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Abstract: 
This study investigated the impact of a cylindrical obstacle on convection in 
an inclined square cavity filled with water-Al2O3 nanofluid. Using the finite 
volume method, the problem was resolved by having the inner cylinder 
rotate adiabatically while other walls were thermally insulated. 
Additionally, the bottom wall was hotter than the top. The study examined 
the effects of cylindrical obstacle radius (0.1 ≤ R ≤ 0.2), rotation speed (-500 
≤ Ω ≤ 500), Richardson number (0.01 ≤ Ri ≤ 100), volumetric nanoparticle 
fraction (0.02), and Grashof number (Gr = 104) on heat transfer rate or 
Nusselt number. The results were compared with previous literature, and 
the influence of the cylindrical obstacle rotational speed on convection flow 
was evaluated. An increase in the counterclockwise angular rotating speed 
resulted in higher nanofluid flux. The heat transmission coefficient 
increased as the Richardson number decreased.  The use of nanofluid in the 
enclosure increased the coefficient of heat flow through mixed convection. 
Finally, the study showed that the convection heat exchange is enhanced 
with the increase in the radius. Moreover, an enhancement of the Nusselt 
number around 46% was reported for the cylinder, under Gr=10000, 

∅=0.02, =45° and Ri= 10. 
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1. INTRODUCTION 
 

The mixed convection flow in a cavity filled with a 
nanofluid was the subject of numerous studies by 
researchers. Several engineering applications for 
mixed convection in cavities include cooling 
electronic components, food drying, and nuclear 
reactors [1]. An essential liquid with suspended 
metallic or non-metallic nanoparticles is called a 
nanofluid. Water, oil, and ethylene glycol are often 
studied fluids for various industrial uses, such as 
cooling and heating systems [2]. Soomro et al. [3] 
have looked into the thermal efficiency of 
magnetohydrodynamic mixed convection inside the 

cover-driven triangle cavity with a circular obstacle. 
Pal et al. [4],  examined the impact of a thick 
corrugated wall on the heat transfer of mixed 
convection filled with a copper-water nanofluid in a 
square cavity. Muthtamilselvan et al. [5] achieved a 
numerical analysis of a mixed convection flow in a 
square enclosure with a lid containing a Cu-water 
nanofluid in addition to internal heat generation. 
According to Abu-Nada et al. [6], the concentric 
rings of natural convection were filled with a 
nanofluid in this simulation. The later study took 
into account four different kinds of nanoparticles. 
Among others, Yousefzadeh et al. [7], carried out an 
analysis using numerical methods of the behavior of 
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mixed convection filled with a nanofluid inside a 
cavity with a hot obstacle. Shekaramiz et al. [8] 
conducted a study of the natural convection of 
water-Fe3O4 in the wavy triangular with equilateral 
sides and examined numerically with two 
geometries (n = 3 and 6) for various undulations 
numbers. Incompressible mixed convection with a 
nanofluid inside of a vented cavity with a cylindrical 

obstruction was studied by Jasim et al. [9]. Al‑Kouz 
et al. [10] investigated the flow of mixed convection 
in the presence of a solid cylinder inside a square 
cavity filled with water-alumina nanofluid and 
having vertical walls with corrugations. Rahmati et 
al. [11] employed the lattice Boltzmann approach to 
investigate the natural convection of water-TiO2 in 
a square cavity in the presence of a heated 
obstruction. Sivanandam et al. [12] have 
investigated the effects of entropy production and 
the movable walls' orientation on the nanofluid's 
mixed convective flow and the energy transfer of 
the nanoliquids. Selimefendigil et al. [13], the mixed 
convection of an elliptical obstacle inside a square 
cavity filled with nanofluid might be studied using 
the finite element method and the optimization 
solver COBYLA. Mixed convection has been 
investigated and reported by Azizul et al. [14], in a 
heated cavity with waves that contain nanofluids 
and a solid inner body. Maiga et al. [15], laminar 
forced convection flows with a nanofluid within 
were investigated in a tube with a circular section to 
maximize heat transmission in a rectangle with four 
walls pushed by a cover. Ambethkar et al. [16] did a 
numerical analysis using nanotechnology of how 
moving walls affect fluid flow to increase heat 
transmission. Al-asadi et al. [17], study the flows of 
nanofluids with mixed convection in an inclined 
circular tube for improved heat transfer by 
nanotechnology. Many researchers have 
researched the effects of various parameters in 
their work, including the Ra number, Volume 
percentage of nanofluid, and Ri number. From their 
findings, it has been found that the Ra number and 
Ri number have considerable value in the Nu 
number [18-20]. 

The application of sinusoidal heating in cavities 
filled with nanofluids has been extensively studied 
for its crucial role in heat transfer, but there are still 
some limitations in this area. The rapid 
development of the CPU and GPU that the world 
has witnessed has created many problems that 
cannot be overlooked. The most important of these 
major problems is high heat generation, which in 
turn slows down performance and reduces lifespan. 
It has become essential to eliminate or reduce heat 

using a variety of different cooling technologies; this 
is to preserve performance and lifespan. 

This study aims to overcome these limitations 
using a new non-uniform temperature distribution, 
which has widespread applications in heating and 
cooling equipment, solar energy, drying equipment, 
and nuclear reactors. The research investigates the 
mixed convection flux of Al2O3-water nanofluid in a 
double-lid inclined square cavity with cylindrical 
obstacles. The study aims to analyze the isotherms 
and streamlines of heat flow using dimensionless 
variables such as the Richardson number, angular 
rotational velocity, and radius of a rotating cylinder. 

 
2. MATHEMATIC AND MODELING FORMULATION 

This study investigates mixed heat transfer 
conditions in a two-dimensional flow within an 
inclined square cavity of height and width L, 
involving a spinning cylinder with a radius of R (see 
Fig. 1). The flow is incompressible, laminar, stagnant, 
and convective. The cylinder and vertical walls are 
adiabatic; the cylinder rotates in clockwise and 
counter-clockwise directions, and the left and right 
walls move in opposite directions. The lower wall 
has a higher sinusoidal temperature than the top 
wall. The Boussinesq approximation is considered 
appropriate, and the Navier-Stokes equations are 
used, considering above assumptions [21]. 

The thermophysical properties of nanofluid are 
shown in Table 1. 

 
 

 
Fig. 1. Dimensions of the cavity and its boundaries 

 

In Fig. 2. The networks used in the current 
simulation are shown. 
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Fig. 2. The meshes employed in the current simulation 

 
Table 1. Represents the thermophysical properties of 
nanofluid [1] 

Property Water Al2O3 

Cp (J/kg K) 4179 765 

ρ (kg/m3) 997.1 3970 

K (W /m K) 0.613 40 

β×10-5(1/K) 21 0.85 

μ×10-4(Kg/ms) 8.9 _ 

 
These are the equations dimensionless forms 

[22]: 
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where are: 

U, V - dimensionless of velocity component; 
X, Y - dimensionless of Cartesian; 
P - dimensionless pressure; 
 -Kinematic viscosity, (m2/s); 
Re - Reynolds number; 
Ri - Richardson number; 
Pr - Prandtl number; 
β - thermal expansion coefficient, (1/K); 
θ - dimensionless temperature; 

 - Inclination angle of a cavity, (°); 

 - Thermal diffusivity, (m2/s). 
 
 

 

The reduced variables used to dimension 
equations (1-4) are those produced by the following 
expressions [23]: 
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where are:   
x, y - Cartesian coordinates, (m); 
u, v - components of velocity, (m/s); 
p - pressure, (N/m2); 

 - density, (kg /m3); 
T - temperature, (K); 
Ω - dimensionless angular rotational velocity; 
ω - angular rotational velocity, (rad/s); 
L - cavity height/width, (m); 
C - cold; 
h - hot. 
The dimensionless parameters are expressed as 

[24]: 

0Re f

f

U L


= ,  

2 2

0 Re

fg TL Gr
Ri

U

 
= = ,              (7)                                                                                      

Pr f

f




= , 

3

2

g TL
Gr






=

                                        
(8)    

where are:   
Gr- Grashof number; 
μ - dynamic viscosity, (kg/ms); 
g - gravitational acceleration, (m/s2). 
The cavity current geometry has the following 

boundary conditions: 

X = 0, 0 1Y  , U = 0, V = -1,  0
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On the lower wall are the regional and typical 
Nusselt numbers, which are [25]: 

nf
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where are:   
Nu - Nusselt number; 
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k -thermal conductivity, (W/m K); 
avg - average. 
The following equations are used to calculate 

the mixture density (ρ), specific heat capacity (Cp), 
and thermal expansion coefficient (β) of the 
nanofluid [26]: 

(1 )nf f S   = − +
                                           

(11) 

( ) (1 )( ) ( )p nf p f p SC C C    = − +
              

(12) 

( ) (1 )( ) ( )nf f S    = − +
                       

(13) 

where are:   
ϕ -volume fraction of nanofluid; 
Cp - specific heat capacity (J/kg K); 
nf -nanofluids; 
f- fluid; 
s - solid. 
Brinkman's relationship was used to determine 

the viscosity of the nanofluid [27]: 
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The Maxwell model has been used to calculate 
the thermal conductivity of the nanofluid model 
[28]: 
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3. NUMERICAL APPROACH 

The pressure and velocity were calculated from 
the momentum and energy equations using a 
SIMPLE algorithm using the finite volume technique 
[29] using fluent software. The fluid flow field and 
convection properties were simulated using Fluent. 
The Quick diagram defines the convective 
conditions of Navier Stokes equations using a 
central feature element. Table 2 shows the Nusselt 
number for testing the uniform grid at Re 500 and 
Pr = 0.71 for several systems and compared with 
[30], where the grid 81X81 was chosen in the 
current study. A numerical procedure is validated 
for a uniform grid (81 × 81) of the average Nusselt 
number for 1 < Re < 1000 and Gr = 100 is validated 
and compared with the numerical results from 
theChamkha and Abu-Nada [2], as shown in Table 3. 
 
Table2. The effect of the meshon average Nusselt 
number 

Grid 42×42  60×60 81×81 100×100 Ref.[30] 

Re=500
Pr=0.71 

5.145 5.291 5.357 5.386 5.168 

 

Table 3. Comparing the average Nusselt number calculated in this study with past works by Chamkha and Abu-Nada [2] 

Re Present work (81×81) Ref.[2] Ref.[31] Ref.[32] Ref.[33] Ref. [34] Ref.[35] Ref.[36]  

1 0.992569 1.010134 1.00033 - - - - - 0.01756 
 

100 2.022933 2.090837 2.03116 2.10 1.985 2.02 - 2.01 0.06790 

400 4.049844 4.162057 4.02462 3.85 3.8785 4.01 4.05 3.91 0.11221 

500 4.558188 4.663689 4.52671 - - - - - 0.10550 

1000 6.527703 6.551615 6.48423 6.33 6.345 6.42 6.55 6.33 0.02391 

The current numerical solution is valid by 
comparing the contours distribution for Re = 500, Ri 
= 0.4, and Pr = 1 with the results of M.K. Moallemi 
and K.S. Jang [30], as shown in Figs. 3 and 4. A good 
agreement is thus obtained. The absolute error 
between the values obtained in the current study 
and the previous study was calculated as equal to 
0.0983 . 

Fig. 3. Isotherms for Re = 500 and Pr = 1: a) Results of 
Moallemi and Jang [30], b) Current study 

 

  

a) b) 
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a) b) 
Fig. 4. Streamline for Re = 500 and Pr = 1: a) Results of 

Moallemi and Jang [30], b) Current study 
 

4. RESULTS AND DISCUSSION 

Studying the effect of rotating cylinder adiabatic 
on the heat flow was the primary goal of this work 
by mixed convection in an inclined square cavity 
with double lid‐driven walls filled with water–Al2O3 
nanofluids for Ri = 0.01 to 100, Gr=10000, R = 0.1 to 

0.2, Ω = -500 to 500 and ϕ = 0.02. The bottom wall 
has a hotter temperature than the top wall. Also, 
the other wall was kept thermally isolated and 
moving in the opposite direction. 

Figs. (5, 6, 9, and 10) display the streamlines and 
isotherms for the mentioned cases at Gr=10000 and 

ϕ=0.02, 𝛾 =90° and R=0.1, 0.2 for various 
Richardson numbers and cylinder angular velocity. 
As seen in Figs. 5 and 6, at Ω=0, the heat transferred 
from the lower horizontal wall to the left vertical 
wall only increases the Richardson number by (0.01 
to 100), with an angular rotation speed in counter-
clockwise still increasing at Ω= -500, thermal 
performance increases. Heat and nanofluid travel 
down to the left of the cavity since the vertical walls' 
movement is in the opposite direction. More 
isothermal lines travel to the left wall as a result of 
the cylinders’ negative rotating speed. 

 

 Ω=-500 Ω=0 Ω=500 

Ri=0.01 

   
Ri=1 

   
Ri=10 

   
Ri=100 

   
Fig. 5. Isotherms for 0.01 ≤ Ri ≤ 100,-500 ≤ Ω ≤ 500, R= 0.1 and =90° 
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 Ω=-500 Ω=0 Ω=500 

Ri=0.01 

   
Ri=1 

   
Ri=10 

   
Ri=100 

   
Fig. 6. Isotherms for 0.01 ≤ Ri ≤ 100,-500 ≤ Ω ≤ 500, R = 0.2 and =90° 

The contours in Figs. 9 and 10 demonstrate that 
as counter-clockwise angular rotational velocity 
increases, thicker streamlines and larger vortices 
are produced at Ω= -500. An increase increases the 
influence of convective flow caused by the lid; in 
this instance, the double-lid effect is more evident. 
The movement of the fluid is faster near the 
cylinder when the cylinder rotation speed is in the 
clockwise and counterclockwise direction and 
becomes weaker when the cylinder is stationary 
Ω=0. Since the fluid flow is near the cylinders due to 
the rotational force induced by the shear stress, the 
two cylinders' respective diameters of 0.1 and 0.2 
impact the fluid flow. 

The Figs. (7, 8, 11 and 12) show streamlines and 
isotherms for different -500 ≤ Ω ≤ 500and 0.01 ≤ Ri 

≤ 100 for the instances discussed at Gr=10000, 

ϕ=0.02, =90° and R=0.1, 0.2. From Figs. 7 and 8, for 
the case Ri = 10, 100 and Ω= -500, the heat increases 
in the lower wall and is slightly transferred to the 
right wall. The heat flow by convection was boosted 
by increasing the Richardson number and 
counterclockwise angular rotational speed. The 
cylinder rotation alters the distribution of isotherms 
and the fluid flow in the cavity. 

The cylinder rotation causes the streamline 
modifications to occur near the cavity center. Ri = 
10 and 100 in Figs. (11 and 12) results in stronger 
vortices. As the Richardson number rose, more 
streamlines were close to the hollow and lid walls. 
A significant rotating vortex may typically be seen. 
So, there has been a rise in streamlining overall. 
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Therefore, the revolving cylinder speed alters the 
flow pattern and raises sheer force. Increase the 
impact of the heat flow that the cover produces. 
The double-hedging flow effect is more pronounced 
in this situation. 

When the cylinders rotate clockwise Ω=500, 
mixed convection currents are inhibited, while the 

opposite is true for counter-clockwise rotation Ω=-

500. Compared to a stationary cylinder Ω=0, rotating 
the cylinder introduces additional momentum 
exchange, leading to changes in fluid flow and 
isotherm distribution within the cavity.

 

 
 

Ω=-500 Ω=0 Ω=500 

Ri=0.01 
 
 
 
 
 
 
 
 
 
 

   

Ri=1 
 
 
 
 
 
 
 
 
 
 

   

Ri=10 
 
 
 
 
 
 
 
 
    

Ri=100 

   

Fig. 7. Isotherms for 0.01 ≤ Ri ≤ 100,-500 ≤ Ω ≤ 500, R =0.1 and =45° 
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 Ω=-500 Ω=0 Ω=500 
Ri=0.01 

   
Ri=1 

   
Ri=10 

   
Ri=100 

   

Fig. 8. Isotherms for 0.01 ≤ Ri ≤ 100, -500 ≤ Ω ≤ 500, R = 0.2 and =45° 
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 Ω=-500 Ω=0 Ω=500 
Ri=0.01 

   
Ri=1 

   
Ri=10 

   
Ri=100 

   
Fig. 9. Streamlines for 0.01 ≤ Ri ≤ 100, -500 ≤ Ω ≤ 500, 0.1, R =0.1 and =90° 

 Ω=-500 Ω=0 Ω=500 
Ri=0.01 

   
Ri=1 

   
Ri=10 

   

Ri=100 

   

Fig. 10. Streamlines for 0.01 ≤ Ri ≤ 100, -500 ≤ Ω ≤ 500, R = 0.2 and  =90° 
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 Ω=-500 Ω=0 Ω=500 
Ri=0.01 

   
Ri=1 

   
Ri=10 

   
Ri=100 

   

Fig. 11. Streamlines for 0.01 ≤ Ri ≤ 100, -500 ≤ Ω ≤ 500, R = 0.1 and =45° 

 Ω=-500 Ω=0 Ω=500 
Ri=0.01 

   
Ri=1 

   
Ri=10 

   

Ri=100 

   

Fig. 12. Streamlines for 0.01 ≤ Ri ≤ 100, -500 ≤ Ω ≤ 500, R = 0.2 and =45°
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The local Nusselt number along the hot bottom 
wall for various cylinder angular velocities at 

Gr=10000, ϕ=0.02, R=(0.1, 0.2), = 90°, and Ri= 100 
is shown in Figs. 13 and 14. The Nux in Figs. 13 and 
14 rises with a counterclockwise angular rotational 
speed. On the two edges, the curves diverge and are 
negative. The local Nusselt number Nux = 3.22 
maximum value for x = 0.57 corresponds to Ω= -500; 
after this point, the values decrease. The most 
significant value of Nux in Fig. 14 is 3.42 when x = 
0.57. The Nusselt number rises and the heat 
transmission rate improve when the cylinder radius 
and rotational speed increase. The cylinder speed 
does encourage better fluid circulation in the 
hollow. Convection transfer is improved by 
unevenly heating the bottom wall. 

 

 
Fig. 13. Local Nusselt number for -500 ≤ Ω ≤500, 

Gr=10000, ϕ=0.02, = 90 °, R= 0.1 and Ri=100 
 

 
Fig. 14. Local Nusselt number for -500 ≤ Ω ≤ 

500,Gr=10000, ϕ=0.02,  = 90 °, R= 0.2 and Ri=100 

 
The local Nusselt number along the hot bottom 

wall for different angular velocities of the cylinder 

at Gr=10000, ϕ=0.02, R=(0.1, 0.2), and =45° is 
shown in Figs. 15 and 16. The most significant value 
of the local Nusselt number Nux = 3 for x = 0.44 
corresponds to Ω= -500 in Fig. 15, after which there 
is a non-uniform drop along the hot wall. Fig. 16 
shows the most significant value of Nux = 3.14 for x 
= 0.45, indicating a significant thermal performance 
in this region. The two moving vertical walls and the 

cylinder's rotational speed significantly impact the 
convection rate, which is why it is increasing. Local 
Nusselt numbers, therefore, rise as the cylinder 
rotational speed increases. The heat transmission 
rate increases with a 90° inclination angle compared 
to a 45° angle. 

 

 
Fig. 15. Local Nusselt number for -500 ≤ Ω ≤ 500, 

Gr=10000, ϕ=0.02,  = 45 °, R= 0.1 and Ri=100 
 

 
Fig. 16. Local Nusselt number for -500 ≤ Ω ≤ 500, 

Gr=10000, ϕ=0.02, = 45 °, R= 0.2 and Ri=100 
 

The local Nusselt number along the heated 
bottom wall for different Ri values at Gr=10000, 

ϕ=0.02, R=(0.1, 0.2), and = 45° is shown in Figs. 17 
and 18. In the figures, Ri = 0.01 corresponds to the 
local Nusselt number Nux = 28.35, the maximum 
value for x = 0.7. As a result, when Richardson 
numbers are low, there are more local Nusselts. 
According to Richardson, the number of Nux varies 
greatly. 

 

 
Fig. 17. Local Nusselt number for 0.01 ≤ Ri ≤ 100, 

Gr=10000, ϕ=0.02 , = 45 ° R= 0.1 and Ω=-500 
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Fig. 18. Local Nusselt number for 0.01 ≤ Ri ≤ 

100,Gr=10000, ϕ=0.02 , = 45°, R= 0.2 and Ω=-500 
 

The average Nusselt number for the cylinder 
along the sinusoidal heated bottom wall for 

Gr=10000, ϕ=0.02, R=(0.1, 0, 2), and = 45° is shown 
in Figs. 19 and 20. In the figures, the maximum 
average Nusselt number is Nuavg = 4.5, and the 
constant for each angular rotational speed is Ri = 
0.01. As a result, as the Richardson number rises, 
the average Nusselt number falls. According to 
Richardson, there are many variations in the 
number of Nuavg. The averaged Nusselt number 
rises as the Richardson number decreases. A heat 
transfer enhancement of 41% is achieved for Ri = 1 
compared to Ri = 10, and 70% for Ri = 0.01 
compared to Ri = 1. 

 

 
Fig. 19. The average number of Nusselt for Gr=10000, 

ϕ=0.02,  = 45° and R= 0.1  
 
 

 
Fig. 20. The average number of Nusselt for Gr=10000, 

ϕ=0.02, = 45° and R= 0.2 
 

5. CONCLUSION 

This computational study examines the impact 
of cylindrical obstacles on convection within an 
inclined enclosure containing an Al2O3-water 
nanofluid. In-depth research has been done on the 
effects of the Richardson numbers, rotational speed, 
and cylinder radius. The key findings are outlined as 
follows: 
- The local and average Nusselt numbers rise when 
the Richardson number falls. This indicates that the 
heat transmission coefficient is influenced by 
convection. 
- It was found that heating the lower wall at a 
sinusoidal temperature rather than a constant 
temperature enhances heat transmission. 
- The cylinder's rotating speed impacts the cavity, 
increasing fluid heat flow and improving thermal 
performance through convection. 
- A cylinder with a wider radius can be used to 
achieve a higher heat transmission rate. The ratio of 
the rate of increase of the Nusselt number of the 
cylinder along the heated sinusoidal bottom wall is 
46%. 
- Mixed convection has a great thermal 
performance since it uses nanofluid. 
- The vertical wall shifting improves the effect of the 
mixed convection flow. 
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