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Accurate image segmentation plays a crucial role in computer vision andmedical
image analysis. In this study, we developed a novel uncertainty guided deep
learning strategy (UGLS) to enhance the performance of an existing neural
network (i.e., U-Net) in segmenting multiple objects of interest from images
with varying modalities. In the developed UGLS, a boundary uncertainty map was
introduced for each object based on its coarse segmentation (obtained by the
U-Net) and then combined with input images for the fine segmentation of the
objects. We validated the developed method by segmenting optic cup (OC)
regions from color fundus images and left and right lung regions from Xray
images. Experiments on public fundus and Xray image datasets showed that the
developed method achieved a average Dice Score (DS) of 0.8791 and a sensitivity
(SEN) of 0.8858 for the OC segmentation, and 0.9605, 0.9607, 0.9621, and
0.9668 for the left and right lung segmentation, respectively. Our method
significantly improved the segmentation performance of the U-Net, making it
comparable or superior to five sophisticated networks (i.e., AU-Net, BiO-Net, AS-
Net, Swin-Unet, and TransUNet).
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1 Introduction

Image segmentation is an important research direction of computer vision and medical
image analysis, and widely used as a preprocessing step for various object detection and
disease diagnosis (Khened et al., 2018; Jun et al., 2020). It can divide an image into several
disjoint regions by performing a pixel-level classification and largely simplify the assessment
of morphological and positional characteristics of object regions (Wang L. et al., 2022; Li
et al., 2022). To accurately segment images, a number of image segmentation algorithms
have been developed for many different applications, such as threshold based methods
(Pare et al., 2019; Shahamat and Saniee Abadeh, 2020), active contour based methods (Han
and Graphics, 2006), and random field based methods (Poggi and Ragozini, 1999; Hossain
and Reza, 2017). Among these methods, deep learning based methods (Ronneberger et al.,
2015; Wang Y. et al., 2022) have gained considerable popularity in the past decade because
they can obtain remarkable segmentation performances comparable tomanual annotations.
Moreover, they are able to automatically extract and flexibly integrate different types of
feature information by learning the intrinsic laws and representation levels of images to
be segmented.
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Despite promising performances, deep learning based
methods are often faced with two key challenges in image
segmentation (Wang et al., 2021c; Zheng et al., 2022), one is
how to obtain rich local information, the other is how to robustly
extract high-level semantics. Given the large number of
parameters in deep learning networks, the spatial resolution of
images generally decreases with the increase of network depth in
order to speed up the learning of feature information. This
resolution decrease can bring about the loss of local
information, but the increase of network depth is beneficial to
the acquisition of global semantic and context information. To
mitigate these two challenges, different deep learning networks
(Gawlikowski et al., 2023; Seoni et al., 2023) have been constantly
emerging to accurately segment images with varying modalities.
Alom et al. (Alom et al., 2019) put forward the RU-Net and R2U-
Net, respectively by adding different cyclic convolutional blocks
to the U-Net for feature detection and accumulation. Seo et al.
(Seo et al., 2020) proposed a mU-Net model by introducing
learnable deconvolution network structures into the U-Net to
improve its learning ability at different resolutions and image
segmentation performance. Huang et al. (Huang et al., 2020)
proposed a U-Net 3+ model that combines high-level semantics
with low-level semantics using full-scale jump concatenation to
overcome the drawbacks of the U-Net and U-Net++ (Zhou et al.,
2018). Cao et al. (Cao et al., 2022) and Chen et al. (Chen et al.,
2021) proposed different transformer based networks (i.e., Swin-
Unet and TransUNet), respectively for accurate image

segmentation. These network models demonstrated reasonable
segmentation accuracy as compared to the U-Net, but their
network structures were often more complex. This may not be
conducive to network construction and training as well as image
segmentation.

To avoid the design of complex network structures, we develop
an uncertainty guided deep learning strategy (UGLS) in this study
based on a existing network (i.e., U-Net) for accurate image
segmentation. We first train the U-Net to obtain a coarse
segmentation result and then use morphological operations and
Gaussian filters to identify a potential boundary region for each
target object based on the obtained result. The boundary region has a
unique intensity distribution to indicate the probability of each pixel
belonging to object boundaries and is termed as the boundary
uncertainty map (BUM) of the objects. With boundary
uncertainty maps and original input images, we retrain the
U-Net for the fine segmentation of target objects and can obtain
a better performance, as compared to its coarse segmentation
performance.

2 Methods

2.1 Scheme overview

Figure 1 shows the entire workflow of the developed deep
learning strategy (UGLS) based on a available network (i.e.,

FIGURE 1
The flowchart of the developed deep learning strategy based on the U-Net for accurate image segmentation.
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U-Net) for image segmentation purposes. The UGLS consists of
three key steps, namely, the coarse segmentation of target objects,
generation of boundary uncertainty maps for each object, and object
fine segmentation. The coarse segmentation is used to detect
potential object regions and exclude irrelevant background far
away from the detected regions. With the coarse segmentation,
we can identify the regions where object boundaries are likely to
appear and then generate boundary uncertainty maps for these
objects, which can largely enhance the information about object
boundaries and facilitate the boundary detection. We integrate these
uncertainty maps and original input images and feed them into the
given network for a more fine segmentation. After performing these
three steps, the network can obtain a significantly improved
segmentation performance.

2.2 Object coarse segmentation

We first trained the U-Net based on the given images and their
manual annotations leveraging a plain network training scheme to
obtain a relatively coarse segmentation result for desirable objects.
This train procedure can be given by:

P � f I, φ( ) (1)
where I and P indicate the input image and its corresponding
prediction map, respectively, f(·) denotes the U-Net with the
network parameter φ. The prediction map was relatively coarse
as compared with manual annotations of objects because the U-Net

has a simple network structure and thereby limited potential to
handle images with varying qualities.

2.3 Boundary uncertainty map

The obtained coarse segmentation results were often different
from manual annotations of objects in certain image regions,
especially object boundary regions, but they can provide some
important position information for desirable objects. To
effectively use the position information, we processed the coarse
segmentation results leveraging morphological dilation and erosion
operations (Fang et al., 2021), leading to two different object regions.
Based on the two object regions, we can identify a potential
boundary region (PBR) and a background excluded image (BEI)
for each target object, which were separately given by

PBR � dilation P, SEr( ) − erosion P, SEr( ) (2)
BEI � PBR × I (3)

where dilation(·) and erosion(·) are the morphological dilation and
erosion operations, respectively, SE is a circular structuring element
with a radius of r. The PBR is a binary image and marks the region
where object boundaries are most likely to appear, while the BEI
merely retains the original image information located in the PBR
and can reduce the impact of redundant background in image
segmentation, as shown in Figure 2. To take fully advantage of
edge position information in coarse segmentation results, we
smoothed the PBR using a Gaussian filter with a rectangle

FIGURE 2
(A–C) are the coarse segmentation result, the PBR and boundary uncertaintymap, respectively, (D–F) are themanual annotation of desirable object,
the original image and its background excluded version.
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window of r × r and a standard deviation of r to generate a
boundary uncertainty map. The pixels in the uncertainty map
took larger values when they were close to the center of the PBR
and reduced ones when far away from this center. Moreover, A
larger value generally means a higher probability that a pixel in the
uncertainty map belongs to object boundaries. The unique intensity
distribution made the boundary uncertainty map able to provide
more relevant position information about object boundaries, as
compared to the PBR.

2.4 Object fine segmentation

After obtaining the boundary uncertainty map and background
excluded image, we concatenated these two types of images and fed
them into the segmentation network. Since the concatenated images
were different from the original images and contained very little
background information, the segmentation network can easily
detect object boundaries and thereby extract the whole object
regions accurately using a simple experiment configuration.
Specifically, we implemented the fine segmentation of desirable

objects using the same configuration as their coarse segmentation
(e.g., the cost function, optimizer and batch size).

2.5 Experiment datasets

To validate the developed learning strategy, we performed a series
of segmentation experiments on two public dataset, as shown in
Figure 3. The first dataset was from the Retinal Fundus Glaucoma
Challenge (REFUGE) (Orlando et al., 2020) and contained
1,200 retinal fundus images acquired by two different cameras,
together with manual annotations for the optic disc (OD) and cup
(OC) regions. These images and their annotations were evenly split
into three subsets for training (n = 400), validation (n = 400) and
testing (n = 400) purposes, respectively, in the REFUGE challenge,
which were also used in this study for segmentation purposes. We
normalized these images to reduce the influence of light exposure and
cameras and then extracted local disc patches using the dimensions
that approximated three times the radius of the OD regions (Wang
et al., 2021b). The extracted patches were then resized to 256 ×
256 pixels and fed into the U-Net for network training.

FIGURE 3
(A–C) showed a fundus image, its normalized version, and the local disc patch with manual annotations of the OD and OC, respectively, (D) and (E)
showed a Xray image and its annotations for the left and right lungs.
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The second dataset was from a tuberculosis screening program
in Montgomery County (TSMC) (Jaeger et al., 2014) and contained
138 chest Xray images acquired using a Eureka stationary Xray
machine. Among these Xray images, 80 were normal and 58 were
abnormal with manifestations of tuberculosis. All images were de-
identified and had a dimension of either 4,020 × 4,892 or 4,892 ×
4,020 pixels. The left and right lungs depicted on these Xray images
were manually annotated by a radiologist. We also split these Xray
images equally into three disjoint subsets for network training (n =
46), validation (n = 46) and testing (n = 46), and resized them to the
same dimension of 256 × 256 pixels.

2.6 Performance evaluation

We assessed the performance of the UGLS based on the U-Net
(short for the developed method, https://github.com/wmuLei/
ODsegmentation) on a 64-bit Windows 10 PC with 2.20 GHz 2.
19 GHz Intel(R) Xeon(R) Gold 5120 CPU, 64 GB RAM and
NVIDIA GeForce GTX 2080Ti by segmenting 1) the OC region
from color fundus images and 2) the left and right lungs from the
Xray images, where the r was set to 25 and 35, respectively for these
two datasets. We used the Dice Score (DS) (Shi et al., 2022) as the
cost function to assess the similarity between the segmentation
results and their corresponding manual annotations for each object:

L � 1
K
∑K
k�1

DSk � 1
K
∑K
k�1

2∑Ωpk,iyk,i∑Ωp
2
k,i +∑Ωy

2
k,i

( ) (4)

where DSk denotes the DS for object k, and K is the total number of
objects of interest. pk,i and yk,i are the output probabilities of a specific
input image obtained by theU-Net andmanual annotation, respectively
for pixel i and object k,Ω denotes the entire image domain.We used the
RMSprop optimizer to maximize the cost function and set its initial
learning rate to 0.001, along with a batch size of eight and an epoch
number of 100. To reduce the network training time, we halted the
entire training procedure when the performance of the U-Net did not
increase for 20 consecutive epochs. In addition, we randomly
augmented input images during network training using some
transformations, such as horizontal/vertical flip, scaling from 0.9 to
1.1, translation by −10 to 10 percent per axis, rotation from −180 to
180 in degree, and shearing from −5 to 5 in degree. After training, we
binarized the prediction map of the U-Net using a given threshold of
0.5 to obtain desirable output results.

With these output results, we evaluated our developedmethod using
the DS, Matthew’s correlation coefficient (MCC) (Zhu, 2020), sensitivity
(SEN) (Wang et al., 2019), and Hausdorff distance (HSD, in pixel).

MCC � TpTn − FpFn( )����������������������������������
Tp + Fp( ) Tp + Fn( ) Tn + Fp( ) Tn + Fn( )

√ (5)

SEN � Tp

Tp + Fn
(6)

HSD � max d X, Y( ), d Y,X( )( ) (7)
where Tp, Fp, Tn and Fn denote the true positive, false positive, true
negative and false negative, respectively. d(X,Y) � max

x∈X
min
y∈Y

|x − y|
is the directed HSD from point set X to Y. The larger the DS, MCC
and SEN are and the smaller the HSD is, the better the segmentation

performance of the network is. To show the advantage of the UGLS,
we compared the developed method with the Attention U-Net (AU-
Net) (Oktay et al., 2018), BiO-Net (Xiang et al., 2020), asymmetric
U-Net (AS-Net) (Wang et al., 2021b), Swin-Unet (in tiny scale
version), and TransUNet. Among these networks, U-Net and its
variants (i.e., AU-Net, BiO-Net, AS-Net) shared the similar network
architecture (e.g., the number of convolution filters increased from
32 to 1,024) and were trained from scratch based on a given
dimension of 256 × 256 pixels and a learning rate of 0.001, while
Swin-Unet and TransUNet were trained from initial ImageNet
weights based on a dimension of 224 × 224 pixels and a learning
rate of 0.01. All these networks were trained six times (by randomly
arranging three different subsets for network training, validation
and testing, respectively) using the same configurations (except for
image dimension and learning rate) for each dataset. The paired
t-test was used to evaluate the differences among the involved
networks on the DS metric. A p-value less than 0.05 was
considered statistically significant (Wang et al., 2021a).

3 Results

3.1 Object coarse segmentation

Tables 1 and 2 summarized six coarse segmentation results of
the U-Net with the developed UGLS strategy in extracting the OC
from retinal fundus images and the left and right lungs from Xray
images, respectively. As demonstrated by the results, the U-Net
achieved a relatively low performance in segmenting the OC
depicted on fundus images (due to the high similarity between
the OD and OC regions), with a average DS, MCC, SEN and HSD of
0.8642, 0.8585, 0.8674 and 2.6420, respectively. In contrast, it
obtained a better accuracy for the left and right lungs (with the
average DS of 0.9408 and 0.9477, respectively) and can compete with
their manual annotations.

3.2 Object fine segmentation

Tables 3 and 4 demonstrated the fine segmentation results of the
U-Net with the developed UGLS strategy for three different objects
depicted on fundus and Xray images, respectively. The U-Net
achieved the average DS and SEN of 0.8791 and 0.8858 for the
OC region, and 0.9605, 0.9607, 0.9621, and 0.9668 for the left and
righ lungs, respectively. As compared with its coarse segmentation
results, the U-Net obtained a significantly better overall performance
for six different experiments on two types of images with varying
modalities (p < 0.01). Specifically, the U-Net had better
performances for five fine segmentation experiments for the OC,
as compared to its coarse results, as shown in Table 3. Similarly, its
performances were also increased in large increments for each
experiment in the fine segmentation of the left and right lungs.

3.3 Performance comparison

Table 5 summarized the segmentation results of the involved
networks (i.e., the U-Net, AU-Net, BiO-Net, AS-Net, Swin-Unet,
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and TransUNet) in extracting three different objects from fund
and Xray images, respectively. As demonstrated by these results,
the developed UGLS strategy can significantly improve the
performance of the U-Net (p < 0.01) by merely leveraging the
its coarse segmentation results in a reasonable way, instead of
changing its network structure. Specifically, the average DS of the
U-Net increased from 0.8792 to 0.8945 for three different object
regions depicted on fundus and Xray images after using our
developed deep learning strategy. This strategy made our
developed method superior or comparable to the AU-Net
(0.8803, p < 0.001), BiO-Net (0.8843, p < 0.005), AS-Net

(0.8859, p < 0.005), Swin-Unet (0.8811, p < 0.001), and
TransUNet (0.8900, p < 0.05) with all the p-values less than
0.05 for the two segmentation tasks. Figures 4 and 5 showed the
performance differences among the involved networks on several
fundus and Xray images.

3.4 Effect of the BUM

Table 6 showed the results of the developed method in
extracting the left and right lungs from Xray images using

TABLE 1 Results of our proposed method for the coarse segmentation of the OC regions based on six experiments (i.e., Seg1-6) in terms of the mean and
standard deviation (SD) of DS, MCC, SEN and HSD (in pixel).

Object Result DS MCC SEN HSD

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

OC Seg1 0.8687 ± 0.0636 0.8629 ± 0.0627 0.8654 ± 0.1076 2.6266 ± 0.6213

Seg2 0.8439 ± 0.0767 0.8380 ± 0.0749 0.8592 ± 0.1363 2.7302 ± 0.6845

Seg3 0.8784 ± 0.0579 0.8720 ± 0.0563 0.9344 ± 0.0856 2.5711 ± 0.5217

Seg4 0.8646 ± 0.0769 0.8586 ± 0.0757 0.8508 ± 0.1239 2.5952 ± 0.6782

Seg5 0.8399 ± 0.0886 0.8358 ± 0.0847 0.7980 ± 0.1413 2.7719 ± 0.7082

Seg6 0.8898 ± 0.0595 0.8839 ± 0.0590 0.8969 ± 0.0861 2.4492 ± 0.5737

Overall 0.8642 ± 0.0736 0.8585 ± 0.0717 0.8674 ± 0.1230 2.6240 ± 0.6435

TABLE 2 The performance of the developed method for segmenting the left and right lungs (LL and RL) from Xray images.

Object Result DS MCC SEN HSD

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

LL Seg1 0.9763 ± 0.0197 0.9733 ± 0.0216 0.9672 ± 0.0369 3.9530 ± 1.5336

Seg2 0.9551 ± 0.0401 0.9512 ± 0.0399 0.9258 ± 0.0675 4.3733 ± 1.0238

Seg3 0.9019 ± 0.1429 0.8938 ± 0.1520 0.9258 ± 0.0899 5.3338 ± 2.3926

Seg4 0.9546 ± 0.0924 0.9521 ± 0.0906 0.9569 ± 0.0168 4.2231 ± 2.0033

Seg5 0.9540 ± 0.0870 0.9518 ± 0.0798 0.9838 ± 0.0135 4.1766 ± 1.8032

Seg6 0.9028 ± 0.0846 0.8977 ± 0.0789 0.9899 ± 0.0197 5.9666 ± 1.5560

Overall 0.9408 ± 0.0917 0.9367 ± 0.0925 0.9582 ± 0.0558 4.6711 ± 1.9139

Object Result DS MCC SEN HSD

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

RL Seg1 0.9656 ± 0.0418 0.9616 ± 0.0433 0.9826 ± 0.0500 4.6004 ± 1.6841

Seg2 0.9519 ± 0.0464 0.9471 ± 0.0464 0.9242 ± 0.0787 5.0881 ± 1.1806

Seg3 0.8962 ± 0.1268 0.8807 ± 0.1519 0.8991 ± 0.0567 6.6095 ± 2.9507

Seg4 0.9552 ± 0.0893 0.9512 ± 0.0920 0.9537 ± 0.0181 5.0575 ± 2.2573

Seg5 0.9644 ± 0.0899 0.9613 ± 0.0896 0.9784 ± 0.0407 4.6336 ± 1.5349

Seg6 0.9531 ± 0.0707 0.9496 ± 0.0687 0.9655 ± 0.0543 4.7648 ± 1.7171

Overall 0.9477 ± 0.0860 0.9419 ± 0.0940 0.9506 ± 0.0608 5.1257 ± 2.0893
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boundary uncertainty maps in three different ways. As
demonstrated by the results, our developed method obtained
the lowest segmentation performance, with the average DS of
0.9437 when merely trained on boundary uncertainty maps, but it
had increased performance when combining the uncertainty
maps with the original images or their background excluded
version for network training (with the average DS of 0.9611 and
0.9613). Moreover, the background excluded images can better
improve the performance of our developed method since they
reduced the impact of irrelevant background information away
from desirable objects.

3.5 Effect of parameter r

Table 7 summarized the impact of the parameter r on the
performance of the developed method in segmenting three
different objects from fundus and Xray images. The developed
method achieved the best overall performance when this
parameter was set to 25 in the OC segmentation and 35 in the
left and right lung segmentation, respectively, for the morphological
operations and Gaussian filter. These two parameter values ensured
a good balance between object information and irrelevant
background for our developed method, making it able to

TABLE 3 Fine segmentation results of the developed method for the OC regions in terms of the DS, MCC, SEN and HSD (in pixel) metrics.

Object Result DS MCC SEN HSD

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

OC Seg1 0.8696 ± 0.0647 0.8638 ± 0.0633 0.8804 ± 0.1036 2.5887 ± 0.6049

Seg2 0.8442 ± 0.0755 0.8384 ± 0.0735 0.8764 ± 0.1306 2.7324 ± 0.6512

Seg3 0.8691 ± 0.0661 0.8623 ± 0.0661 0.8835 ± 0.1147 2.5945 ± 0.6272

Seg4 0.8982 ± 0.0547 0.8938 ± 0.0521 0.9141 ± 0.1027 2.2824 ± 0.4505

Seg5 0.9033 ± 0.0527 0.8993 ± 0.0509 0.8573 ± 0.0922 2.2555 ± 0.5148

Seg6 0.8904 ± 0.0612 0.8843 ± 0.0608 0.9033 ± 0.0821 2.4461 ± 0.5930

Overall 0.8791 ± 0.0662 0.8737 ± 0.0651 0.8858 ± 0.1071 2.4833 ± 0.6031

TABLE 4 Fine segmentation results of the developed method for segmenting the left and right lungs (LL and RL) from the Xray images in terms of the DS,
MCC, SEN and HSD (in pixel) metrics.

Object Result DS MCC SEN HSD

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

LL Seg1 0.9764 ± 0.0206 0.9735 ± 0.0224 0.9709 ± 0.0349 3.9756 ± 1.4742

Seg2 0.9636 ± 0.0405 0.9601 ± 0.0415 0.9552 ± 0.0612 4.0821 ± 0.9145

Seg3 0.9291 ± 0.1325 0.9229 ± 0.1403 0.9148 ± 0.1511 4.6107 ± 1.8065

Seg4 0.9619 ± 0.0940 0.9585 ± 0.1008 0.9675 ± 0.1007 3.6484 ± 1.5086

Seg5 0.9680 ± 0.0412 0.9650 ± 0.0416 0.9794 ± 0.0182 3.9206 ± 1.2240

Seg6 0.9639 ± 0.0565 0.9615 ± 0.0557 0.9762 ± 0.0341 4.1280 ± 1.7205

Overall 0.9605 ± 0.0760 0.9569 ± 0.0800 0.9607 ± 0.0840 4.0609 ± 1.5006

Object Result DS MCC SEN HSD

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

RL Seg1 0.9661 ± 0.0625 0.9630 ± 0.0616 0.9749 ± 0.0512 4.4255 ± 1.6023

Seg2 0.9657 ± 0.0356 0.9618 ± 0.0365 0.9541 ± 0.0636 4.7426 ± 1.1453

Seg3 0.9541 ± 0.0576 0.9480 ± 0.0636 0.9473 ± 0.0696 5.1637 ± 1.5636

Seg4 0.9664 ± 0.0736 0.9625 ± 0.0809 0.9738 ± 0.0387 4.4790 ± 1.5192

Seg5 0.9685 ± 0.0632 0.9653 ± 0.0654 0.9773 ± 0.0407 4.4856 ± 1.4704

Seg6 0.9517 ± 0.0885 0.9491 ± 0.0850 0.9732 ± 0.0493 4.7916 ± 1.8466

Overall 0.9621 ± 0.0658 0.9583 ± 0.0677 0.9668 ± 0.0546 4.6813 ± 1.5598
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accurately detect object boundaries. Table 8 showed the
performance of the developed method when using different
values for the parameters in the morphological operations and
Gaussian filter. From the table, our developed method obtained a
superior overall performance when the morphological operations
and Gaussian filter shared the same value for each image dataset,
which can effectively highlight the center regions of boundary
uncertainty maps, as shown in Figure 6.

4 Discussion

In this paper, we developed a novel network training strategy
(termed UGLS) for accurate image segmentation and assessed its
effectiveness based on an existing network (i.e., the U-Net) by
extracting three different objects depicted (i.e., the OC, left and

right lungs) on fundus and Xray images. In the developed
method, the U-Net was first trained using the traditional
training strategy on the original images and their manual
annotations for the coarse-grained segmentation of desirable
objects. The segmentation results were then proposed to locate
a potential boundary region for each object, which was combined
with the original images for the fine segmentation of the objects.
We validated the developed method on two public datasets (i.e.,
REFUGE and TSMC) and compared it with five available
networks (i.e., the AU-Net, BiO-Net, AS-Net, Swin-Unet and
TransUNet) under the similar experiment configurations.
Extensive experiments showed that the developed method can
largely improve the segmentation performance of the U-Net and
was comparable or superior to the AU-Net, BiO-Net, AS-Net,
Swin-Unet and TransUNet, all of which had much more complex
network structures than the U-Net.

TABLE 5 Performance differences among the involved networks in segmenting the OC, left and right lungs depicted on fundus and Xray images,
respectively.

Object Method DS MCC SEN HSD

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

OC U-Net 0.8642 ± 0.0736 0.8585 ± 0.0717 0.8674 ± 0.1230 2.6240 ± 0.6435

AU-Net 0.8619 ± 0.0780 0.8569 ± 0.0746 0.8667 ± 0.1293 2.5896 ± 0.6180

BiO-Net 0.8663 ± 0.0721 0.8605 ± 0.0704 0.8801 ± 0.1181 2.5960 ± 0.6374

AS-Net 0.8676 ± 0.0725 0.8620 ± 0.0701 0.8757 ± 0.1186 2.6119 ± 0.6281

Swin-Unet 0.8647 ± 0.0706 0.8582 ± 0.0689 0.8799 ± 0.1145 2.7134 ± 0.5767

TransUNet 0.8737 ± 0.0643 0.8679 ± 0.0620 0.8894 ± 0.1071 2.4974 ± 0.5416

Proposed 0.8791 ± 0.0662 0.8737 ± 0.0651 0.8858 ± 0.1071 2.4833 ± 0.6031

Object Method DS MCC SEN HSD

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

LL U-Net 0.9408 ± 0.0917 0.9367 ± 0.0925 0.9582 ± 0.0558 4.6711 ± 1.9139

AU-Net 0.9607 ± 0.0719 0.9572 ± 0.0758 0.9649 ± 0.0502 4.1158 ± 1.8849

BiO-Net 0.9614 ± 0.0681 0.9582 ± 0.0673 0.9637 ± 0.0543 4.1554 ± 1.6769

AS-Net 0.9649 ± 0.0493 0.9609 ± 0.0506 0.9623 ± 0.0633 4.7912 ± 1.6847

Swin-Unet 0.9502 ± 0.0316 0.9446 ± 0.0317 0.9530 ± 0.0479 5.0613 ± 0.7958

TransUNet 0.9617 ± 0.0357 0.9574 ± 0.0377 0.9604 ± 0.0476 4.1025 ± 1.0577

Proposed 0.9605 ± 0.0760 0.9569 ± 0.0800 0.9607 ± 0.0840 4.0609 ± 1.5006

Object Method DS MCC SEN HSD

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

RL U-Net 0.9477 ± 0.0860 0.9419 ± 0.0940 0.9506 ± 0.0608 5.1257 ± 2.0893

AU-Net 0.9595 ± 0.0736 0.9545 ± 0.0804 0.9674 ± 0.0444 4.7496 ± 1.8938

BiO-Net 0.9637 ± 0.0651 0.9597 ± 0.0661 0.9693 ± 0.0483 4.7352 ± 1.6805

AS-Net 0.9663 ± 0.0516 0.9628 ± 0.0552 0.9636 ± 0.0537 4.1806 ± 1.6053

Swin-Unet 0.9549 ± 0.0280 0.9488 ± 0.0281 0.9562 ± 0.0457 5.6140 ± 0.8730

TransUNet 0.9602 ± 0.0407 0.9552 ± 0.0404 0.9606 ± 0.0421 4.8674 ± 1.1996

Proposed 0.9621 ± 0.0658 0.9583 ± 0.0677 0.9668 ± 0.0546 4.6813 ± 1.5598
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The developed method achieved promising overall performance
in segmenting multiple different objects, as compared to three
existing networks. This may be attributed to the following
reasons: First, the coarse segmentation of the objects was able to
detect various types of image features and provide some important
location information for each object and its boundaries. Second, the
introduction of boundary uncertainty maps made the potential
boundary region have a unique intensity distribution. This
distribution largely facilitated the detection of object boundaries
and enhanced the sensitivity and accuracy of the U-Net in
segmenting objects of interest. Third, the use of background

excluded images can not only ensure a reasonable balance
between object information and its surrounding background, but
also ensure that the U-Net performs the learning of various features
in the specified region, thereby leading to a increased segmentation
performance and a reduced influence of undesirable background.
Due to these reasons, the developed method can significantly
improve the segmentation performance of a relatively simple
network (i.e., the U-Net) and make it comparable or superior to
several existing sophisticated networks.

We further assessed the influence of boundary uncertainty maps
and the parameter r on the performance of the developed method.

FIGURE 4
Illustration of the segmentation results of local disc patches (in the first two rows) and their closeup versions (in the last two rows) from eight fundus
images obtained by the AU-Net (in green), BiO-Net (in blue), AS-Net (in cyan), Swin-Unet (in black), TransUNet (in orange) and our developed method in
coarse (in red) and fine (in magenta) segmentation stages as well as their manual delineations (in white), respectively.
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Segmentation results in Tables 6–8 showed that (Eq. 1) the
developed method achieved better segmentation performance
when trained on the combination of boundary uncertainty maps
and the background excluded images, as compared to the
counterparts trained merely on boundary uncertainty maps or
the original images. This may be due to the fact that there are no
enough texture information relative to targe objects and their
boundaries in boundary uncertainty maps, but too much
background information in the original images, both of which
can reduce the learning potential of the U-Net and deteriorate its

segmentation performance. 2) The developed method obtained
relatively high segmentation accuracy when the parameter r was
assigned to 25 for the OC segmentation and 35 for the left and right
lung segmentation. This parameter controlled the amount of
information about desirable objects and their surrounding
background in the boundary uncertainty maps. A proper value
for the parameter can ensure a good balance between the two types
of image information and significantly improve the fine
segmentation performance of our developed method. If the
parameter value was set too small or large, our developed

FIGURE 5
Illustration of the segmentation results of nine Xray images obtained by the AU-Net (in green), BiO-Net (in blue), AS-Net (in cyan), Swin-Unet (in
black), TransUNet (in orange) and our developedmethod in coarse (in red) and fine (in magenta) segmentation stages as well as their manual delineations
(in white), respectively.
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method would have a final result that was very close to its coarse
segmentation results or contained lots of undesirable background. 3)
The parameter r was used simultaneously in morphological
operations and Gaussian filter since it can ensure that pixels in
the center region of boundary uncertainty map have more high
contrast or intensity, as compared to the counterparts in other
regions. 4) Boundary uncertainty maps can be generated using
different strategies, but their corresponding segmentation
performance was very similar (i.e., 0.8791 vs. 0.8721 for the OC
segmentation), based on our previous study (Zhang et al., 2023).

5 Conclusion

We developed a uncertainty guided deep learning strategy
(UGLS) to improve the performance of existing segmentation
neural networks and validated it based on the classical U-Net by
segmenting the OC from color fundus images and the left and
right lungs from Xray images. The novelty of our developed
method lies in the introduction of boundary uncertainty maps
and their integration with the input images for accurate image
segmentation. Extensive experiments on public fundus and Xray

TABLE 6 The results of the developed method trained on the boundary uncertainty map (BUM) or its combination with the original image (ORI) or its
background excluded version (BEI) for the left and right lung segmentation.

Object Method DS MCC SEN HSD

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

LL BUM 0.9347 ± 0.1227 0.9297 ± 0.1245 0.9356 ± 0.1284 4.3859 ± 1.5356

ORI + BUM 0.9587 ± 0.0920 0.9553 ± 0.0956 0.9603 ± 0.0936 4.0907 ± 1.6055

BEI + BUM 0.9605 ± 0.0760 0.9569 ± 0.0800 0.9607 ± 0.0840 4.0609 ± 1.5006

Object Method DS MCC SEN HSD

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

RL BUM 0.9527 ± 0.0743 0.9476 ± 0.0771 0.9517 ± 0.0819 5.0905 ± 1.5155

ORI + BUM 0.9634 ± 0.0683 0.9597 ± 0.0708 0.9651 ± 0.0636 4.6374 ± 1.5137

BEI + BUM 0.9621 ± 0.0658 0.9583 ± 0.0677 0.9668 ± 0.0546 4.6813 ± 1.5598

TABLE 7 The results of the developed method on fundus and Xray images by setting different values for parameters r.

Object r DS MCC SEN HSD

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

OC 15 0.8678 ± 0.0696 0.8626 ± 0.0680 0.8622 ± 0.1220 2.5426 ± 0.6246

25 0.8791 ± 0.0662 0.8737 ± 0.0651 0.8858 ± 0.1071 2.4833 ± 0.6031

35 0.8735 ± 0.0655 0.8679 ± 0.0639 0.8848 ± 0.1112 2.5257 ± 0.5995

Object r DS MCC SEN HSD

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

LL 15 0.9512 ± 0.1117 0.9474 ± 0.1173 0.9519 ± 0.1114 4.1688 ± 1.6956

25 0.9543 ± 0.0968 0.9512 ± 0.0964 0.9566 ± 0.0987 4.1234 ± 1.6199

35 0.9605 ± 0.0760 0.9569 ± 0.0800 0.9607 ± 0.0840 4.0609 ± 1.5006

45 0.9566 ± 0.0996 0.9537 ± 0.0993 0.9582 ± 0.1017 4.1346 ± 1.5093

55 0.9554 ± 0.1014 0.9523 ± 0.1034 0.9584 ± 0.1023 4.0513 ± 1.5453

Object r DS MCC SEN HSD

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

RL 15 0.9614 ± 0.0649 0.9578 ± 0.0643 0.9627 ± 0.0616 4.7130 ± 1.5723

25 0.9617 ± 0.0713 0.9578 ± 0.0725 0.9646 ± 0.0529 4.6753 ± 1.6561

35 0.9621 ± 0.0658 0.9583 ± 0.0677 0.9668 ± 0.0546 4.6813 ± 1.5598

45 0.9625 ± 0.0683 0.9589 ± 0.0692 0.9662 ± 0.0558 4.6934 ± 1.5860

55 0.9636 ± 0.0646 0.9602 ± 0.0641 0.9662 ± 0.0559 4.6227 ± 1.5216
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TABLE 8 The results of the developed method for the first experiment on fundus and Xray images using different values for parameter r in morphological
operations and Gaussian filter (short for rm and rg, respectively).

Object (rm, rg) DS MCC SEN HSD

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

OC (25, 15) 0.8669 ± 0.0651 0.8611 ± 0.0639 0.8748 ± 0.1064 2.5936 ± 0.6169

(25, 25) 0.8696 ± 0.0647 0.8638 ± 0.0633 0.8804 ± 0.1036 2.5887 ± 0.6049

(25, 35) 0.8675 ± 0.0655 0.8619 ± 0.0642 0.8708 ± 0.1083 2.5815 ± 0.6131

Object (rm , rg) DS MCC SEN HSD

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

LL (35, 15) 0.9695 ± 0.0333 0.9663 ± 0.0354 0.9679 ± 0.0459 4.2534 ± 1.7802

(35, 25) 0.9733 ± 0.0259 0.9703 ± 0.0275 0.9702 ± 0.0378 4.1451 ± 1.7235

(35, 35) 0.9764 ± 0.0206 0.9735 ± 0.0224 0.9709 ± 0.0349 3.9756 ± 1.4742

(35, 45) 0.9750 ± 0.0262 0.9722 ± 0.0277 0.9752 ± 0.0357 3.9758 ± 1.5872

Object (rm , rg) DS MCC SEN HSD

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

RL (35, 15) 0.9681 ± 0.0459 0.9646 ± 0.0465 0.9754 ± 0.0508 4.4583 ± 1.5158

(35, 25) 0.9698 ± 0.0440 0.9666 ± 0.0446 0.9752 ± 0.0533 4.3794 ± 1.5588

(35, 35) 0.9661 ± 0.0625 0.9630 ± 0.0616 0.9749 ± 0.0512 4.4255 ± 1.6023

(35, 45) 0.9639 ± 0.0627 0.9610 ± 0.0608 0.9755 ± 0.0527 4.5328 ± 1.5872

FIGURE 6
(A) and (B) are the coarse segmentation result of a given fundus image and its corresponding potential boundary region, respectively. (C–E) are the
smoothed results of (B) using a Gassian filter with the parameter r of 15, 25, and 35, respectively.
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image datasets demonstrated that the developed method had the
potential to effectively extract the OC from fundus images and
the left and right lungs from Xray images, largely improved the
performance of the U-Net, and can compete with several
sophisticated networks (i.e., the AU-Net, BiO-Net, AS-Net,
Swin-Net, and TransUNet).
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