3.71e-07 6.15e-11 0.55 0.676 1.55e-07 6.23e-10
0.10 0.582 3.60e-07 1.23e-10 0.60 0.692 1.26e-07 6.45e-10
0.15 0.593 3.46e-07 1.87e-10 0.65 0.710 9.95e-08 6.35e-10
0.20 0.603 3.29e-07 2.51e-10 0.70 0.732 1.05e-07 5.89e-10
0.25 0.612 3.15e-07 3.14e-10 0.75 0.758 9.28e-08 4.61e-10
0.30 0.622 2.92e-07 3.80e-10 0.80 0.791 1.06e-07 2.21e-10
0.35 0.631 2.57e-07 4.39e-10 0.85 0.832 1.68e-07 2.79e-10
0.40 0.641 2.33e-07 4.98e-10 0.90 0.883 3.27e-07 1.43e-09
0.45 0.651 2.08e-07 5.46e-10 0.95 0.942 1.03e-06 5.49e-09

0, . . . , 999 with the exact values obtained from (8) and (15) for Ψα = (i+1) ∗h.

(a) erx (b) ery

(c) ervx (d) ervy

Figure 4: Local integration errors distribution e = 0.8, α = −0.5
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(a) erx (b) ery

(c) ervx (d) ervy

Figure 5: Local integration errors distribution e = 0.8, α = 0.5

(a) erx (b) ery

(c) ervx (d) ervy

Figure 6: Local integration errors distribution e = 0.8, α = 0.85

5. Concluding Remarks

In this paper a new one-parametric family of anomalies, named as generalized
eccentric anomalies, has been defined.
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(a) erx (b) ery

(c) ervx (d) ervy

Figure 7: Distribution of the local integration errors e = 0.8, α = 0.791

The generalized eccentric family of anomalies includes the eccentric anomaly,
the true anomaly and the secondary anomaly. This family can be considered as
a family of ellipses with the same major semiaxis a minor semiaxis a

√
1− α2e2

and the focus in Fα = α e a position.
It is very important to emphasize that the main quantities of the two body

problem (position, velocity, vector radius, sinus and cosinus of the eccentric
anomaly) obtained in the section 2, can be written in a closed form using the
described family of anomalies. To study the optimal value of α in order to
increase the accuracy of the numerical methods, a set of numerical experiments
on the unperturbed two-body problem have been carried out.

An important property of this family of anomalies is its performance in the
construction of analytical theories because the coefficients of the developments
as Fourier series of the main quantities of two-body problem obtained in section
3, also can be written in closed form.

It is also remarkable that the family of generalized eccentric anomalies can
be used in order to improve the integration errors in the numerical methods. In
this sense a numerical study of the optimal value of α in order to increase the
accuracy of the numerical methods, using a set of numerical experiments on two
body problem has been carried out leading us to the conclusion that optimal
value of α to minimize the global integration errors in a revolution increases
with the eccentricity.
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