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A toxicological perspective on 
climate change and the 
exposome
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Climate change is accompanied by changes in the exposome, including 
increased heat, ground-level ozone, and other air pollutants, infectious agents, 
pollens, and psychosocial stress. These exposures alter the internal component 
of the exposome and account for some of the health effects of climate change. 
The adverse outcome pathways describe biological events leading to an 
unfavorable health outcome. In this perspective study, I  propose to use this 
toxicological framework to better describe the biological steps linking a stressor 
associated with climate change to an adverse outcome. Such a framework also 
allows for better identification of possible interactions between stressors related 
to climate change and others, such as chemical pollution. More generally, 
I call for the incorporation of climate change as part of the exposome and for 
improved identification of the biological pathways involved in its health effects.

KEYWORDS

adverse outcome pathway, xenobiotics, heat, air pollution, hallmarks of diseases

Introduction

Health and wellbeing (Goal 3) and climate action (Goal 13) are 2 of the 17 sustainable 
development goals (SDGs) formulated and endorsed by the United Nations. A number of 
other SDGs refer to environmental quality. Despite the literature on human health and climate 
change building and evolving since at least 1989, the Conferences of the Parties (COPs) on 
climate change (henceforth CC) have barely mentioned health. However, during COP28 (held 
in December 2023), extensive discussions of the impact of CC on health took place. Indeed, 
health is mentioned in the draft statement: “Attaining resilience against climate change related 
health impacts, promoting climate-resilient health services, and significantly reducing climate-
related morbidity and mortality, particularly in the most vulnerable communities”.1 A better 
understanding of the impact of CC on health and wellbeing is increasingly recognized as 
critical for public health. In this perspective article, the relevance of the exposome concept and 
toxicological tools to improve understanding of the relationship between CC and health 
is discussed.

Christopher Wild coined the term exposome in 2005 and defined it as the life-course 
environmental exposures from the prenatal period onward (1). These exposures include 
chemical, biological, and physical, as well as social inequalities and psychosocial influences. 
In that sense, the exposome is the complement of the genome (2). This definition was further 
developed by Rappaport and Smith, who highlighted the relevance of a thorough analytical 

1 https://unfccc.int/sites/default/files/resource/cma2023_L17_adv.pdf
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characterization of chemicals in body fluids. This corresponds to the 
internal component of the exposome, while environmental and 
behavioral factors correspond to the external components of the 
exposome (3). Miller and Jones included the biological impacts of 
exposures in their definition of the exposome (4). Consistent with this, 
it was recently suggested that toxicological tools could be useful for 
the characterization of the human exposome (5).

The effects of anthropogenic CC on human health correspond to 
an increasingly visible change in the exposome (6, 7). CC influences 
exposures to physical stressors (heat and UV), chemical stressors 
(ground-level ozone and particles), and biological stressors (vectors 
and the diseases they transmit, infectious agents in water, and pollens), 
as well as psychosocial stressors induced by extreme weather events 
(7). The exposome concept appears well suited to analyze these effects 
by incorporating all these stressors as well as their interactions (1). 
Furthermore, the “co-benefits” strategies for CC mitigation call for a 
holistic assessment of the attenuation of pollution sources (e.g., 
increased active transport has been suggested as reducing greenhouse 
gas emissions while also improving fitness) and are in line with the 
exposome concept (8, 9).

Several recent reviews have highlighted the relevance of 
toxicological tools and concepts for the assessment of exposome 
health effects (4, 5, 10). Indeed, toxicological studies are currently 
based on omics (large-scale data-rich studies), systems biology, 
predictive molecular tools, computational approaches, and the adverse 
outcome pathway (AOP) framework in addition to more traditional 
experimental approaches (11, 12). Furthermore, there is a growing 
interaction between toxicology, epidemiology, and exposure sciences 
that is critical for risk assessment. With this in mind, it is relevant to 
explore whether insights from toxicology can improve the 
understanding of the health effects of CC, including through an 
exposome “lens.”

Altering the external component of 
the exposome

CC alters several forms of exposure (see Figure 1). CC impacts the 
amounts and distribution of several environmental factors, which may 
lead to biological and health outcomes. In order to analyze these 
effects, modifications in environmental stressors induced by CC in 
different matrices are discussed below. The two major matrices that 
are analyzed are air and water, and the contributions of factors 
modified by CC as well as those of other environmental determinants 
such as pollution are examined.

One of the consequences of CC is the increase in ground-level 
ozone (13–15). Ozone is produced from chemicals of natural- and 
human-derived origin, such as fossil fuel combustion. Ozone is a 
known pulmonary toxicant; its effects can combine with other air 
pollutants to increase the risk of lung diseases (16). A CC-associated 
increase in drought will also increase atmospheric particulate matter. 
There are significant differences in the nature of particles that increase 
with CC (dust, sand, and smoke from wildfires) as compared to traffic, 
and it is likely that such increases will have systemic human health 
effects (17). Dust and sand particles can bind a variety of chemicals, 
sometimes transporting them over long distances. Wildfires will also 
increase pollutants, with considerable effects (7). Pollens and allergens 

will also increase with CC, and this will impact a number of respiratory 
and other diseases (18). Pollens may interact with infectious agents 
and other air pollutants to exacerbate diseases. Air quality will 
be considerably altered by CC in many areas of the world, particularly 
those where drought is expected to increase. On the other hand, any 
substantial reduction in the combustion of coal and other fossil fuels 
(to slow the rate of CC) will act to counter such a deterioration in air 
quality. Several environmental factors that are modified by CC elicit 
biological events such as inflammation, oxidative stress, and immune 
dysregulation, ultimately leading to lung and other diseases.

The decrease in water availability and quality due to drought will 
lead to increased concentrations of chemicals for humans and other 
species (19). Another critical factor is the increasing number of 
extreme events and floods. These spread infectious agents as well as 
potentially toxic chemicals, degrading water and soil quality (20). 
Increased heat, another important CC effect, may alter the properties 
of chemicals to which people are exposed, including their solubility, 
persistence, and volatility (19). However, at this stage, it is difficult to 
draw a general conclusion about whether the effect of heat on chemical 
toxicity is negative or positive. Similarly, soil quality will depend on 
the physical and metabolic properties of chemical contaminants.

Changes in the internal component of 
the exposome: xenobiotic 
toxicokinetics

Changes in the external exposome can lead to changes in the 
internal exposome. The latter can also be modified if the absorption, 
distribution, metabolism, and elimination of exogenous chemicals 
(xenobiotics) are altered by CC. There is indirect evidence that this 
may be the case. The impact of CC may vary depending on the type 
of xenobiotics. Some xenobiotics, such as persistent organic pollutants 
(POPs), are not metabolized and are persistent in the body, while 
others are readily metabolized and eliminated. Concerning POPs, 
which are stored in human adipose cells (21), there are suggestions 
that global warming may contribute to increased obesity and thus 
increased storage capacity (22). Whether this could lead to increased 
health effects from these chemicals is unclear.

Xenobiotic metabolic pathways are influenced by changes in 
physiological states, which may be  altered by CC. Xenobiotic 
metabolism and elimination are primarily dependent on the 
functional liver, gut, and kidney. Heat, especially when accompanied 
by dehydration, alters renal function and impairs other metabolic 
organs, leading to accumulated levels of toxins (23, 24). Another effect 
of CC may be an increased risk of hepatic infection and inflammation, 
potentially also harming xenobiotic metabolism (25).

The microbiome is also sensitive to CC possibly leading to 
modifications in the absorption of chemicals (26, 27).

Common health targets of chemicals 
and climate change-related stressors

Several health effects of CC arise from increased exposure to 
environmental pollutants. Examples of such health impacts are 
detailed below.
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Immunotoxicity and infections

A hallmark of CC is an altered distribution (in some cases 
increased) of infectious diseases. This is due to changes in vector 
locations, accelerated life cycles of pathogens within some vectors, and 
pathogens contaminating water. Many chemicals have been shown to 
interfere with the immune system, leading in some cases to 
immunosuppression (28). This is in particular the case of dioxins and 
poly- and perfluoroalkyl substances (PFASs). Higher concentrations 
of PFAS correlate with decreased vaccination responses in children 
and an increased risk of infection (29). In the case of dioxin-like 
compounds, the mechanisms of immunotoxicity appear to be linked 
to the immune functions of the dioxin receptor (aryl hydrocarbon 
receptor), in particular in barrier organs (e.g., gut and skin) (30). 
Furthermore, both dioxin-like compounds and PFAS are highly 
persistent chemicals and will remain contaminants of high concern in 
the next decades, even if their global production is rapidly regulated 
(PFAS) or limited (dioxins). It is not proven yet that immunotoxicants 
will affect CC-associated infectious agents, but this is biologically  
plausible.

Neurotoxicity and climate change

Many chemicals have been proven to be  likely or proven 
neurotoxicants (31, 32). The two main outcomes are developmental 
and adult neurotoxicity, in particular neurodegenerative diseases. 
There are several possible interactions between neurotoxicants and 
CC. Neuronal oxidative stress occurs in neurodegenerative diseases 

(33). Some of the health impacts of CC are also partly mediated by 
oxidative stress; thus, these consequences could be  additive or 
synergistic. Furthermore, excessive heat and dehydration may also 
cause neurological harm. Further study of neurotoxins, including their 
interactions with infectious agents and air pollution that may also 
be altered in their risk profile due to CC, is of importance.

Mental health

It is now accepted that CC can lead to a range of mental health 
effects, including those resulting from exposure to extreme weather 
events (34). It is plausible that these conditions may interact with 
chemical exposure, aggravating or generating a variety of 
neurocognitive diseases, including among children.

Pulmonary and cardiac toxicity

Air pollution is generated by traffic, industry, and agriculture and 
is likely to be increased by CC (16). This eventually leads to lung and 
heart diseases. Importantly, heat also contributes to deleterious effects 
on these organs.

Reproductive health

Recent evidence has suggested that CC-associated pathways harm 
reproductive health, via means such as air pollution, exposure to 

FIGURE 1

Climate change: major biological and health impacts. Climate change modifies a variety of environmental factors. These may interact with other 
stressors, thus altering a number of biological events and ultimately leading to health effects. The figure highlights key biological events as a first step in 
using the adverse outcome pathways framework. The figure was drawn with Biorender.
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wildfire, and excessive heat (35). Different mechanisms are involved, 
depending on the nature of the stressor. Many chemicals are also 
known to lead to reprotoxicity, in particular, endocrine disruptors 
(36, 37).

Cancer

An increased risk of cancer associated with CC is plausible 
because of increased exposure to UV and some chemicals via the 
pathways discussed above (9). The actual impact is, at this stage, 
difficult to assess. An increase in infectious agents could also lead to 
increased cancer.

These examples indicate that CC and chemical agents have 
common health impacts. It is still unclear if the interaction between 
these stressors is additive, synergistic, or otherwise. In some cases, 
interactions are biologically plausible (e.g., immunosuppressants and 
infectious agents), but in other cases, this remains speculative. An 
improved understanding of toxicology could help better characterize 
these interactions.

Relevance of new frameworks in 
toxicology to climate change 
impacts

In recent years, several new frameworks have been put forward 
in biomedical research, including toxicology. Among these, disease 
“hallmarks” (e.g., DNA integrity as an indicator of cancer) highlight 
major biological processes perturbed by illness (38, 39). Key 
characteristics are focused on the agents that can lead to an adverse 
outcome and are mostly used in the field of cancer (e.g., 
genotoxicants) (40). The characterization of AOPs is currently one 
of the major objectives in toxicology. An international effort has 
been launched to identify such pathways and publish them on a 
dedicated website, AOPwiki.2 An AOP is a chain of linked biological 
events that begins with an identified molecular trigger, ultimately 
leading to an adverse outcome (41). Importantly, event–event 
relationships are evidence-based. Each of these frameworks is 
useful under certain conditions; they are complementary to a 
large extent.

Concerning CC and its possible interaction with other 
exposome factors, I argue that the AOP framework is relevant. It 
is noteworthy that AOPs are agnostic in that they are not specific 
to a stressor but rather can be triggered by a variety of them. A 
first step would be to identify biological events that link CC to 
health effects. This allows us to link biological events that are 
included in available AOPs to CC-related environmental stressors 
or prompt the development of additional AOPs. Furthermore, 
AOP networks, which illustrate how different AOPs share 
common events, can show how CC-related stressors interact with 
other stressors. For example, increased inflammatory cytokines 
can be key events in pathways triggered by CC-related stressors as 

2 https://aopwiki.org/

well as by chemical contaminants (e.g., the key event n°1,496: 
“increased secretion of inflammatory mediators,” AOPwiki) (see 
Figure 1). Oxidative stress is elicited by chemical, physical, and 
psychological stressors (42). Extreme heat is a physical stressor 
that leads to a variety of life-threatening outcomes and targets 
different organs including the kidney, heart, and brain (7). It 
initially leads to a loss of internal temperature control, which is 
then associated with different outcomes. Developing AOPs, 
including the dysregulation of body temperature control and 
ultimately leading to diverse health outcomes, would be useful to 
identify links to available AOPs and to infer possible interactions 
with other stressors.

In a previous commentary, we called for the application of the 
AOP framework to social hazards (43). Most of the effort in the 
field of AOPs has been accomplished by toxicologists using data 
primarily derived from studies on chemical hazards. However, 
since AOPs are agnostic by design, it should be possible to use 
the framework for a variety of stressors and conditions reflecting 
the universality of the concept. An advantage of such an approach 
is that it allows a better description of interactions between 
different types of stressor-elicited pathways (e.g., social and 
physical, CC, and chemical). We  argued this should bridge 
different fields to the benefit of biomedical and 
environmental research.

Conclusion and recommendations

There is increasing knowledge of the impact of CC on human 
health; however, much remains unknown. Delineating the 
mechanistic pathways will help to identify and predict possible 
interactions between different stressors associated with CCs and 
other environmental effects. A toxicological approach could 
be useful.

The main recommendation is to further explore the relevance 
of the AOP framework in the context of CC. This requires 
identifying the current AOPs or key events in AOPwiki that may 
be relevant for CC effects, for example, inflammatory cytokines, 
oxidative stress, and skin sensitization (see text footnote 2sssssw). 
Such AOPs may indicate possible interactions between CC and 
other stressors. For some CC factors, such as heat, it may be useful 
to develop new AOPs that can also be  used to identify 
possible interactions.

Another related proposal would be to systematically look for 
interactions between different environmental factors and CC 
effects. This would support the identification of vulnerable 
individuals, problematic co-exposures, or possible antagonistic 
effects. For example, it would be  interesting to determine the 
interactions between traffic- and industry-related air pollution 
and infectious diseases elicited by CC; indeed, the immune and 
inflammatory effects elicited by air pollution could interfere with 
the normal response to infections. Another example is the 
interaction between increased ozone and air pollution and 
lung diseases.

A specific focus on the effect of CC on children–particularly 
those sensitive to environmental stressors–is also recommended. 
The exposome concept highlights life-course effects, with childhood 
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being a particularly vulnerable stage of development, in particular 
for neurocognitive functions. The combination of different stressors 
associated with CC (e.g., heat waves, extreme weather events, 
wildfires, and anxiety) may have a particularly detrimental impact 
on children.
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