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Abstract 

The host-parasitoid relationships of Anagyrus sp. nr. pseudococci were investigated, including 

host selection behavior, host defenses, host suitability and parasitoid functional response in 

relation to five mealybug species with different phylogenetic relationships and geographical 

origins: i) a Mediterranean native species, Planococcus ficus, with a long co-evolutionary 

history with the parasitoid; ii) three alien species, Planococcus citri, Pseudococcus calceolariae 

and Pseudococcus viburni, with a more recent co-evolutionary history; and iii) a fourth alien 

species, Phenacoccus peruvianus, with no previous common history with the parasitoid. The 

parasitoid recognized as potential hosts and complete development in all five mealybug species, 

but showed a clear preference for Planococcus spp. Host suitability of the studied mealybugs 

seems to fit a phylogenetic/biogeographic trend, showing the highest level in Pl. ficus and its 

closely related congener Pl. citri, followed by the Australasian Ps. calcelolariae, and the 

Neotropical Ps. viburni and Ph. peruvianus. The functional response of the parasitoid varied 

between host species, with a type II and type III responses observed for Ps. calceolariae and 

Pl. ficus, respectively. The results suggest that A. sp. nr. pseudococci has a broader host range 

and a more generalist behavior in comparison with other Anagyrus species.  

 

Key-words: host selection, host defense, host suitability, functional response, biological 

control   
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Resumo 

As relações parasitóide-hospedeiro de Anagyrus sp. próx. pseudococci, nomeadamente o 

comportamento de selecção do hospedeiro, as defesas do hospedeiro e sua adequação e a 

resposta funcional do parasitóide, foram estudadas em relação a cinco espécies de cochonilhas-

algodão, com diferentes relações filogenéticas e origens geográficas: i) uma espécie nativa do 

Mediterrâneo, Planococcus ficus, com longa história co-evolutiva com o parasitóide; ii) três 

espécies exóticas, Planococcus citri, Pseudococcus calceolariae e Pseudococcus viburni, com 

história co-evolutiva mais recente; e iii) uma quarta espécie exótica, Phenacoccus peruvianus, 

sem relação evolutiva com o parasitóide. O parasitóide reconheceu como hospedeiros 

potenciais as cinco espécies de cochonilhas e em todas elas completou o desenvolvimento, mas 

evidenciou clara preferência por Planococcus spp. A adequação das espécies estudadas de 

cochonilhas como hospedeiros de A. sp. próx. pseudococci parece seguir um padrão 

fiologenético/biogeográfico, tendo evidenciado o nível mais elevado em Pl. ficus e Pl. citri, 

seguido da espécie de origem australiana, Ps. calceolariae e das duas espécies neotropicais, Ps. 

viburni e Ph. peruvianus. A resposta funcional do parasitóide variou entre hospedeiros, tendo-

se observado uma resposta do tipo II e III em Ps. calceolariae e Pl. ficus, respectivamente. Os 

resultados sugerem que A. sp. próx. pseudococci apresenta maior leque de hospedeiros e 

comportamento mais generalista em comparação com outras espécies de Anagyrus.  

 

Palavras-chave: selecção do hospedeiro, defesas do hospedeiro, adequação do hospedeiro, 
resposta funcional, luta biológica 
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1.1. State of the art 

Mealybugs (Hemiptera: Pseudococcidae) are soft-bodied piercing-sucking insects constituting 

the second largest family of scale insects (Hemiptera: Coccoidea), with more than 2000 

described species (Ben-Dov, 1994; Downie & Gullan, 2004). About 160 species of mealybugs 

are recognized as pests worldwide (Miller, Miller, & Watson, 2002). Many of them are 

cosmopolitan species belonging to the genera Planococcus, Pseudococcus and Phenacoccus, 

such as the citrus mealybug Planococcus citri (Risso), the vine mealybug Pl. ficus (Signoret), 

the citrophilus mealybug Pseudococcus calceolariae (Maskell), the obscurus mealybug Ps. 

viburni (Signoret), and the bougainvillea mealybug Phenacoccus peruvianus Granara de 

Willink (Ben-Dov, 1994; Beltrà et al., 2010; Franco, Zada, & Mendel, 2009; Hardy, Gullan, & 

Hodgson, 2008). Mealybugs are notorious invaders because they are small insects, often live in 

hidden habitats, and frequently are transported on commodities that are common in 

international commerce (Miller et al., 2002). Damage originated by mealybugs is often linked 

to sap feeding, honeydew excretion and associated sooty mold development, toxin injection and 

virus transmission, including leaf yellowing, defoliation, reduced plant growth, and in some 

cases death of plants (Franco et al., 2009). For example, in Georgia in 1996, the estimated losses 

and cost of mealybugs amounted to $98,658,000 (Chong, Oetting, & Iersel, 2003). 

Adult females of mealybugs are wingless, often elongate or oval, with about 0.4 to 0.8 mm 

in body length, resembling immature stages, whereas adult males are winged, short-lived, non-

feeding and rarely seen insects (Kosztarab & Kozár, 1988). Females usually lay 100-400 eggs 

into a white, filamentous ovisac, which they secrete from glands in their cuticle (Cox & Pearce, 

1983; Mckenzie, 1967). Typically, mealybugs reproduce sexually, but some species are 

parthenogenetic (Kosztarab & Kozár, 1988; McKenzie, 1967; Nur, 1977). Their life cycle 

includes five stages for females (egg - 1th instar - 2th instar - 3th instar - adult) and six stages 

for males (egg - 1th instar - 2th instar - prepupa - pupa - adult) (Chong et al., 2003; Mckenzie, 

1967; Walton & Pringle, 2004). Mealybugs often complete several generations per year, 

depending on temperature, allowing a quick buildup of their populations (Franco et al., 2009). 

Planococcus ficus is a major pest in many grapevine-growing regions in the world (Ben-

Dov, 1994; Daane et al., 2006; Walton, Daane, & Pringle, 2004). Planococcus citri, Ps. 

calceolariae and Ps. viburni are polyphagous mealybugs with pest status on different crops, 

including citrus and ornamental plants (Ben-Dov, 1994; Franco, Suma, Silva, Blumberg & 

Mendel, 2004; Franco et al., 2009; Pellizzari & Germain, 2010). Phenacoccus peruvianus is a 

major pest of Bougainvillea spp. (Beltrà et al., 2010). Planococcus ficus is considered native to 

the Mediterranean basin (Cox & Ben-Dov, 1986), whereas Planococcus citri, although of 
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uncertain origin, is believed to be Afrotropical (Franco et al., 2008). Pseudococcus calceolariae 

is from Australasia (Pellizzari & Germain, 2010), and Ps. viburni and Ph. peruvianus are native 

to South America (Beltrà et al., 2010; Charles, 2011). According to Pellizzari and Germain 

(2010), Pl. citri, Ps. calceolariae and Ps. viburni arrived and established in Europe during the 

19th century. However, studies on the biogeographic origin and molecular characterization of 

Ps. viburni suggest that its introduction in Europe may have occurred much earlier, in the 16th 

century (Charles, 2011; Correa, Germain, Malausa, & Zaviezi, 2012). This is possibly also the 

case for Pl. citri and Ps. calceolariae. Nevertheless, Ph. peruvianus was only recently 

introduced into Europe (Beltrà et al., 2010).  

Chemical control is still the most common control tactic used against mealybug pests. 

However, the cryptic behavior of mealybugs, their typical waxy body cover, and clumped 

spatial distribution pattern render the use of many insecticides ineffective. Repeated insecticide 

use, especially of broad-spectrum chemicals, also has adverse ecological and environmental 

impacts (Franco et al., 2009). Therefore, biological control has been considered an 

environmentally friendly alternative tactic to be used in integrated pest management strategies 

for the control of pest mealybugs (Franco et al., 2009). 

The Encyrtidae are considered one of the six most successful families of Hymenoptera used 

in biological control programs. Within this family, the tribe Anagyrini consists mainly of 

mealybug primary endoparasitoids, including several species of the genus Anagyrus, which is 

the most successful Anagyrini genus used in biological control (Noyes & Hayat, 1994). 

Anagyrus pseudococci s.l. (i.e., sensu latu, corresponding to the references before Triapitsyn, 

González, Vickerman, Noyes, & White, 2007) is a koinobiont solitary endoparasitoid of 

mealybugs (Islam & Copland, 1997; Noyes & Hayat, 1994). It has been used as a biological 

control agent, especially against Pl. citri and Pl. ficus (Noyes & Hayat, 1994; Triapitsyn et al., 

2007). About 24 mealybug species have been reported as hosts of A. pseudococci s.l., 

representing 11 different genera (Noyes & Hayat, 1994). However, some of these records are 

possibly erroneous. For example, Noyes and Hayat (1994) refer to records of Rastrococcus 

iceryoides (Green) and Saccharicoccus sacchari (Cockerell) as hosts of A. pseudococci s.l. are 

probably misidentifications. Recently, Triapitsyn et al. (2007) showed that Anagyrus 

pseudococci s.l. comprises two sibling, reproductively incompatible and genetically different 

species: Anagyrus pseudococci (Girault) and Anagyrus sp. nr. pseudococci (Girault). Anagyrus 

pseudococci is apparently restricted to Sicily, Argentina (introduced), and Cyprus, whereas A. 

sp. nr. pseudococci seems to be more widely distributed, since it has been recorded from many 

countries including Portugal, Spain, Italy, Greece, Israel, Turkmenistan, South Africa, Brazil 
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and USA (Franco et al., 2011; Guerrieri & Pellizzari 2009; Karamaouna, Menounou, Stathas, 

& Avtzis, 2011; Mgocheki & Addison, 2009; Triapitsyn et al., 2007). Therefore, there is a need 

to study the biology of both parasitoid species, in order to further clarify the taxonomic status 

of A. sp. near pseudococci, as well as to support decision making about their use in biological 

control of pest mealybugs. A further understanding of their host-parasitoid relationships, in 

particular their host range is needed (Triapitsyn et al., 2007). 

 

1.2. Objectives 

In this research work, we aimed at studying the host-parasitoid relationships of A. sp. nr. 

pseudococci by investigating host selection behavior, host defenses, host suitability, and 

functional response in relation to host mealybugs of different geographical and phylogenetic 

origin, as a basis to further clarify the taxonomic status and biological traits of this parasitoid 

species, as well as to improve its effective use as a biological control agent of pest mealybugs. 

With that purpose, we selected five pest mealybug species from three different genera 

(Planococcus, Pseudococcus, and Phenacoccus) and two subfamilies (Pseudococcinae and 

Phenacoccinae) (Downie & Gullan, 2004; Hardy, Gullan, & Hodgson, 2008): i) Pl. citri and Pl. 

ficus (Pseudococcinae, Planococcini); ii) Ps. calceolariae and Ps. viburni (Pseudococcinae, 

Pseudococcini); and iii) Ph. peruvianus (Phenacoccinae). Although in the same subfamily, 

Pseudococcus is a distant genus in respect to Planococcus, belonging to a different tribe. 

Phenacoccus is even more phylogenetically distant from Planococcus, being part of a different 

subfamily (Downie & Gullan, 2005; Hardy et al., 2008). Therefore, the selected mealybug 

species are expected to present different evolutionary relationships with the parasitoid A. sp. nr. 

pseudococci. This parasitoid is considered to have a close evolutionary relationship with Pl. 

ficus (Franco et al., 2008, 2011). However, Pl. citri, Ps. calceolariae and Ps. viburni have been 

possibly in contact with A. sp. nr. pseudococci only for the last few centuries, at most. Finally, 

the lack of previous contact of the parasitoid with Ph. peruvianus excludes any previous 

adaptation in this host-parasitoid system. 

The specific objectives of this research were: 

1. Comparing the host selection behavior of A. sp. nr. pseudococci among the select 

mealybug species, focusing on close range host location, host recognition, and host 

acceptance components (Chapter 2); 

2. Analyzing differences on the host defense behavior and immune response of the selected 

mealybug species to the attack of Anagyrus sp. nr. pseudococci (Chapter 3); 
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3. Assessing host suitability of the selected mealybug species for the development of A. 

sp. nr. pseudococci based on different fitness parameters of the parasitoid, such as body 

size, development time, emergence rate, and sex ratio (Chapter 4); 

4. Investigating the functional response of A. sp. nr. pseudococci and testing if it could be 

affected by the host species, depending on its evolutionary history (Chapter 5). 
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Abstract 

The host selection behavior of Anagyrus sp. nr. pseudococci was compared in no-choice tests 

among five mealybug species of different geographical and phylogenetic origin, including the 

Mediterranean native host, Planococcus ficus, and four exotic mealybug species, one of the 

same genus, Pl. citri, two Pseudococcus species, Ps. calceolariae and Ps. viburni, and a more 

distant one, Phenacoccus peruvinaus. All five studied mealybug species were recognized by 

the parasitoid as potential hosts and parasitized, but the behavioral pattern of host recognition, 

host handling and the level of host acceptance of Anagyrus sp. nr. pseudococci significantly 

varied among the five studied species, indicating a clear preference for the two Planococcus 

species, Pl. ficus in particular. The results suggest that A. sp. nr. pseudococci has a broader host 

range and a more generalist behavior in comparison with other Anagyrus species. Practical 

implications of the findings are discussed.  

 

Key-words: parasitoids, mealybugs, foraging behavior, host range, handling time, biological 

control 
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2.1. Introduction  

Parasitoids are the most important and successful group of natural enemies used in biological 

control of insect pests (Mills & Wajnberg, 2008; Noyes & Hayat, 1994). The behavioral 

ecology of parasitoids is critical for the success of biological control implementation, as the 

effective suppression of insect pests depends on the parasitoid behavioral decisions during host 

searching and acceptance (Mills & Wajnberg, 2008). In general, host selection behavior of 

parasitic Hymenoptera involves a series of steps, including host habitat location, host location, 

host recognition and host acceptance, each involving different kinds of cues (Vinson, 1998).  

Considering that the fundamental host range of a parasitoid is expected to be largely 

influenced by parasitoid host selection process (Vinson, 1998), the study of behavioral aspects 

involved in parasitoid-host relationships is important for predicting parasitoid host range. 

Parasitoid host range has been attracting much attention from researchers and is considered a 

central question for both theoretical and applied reasons. Knowledge on host range is of critical 

importance to understanding the functioning and evolution of parasitoid communities (Shaw, 

1994; Stireman & Singer, 2003a,b), as well as to assess the risk of non-target impacts of 

biological control of insect pests (Wajnberg, Scott & Quimby, 2001). Realized host range, i.e., 

the host species actually used by the parasitoid (Nechols, Kauffman & Schaefer, 1992) is 

traditionally obtained from literature. However, published host records are often unreliable, 

especially those from older literature, due to misidentification of parasitoid and/or host (Conti, 

Salerno, Bin, & Vinson, 2004; Hopper, 2001; Shaw, 1994). The realized host range of a 

parasitoid integrates its natural host range (in the area of origin of the parasitoid) and novel host 

range (in areas where it has been introduced) (Barratt et al., 2012), which are delimited by the 

fundamental host range, i.e. genetically defined (Nechols et al., 1992). The study of parasitoid 

behavior can also contribute to our knowledge on parasitoid taxonomy and co-evolution 

between parasitoids, their hosts and the plants the host lives on (van Alphen & Jervis, 1996).  

Mealybugs (Hemiptera: Pseudococcidae) constitute the second largest family of scale 

insects (Hemiptera: Coccoidea), with more than 2000 described species (Ben-Dov, 1994; 

Downie & Gullan, 2004), of which about 160 species are recognized as pests worldwide 

(Miller, Miller, & Watson, 2002). Many of them are cosmopolitan species belonging to the 

genera Planococcus, Pseudococcus and Phenacoccus (Franco et al., 2009). Damage originated 

by mealybugs is often linked to sap feeding, honeydew excretion and associated sooty mold 

development, toxin injection and virus transmission (Franco, Zada, & Mendel, 2009).  
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The Encyrtidae are considered one of the six most successful families of Hymenoptera used 

in biological control programs. Within this family, the tribe Anagyrini consists mainly of 

mealybug primary endoparasitoids, including several species of the genus Anagyrus, which is 

the most successful Anagyrini genus used in biological control (Noyes & Hayat, 1994). 

Anagyrus pseudococci s.l. (i.e., sensu latu, corresponding to the references before Triapitsyn, 

González, Vickerman, Noyes, & White, 2007) is a koinobiont solitary endoparasitoid of 

mealybugs (Islam & Copland, 1997; Noyes & Hayat, 1994). It has been used as a biological 

control agent, especially against the citrus mealybug, Planococcus citri (Risso) and the vine 

mealybug, Planococcus ficus (Signoret) (Noyes & Hayat, 1994; Triapitsyn et al., 2007). About 

24 mealybug species have been reported as hosts of A. pseudococci s.l., representing 11 

different genera, namely Antonina (1 species), Dysmicoccus (1), Maconellicoccus (1), 

Nipaecoccus (2), Peliococcus (1), Phenacoccus (5), Planococcoides (1), Planococcus (3), 

Pseudococcus (7), Rastrococcus (1), and Saccharicoccus (1) (Noyes & Hayat, 1994). However, 

some of these records are possibly erroneous. For example, Noyes and Hayat (1994) refer to 

records of Rastrococcus iceryoides (Green) and Saccharicoccus sacchari (Cockerell) as hosts 

of A. pseudococci s.l. are probably misidentifications. Recently, Triapitsyn et al. (2007) showed 

that Anagyrus pseudococci s.l. comprises two sibling, reproductively incompatible and 

genetically different species: Anagyrus pseudococci (Girault) and Anagyrus sp. nr. pseudococci 

(Girault). Anagyrus sp. nr. pseudococci is apparently the more common of the two parasitoid 

species in the Mediterranean basin (Triapitsyn et al., 2007; Guerrieri & Pellizzari, 2009; Franco 

et al., 2011; Karamaouna, Menounou, Stathas & Avtzis, 2011). According to Triapitsyn et al. 

(2007), “the host range and host preference of both A. pseudococci and A. sp. nr. pseudococci 

need to be further investigated (…) in order to provide taxonomists with the information needed 

for further clarification of the taxonomic status of A. sp. nr. pseudococci, and also to help 

biological control practitioners make proper decisions about the use of both forms against the 

citrus, vine, and possibly other mealybugs (such as some Pseudococcus spp.).” 

In the present study, we aimed at studying the host range of A. sp. nr. pseudococci by 

investigating its relationship with host mealybugs of different geographical and phylogenetic 

origin. With that purpose, we selected five pest mealybug species from three different genera 

(Planococcus, Pseudococcus and Phenacoccus) and two subfamilies (Pseudococcinae and 

Phenacoccinae) (Downie & Gullan, 2004; Hardy, Gullan, & Hodgson, 2008): i) Pl. citri and Pl. 

ficus (Pseudococcinae, Planococcini); ii) the citrophilus mealybug, Pseudococcus calceolariae 

(Maskell) and the obscure mealybug, Pseudococcus viburni (Signoret) (Pseudococcinae, 

Pseudococcini); and iii) the bougainvillea mealybug, Phenacoccus peruvianus Granara de 



12 

 

Willink (Phenacoccinae). Although in the same subfamily, Pseudococcus is a distant genus in 

respect to Planococcus, belonging to a different tribe. Phenacoccus is even more 

phylogenetically distant from Planococcus, being part of a different subfamily (Downie & 

Gullan, 2005; Hardy et al., 2008). 

Except for Pl. ficus, which is considered native to the Mediterranean basin (Cox & Ben-

Dov, 1986), all other selected mealybug species are alien, having different origin and history 

of invasion of the Mediterranean basin. Planococcus citri is believed to have Afrotropical origin 

(Franco et al., 2008), Ps. calceolariae is from Australasia (Pellizzari & Germain, 2010), and 

Ps. viburni and Ph. peruvianus are native to South America (Beltrà et al., 2010, Charles, 2011). 

Planococcus ficus is a major pest in many grapevine-growing regions in the world (Ben-Dov, 

1994; Daane et al., 2006; Walton, Daane, & Pringle, 2004). Planococcus citri, Ps. calceolariae 

and Ps. viburni are cosmopolitan, polyphagous mealybugs with pest status on different crops, 

including citrus and ornamental plants (Ben-Dov, 1994; Franco, Suma, Silva, Blumberg, & 

Mendel, 2004; Franco et al., 2009; Pellizzari & Germain, 2010). Phenacoccus peruvianus is a 

major pest of Bougainvillea spp. (Beltrà et al., 2010). 

According to Pellizzari and Germain (2010), Pl. citri, Ps. calceolariae and Ps. viburni 

arrived and established in Europe during the 19th century. However, studies on the 

biogeographic origin and molecular characterization of Ps. viburni suggest that its introduction 

in Europe may have occurred much earlier, in the 16th century (Charles, 2011; Correa, Germain, 

Malausa, & Zaviezi, 2012). This is possibly also the case for the other two mealybug species. 

Nevertheless, Ph. peruvianus was only recently introduced into Europe (Beltrà et al., 2010).  

Therefore, the selected mealybug species are expected to present different evolutionary 

relationships with the parasitoid A. sp. nr. pseudococci. This encyrtid is considered to have a 

close evolutionary relationship with Pl. ficus (Franco et al., 2008, 2011). However, Pl. citri, Ps. 

calceolariae and Ps. viburni have been possibly in contact with A. sp. nr. pseudococci only for 

the last few centuries, at most. Finally, the lack of previous contact of the parasitoid with Ph. 

peruvianus excludes any previous adaptation in this host-parasitoid system. As an experimental 

approach, we compared in no-choice tests the host selection behavior of A. sp. nr. pseudococci 

among the selected mealybug species, focusing on close range host location, host recognition, 

and host acceptance components. 

2.2. Material and methods 

2.2.1. Mealybug rearing 

The origin of the mealybugs used in the study is referred to in Table 2.1. Mealybugs were reared 

on sprouted potatoes (Solanum tuberosum L.) during multiple generations. Third instars of each 
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species were isolated on sprouted potatoes within ventilated plastic boxes seven days before the 

beginning of the experiments to standardize age, physiological state and obtain pre-

reproductive adult females. Isolated mealybugs were kept at controlled conditions (25.0±0.5oC, 

55-65% RH, in the dark). 

 

Table 2.1- Origin of the mealybug populations used in the experiments. 

Mealybug species Region Host plant 

Planococcus citri Silves (Mainland Portugal) Sweet orange 

Planococcus ficus Tavira (Mainland Portugal) Grapevine 

Pseudococcus calceolariae Loulé (Mainland Portugal) Sweet orange 

Pseudococcus viburni Biscoitos (Azores, Portugal) Grapevine 

Phenococcus peruvianus Queluz (Mainland Portugal) Bougainvillea glabra 

 

2.2.2. Parasitoid rearing  

Anagyrus sp. nr. pseudococci was collected in the region of Silves (Portugal) and reared within 

ventilated plastic boxes on Pl. citri for multiple generations under controlled conditions 

(25.0±0.5oC, 55-65% RH, 16L:8D photoperiod). To obtain naïve adult female wasps less than 

24h old, the rearing plastic boxes were first observed and kept free of parasitoids, and then 

checked every 24h. Before the experiments, each female wasp was fed and mated by 

introducing it into a new box containing one drop of honey and two male wasps, in which they 

were kept for 72h under the same controlled conditions mentioned above, until the beginning 

of the experiment. 

 

2.2.3. Experiments 

The experiments were conducted between 12:00h and 19:00h, under laboratory conditions (19-

22°C and 55-65% RH). In each of the 22 replicates, one naïve adult parasitoid female was 

exposed to 10 pre-reproductive adult mealybug females in a Petri-dish (9cm diameter), and 

observed during 30 min. The behavior of wasp females was described according to the 

following five categories (Heidari & Jahan, 2000; Karamaouna & Copland, 2000): i) searching 

(the parasitoid moved randomly while moving its antennae upward and downward 

successively); ii) antennation (the female wasp examines the host mealybug, by drumming the 

antennae); iii) probing (the females inserts the ovipositor to collect information from inside the 



14 

 

host); iv) oviposition (the female wasp turns her body clockwise or counterclockwise and flexes 

the tip of her abdomen to place the ovipositor in position and insert it into the host); and v) 

grooming and resting (the parasitoid cleans its body involving the mouthparts, antennae, legs 

and wings, and afterwards eventually remains motionless). For each replicate, the duration of 

each type of the parasitoid behavior was recorded in seconds, using a chronometer. 

 

2.2.4. Dissection of mealybugs  

After the end of each experiment, the mealybugs of each replicate were maintained in the same 

Petri-dish under laboratory conditions during seven days. After this period, the mealybugs were 

individually immersed in a clarification solution consisting of 1 part glacial acetic acid and 1 

part chloral-phenol and then dissected to determine the number of mealybugs parasitized as 

well as the total number of oviposited wasp eggs per replicate. 

 

2.2.5. Statistical analysis 

The number of host encounters, number of mealybugs parasitized, number of parasitoid eggs 

oviposited, as well as the number of times each type of parasitoid behavior was observed were 

analyzed using Generalized Linear Models, by fitting a Poisson distribution. 

Univariate General Linear Models (ANOVA) were used for the analysis of time duration 

of each parasitoid behavior, percentage of total time allocated to host searching and to host 

handling (antennation + probing + oviposition), and handling time per parasitized host. Normal 

distribution and homogeneity of variances were tested based on Shapiro-Wilk and Levene´s 

tests, respectively. When necessary, a square root or angular transformation of data was used 

for time duration of parasitoid behavior and percentage of total time allocated to host searching 

and to host handling, respectively. The angular transformation, corresponding to arsin√p where 

p is a proportion, was used as a tool to stabilize variances and normalize data in percentages or 

proportions (Sokal & Rohlf, 1981).  

Data are presented as mean ± SEM (standard error of the mean). The significance level was 

set at α=0.05. All statistical tests were carried out using IBM SPSS 20.0 for Windows (IBM 

Corporation, Armonk, New York, USA). 

2.3. Results 

2.3.1. Parasitism  

The number of observed encounters between A. sp. nr. pseudococci and the host mealybugs did 

not significantly vary among host species (Table 2. 2). Yet, the number of mealybugs 

parasitized by the wasp was significantly higher in Planococcus species than in the other 
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mealybug species tested, with the exception of Pl. ficus and Ps. viburni (Table 2.2). No 

significant differences were observed between Pl. citri and Pl. ficus, or among Pseudococcus 

and Phenacoccus species. The number of eggs oviposited by A. sp. nr. pseudococci was 

significantly higher in Planococcus spp. than in all other mealybug species tested (Table 2.2). 

No significant differences were registered between the two Planococcus species, and among 

Pseudococcus and Phenacoccus species 

 

Table 2.2 - Mean number of mealybugs parasitized by female of Anagyrus sp. nr. pseudococci 
and mean number of wasp eggs oviposited per replicate on the studied five host mealybug 
species in no-choice test. For each replicate, 10 individuals were exposed to one female 
parasitoid for 30 min (N=22). 

Host species 
Number of host 

encounters* 
Number of parasitized 

mealybugs 
Number of 
wasp eggs 

Planococcus citri 8.1±0.6 3.0±0.4a 3.2±0.4a 

Planococcus ficus 8.7±0.6 2.2±0.3ab 2.6±0.3a 

Pseudococcus calceolariae 7.5±0.6 1.4±0.3c 1.5±0.3b 

Pseudococcus viburni 7.6±0.6 1.6±0.3bc 1.7±0.3b 

Phenacoccus peruvianus 8.9±0.6 1.1±0.2c 1.3±0.3b 

X2 
4 4.164 25.49 25.79 

p 0.384 < 0.001 <0.001 

*Within columns, means followed by the same letter are not significantly different (p=0.05)  

 

2.3.2. Host selection behavior 

Description of wasp behavior. When encountered, mealybugs were usually examined and 

eventually accepted or rejected by the wasp based on information collected from the host body 

surface through antennation. If the host is accepted then the wasp turns her abdominal end 

towards the host, and repositions to insert her ovipositor into the host and deposit an egg. 

Sometimes, after probing, the wasp rejects the mealybug and does not oviposit. The frequency 

of rejection after probing, when a female parasitoid was exposed to 10 mealybugs for 30 min, 

was on average 1.5±0.3, 1.2±0.2, 0.7±0.2, and 1.2±0.2, for Pl. citri, Pl. ficus, Ps. calceolariae, 

and Ps. viburni, respectively. No rejection after probing was observed in the case of Ph. 

peruvianus. Host-feeding was observed in none of the studied mealybug species. Usually, after 

oviposition the wasp moves away from the host and may spend some time cleaning her 
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antennae, legs and wings and eventually resting. In some cases, in Planococcus and 

Pseudococcus species, but especially in Pl. ficus, the wasp showed a particular behavior of host 

acceptance after antennation. She stayed motionless nearby the host with her antennae in upper 

position for a period of 50 seconds up to about 7.5 minutes, during which the antennae came 

down gradually. Then the wasp turned back for reexamining the host for no longer than 15 

seconds, resuming antennation and ovipositing. In this case oviposition takes more than 50 

seconds. 

Frequency of each type of behavior. The frequency of host searching behavior of A. sp. nr. 

pseudococci females was not significantly different among mealybug species (X2
4=7.54, 

P=0.11). However, significant differences were found among host mealybug species 

(X2
4=18.32, P=0.001) for the frequency of antennation of female wasps. The higher frequency 

of antennation was observed on Pl. ficus (14.0±0.8) and the lowest on Ph. peruvianus 

(10.4±0.7). No significant differences were detected between species within both Planococcus 

and Pseudococcus genera and between Pseudococcus species and Ph. peruvianus. 

The frequency of host probing by wasp females was significantly different among 

mealybug species (X2
4=31.433, P<0.001). The highest value was registered in Pl. ficus 

(7.8±0.7). Neverthless, similar values to Pl. ficus were found for Pl. citri (7.6±0.2), and Ps. 

viburni (7.2±0.9), whereas significantly lower values were found for Ps. calceolariae (5.4±0.7) 

and Ph. peruvianus (4.3±0.9). 

The frequency of oviposition behavior observed in the females of A. sp. nr. pseudococci 

significantly differed among mealybug host species (X2
4=15.74, P=0.003). However, no 

significant differences were detected between species within the genus Planococcus (6.6±0.5 

and 6.2±0.6 for Pl. ficus and Pl. citri, respectively) and the genus Pseudococcus (6.0±0.5 and 

4.7 ± 0.5 for Ps. viburni and Ps. calceolariae, respectively). Pseudococcus viburni did not differ 

from both Planococcus species and Ps. calceolariae showed no significant differences in 

relation to Ph. peruvianus (4.3±0.4).  

Finally, the frequency of wasp grooming and resting also differed significantly among host 

species (X2
4=17.56, P=0.002). This parameter was significantly higher on Pl. ficus (5.6±0.5), 

Ps. viburni (5.2±0.5), and Ps. calceolariae (5.1±0.45), compared to Pl. citri (3.7±0.4) and Ph. 

peruvianus (3.5±0.4).  

Time duration of each type of behavior. The duration of host searching behavior showed 

by females of A. sp. nr. pseudococci was significantly influenced by the host mealybug species 

(Table 2.3). The time the wasps spent searching was significantly higher in Ph. peruvianus than 

in the other mealybug species. No significant differences were observed among Pl. citri, Ps. 
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calceolariae and Ps. viburni. The lowest time was observed in Pl. ficus but it did not differ 

significantly from Pl. citri and Ps. viburni. 

 

Table 2.3 - Mean time duration (±SE) (in minutes) spent by female Anagyrus sp. nr. 
pseudococci on host searching, antennation, oviposition and grooming + resting when exposed 
to each of the studied five host mealybug species in no-choice test. For each replicate, 10 
mealybugs were exposed to one female parasitoid for 30 min (N=22). 

Host species Searching* Antennation Oviposition Grooming 
and resting 

Planococcus citri 12.1±1.0bc 5.2±0.5a 3.3±0.4ab 7.2±1.0b 

Planococcus ficus 8.6±0.8c 5.2±0.4a 4.7±0.5a 9.6±0.9ab 

Pseudococcus calceolariae 13.9±1.0b 4.0±0.6ab 2.2±0.3bc 7.8±1.2b 

Pseudococcus viburni 10.0±0.9bc 2.5±0.4b 1.3±0.2cd 14.4±1.1a 

Phenacoccus peruvianus 22.5±1.4a 1.1±0.2c 1.0±0.3d 4.2±1.1c 

F4, 105 28.40 21.02 17.55 14.44 

p <0.001 < 0.001 <0.001 <0.001 

* Within columns, pairs of means followed by the same letters are not significantly different 
(p=0.05) 

The amount of time the parasitoid spent examining the host through antennation was 

significantly dependent on mealybug species (Table 2.3). The lowest value was registered in 

Ph. peruvianus and the highest values were observed in Planococcus species. 

The amount of time the parasitoid spent ovipositing was also significantly influenced by 

the host species (Table 2.3). The highest and lowest values were registered in Pl. ficus and Ph. 

peruvianus, respectively. No significant differences were observed between species within 

Planococcus and Pseudococcus genera. Planococcus citri did not significantly differ from Ps. 

calceolariae, and Ps. viburni from Ph. peruvianus. 

The time spent grooming and resting by the parasitoid females significantly varied among 

mealybug species (Table 2.3). When exposed to Ps. viburni, the wasps spent a significantly 

higher amount of time grooming and resting compared to all other mealybug species except for 

Pl. ficus. No significant differences were observed among Pl. citri, Pl. ficus and Ps. 

calceolariae. Phenacoccus peruvianus was significantly different from all other mealybug 

species. 

Percentage of time allocated to host searching and handling. The percentage of time 

allocated to host searching by the parasitoid was significantly affected by the host mealybug 
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species (Table 2.4). The highest and lowest values were registered in Ph. peruvianus and Pl. 

ficus, respectively. No significant differences were observed between Ps. calceolariae and Pl. 

citri and among Pl. citri, Pl. ficus and Ps. viburni.  

 

Table 2.4 - Percentage (±SD) of time allocated by females Anagyrus sp. nr. pseudococci for 
host searching and handling (antennation + probing + oviposition) in each of the studied five 
host mealybug species (no-choice test). For each replicate, 10 mealybugs were exposed to one 
female parasitoid for 30 min (N=22). 

Host species Searching* Handling 

Planococcus citri 42.5±3.1bc 32.3±3.1ab 

Planococcus ficus 30.1±2.9c 36.7±2.5a 

Pseudococcus calceolariae 49.7±3.5b 22.8±2.8bc 

Pseudococcus viburni 35.4±3.4c 14.0±1.7c 

Phenacoccus peruvianus 78.0±4.5a 7.3±1.4d 

F4,105 28.02 27.59 

p <0.001 <0.001 

* Within columns, pairs of means followed by the same letters are 
not significantly different (p=0.05). 

 

The percentage of time dedicated to host handling by the wasps, including antennation, 

probing and oviposition, was significantly dependent on the host mealybug species (Table 2.4). 

Apparently, it decreased according to the following sequence: Pl. ficus > Pl. citri > Ps. 

calceolariae > Ps. viburni > Ph. peruvianus (Fig. 2.1). However, no significant differences 

were found between Planococcus species, as well as between Pseudococcus species. 

Planococcus citri did not significantly differ from Ps. calceolariae for the same parameter. The 

percentage of time allocated to host handling by female A. sp. nr. pseudococci in Ph. peruvianus 

was significantly lower than in all other mealybug species (Table 2.4).  

The handling time was significantly influenced by the host species, varying between 2.1 

and 5.2 minutes per parasitized mealybug in Ph. peruvianus and Pl. ficus, respectively (Table 

2.5). This parameter was significantly higher in Pl. ficus compared to all other mealybug species 

except for Pl. citri and Ps. calceolariae. No significant differences were observed among Pl. 

citri, Ps. calceolariae, Ps. viburni and Ph. peruvianus.  
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Figure 2.1 - Percentage of time allocated to each behavior of Anagyrus sp. nr. pseudococci with 
five mealybug species (Pl. citri, Pl. ficus, Ps. calceolariae, Ps. viburni, Ph. peruvianus) in no-
choice tests. 

Table 2.5 - Mean handling (antennation + probing + oviposition) time (minutes per parasitized 
mealybug ±SE) of females of Anagyrus sp. nr. pseudococci for the studied five host mealybug 
species (no-choice test). For each of the 22 replicates, 10 mealybugs were exposed to one 
female parasitoid for 30 min. 

Host species N Handling time* 

Planococcus citri 21 3.6±0.7ab 

Planococcus ficus 20 5.2±0.6a 

Pseudococcus calceolariae 17 4.3±0.7ab 

Pseudococcus viburni 18 2.5±0.6b 

Phenacoccus peruvianus 11 2.1±0.6b 

F4,82  3.54 
p  0.01 

* Within columns, pairs of means followed by the same letters are not 
significantly different (p=0.05). 

 

2.4. Discussion 

The observed host selection behavior of the females of A. sp. nr. pseudococci was in general 

similar to that described by Avidov et al. (1967) and Heidari and Jahan (2000) for A. 

pseudococci s.l. No host-feeding was observed in wasp females. However, we cannot exclude 

the possibility of host-feeding by A. sp. nr. pseudococci in younger host stages, such as first and 
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second instars, as our observations were carried out only on pre-reproductive adult mealybug 

females. For example, Karamaouna and Copland (2000) observed that the females of 

Leptomastix epona (Walker) might host feed on second and third instar nymphs of Ps. viburni 

in which they do not oviposit. Host-feeding is used by many synovigenic parasitoids as a source 

of proteinaceous nutrients for egg production, and can be of biological significance in pest 

suppression (Karamaouna & Copland, 2000). 

Host location by parasitoid females generally involves ambulatory searching behavior for 

slightly volatile chemical cues, i.e., searching stimulants, such as frass, defensive secretions, 

pheromones, or feeding secretions, which after encountered will retain the wasp and stimulate 

the searching for a certain amount of time, depending on experience, host encounter rate, the 

nature of the substrate, or changes in the concentration of the chemical cues (Vinson, 1998). In 

previous works, we have shown that the females of A. sp. nr. pseudococci are attracted to (S)-

(+)-lavandulyl senecioate, the sex pheromone of Pl. ficus (Franco et al., 2008) and use this 

kairomonal cue in host location, possibly as an arrestant (Franco et al., 2011). Other mealybug 

products, such as honeydew, are likely to be used by A. sp. nr. pseudococci as kairomonal cues 

in host location (Franco et al., 2008; Islam & Jahan, 1993). Recently, Dhami, Gardner-Gee, 

Van Houtte, Villas-Bôas, & Beggs (2011) showed that the honeydew excreted by each scale 

insect species have a distinctive amino acid and carbohydrate signature. This signature may be 

used as a chemical cue by mealybug parasitoids to distinguish among hosts. 

In the present study, host location was limited by the size of Petri dish arena. In such a 

scenario only short range searching behavior is possible. No significant differences were 

observed among mealybug species on the searching frequency of A. sp. nr. pseudococci as well 

as on the frequency of host encounters. However, the amount of time spent searching by the 

wasp varied among mealybugs host species, with the shortest time registered in Pl. ficus and 

the longest in Ph. peruvianus (Table 2.3). The differences observed among mealybug species 

on the level of parasitim by A. sp. nr. pseudococci were not apparently determined by the 

frequency of host encounters, as no significant differences were found among host species for 

this parameter (Tables 2.2).  

Host recognition by parasitoid females is expected to be based on the external examination 

of the host using nonvolatile chemicals or physical characteristics as cues (Vinson, 1998). If 

the host is eventually recognized and considered suitable the parasitoid female might resume 

antennation and probe the host with the ovipositor (Vinson, 1998). After probing the wasp will 

eventually accept the host based on the presence of the right cues and the absence of deterrents 

(Vinson, 1998). In the present study, A. sp. nr. pseudococci recognized and accepted all five 
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tested mealybug species as potential hosts despite their different geographical origin and 

phylogenetic relationships. Nevertheless, the behavioral pattern of host recognition and the 

level of host acceptance significantly varied among host species. The number of parasitized 

mealybugs in Pl. citri and Pl. ficus was about twice as higher as in Pseudococcus and 

Phenacoccus species. The cues used by female A. sp. nr. pseudococci in host recognition 

through antennal examination are probably related to the waxy secretions covering the body of 

mealybugs. These secretions are produced by epidermal wax glands whose function has been 

associated with protection against water loss, wet conditions, natural enemies, and 

contamination with their own honeydew and defensive exudates (Cox & Pearce, 1983; Gulan 

& Kosztarab, 1997). The chemical composition of these wax secretions differ among mealybug 

species (Zvi Mendel, pers. communication, 2013). The females of A. sp. nr. pseudococci present 

uniporous chaetica sensillae in the ventral side of the antennal club which are apparently contact 

chemoreceptors and may be associated with infochemical detection during external 

examination of the host through antennation (Fortuna, Franco, & Rebelo, 2013). Mozaddedul 

and Copland (2003) reported that searching behavior of the parasitoid Leptomastix nr. epona 

(Walker) is arrested by the wax secretions of its mealybug host. The ostiolar secretions, which 

can be produced by the mealybugs when attacked by parasitoids or predators (Gullan & 

Kosztarab, 1997), may also affect host recognition and acceptance of A. sp. nr. pseudococci. 

This reflex bleeding behavior is much more frequent in Ps. viburni than in the other mealybug 

species (Bugila et al., in prep), which may explain the much higher amount of time spent by the 

parasitoid in grooming and resting when exposed to this mealybug, in comparison with the 

other studied mealybugs (Table 2.4; Fig. 2.1). 

The females of A. sp. nr. pseudococci rejected some individuals after probing all mealybug 

species except for Ph. peruvianus. Some of the cues detected by probing are possibly related to 

mealybug resistance. Mealybugs are known to resist the attack of parasitoids through immune 

defense response by encapsulation of their eggs or larvae (Blumberg, 1997; Blumberg, Klein, 

& Mendel, 1995). On the other hand, it has been hypothesized that superparasitism might be 

used by A. sp. nr. pseudococci and other solitary parasitoids of mealybugs as a strategy for 

counteracting host immune defenses (Blumberg et al., 2001; Suma et al., 2011). The fact that 

female parasitoids tend to lay higher number of eggs in more resistant host mealybugs 

(Blumberg et al., 2001; Suma et al., 2011) suggests that they are able to access the level of host 

resistance based on the detection of internal chemical cues through ovipositor probing. We 

hypothesize that eventually female wasps may decide to reject the most resistant hosts after 
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probing. The ability of the five studied mealybugs to encapsulate eggs or larvae of A. sp. nr. 

pseudococci will be addressed elsewhere (Bugila et al., in prep).  

The duration of host handling may be influenced by host species, as well as by host 

aggregation, host size, host developmental stage, host state, and parasitoid experience (Segoli, 

Harari, Bouskila, & Keasar, 2009, and references therein). Our results showed that host 

handling time by female A. sp. nr. pseudococci was affected by host species, with the highest 

value registered in Pl. ficus, the host for which the parasitoid showed highest host searching 

efficiency. A reduction in host handling time is expected to increase reproductive success of 

parasitoids which require more time for searching suitable hosts than for egg production 

(Heimpel, Mangel, & Rosenheim, 1998). The observed variation in host handling time among 

mealybug species may also be related to differences in behavioral defenses among host 

mealybugs. We would expect a reduction in handling time of female A. sp. nr. pseudococci with 

respect to mealybug species reacting more aggressively to parasitoid attack. For example, it is 

known that the process of ovipositor insertion by female wasps is longer when a sessile host is 

parasitized and often faster in more mobile and defensive hosts (Vinson, 1998). Our 

observations on defensive behavior of the five studied mealybugs support this hypothesis, as 

Ps. viburni showed the highest level of defensive behavior and Planococcus species the lowest 

ones (Bugila et al., in prep.). A more rapid host-handling may also reduce the exposure to the 

predators, such as it seems the case of parasitoids more adapted to successfully attack ant-

tended scale insects (Barzman & Daane, 2001). Although mealybugs are known to be 

commonly ant-tended insects and ants may disrupt the activity of mealybug parasitoids (Daane, 

Sime, Fallon, & Cooper, 2007; Gullan & Kosztarab, 1997; Way, 1963), it is not likely that the 

observed differences among host mealybugs on host handling time of female A. sp. nr. 

pseudococci are related to ant-tending. 

Anagyrus sp. nr. pseudococci seems to be much less host specific than its congeners A. sp. 

nr. sinope Noyes & Menezes and A. kamali Moursi. Anagyrus kamali is a solitary 

endoparasitoid of the pink hibiscus mealybug, Maconellicoccus hirsutus Green (Sagarra, 

Vincent, & Stewart, 2001), whereas A. sp. nr. sinope is a gregarious endoparasitoid of the 

Madeira mealybug, Ph. madeirensis (Chong & Oetting, 2007). In Table 2.6, we compare the 

results of the studies by Sagarra et al. (2001) and Chong and Oetting (2007) on the host ranges 

of these two parasitoids with those obtained by us for A. sp. nr. pseudococci. Anagyrus sp. nr. 

sinope and A. kamali were shown to be very selective mealybug parasitoids, only completing 

development in their principal host species (Table 2.6). In most of the cases, the two parasitoids 

were able to discriminate among the tested mealybug species and select the most suitable ones. 
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However, they showed different behavioral response to the non-selected mealybug species. 

Some mealybug species were almost ignored and did not induce searching behavior by the 

parasitoid (e.g., A. kamali) (Table 2.6). Other mealybugs were rejected by the parasitoids after 

external antennal examination (e.g., Ps. longispinus and F. virgata for A. sp. nr. sinope; L. 

neotropicus and Pu. barberi for A. kamali) or after being probed with the ovipositor (e.g., Pl. 

citri, Ps. viburni, and Ph. solani for A. sp. nr. sinope; Ps. elisae for A. kamali) (Table 2.6). 

Finally, a few other mealybug species were accepted by the parasitoid as potential hosts despite 

being unsuitable hosts (Table 2.6). In contrast, A. sp. nr. pseudococci accepted and is able to 

complete development in all tested mealybugs (Bugila et al., in prep.), despite their different 

geographical origin and phylogenetic relationships. Nevertheless, the behavioral pattern of host 

recognition, host handling and the level of host acceptance significantly varied among host 

species, indicating a clear preference for the two Planococcus species, Pl. ficus in particular. 

Our results suggest a broader host range and a more generalist behavior for A. sp. nr. 

pseudococci in comparison with other Anagyrus species, which is in accordance with the 

hypothesis that this wasp might have evolved by expanding its host range (Franco et al., 2008). 

In previous studies we found that A. sp. nr. pseudococci responded to the sex pheromone of Pl. 

ficus (Franco et al., 2008) and use this chemical cue as a kairomone in host location (Franco et 

al., 2011). This innate kairomonal response of A. sp. nr. pseudococci females to a chemical cue 

of a specific host species indicates an intimate evolutionary relationship between the wasp and 

Pl. ficus, suggesting that this mealybug species was its primary host in the region of origin 

(Franco et al., 2008). However, all the available data, including the innate kairomonal response 

to the pheromone of Pl. ficus, the host selection behavior in comparison to specialist Anagyrus 

species, and an apparent realized host range with several mealybug species from different 

genera (Guerrieri & Pellizzari, 2009; Triapitsyn et al., 2007), support the hypothesis that A sp. 

nr. pseudococci evolved from a specialist to a more generalist strategy (Franco et al., 2008).  

 
Table 2.6 - Specificity of Anagyrus sp. nr. pseudococci in comparison with two other mealybug 
parasitoids of the same genus, A. sp. nr. sinope and A. kamali. Elaborated based on data from 
Chong and Oeting (2007), Sagarra et al. (2001), and the present study, for A. sp. nr. sinope, A. 
kamali, and A. sp. nr. pseudococci, respectively. Mealybug species are organized according to 
their phylogenetic relationships (Hardy et al., 2008). Legend: N (no response) - The host did 
not induce searching behavior on the parasitoid; R - All the available hosts were rejected after 
antennation or probing; A - At least part of the available hosts were accepted and parasitized 
(% parasitism); D - the parasitoid was able to complete development in this host. 
 

Family/Subfamily Mealybug species  Parasitoid 
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 A. sp. nr. 
sinope 

A. kamali A. sp. nr. 
pseudococci 

Pseudococcidae      

- Pseudococcinae Nipaecoccus nipae  - N - 

 Planococcus citri  R A (11%) A (30%) D 

 Planococcus ficus  - - A (22%) D 

 Planococcus halli  - A (8%) - 

 Saccharicoccus 
sacchari 

 - N - 

 Dysmicoccus brevipes  - N - 

 Leptococcus 
(=Plotococcus) 
neotropicus 

 - R - 

 Pseudococcus elisae  - R - 

 Pseudococcus 
longispinus 

 R - - 

 Pseudococcus 
calceolariae 

 - - A (14%) D 

 Pseudococcus viburni  R - A (16%) D 

 Ferrisia virgata  R - - 

 Maconellicoccus 
hirsutus 

 - A (45%) D - 

- Phenacoccinae Phenacoccus 
madeirensis 

 A (17%) - - 

 Phenacoccus 
peruvianus 

 - - A (11%) D 

 Phenacoccus solani  R - - 

Putoidae Puto barberi  - R - 

 

 

This is in line with the idea that the innate use of semiochemicals by generalist carnivores is the 

result of evolving from monophagous ancestors (Steidle & van Loon, 2003). Based on the host 

range information available for about 104 Anagyrus species, among the 270 described species, 

it seems that most of them (ca. 76%) are specialists, with less than five known hosts, and only 

few species show a more generalist behavior (Noyes, 2012). 
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The specificity of a parasitoid is considered an important attribute in selected candidates 

for classical biological control programs aiming to minimize the risks of impacts on non-target 

native species. In this respect, the use of A. sp. nr. pseudococci in classical biological control 

may present risks of impact on native species of mealybugs due to its apparent generalist 

behavior. Nevertheless, it has been used both in classical biological control and augmentative 

releases in different areas (Triapitsyn et al., 2007) and there is no evidence of negative impacts 

on native mealybug species. On the other hand, the existence of alternative hosts is considered 

important for the success of biological control as it will support parasitoid populations over 

periods of scarcity of the primary hosts (Chong & Oetting, 2007; DeBach & Bartlett, 1964).  
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Abstract 

The host behavioral and immune (encapsulation) defenses against the parasitoid Anagyrus sp. 

nr. pseudococci were compared for five mealybug species with different phylogenetic 

relationships and geographical origins: i) a Mediterranean native mealybug species, 

Planococcus ficus, with a long co-evolutionary history with the parasitoid; ii) three alien 

mealybugs species, Planococcus citri, Pseudococcus calceolariae and Pseudococcus viburni, 

with a more recent co-evolutionary history; and iii) a fourth alien mealybug species, 

Phenacoccus peruvianus, with no previous common history with the parasitoid. Three host 

defense behaviors were registered: abdominal flipping, reflex bleeding and walking away. The 

native host Pl. ficus and its congener Pl. citri exhibited the lowest probability of defense 

behavior (0.11±0.01 and 0.09±0.01 respectively), whereas the highest value was observed in P. 

viburni (0.31±0.02). Intermediate levels of defense behavior were registered for Ps. 

calceolariae, and Ph. peruvianus. The probability of parasitoid encapsulation was lowest and 

highest for two alien host species, Ph. peruvianus (0.20±0.07) and Ps. viburni (0.86±0.05), 

respectively. The native host Pl. ficus, its congener Pl. citri and Ps. calceolariae showed 

intermediate values (0.43±0.07, 0.52±0.06, and 0.45±0.09, respectively). The results are 

relevant with respect to biological control and to understand possible evolutionary processes 

involved in host range of A. sp. nr. pseudococci. 

 

Key-words: behavioral defense; biological control; encapsulation; host parasitoid co-

evolution; host resistance; immune defense 
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3.1. Introduction 

In general, host selection behavior of parasitoid Hymenoptera includes habitat location, host 

location, host recognition and host acceptance, eventually resulting in oviposition (Vinson, 

1998). As an evolutionary response to the selective pressure from parasitoids, insect hosts have 

developed defensive strategies which may affect parasitoid activity and development along the 

different steps of host selection. These host defenses can be divided in three major categories 

(Gross, 1993): i) host characteristics, that reduce the probability of being located by parasitoids 

(e.g., refugia, elimination of cues); ii) host behavioral and morphological defenses, which may 

act after host location by reducing the probability of parasitoid oviposition (e.g., evasive 

behavior, defensive secretions); and iii) host physiological defenses, that if parasitoid 

oviposition occurs may prevent the successful development of endoparasitoids (e.g., 

sequestration of allelochemicals, encapsulation). Host defenses can also be designated as 

(Gentry & Dyer, 2002): i) primary defenses, which prevent enemies from encountering the 

host/prey; ii) secondary defenses, that are activated once the host/prey has been encountered by 

a parasitoid/predator; and iii) tertiary defenses, which include host immune responses after an 

endoparasitoid attack. In the present work we will deal with host defenses of categories ii) and 

iii), in particular behavioral defenses and encapsulation. 

Host behavioral defenses against parasitoids include evasive and aggressive behaviors. 

Evasive behaviors allow the host to escape from the attacking parasitoid and often involve 

vigorous wriggling, thrashing, rolling, curling, jumping, walking way, or dropping of the plant, 

whereas aggressive behaviors are responsible for driving away or disabling adult parasitoids 

(e.g., defensive secretions), as well as dislodging or killing parasitoid eggs or larvae (Gross, 

1993). 

Encapsulation is an immune defense mechanism of insect hosts triggered by eggs and 

larvae of parasitoids which involves the production by hemocytes of a multilayered capsule 

around the invader, usually associated with melanization (Carton, Poirié, & Nappi, 2008; 

Schmid-Hempel, 2005; Strand, 2008; Strand & Pech, 1995). 

The study of host defenses will contribute to understand the evolution of parasitoid 

oviposition behavior as well as to understand why some insect species are less susceptible to 

parasitism than others (Gross, 1993). This knowledge is also of practical importance as it will 

provide the theoretical background to support decision-making for the selection of best 

candidates to be used in biological control of insect pests. 

Mealybugs (Hemiptera: Pseudococcidae) are the second most diverse family of scale 

insects (Coccoidea) comprising more than 2000 species, distributed worldwide including many 
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economic important agricultural and ornamental pests (Hardy, Gullan, & Hodgson, 2008), such 

has the citrus mealybug Planococcus citri (Risso), the vine mealybug Pl. ficus (Signoret), 

Pseudococcus calceolariae (Maskell), the obscurus mealybug Ps. viburni (Signoret), and the 

bougainvillea mealybug Phenacoccus peruvianus Granara de Willink (Ben-Dov, 1994; Beltrà 

et al., 2010; Franco, Silva, & Carvalho, 2000). Chemical control is still the most common 

control tactic used against mealybug pests. However, the cryptic behavior of mealybugs, their 

typical waxy body cover, and clumped spatial distribution pattern render the use of many 

insecticides ineffective. Repeated insecticide use, especially of broad-spectrum chemicals, also 

has adverse ecological and environmental impacts (Franco, Zada, & Mendel, 2009). Biological 

control has been considered an environmentally friendly alternative tactic to be used in 

integrated pest management strategies for the control of pest mealybugs (Franco et al., 2009). 

Among mealybug parasitoids, many Encyrtidae wasps (Hymenoptera), such as Anagyrus spp., 

have been used for the biological control of pest mealybugs (Noyes & Hayat, 1994). The 

efficacy of biological control relies on the host-parasitoid interactions and of their co-

evolutionary history. In particular, understanding the ability of the host to escape parasitism by 

immune response and of the parasitoid to overcome host defense strategies has been considered 

a most relevant factor for the success of the parasitoid in biological control programs (Blumberg 

& van Driesche, 2001). 

Among parasitoids used for the biological control of mealybugs, the genus Anagyrus has 

been one of the most studied. Recently, Triapitsyn, González, Vickerman, Noyes, & White 

(2007) have shown that Anagyrus pseudococci s.l. (i.e., sensu latu, corresponding to the 

previous references) comprises two sibling species, i.e. A. pseudococci (Girault) and A. sp. nr. 

pseudococci (Girault), which are reproductively incompatible and genetically different, also 

differing on their geographical distribution. Anagyrus sp. nr. pseudococci, apparently the more 

common species is widely distributed throughout the Mediterranean Basin (Triapitsyn et al., 

2007; Franco et al., 2011), whereas A. pseudococci seems to be restricted to Sicily and Cyprus, 

and was apparently introduced in Argentina (Triapitsyn et al., 2007). Anagyrus sp. nr. 

pseudococci is a common parasitoid of Pl. citri and Pl. ficus (Franco et al., 2011; Mgocheki & 

Addison, 2009). The foraging behavior of female wasps when parasitizing mealybugs has been 

described as a sequence of events involving searching, antennation, probing, oviposition, and 

resting (Bugila, Branco, Silva, & Franco, 2014; Heidari & Jahan, 2000). Usually, after 

antennation, when a suitable host is found, the wasp female turns her body and flexes the tip of 

her abdomen to oviposit (Bugila et al., 2014; Heidari & Jahan, 2000). During this process 

mealybugs may escape parasitism by responding with particular defense behaviors. Three types 
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of active defense behaviors have been described for mealybugs against their natural enemies 

(Gillani & Copland, 1999; Heidari & Jahan, 2000): i) abdominal flipping; ii) escaping; and iii) 

reflex bleeding. Abdominal flipping refers to repeated up and down movements of the hind half 

of the mealybug body that may force the attacking parasitoid or predator to leave. By just 

walking away the mealybug may also escape from the aggressor. Finally, reflex bleeding refers 

to the secretion of ostiolar fluid. When disturbed mealybugs may segregate one droplet of a 

waxy fluid, from one or more of the two pairs of dorsal ostioles, which quickly solidifies on 

contact with air, a reflex bleeding that has been assumed to be a defensive behavior of these 

insects (Gullan & Kosztarab, 1997). However, only very few studies have been carried out 

demonstrating this function (e.g., Gillani & Copland, 1999). 

Heidari and Jahan (2000) suggested that different species of mealybugs may differ on their 

behavioral defense reaction against the wasp A. pseudococci s.l., in particular when comparing 

Pl. citri and Ps. viburni. So far such possible differences of behavior among mealybug species 

were not studied. After successful parasitoid oviposition, the host mealybugs may still respond 

with their immune defenses by encapsulating the eggs or larvae of the parasitoid. Well succeed 

encapsulation will arrest the development of the parasitoid and allow the mealybug to resist the 

attack and survive (Blumberg & van Driesche, 2001; Güleç, Kilinçer, Kaydan, & Ülgentürk, 

2007). Only little information is available on encapsulation of A. sp. nr. pseudococci by 

mealybugs (Suma et al., 2012). 

In a previous work we compared the foraging behavior of A. sp. nr. pseudococci among 

five host mealybugs with different phylogenetic relationships and geographical origins (Bugila 

et al., 2014). Here we aimed at analyzing differences on the host defense behavior and immune 

response of the same mealybug species to the attack of Anagyrus sp. nr. pseudococci. Especially 

we intend to compare the defense reaction pattern against this wasp among potential hosts, 

including i) a Mediterranean native mealybug species, Pl. ficus, considered to have a long co-

evolutionary history with the parasitoid; ii) three alien mealybugs species, Pl. citri, Ps. 

calceolariae and Ps. viburni, with a more recent co-evolutionary history; and iii) a fourth alien 

mealybug species, Ph. peruvianus, with no previous common history with the parasitoid, in 

order to understand host-parasitoid relationships. A complete description of the phylogenetic 

relationships of the selected mealybug species, as well as their possible regions of origin and 

history of introduction in the Mediterranean basin was presented in Bugila et al. (2014). 

We hypothesize that the defensive behavior and immune response of the five mealybug 

species selected for our study differ in relation to A. sp. nr. pseudococci as a consequence of 

different life traits and evolutionary histories. From a practical point of view, understanding the 
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parasitoid-host relationships between A. sp. nr. pseudococci and selected mealybugs will allow 

us to predict its potential as a biological control agent of these and other mealybug species. 

 

3.2. Material and methods 

3.2.1. Mealybug rearing 

The origin of mealybugs used in the experiments is reported in Table 3.1. All mealybug species 

were reared on sprouted potatoes (Solanum tubersum L.) on laboratory conditions (25.0±0.5ºC, 

55-65% R.H., in the dark). Before the beginning of the experiments, third instars nymphs of 

each species were isolated on sprouted potatoes within ventilated plastic boxes (25 x 15 x 12 

cm) and kept at the same laboratory conditions as mentioned before for seven days to obtain 

pre-reproductive females (Bugila et al., 2014). 

 

Table 3.1 - Region and host plant of origin of the studied mealybug species. 

Mealybug species Species origin Population origin Host plant 

Planococcus citri Afrotropical Silves-Algarve Sweet orange, Citrus sinensis 

Planococcus ficus Mediterranean  Tavira-Algarve Vineyard, Vitis vinifera 

Pseudococcus 

calceolariae 

Australasian Loulé-Algarve Sweet orange, Citrus sinensis 

Pseudococcus viburni Neotropical Biscoitos-Terceira Vineyard, Vitis vinifera 

Phenococcus peruvianus Neotropical Queluz-Lisboa Bouganvillea glabra 

 

3.2.2. Parasitoid rearing  

The parasitoid Anagyrus sp. nr. pseudococci was obtained from parasitized mealybugs Pl. citri 

collected in citrus orchards in the region of Silves (Portugal). About 30 individuals were used 

to start a colony in the laboratory. Rearing was done within ventilated plastic boxes on Pl. citri 

under laboratory conditions (25.0±0.5ºC, 55-65% R.H., and photoperiod 16L:8D). To obtain 

naïve adult female wasps, parasitized mealybugs were first isolated on separate boxes. Then the 

boxes were checked every 24h, in order to collect wasps less than 24h old. Two males and one 

female were then moved to a new box containing one drop of honey and maintained for 72h 

until the beginning of the experiments, to allow fertilization and feeding of female wasps 

(Bugila et al., 2014).  

3.2.3. Mealybug defense behavior  
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The experiments were conducted between 12h and 19h, under laboratory conditions. For each 

of the five studied mealybug species, 22 replicates were performed. In each replicate, one naïve 

adult parasitoid female was exposed to 10 pre-reproductive adult mealybug females in a Petri-

dish (9cm diameter) and observed during 30 min (Bugila et al., 2014; Sagarra, Vincent, & 

Stewart, 2001). The defense behavior of the mealybugs was described according to the 

following three categories: i) abdominal flipping; ii) escaping, by walking away; and iii) reflex 

bleeding. The frequency of each defensive behavior category, following the parasitoid contact 

was recorded for each replicate. 

 

3.2.4. Mealybug immune response: encapsulation  

After the end of each experiment, mealybugs were maintained for 7 days in the same Petri-dish, 

under laboratory conditions in order to allow encapsulation to occur before dissection. After 

this period, the mealybugs were individually immersed in phenol-chloroform (50%) and acetic 

acid (50%), for 24h for clarification and then dissected in order to count the number of wasp 

eggs or larvae, as well as the number of encapsulated eggs and larvae. Encapsulation was 

considered based on the existence of melanin deposition on eggs or larvae (Blumberg, 1997; 

Blumberg, Klein, & Mendel, 1995). Observations were carried out under magnification (40X) 

using a stereomicroscope (Leica MZ6). 

 

3.2.5. Statistical methods 

Generalized Linear Models (GLM) were used to estimate the probability of a defense behavior 

pattern of mealybugs to occur after wasp contact, using a Binomial distribution model. Host 

species was considered a factor explanatory variable. The following types of defensive behavior 

were considered as dependent variables: i) abdominal flipping; ii) walking away; iii) reflex 

bleeding; and iv) any type of defense behavior. The same approach was used to model the 

probability of an egg of the parasitoid to be encapsulated, either at the egg or larval stage 

(aggregated encapsulation). Behavior patterns and encapsulation were expressed in mean 

probability of occurrence ± standard error (SE). Least significant differences (LSD) test was 

used to compare host species (α=0.05). GLM were further used to test differences on the scale 

dependent variables: i) number of eggs oviposited by A. sp. nr. pseudococci; ii) number of wasp 

eggs encapsulated by mealybugs; iii) number of wasp larvae encapsulated by mealybugs; and 

iv) number of parasitoids escaping encapsulation, in relation to the explanatory variable host 

species. Poisson distribution, which best fit the data, was used as model function. 
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Pearson correlations (r) were used to test relationship among behavior patterns and between 

active defense and encapsulation. 

Data are presented as mean ± standard error of the mean (SEM). GLM results are presented 

in the form of Wald Chi-square X2 test and P values. The significance level was set at α=0.05. 

All statistical tests were carried out using IBM SPSS 20.0 for Windows (IBM Corporation, 

Armonk, New York, USA). 

 

3.3. Results 

3.3.1. Mealybug defense behavior 

Except for reflex bleeding, which was not displayed by Pl. citri, all three defensive behaviors 

were observed in the studied mealybug species. The five mealybug species varied significantly 

in respect to the frequency of abdominal flipping (Chi-square: X2
4=89.89, P<0.001), reflex 

bleeding (X2
4=26.26, P<0.001) and walking away (X2

4=81.95, P<0.001) behaviors (Table 3.2). 

In agreement, differences were found in the display of any type of defense behavior among the 

five mealybug species (X2
4=65.3, P<0.001). For all the variables, Ps. viburni had the highest 

probability of displaying a defensive behavior, except on walking away for which the 

probability did not differ significantly from Ph. peruvianus (Table 3.2). In general, the 

probability of a mealybug responding with a defensive behavior to the attack of A. sp. nr. 

pseudococci decreased according to the following sequence: Ps. viburni > Ph. peruvianus = 

Ps. calceolariae > Pl. ficus = Pl. citri (Table 3.2). The probability of showing any type of 

defense behavior was about three times higher in Ps. viburni than in Pl. citri and Pl. ficus. 

The three defense behavior variables were significantly correlated both at individual host-

parasitoid contact level (n=1997) and at species level (n=5): abdominal flipping with walking 

away (individual: r=0.540, P<0.001; species: r=0.943, p=0.016); abdominal flipping with reflex 

bleeding (individual: r=0.351, P<0.001; species: r=0.921, p=0.026); and walking away with 

reflex bleeding (individual: r=0.278, P<0.001; species: r=0.967, p=0.007). 

 

 

 

Table 3.2 - Mean probability of occurrence (±SE) of different types of defense behavior of five 
mealybug species belonging to the genera, Planococcus, Pseudococcus and Phenacoccus, when 
exposed to the parasitoid Anagyrus sp. nr. pseudococci. 
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Host mealybug Abdominal 
flipping* 

Reflex bleeding Walking away Any type of 
defense behavior 

Planococcus citri 0.07c±0.012 0.00c±0.000 0.04c±0.010 0.09c±0.014 

Planococcus ficus 0.08c±0.012 0.00c±0.002 0.05c±0.010 0.11c±0.014 

Pseudococcus calceolariae 0.18b±0.021 0.02b±0.008 0.08b±0.014 0.21b±0.022 

Pseudococcus viburni 0.27a±0.023 0.07a±0.013 0.21a±0.021 0.32a±0.023 

Phenacoccus peruvianus 0.19b±0.022 0.06b±0.013 0.14 ±0.019 0.21b±0.023 

*Within columns, means followed by the same letter are not significantly different (P=0.05) 

 

3.3.2. Mealybug immune response 

Significant differences were registered among mealybug species for the total number of eggs 

oviposited (X2
4=21.35, P=0.001), the number of encapsulated eggs (X2

4=29.66, P=0.001) and 

the number of encapsulated larvae (X2
4=13.92, P=0.003) (Table 3.3). Significant differences 

were also found on the number of parasitoid eggs escaping from encapsulation (X2
4=18.15, 

P=0.001). 

Both total oviposited and encapsulated eggs were higher in Pl. citri than in the other four 

mealybug species. Yet, encapsulated larvae were significantly higher in Ps. viburni which also 

showed significantly higher probability of aggregated encapsulation (eggs+larvae) than all 

other mealybug species (Table 3.4). The probability of encapsulation was similar for Pl. citri, 

Pl. ficus and Ps. calceolariae, but significantly lower in Ph. peruvianus than in all other 

mealybugs (Table 3.4). The percentage of aggregated encapsulation (number of eggs+larvae 

encapsulated/total eggs) was 59%, 46%, 45%, 86% and 23% for Pl. citri, Pl. ficus, Ps. 

calceolariae, Ps. viburni and Ph. peruvianus, respectively. 

The probability of expression of any defense behavior and of encapsulation were not 

correlated (r=0.205, n=5, P=0.741). 

 

 

 

 

Table 3.3 - Mean number (±SE) of oviposited eggs, encapsulated eggs and larvae of Anagyrus 
sp. nr. pseudococci, as well as of eggs escaping from encapsulation by the host in no-choice 
test with five mealybug species. 
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Host of mealybugs Total 
oviposition* 

Encapsulated 
eggs 

Encapsulated 
larvae 

Escaping from 
encapsulation 

Planococcus citri 3.1±0.38a 1.6±0.27a 0.0c 1.5±0.26a 

Planococcus ficus 2.1±0.31b 0.7±0.18bc 0.2±0.09b 1.2±0.23ab 

Pseudococcus 
calceolariae 

1.5±0.26bc 0.4±0.14c 0.3±0.12b 0.6±0.17bc 

Pseudococcus viburni 2.0±0.29bc 0.9±0.21ab 0.8±0.21a 0.3±0.11c 

Phenacoccus peruvianus 1.3±0.25c 0.2±0.11d 0.1±0.06b 1.1±0.21ab 

*Within columns, means followed by the same letter are not significantly different (P=0.05) 
 

Table 3.4 - Estimated probability (±SE) of aggregated encapsulation of Anagyrus sp .nr 
pseudococci by five mealybug species. 

Host mealybug Probability of encapsulation* 

Planococcus citri 0.52±0.060b 

Planococcus ficus 0.43±0.073b 

Pseudococcus calceolariae 0.45±0.087b 

Pseudococcus viburni 0.86±0.053a 

Phenacoccus peruvianus 0.20±0.073c 

*Within columns, means followed by the same letter are not 
significantly different (P=0.05) 

 

3.4. Discussion 

3.4.1. Mealybug defense behavior 

Mealybugs may respond to the attack of parasitoids by displaying defense behaviors which 

eventually may allow them escaping parasitism (Gillani & Copland, 1999; Heidari & Jahan, 

2000). Three types of defense behavior, namely walking away, reflex bleeding and abdominal 

flipping, may be activated by a mealybug when attacked by a parasitoid. These three types of 

defensive behavior can be further divided into: 1) Evasive behaviors, in the case of walking 

away; or 2) Aggressive behaviors, in the case of reflex bleeding and abdominal flipping (Firlej, 

Lucas, Coderre, & Boivin, 2010; Gross, 1993). So far, very few studies have been carried out 

on mealybug defense behavior (Gillani & Copland, 1999; Heidari & Jahan, 2000). Heidari and 

Jahan (2000) suggested that mealybug defense behavior could vary among mealybug species, 

but at the extent of our knowledge this hypothesis was not tested before. In the present study, 

we comprehensively quantified the mealybug defense behaviors and tested differences among 
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five mealybug species with different phylogenetic relationship, geographical origin and history 

of host-parasitoid relationship with A. sp. nr. pseudococci. Our data clearly show that the 

studied mealybugs respond differently to the attack of A. sp. nr. pseudococci by combining 

different levels of evasive and aggressive behavioral responses. A similar trend was observed 

among mealybug species for both types of aggressive behavior (abdominal flipping and reflex 

bleeding): the highest level of response was registered in Ps. viburni; the lowest was observed 

in both Planococcus species; and an intermediate one in Ps. calceolariae and Ph. peruvianus. 

A slightly different pattern was shown in the case of the evasive behavior (walking away). 

Globally, considering all types of defense behavior, both Pseudococcus species, which were 

probably introduced in the Mediterranean basin over 400 years ago, and the recently introduced 

Ph. peruvianus exhibited higher active defensive behavior than the two most common host 

species in the Mediterranean, the native Pl. ficus and the phylogenetic related Pl. citri. 

The impact of host defense behaviors on parasitoid fitness is dependent on their 

effectiveness in affecting host handling time and host acceptance, and thus reducing parasitism 

rate, or even in harming or killing parasitoids in some cases (Firlej et al., 2010 and references 

therein). We can evaluate the effectiveness of defense behaviors of the studied mealybugs by 

comparing the level of these defenses (Table 3.2) with the parasitism rate of the mealybugs by 

A. sp. nr. pseudococci determined by us in a previous study (Bugila et al., 2014): Pl. citri (30%); 

Pl. ficus (22%); Ps. calceolariae (14%); Ps. viburni (16%); and Ph. peruvianus (11%). There 

is an inverse relationship between these two parameters suggesting that mealybug defensive 

behaviors in the studied species affect host acceptance, and thus parasitism rate by A. sp. nr. 

pseudococci. A similar inverse relationship also exists between the level of mealybug defensive 

behaviors and the parasitoid handling (antennation + probing + oviposition) time (Bugila et al., 

2014): Pl. citri (3.6 minutes per parasitized mealybug); Pl. ficus (5.2); Ps. calceolariae (4.3); 

Ps. viburni (2.5); and Ph. peruvianus (2.1). The reduction of handling time in those mealybug 

species with higher level of behavioral defenses indicates that possibly in such hosts the 

parasitoid strikes back by reducing the time spent in host processing for host acceptance and 

ovipositing in order to limit the impact of mealybug defenses. This may explains why the impact 

on the parasitism rate of Ps. viburni was lower than expected considering its relatively high 

level of behavioral defenses. 

According to Gross (1993), many host defenses are possibly not an evolutionary response 

to selective pressure from parasitoids. Instead, they probably evolved for biological functions 

not related with parasitoids, but which eventually provided some protection against them. For 

example, aphids (Aphidoidea), present a pair of dorsal glandular cornicles or siphunculi, that 
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similarly to the dorsal ostioles of mealybugs also release waxy droplets (Gullan & Kosztarab, 

1997). Although the major function of these sticky secretions is probably to dispense the alarm 

pheromone, they may also have defensive purposes as they are capable of incapacitating the 

aggressors (Dill, Fraser, & Roitberg, 1990). The ostiolar secretions of mealybugs which are 

associated with the defensive behavior of reflex bleeding may have also other functions (Gullan 

& Kosztarab, 1997). For example, they have been suggested of mediating interactions between 

ants and obligate ant-attended mealybugs (Williams, 1978). 

Therefore, the defense behaviors of mealybugs are likely generalist responses. That is, 

although behaviors such as walking away, abdominal flipping or reflex bleeding may allow 

mealybugs to defend themselves against attacks by enemies, they probably did not evolve in 

response to a specific parasitoid or predator species. This hypothesis is supported by the fact 

that mealybugs apparently respond with behavioral defenses not only against parasitoid attacks, 

as evidenced by our results but also against predation, as reported by Gillani and Copland 

(1999). These authors observed that the longtailed mealybug, Pseudococcus longispinus 

(Targioni Tozzetti) respond with reflex bleeding to the attack of the predatory larvae of 

Sympherobius fallax Navas (Neuroptera: Hemerobiidae), which eventually could die from 

starvation if their mouthparts were blocked by the ostiolar fluid. However, it is reasonable to 

expect that the pattern of mealybug behavioral defenses, as well as the way these defenses are 

combined, may evolve differently depending on the type of selection pressure produced by the 

corresponding community of enemies. Thus, mealybug species with higher defense behavior, 

such as Ps. viburni might have evolved under higher pressure from natural enemies, in 

comparison with those species showing lower behavioral defenses, such as Planococcus spp. 

Nevertheless, host insects may also modulate their behavioral defenses depending on the risk 

of attack and/or the virulence of the parasitoid (Ennis, Dillon, & Griffin, 2010). This hypothesis 

should be tested in mealybugs by comparing the pattern of behavioral defenses of a particular 

mealybug species in response to parasitoid species with different levels of virulence. 

Trade-offs between defense strategies with variable cost-benefit balances may also be 

expected. Protection against natural enemies by attending ants as a result of mutualistic 

interactions with honeydew-excreting hemipterans is considered another category of behavioral 

defense, i.e. associative (Gross, 1993). Both Pl. citri and Pl. ficus are known to produce copious 

honeydew excretion and thus attracting hemipteran-tending ants, which in turn may protect it 

against predators and parasitoids (Mgocheki & Addison, 2009; Way, 1963; Way & Khoo, 

1992). In particular, in Mediterranean fruit crops such as citrus orchards, ant-mealybug 

interactions are common, involving different ant species (Cerdá, Palacios, & Retana, 2009; 
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Pekas, Tena, Agular, & Garcia-Marí, 2011; Zina, Soares, Laranjo, & Franco, 2011; V. Zina and 

J.C. Franco unpublished data). We observed that Pl. citri and Pl. ficus are slower mealybugs, 

and its roundish shape may constrain the abdominal movements, when compared with the faster 

and elongated Pseudococcus species, which may reduce their ability of defense by walking 

away or abdominal flipping, respectively. However, the lower mobility and active defense of 

Planococcus species might be compensated by ant-mediated protection through higher 

honeydew excretion in comparison with mealybug species presenting more active defensive 

behaviors, such as the studied Pseudococcus species and Ph. peruvianus. The hypothesis that 

the intensity of ant-tending may differ among mealybug species depending on the amount of 

honeydew they are capable of excreting is supported by the findings recently published by 

Zhou, Lu, Zeng, Xu, & Liang (2012). These authors showed that the foraging intensity of the 

ant Solenopsis invicta was directly related with the amount of honeydew produced by tended 

hemipterans. Differences in honeydew sugar composition among ant-tented hemipterans may 

also influence the response intensity of foraging ants (Völkl, Woodring, Fischer, Lorenz, & 

Hoffmann, 1999). 

The three types of defense behavior showed by mealybugs against the parasitoid were 

significantly correlated, suggesting possible direct or indirect relationships among them. 

Naturally, higher movement capacity may reflect both on higher probability of abdominal 

flipping and walking away. For reflex bleeding a direct relationship with the other variables is 

not so obvious. Nevertheless, the differences on the probability of occurrence among the three 

types of defense behavior are likely a reflex of different cost-benefit balances among them. Dill 

et al. (1990) showed that the likelihood of two alternative defense behaviors of aphids (dropping 

versus walking away) when attacked by a predator could be predicted using a cost-benefit 

approach. In the case of mealybugs, we would expect that walking away would present higher 

cost than abdominal flipping. In order to walk away, additionally to the energetic cost of 

walking, the mealybug should withdraw the stylets from the host plant tissue and thus possible 

losing a feeding opportunity. Abdominal flipping does not imply stop feeding and is expected 

to have lower energetic cost than walking away. Reflex bleeding is expected to have higher cost 

since this defense reaction is dependent on a secretion from hemolymph (Gullan & Kosztarab, 

1997) and is source limited (Gillani & Copland, 1997). These authors observed that the capacity 

of Ps. longispinus producing ostiolar secretions against the attack of the predator S. fallax was 

exhausted after the mealybug releasing six or seven waxy droplets. In agreement with these 

expected costs, our results showed that in all studied mealybug species abdominal flipping had 

the highest probability of occurrence, followed by walking away and finally by reflex bleeding. 



44 

 

However, a complete analysis should also consider the benefits of each defense behavior, which 

were not estimated by us, as we do not know if they are equally effective in preventing 

parasitism. The benefits can be evaluated by determining the effective impact of each behavior 

on the rate of parasitism. 

Here we studied only the individual defense behavior of mealybugs against a parasitoid. 

However, collective behavioral defenses have recently been shown to exist in hemipteran living 

in large aggregates of related individuals, such as aphid colonies (Hartbauer, 2010). The 

hypothesis of collective defensive behaviors also occurring in mealybugs should be investigated 

as these insects often aggregate in large colonies of related individuals descending from one or 

few females (Franco et al., 2009; unpublished data; Nestel, Cohen, Saphir, Klein, & Mendel, 

1995). Hamilton’s theory of kin selection predicts that collective defense is more likely to 

evolve in groups consisting of highly related individuals (Hamilton, 1964). 

 

3.4.2. Mealybug immune response 

Mealybugs respond to parasitism with variable levels of encapsulation of parasitoid eggs or 

larvae, depending on different factors such as: i) host and parasitoid species; ii) host 

physiological age and condition; iii) host and parasitoid origins (or strains); iv) temperature; 

and v) host plant species and stress conditions (Giordanengo & Nenon, 1990; Blumberg, 1997; 

Blumberg, Franco, Suma, Russo, & Mendel, 2001; Sagarra, Peterkin, Vincent, & Stewart, 2000; 

Chong & Oetting, 2007). The probability of A. sp. nr. pseudococci encapsulation varied among 

the studied mealybug species. The highest value was registered in Ps. viburni and the lowest 

one in Ph. peruvianus, whereas intermediate encapsulation probabilities were registered for the 

native Pl. ficus, the congener Planococcus species and for Ps. calceolariae. Thus, our data do 

not support the hypothesis suggested by Blumberg et al. (2001), according to which low levels 

of encapsulation, corresponding to high physiological adaptation of the parasitoid to the host, 

should occur for co-evolving hosts or closely related ones. Oppositely, high levels of 

encapsulation were expected to occur when mealybugs are attacked by parasitoids with no co-

evolutionary history. However, coevolution in coupled host-parasitoid systems is expected to 

involve an arms race between host resistance and parasitoid countermeasures (virulence), and 

thus no-resistance of the host is unlikely unless the costs of resistance are relatively high (Sasaki 

& Godfary, 1999). Based on this prediction and on our results, we suggest in alternative to the 

hypothesis proposed by Blumberg et al. (2001) that both low and high levels of encapsulation 

by mealybugs may be connected with recent host-parasitoid associations, such as between A. 

sp. nr. pseudococci and the two alien mealybugs Ph. peruvianus and Ps. viburni, respectivelly. 
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Intermediate levels are expected in associations between a parasitoid and its principal host or 

closely related ones, such as between A. sp. nr. pseudococci and the native Pl. ficus or with its 

closely related species Pl. citri. Similar levels of encapsulation in closely related mealybug 

species may further result from cross resistance (Kraaijeveld, van Alphen, & Godfray, 1998). 

Our previous finds showing that A. sp. nr. pseudococci responds to the sex pheromone of Pl. 

ficus (Franco et al., 2008) and uses this kairomone in host location (Franco et al., 2011) suggest 

an intimate evolutionary relationship between the wasp and this mealybug species. Therefore, 

Pl. ficus is likely the primary host of A. sp. nr. pseudococci in its region of origin (Franco et al., 

2008; 2011), which probably evolved by expanding its host range (Bugila et al., 2014; Franco 

et al., 2008). Further studies comparing the immune defense of a range of mealybugs in 

response to the attack by parasitoids with different host selectivity are needed in order to test 

our hypothesis and further clarify this issue. 

The outcome of mealybug resistance through encapsulation is usually associated merely 

with its survival (Blumberg, 1997; Blumberg et al., 2001). However, immune defenses are 

maintained at some cost. Evolutionary costs may exist owing to pleiotropic effects or genetic 

covariance, when the selection for a more effective immune defense correlates with a loss in 

another trait with fitness relevance. The cost of activating immune defense may further include 

longer development time or decreased fecundity (Schmid-Hempel, 2005). Nevertheless, there 

is a lack of knowledge on the eventual costs of parasitoid encapsulation for mealybugs, such as 

about its effects on fecundity, development time or longevity, which is critical to better 

understand the impact of different parasitoid species as biological control agents. 

The aggregate encapsulation of the studied Portuguese population of A. sp. nr. pseudococci 

by Pl. ficus (46%) was lower than that reported for the Sicilian ecotype of the parasitoid (58%) 

by Suma et al. (2012), and for the Turkish ecotype of A. pseudococci s.l. (60%) by Güleç et al. 

(2007), and higher than that registered by Blumberg et al. (1995) in the Israeli ecotype of A. 

pseudococci s.l. (20%). In the case of Pl. citri, our estimate (59%) was also lower than that 

reported for the Sicilian ecotype of A. sp. nr. pseudococci (75%) (Suma et al., 2012) and higher 

than the values observed for the Israeli ecotype (39%) (Blumberg et al., 1995). Furthermore, 

the encapsulation level originated by Ps. calceolariae, was not significantly different from that 

registered for Pl. ficus and Pl. citri, which apparently contradicts the results reported by Suma 

et al. (2012) for the Sicilian ecotype of A. sp. nr. pseudococci. These authors observed a 

significantly higher level of encapsulation of the parasitoid in this mealybug species (94%). 

These apparent discrepancies might result in part from different experimental procedures (e.g., 

time of exposure of the parasitoid to the mealybugs; number of mealybugs per replicate) or 
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parasitoid identity (A. sp. nr. pseudococci versus A. pseudococci s.l.). Yet, geographical 

differences among populations of the parasitoid and the mealybugs are also likely to occur as a 

consequence of different evolutionary processes (Thompson, 2001). This hypothesis is 

supported by the work of Blumberg et al. (2001). The authors compared the immune response 

of P. citri among the combination of three allopatric ecotypes of the mealybug (Portuguese, 

Sicilian, Israeli) and three allopatric ecotypes of A. pseudococci s.l. (Portuguese, Sicilian, 

Israeli) and observed a high variation on the encapsulation levels (58-88%) among the nine 

studied combinations. Geographic variation in host resistance and parasitoid virulence has been 

also documented in other insects, and alternative parasitoids and hosts have been suggested to 

be the most important determinant of that variation (Kraaijeveld et al., 1998). 

As hosts may evolve different defense mechanisms against parasitoids, we may 

hypothesize that an investment on a defense strategy may eventually compensate a lower level 

of defense from other adaptations to resist parasitism. For example, the lower level of 

behavioral defense observed in the two Planococcus species against A. sp. nr. pseudococci 

could be in part compensated by a moderate-high encapsulation. Nevertheless, the probability 

of expression of any defense behavior by the studied mealybugs did not correlate with the 

probability of encapsulation of A. sp. nr. pseudococci, suggesting that behavioral and immune 

defenses are independent on mealybugs. 

 

3.4.3. General remarks  

Here we present a comparison among mealybug species of both behavioral and immune 

defenses against a parasitoid. A relationship with the host phylogenetic closeness was found. 

The native Pl. ficus and its congener Pl. citri presented the lowest and an intermediate level of 

behavioral and immune defenses, respectively (Table 3.5). Yet, differences on band 

evolutionary history on diverse interacting communities might account for the divergences on 

the behavioral patterns observed. The present results together with those obtained in a previous 

study on host selection behavior of A. sp. nr. pseudococci (Bugila et al., 2014) will contribute 

for a better definition of both the ecological and the fundamental (or physiological) host ranges 

(Strand & Obrycki, 1996) of this parasitoid. Host suitability will be analyzed elsewhere (Bugila 

et al., submitted). Altogether, these results will have a practical relevance for the biological 

control of mealybugs. 

 

Table 3.5 - Relative defense level of the five studied mealybug species against the parasitoid 
Anagyrus sp. nr. pseudococci: + lowest level; ++ intermediate level; +++ highest level. 
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Host mealybug 
Behavioral 
defenses 

Immune defenses 
(encapsulation) 

Global 
defense 

Planococcus citri + ++ +/++ 

Planococcus ficus + ++ +/++ 

Pseudococcus calceolariae ++ ++ ++ 

Pseudococcus viburni +++ +++ +++ 

Phenacoccus peruvianus ++ + ++/+ 
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Abstract 

Anagyrus sp. nr. pseudococci is an endoparasitoid which has been used as biological control 

agent of pest mealybugs. In this study, we compared the suitability of five mealybugs species 

with different phylogenetic relationships and geographical origins as hosts of this parasitoid. 

The selected mealybugs included: i) a Mediterranean native species, Planococcus ficus, sharing 

a long co-evolutionary history with the parasitoid; ii) three exotic species, the Afrotropical Pl. 

citri , the Australasian Pseudococcus calceolariae and the Neotropical Ps. viburni, with a more 

recent co-evolutionary history; and iii) the Neotropical Phenacoccus peruvianus, with no 

previous common history with the parasitoid. Host suitability was assessed based on different 

fitness parameters, such as body size, development time, emergence rate, and sex ratio. The 

parasitoid was able to complete development in all mealybug species. Nevertheless, its 

emergence rate significantly varied among mealybug species, with the highest values observed 

in Pl. ficus and Pl. citri, intermediate values in Ps. calceolariae, and the lowest ones in Ps. 

viburni and Ph. peruvianus. The body size of adult wasp females varied with host suitability 

and was positively correlated with other measures of parasitoid fitness, including the emergence 

rate and the sex-ratio. The parasitoid development time differed among mealybug species, but 

did not correlate with any other measure of fitness. A female biased sex ratio was found in the 

parasitoid progeny emerged from all mealybug species, except in Ps. viburni and Ph. 

peruvianus. There was a direct relationship between the proportion of females in the parasitoid 

progeny and the emergence rate. 

 

Key-words: host range, host suitability, scale insect, natural enemy, biological control 
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4.1. Introduction 

Mealybugs are the second largest family of scale insects (Hemiptera: Coccoidea), including 

many economic important species, which are considered pests of agricultural crops and 

ornamentals, such as the citrus mealybug Planococcus citri (Risso), the vine mealybug Pl. ficus 

(Signoret), the citrophilus mealybug Pseudococcus calceolariae (Maskell), the obscurus 

mealybug Ps. viburni (Signoret), and the bougainvillea mealybug Phenacoccus peruvianus 

Granara de Willink (Ben-Dov, 1994; Beltrà et al., 2010; Franco, Zada, & Mendel, 2009; Hardy, 

Gullan, & Hodgson, 2008). Due to the ineffectiveness of many insecticides used to control pest 

mealybugs, as well as to their adverse health, ecological and environmental impacts, biological 

control tactics has been suggested as an environmentally friendly alternative to be considered 

in integrated pest management strategies for the control of these insect pests (Franco et al., 

2009).  

Encyrtids are amongst the most successful natural enemies used in biological control 

programs against mealybugs (Noyes & Hayat, 1994). Anagyrus pseudococci (Girault) is a well-

known solitary encyrtid endoparasitoid which has been commonly used as a biological control 

agent of mealybugs of the genera Planococcus and Pseudococcus, specially against Pl. citri 

(Noyes & Hayat, 1994; Triapitsyn, Gonzalez, Vickerman, Noyes, & White, 2007). However, it 

was recently shown that A. pseudococci s.l. (i.e., sensu latu, corresponding to the previous 

references) in fact comprises two sibling species, Anagyrus pseudococci (Girault) and Anagyrus 

sp. nr. pseudococci (Girault) (Triapitsyn et al., 2007). Anagyrus pseudococci is apparently 

restricted to Sicily, Argentina (introduced), and Cyprus, whereas A. sp. nr. pseudococci seems 

to be more widely distributed, since it has been recorded from many countries including 

Portugal, Spain, Italy, Greece, Israel, Turkmenistan, South Africa, Brazil and USA (Franco et 

al., 2011; Guerrieri & Pellizzari 2009; Karamaouna, Menounou, Stathas, & Avtzis, 2011; 

Mgocheki & Addison, 2009; Triapitsyn et al., 2007). Therefore, there is a need to further 

investigate the host-parasitoid relationship of both Anagyrus species in order to further clarify 

the taxonomic status of A. sp. nr. pseudococci and improve their effective use in biological 

control of pest mealybugs (Triapitsyn et al., 2007). 

The success of host-parasitoid relationship involves a number of events including host 

selection, host suitability, and host regulation (Vinson & Iwantsch, 1980). Host selection 

comprises a series of behaviors, such as host habitat location, host location, host recognition, 

and host acceptance (Vinson, 1998). In previous works, we studied the host selection behavior 

of A. sp. nr. pseudococci, including host location (Franco et al., 2008, 2011), host recognition 

and host acceptance (Bugila et al., 2014a). More recently, we also investigated the host defense 
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behavior and immune response of different mealybug species to the attack of the parasitoid 

(Bugila et al., 2014b). In the present work we aimed at studying host suitability by comparing 

the ability of A. sp. nr. pseudococci to complete development in five host mealybugs with 

different phylogenetic relationships and geographical origins. Host suitability was assessed 

based on different fitness parameters of the parasitoid, such as body size, development time, 

emergence rate, and sex ratio.  

These five mealybug species from three different genera (Planococcus, Pseudococcus, and 

Phenacoccus) were the same selected in previous studies (Bugila et al., 2014a, 2014b): i) a 

Mediterranean native species, Pl. ficus, sharing a long co-evolutionary history with the 

parasitoid; ii) three exotic species, the possibly Afrotropical Pl. citri, the Australasian Ps. 

calceolariae and the Neotropical Ps. viburni, with a more recent co-evolutionary history; and 

iii) a fourth one, the Neotropical Ph. peruvianus, with no previous common history with the 

parasitoid. The phylogenetic relationships of these mealybug species, as well as their possible 

origin and history of introduction in the Mediterranean basin were described in Bugila et al. 

(2014a). 

 

4.2. Material and Methods 

4.2.1. Mealybug rearing 

Feral mealybugs were collected from different regions and host plants according to each species 

habitat in order to start the rearing in laboratory (Table 4.1). All five studied mealybug species 

were reared on sprouted potatoes (Solanum tuberosum L.) under controlled conditions 

(25.0±0.5oC, 55-65% R.H., in the dark) in individual climatic chambers (FitoClima, ARALAB) 

during multiple generations to provide the necessary individuals for the experiments. Mealybug 

colonies were regularly refreshed by adding new individuals collected from the field. Before 

the beginning of the experiments, third instars of each mealybug species were isolated on 

sprouted potatoes within ventilated plastic boxes kept for seven days under the same controlled 

conditions referred before, to standardize age, physiological state and obtain pre-reproductive 

adult females (Bugila et al., 2014a).  

 

4.2.2. Parasitoid rearing  

Feral individuals of Anagyrus sp. nr. pseudococci were obtained from parasitized adult females 

of Pl. citri collected in citrus orchards in the region of Silves (Portugal) and reared for multiple 

generations within ventilated plastic boxes on Pl. citri under controlled conditions (25.0±0.5oC, 

55-65% R.H., 16L:8D). To obtain naive adult female wasps, the rearing plastic boxes were first 
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observed and kept free of parasitoids, and then checked every 24h, in order to collect wasps 

with less than 24h old. Two males and one female were then moved to a new box containing 

one drop of honey as food in which they were maintained for 72h under laboratory conditions, 

in order to allow mating and feeding before the experiments (Bugila et al., 2014a). 

 

Table 4.1 - Origin of the studied mealybug populations. 

Mealybug species Region Host plant 

Planococcus citri Silves (Mainland, Portugal) Sweet orange 

Planococcus ficus Tavira (Mainland, Portugal) Vineyard 

Pseudococcus calceolariae Loulé (Mainland, Portugal) Sweet orange 

Pseudococcus viburni Biscoitos (Azores, Portugal) Vineyard 

Phenacoccus peruvianus Queluz (Mainland, Portugal) Bougainvillea glabra

 

4.2.3. Experiments 

The experiments were conducted between 12:00h and 19:00h, under laboratory conditions (19-

22°C and 55-65% R.H.), using 20 replicates for each of the five studied mealybug species. Each 

replicate consisted of one naïve adult parasitoid female exposed to 10 pre-reproductive adult 

mealybug females in a Petri-dish (9cm diameter) during 30 min (Bugila et al., 2014a). During 

this time observations were carried out and the number of ovipositions by each female wasp 

was registered. Then the parasitoid female was removed and all Petri-dishes with the exposed 

mealybugs were maintained under controlled conditions (25.0±0.5oC, 55-65% R.H., 16L:8D) 

until wasp progeny emergence. The gender of each emerged wasp was identified and the wasps 

kept in separate vials for further analysis. 

 

4.2.4. Size of wasp female progeny 

The mean size of an adult female of A. sp. nr. pseudococci progeny was estimated based on the 

hind tibia length (Chong & Oetting, 2007; Sagarra, Vincent, & Stewart, 2001a; West, Flanagan, 

& Godfray, 1996). With that purpose, the left hind tibia of the emerged adult females was 

removed and mounted on microscope slides and then measured under a binocular microscope 

(100X magnification). Measurements were carried out in at least five specimens per host 

species.  

4.2.5. Host size 
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The size of the adult mealybug females was estimated based on the projected area (mm2) of the 

body, assuming an elliptic shape. This parameter (A) was determined using the following 

equation, corresponding to the area of an ellipse: 

A = LWπ/4 

where L and W are the length and width of the female body, respectively. 

The measurements of the body length and width of mealybug females were carried out 

using image capture software (Jenoptik ProgRes CT5, Germany) connected to a 

stereomicroscope (20X magnification; Meiji Techno EMZ-13TR, Japan). A total of 3-4 

specimens were used for each mealybug species.  

 

4.2.6. Data and statistical analysis 

The number of parasitized mealybugs, as well as the number of emerged wasps and their gender 

was recorded per replicate. These data were used for estimating the rate of emergence of the 

parasitoid (number of emerged wasps/number of parasitized mealybugs) and the parasitism rate 

(number of emerged wasps per 10 exposed mealybugs). The number of days since oviposition 

until emergence was recorded for each wasp offspring as a measure of its development time.  

The rate of emergence of A. sp. nr. pseudococci and tibia size of wasp adult females were 

compared among host species by one-way ANOVA. Development time of emerged individuals 

was analyzed using full factorial two-way ANOVA, considering the factors gender of the 

progeny and host species. Differences among host species were subsequently tested by LSD 

test. Normality assumption was previously tested by Kolmogorov-Smirnoff test. Relationship 

between variables was tested by Pearson bivariate correlation. 

Sex ratio was analyzed by using Generalized Linear Model with Binomial model 

distribution considering the binary dependent variable (male, female), and host species as 

predictor variable. A logistic regression was used, to relate the probability of female progeny 

(dependent variable) with the rate of emergence of the parasitoid (explanatory variable).  

Statistical analyses were performed using IBM SPSS 20.0 for Windows (IBM Corporation, 

Armonk, New York, USA). 

 

 

 

4.3. Results 
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4.3.1. Emergence and parasitism rate 

The emergence rate of A. sp. nr. pseudococci significantly varied among mealybug species (F4, 

95=16.59, p<0.001), with the highest values observed in Planococcus spp. (Table 4.2). 

Intermediate values were found in Ps. calceolariae, whereas Ps. viburni and Ph. peruvianus 

exhibited the lowest ones. 

 

Table 4.2 - Parasitism rate and emergence rate of Anagyrus sp. nr. pseudococci for each studied 
mealybug species. 

Mealybug species 
Emergence rate 

(%) * 
Parasitism rate 

(%) 

Planococcus citri 65.6±6.23a 22.5±2.28b 

Planococcus ficus 67.0±5.97a 31.5±3.42a 

Pseudococcus calceolariae 40.6±7.98b 15.0±2.67c 

Pseudococcus viburni 14.8±4.44c 4.5±1.35d 

Phenacoccus peruvianus 16.8±5.90c 5.5±1.53d 

*Within columns, means followed by the same letter are not significantly 
different (P=0.05) 

 

The parasitism rate originated by the parasitoid was also significantly dependent (F4, 

95=23.30, p<0.001) on the host species (Table 4.2). The highest value was registered in Pl. ficus 

and the lowest ones were observed in Ps. viburni and Ph. peruvianus. Planococcus citri and Ps. 

calceolariae showed intermediate values of parasitism.  

 

4.3.2. Development time 

The development time of A. sp. nr. pseudococci significantly varied with both the progeny 

gender (F1,4=15.86, p<0.001) and the host species (F4,4=14.761, p<0.001). No significant 

interaction was found between the two factors, host species and progeny gender (F4,148=1.398, 

p<0.237). The development time of female wasps in Pseudococcus spp. was significantly 

higher than in the other mealybug species (Table 4.3). Intermediate values were found in Pl. 

citri  and Pl. ficus. Finally, a significantly lower development time of the parasitoid was 

observed in Ph. peruvianus. This parameter registered higher values in female wasps 

(20.4±0.23) than in males (18.7±0.36). Mean development time of female wasps was 

significantly correlated with that of males for all mealybug species (r=0.99, n=5, p<0.001). 
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Table 4.3 - Development time, sex ratio, and body size of the progeny of Anagyrus sp. nr. 
pseudococci originated from each of the studied mealybug species.    

Mealybug species 
Development time 
of progeny females 

(days)* 

Proportion of 
progeny 
females 

Tibia length of 
progeny 
females         

(x 10-3 mm) 

Planococcus citri 19.8±0.30b 0.60±0.07b 0.56±0.008b 

Planococcus ficus 18.5±0.15c 0.83±0.05a 0.58±0.005a 

Pseudococcus calceolariae 23.3±0.51a 0.79±0.07ab 0.53±0.011c 

Pseudococcus viburni 22.4±0.84a 0.33±0.10c - 

Phenacoccus peruvianus 17.8±0.48c 0.18±0.08c 0.47±0.015d 

*Within columns, means followed by the same letter are not significantly different (P=0.05) 
 

4.3.3. Sex ratio of progeny 

The proportion of female progeny of A. sp. nr. pseudococci significantly differed among 

mealybug species (Wald χ2=38.35, p<0.001). More females than males of the parasitoid 

emerged from all tested mealybugs, except in Ps. viburni and Ph. peruvianus (Table 4.3). The 

proportion of parasitoid female progeny was highest in Pl. ficus, followed by Ps. calceolariae 

and Pl. citri. Planococcus ficus showed for the same parameter significantly higher values 

compared to all other mealybug species, except for Ps. calceolariae (p=0.685). On the other 

hand, Ps. viburni and Ph. peruvianus showed significantly lower values than other mealybug 

species. The probability of parasitoid female progeny was significantly explained by the rate of 

parasitoid emergence through logistic regression (χ2=24.72, df=1, p<0.001). From the 

regression parameter estimate (β=0.575±0.116) we predicted that the parasitoid emergence 

would increase 1.8-fould for females than males. 

4.3.4. Host size 

The size of the adult female mealybugs significantly differed among species (F4,16=25.95, 

p<0.001) varying according to the following sequence, from the largest to the smallest species: 

Ps. calceolariae, Pl. citri, Ps. viburni, Pl. ficus, and Ph. peruvianus (Table 4.4).  

4.3.5. Size of wasp adult females 

The size of the adult females of A. sp. nr. pseudococci, expressed as hind tibia length, varied 

significantly with the host species (F3,66=18.71, p<0.001; Table 4.3). The size was higher on Pl. 

ficus, followed by Pl. citri, then Ps. calceolariae and finally Ph. peruvianus. Body size could 
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not be determined in the wasps emerged from Ps. viburni due to the accidental loss of the low 

number of wasp females obtained from this mealybug species. A high and significant 

correlation was found between the size of the tibia of wasp females and the emergence rate of 

the parasitoid (Figure 4.1). The body size of the adult female of the parasitoid did not correlate 

with the size of the host species (r=0.282, n=4, p=0.718). 

 

Table 4.4 - Length, width and area of female body of the studied mealybug species. 

Mealybug species 
Length 
(mm)* 

Width       
(mm) 

Area   
(mm2) 

Planococcus citri 3.00±0.06b 1.80±0.06b 4.25±0.22b 

Planococcus ficus 2.47±0.03d 1.47±0.03c 2.84±0.10cd 

Pseudococcus calceolariae 3.20±0.06a 2.00±0.09a 5.03±0.32a 

Pseudococcus viburni 2.80±0.06c 1.53±0.03c 3.37±0.14c 

Phenacoccus peruvianus 2.17±0.07d 1.33±0.03c 2.27±0.13d 

*Within columns, means followed by the same letter are not significantly 
different (P=0.05) 

 

Figure 4.1 - Relationship between the emergence rate of Anagyrus sp. nr. pseudococci and the 
size (x 10-3 mm) of adult female progeny of the parasitoid according to the host species. 
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4.4. Discussion 

Fitness of endoparasitoid adult females is directly influenced by host characteristics through 

larval development of its offspring (Firlej, Lucas, Coderre, & Boivin, 2007). Therefore, it is 

expected that parasitoid females will recognize and accept the hosts that will allow the 

development of larvae and optimize their fitness, based on external and internal characteristics 

which are monitored through antennation and ovipositor probing, respectively (Firlej et al., 

2007; Vinson, 1998). The ability of a parasitoid completing development is related with the 

host suitability which in turn is dependent on several factors, such as: i) host immune defenses; 

ii) host nutritional suitability; iii) presence in the host of substances toxic to the immature 

parasitoid; and iv) environmental factors (Vinson & Iwantsch, 1980). Therefore, we may divide 

hosts in three different classes according to their quality: i) suitable hosts, in which most of the 

parasitoid larvae are allowed to complete development; ii) marginal hosts, in which only a small 

percentage of parasitoid individuals will develop; and iii) unsuitable hosts, in which no 

parasitoid development will occur (Firlej et al., 2007). The successful parasitism also depends 

on the ability of parasitoids manipulating host physiology through gene products (e.g., venom, 

polydnaviruses, teratocytes), which eventually will benefit the survival and development of the 

parasitoid, namely by suppressing host immune defenses (e.g., encapsulation), and increasing 

nutrient availability (Harvey, 2005; Pennacchio & Strand, 2006; Strand & Casas, 2008).  

In an earlier study, we observed that the behavioral pattern of host recognition and the level 

of host acceptance of A. sp. nr. pseudococci significantly differed among the five mealybug 

species here studied (Bugila et al., 2014a). More recently, we showed that the rate of host 

acceptance by A. sp. nr. pseudococci might be affected by the level of behavioral defenses of 

each mealybug species (Bugila et al., 2014b). Here we investigated the host suitability of those 

mealybug species for the development of A. sp. nr. pseudococci and tested if, as predicted, 

female wasps really know the best for their progeny. Our results showed that the parasitoid was 

able to complete development in all five studied mealybug species, despite the fact of these 

hosts representing three different genera (Planococcus, Pseudococcus, and Phenacoccus) 

which are not closely phylogenetically related (Downie & Gullan, 2004; Hardy et al., 2008). 

Nevertheless, the emergence rate of the parasitoid significantly varied among mealybug 

species, with the highest values observed in the native Pl. ficus and the phylogenetically related 

Pl. citri, intermediate values in Ps. calceolariae, and the lowest ones in Ps. viburni and Ph. 

peruvianus (Table 4.2). Thus, the observed differences in host suitability apparently reflect the 

phylogenetic relationships of the studied mealybug species and the differences in their co-

evolutionary history with A. sp. nr. pseudococci. 
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To test the hypothesis that female wasps are capable of accepting or rejecting a potential 

host in function of its suitability for their progeny we correlated the emergence rate of A. sp. nr. 

pseudococci with the level of host acceptance (i.e. number of parasitized individuals per 10 

exposed mealybugs) observed by Bugila et al. (2014a) for the same mealybug species: 3.0±0.4 

(Pl. citri), 2.2±0.3 (Pl. ficus), 1.4±0.3 (Ps. calceolariae), 1.6±0.3 (Ps. viburni), 1.1± 0.2 (Ph. 

peruvianus). The correlation between these two parameters is not significant (r= 0.818, n=5, p 

=0.091), indicating that in the case of A. sp. nr. pseudococci not always “mother knows the 

best” (Henry, Gillespie, & Roitberg, 2005). This output was mainly due to the fact that the 

parasitoid emergence rate from Ps. viburni (14.8%) was lower than expected based on the 

corresponding level of host acceptance and compared to that of Ps. calceolariae (40.6%), for 

which the parasitoid showed a similar level of host acceptance. Similar results suggesting that 

the assessment of host quality by female wasps is not perfect have been also reported for other 

parasitoid species (e.g., Henry et al., 2005; Sagarra, Vincent, & Stewart, 2001b). However, 

these apparent wrong decisions of the wasp females in host acceptance may favour the 

recruitment of new host species, as it will be discussed later.  

The parameters of A. sp. nr. pseudococci fitness including the rate of emergence, the body 

size of adult females, the progeny sex ratio, and the development time significantly differed 

among host species. As mentioned before, the emergence rate of a parasitoid is dependent on 

different factors, including host immune defences, host nutritional suitability, presence of toxic 

substances within the host, and environmental factors. Encapsulation is a common immune 

defense mechanism of mealybugs against the eggs and larvae of their parasitoids (Blumberg, 

1997; Blumberg, Klein, & Mendel, 1995; Blumberg & van Driesche, 2001; Sagarra, Peterkin, 

Vincent, & Stewart, 2000; Suma et al., 2012b). In a previous work we found that the probability 

of encapsulation of A. sp. nr. pseudococci was highest in Ps. viburni (0.86), lowest in Ph. 

peruvianus (0.20), and intermediate in Pl. citri (0.52), Ps. calceolariae (0.45), and Pl. ficus 

(0.43) (Bugila et al., 2014b). Therefore, the observed differences in the emergence rate of the 

parasitoid are apparently not explained only by the different level of encapsulation in the 

mealybug species. This suggests that besides encapsulation other factors related with host 

quality are also involved. Considering that the experimental environmental conditions were the 

same for all five mealybug species, differences among mealybug species in the presence of 

toxic substances accumulated from the host plant or in the environmental factors are unlikely. 

Thus, host nutritional suitability is possibly other factor involved.  

Female size is an important measure of parasitoid fitness and is known to influence other 

fitness parameters, including mating capacity, dispersal, longevity, fecundity and reproductive 
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rate (Godfray, 1994; Harvey, 2005; Jervis & Copland, 1996). In the present work, we found as 

expected that the body size of adult females of A. sp. nr. pseudococci varied with host suitability 

and was positively correlated with other measures of parasitoid fitness, such as the emergence 

rate and the sex-ratio of the progeny. Similar relationships between female body size and other 

fitness parameters have been also reported for other Anagyrus species, as for example A. kamali 

(Sagarra et al., 2001b). 

The effects of development time on parasitoid fitness are still little known. A trade-off 

between this parameter and parasitoid body size may exist, that is a faster development can 

occur at the expense of a reduction in body size and vice versa (Harvey, 2005; Harvey & Strand, 

2002). In our study, the development time of A. sp. nr. pseudococci varied with host species, 

but did not correlate with any other measure of parasitoid fitness. Still, development time was 

similar within each host genus, being highest in Pseudococcus, intermediate in Planococcus 

and lowest in Ph. peruvianus. In opposition to other fitness parameters, no clear relationship 

between parasitoid development time and host suitability was found. The development time 

was longer in females than in males. This result is apparently in contrast with those reported in 

other studies for A. sp. nr. pseudococci (Karamaouna et al., 2011; Suma et al., 2012a) and A. 

pseudococci s.l. (Avidov et al., 1967) in which no significant differences on development time 

were observed between wasp genders. However, as suggested by Gülec, Kilincer, Kaydan, and 

Ülgentürk (2007) differences in development time between male and female wasps might be 

related with host stage. These authors observed similar development time on male and female 

wasps when A. pseudococci s.l. developed on third instar mealybugs, whereas a shorter 

development time was registered for male wasps emerging from adult female mealybugs. Our 

results are consistent with those obtained by Gülec et al. (2007) for adult female mealybugs.  

Haplodiploidy is the sex determination system of most of the hymenopteran parasitoids, in 

which haploid males originate from unfertilized eggs, whereas diploid females are the result of 

fertilized eggs (Jervis & Copland, 1986). Therefore, female wasps are able to control the sex of 

their progeny by regulating the release of sperm from spermatheca during oviposition. Sex 

allocation in parasitoids is known to be influenced by host quality. Sex ratio theory predicts that 

female wasps should oviposit female eggs in higher quality hosts and male eggs in lower quality 

hosts, as females are considered the sex in which the increment gain in fitness per host is higher 

(Charnov, 1982; Godfray, 1994; King, 1987; West, Reece, & Sheldon, 2002). In the case of A. 

pseudococci s.l., it has been shown that the sex ratio is influenced by the host stage/size within 

the same mealybug species, with male biased sex ratio observed in third instars or younger host 

stages, and female biased ones in adult female mealybugs (Suma et al., 2012a and references 
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therein). Here we investigated whether differences in host quality across the five studied 

mealybug species would affect the sex ratio of A. sp. nr. pseudococci progeny. We found a 

significant relationship between this parameter and the emergence rate of the parasitoid. That 

is, the proportion of females in the parasitoid progeny was highest (female biased sex ratio) in 

the native mealybug species, Pl. ficus and lowest (male biased sex ratio) in the alien Neotropical 

mealybug species, Ps. viburni and Ph. peruvianus. Apparently, the observed relationship 

between the two parameters is not explained by host-size variation among mealybug species, 

as no significant correlation was found between host size and offspring sex-ratio of A. sp. nr. 

pseudococci. Therefore, besides host size other factors of host quality, host immune defenses 

and host nutritional suitability were possible responsible for the registered differences in sex 

allocation by the parasitoid females among mealybug species. Nevertheless, we cannot exclude 

the hypothesis that the observed sex ratios might also have resulted from different survival rate 

of female and male wasps, depending on host quality, as we did not determine the primary sex 

ratio in present study. Taken together, the available data suggest that sex ratio of progeny can 

be used as a predictor of host suitability in A. sp. nr. pseudococci.  

The higher emergence rate, larger tibia length of wasp females, and higher proportion of 

progeny females clearly indicate that Pl. ficus is the most suitable host for A. sp. nr. 

pseudococci, closely followed by Pl. citri. In contrast, the lower emergence rate, smaller tibia 

length of wasp females, as well as the male biased sex ratio registered in the parasitoid progeny 

obtained from Ps. viburni and Ph. peruvianus suggest that these two mealybug species are poor 

quality hosts for A. sp. nr. pseudococci, and thus may be considered marginal hosts. 

Pseudococcus calceolariae seems to be in an intermediate position. 

Our results showing that A. sp. nr. pseudococci is capable of developing in not closely 

related mealybug species corroborate its generalist behavior suggested in previous studies on 

host recognition and acceptance (Bugila et al., 2014a), in contrast with other congeneric species 

which display a much higher degree of specialization. For example, Anagyrus kamali Moursi 

and Anagyrus amnestos Rameshkumar, Noyes & Poorani (=Anagyrus sp. nr. sinope Noyes & 

Menezes) are only able to complete development in their principal host species, respectively 

the hibiscus mealybug, Maconellicoccus hirsutus and the Madeira mealybug, Ph. madeirensis, 

although the first parasitoid species may accept to oviposit in a few unsuitable hosts (Chong & 

Oetting, 2007; Rameshkumar, Noyes, Poorani, & Chong, 2013; Sagarra et al., 2001b). On the 

other hand, Anagyrus sp. nr. pseudococci has apparently a close evolutionary relationship with 

Pl. ficus, since the parasitoid shows an innate kairomonal response to the sex pheromone of the 

vine mealybug (Franco et al., 2008) and uses this kairomone in host location (Franco et al., 
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2011). Overall, the available information, including its host selection behavior and apparent 

realized host range, indicates that A. sp. nr. pseudococci evolved from a specialist to a more 

generalist strategy (Bugila et al., 2014a; Franco et al., 2008). Therefore, we suggest that the 

host range of A. sp. nr. pseudococci might have evolved according to the “host-ecology 

hypothesis” (Shaw, 1994; Tschopp, Riedel, Kropf, Nentwig, & Klopfstein, 2013; Zaldivar-

Riverón et al., 2008), which assumes that a parasitoid may expand its host range by recruiting 

new host species within its searching niche. The data on the host acceptance behavior (Bugila 

et al., 2014a) and host suitability (here presented), as well as the records of mealybug parasitism 

from field samples (Beltrà, Tena, & Soto, 2013; Franco et al., 2011; Guerrieri & Pellizzari, 

2009; Karamaouna et al., 2011; Mgocheki & Addison, 2009; Triapitsyn et al., 2007) indicate 

that A. sp. nr. pseudococci has been expanding the host range from its possible original host, 

Pl. ficus (Franco et al., 2008) by recruiting new host species, specially within the genera 

Planococcus and Pseudococcus, but also in Phenacoccus. For example, in field surveys carried 

out in Spain, the parasitoid was found, although in very low numbers, parasitizing Ph. 

peruvianus, which has recently invaded Europe (Beltrà et al., 2010, 2013). It is expected that 

the recruitment of new hosts will be possible only in parasitoid species presenting a not very 

selective behavioral pattern of host acceptance, which eventually may oviposite in marginal or 

even unsuitable hosts. Anagyrus sp. nr. pseudococci fits this behavioral pattern. 

In conclusion, Pl. ficus was the most suitable host species for A. sp. nr. pseudococci 

corroborating the hypothesis of a close evolutionary history of the parasitoid with this 

Mediterranean-native mealybug. Host suitability of the studied mealybug species seems to fit a 

phylogenetic/biogeographic trend, showing the highest level in Pl. ficus and its closely related 

congener Pl. citri, followed by the Australasian Ps. calcelolariae, and the Neotropical Ps. 

viburni and Ph. peruvianus. The results have also implications in the effective use of A. sp. nr. 

pseudococci for the biological control of pest mealybugs. By adding data on host suitability, 

we complemented the information collected in previous studies on host recognition/acceptance 

behavior (Bugila et al., 2014a), and host defenses (Bugila et al., 2014b), allowing a more clear 

picture on the host selectivity and host range of the parasitoid. 

 

4.5. Acknowledgments 

Thanks are due to Vera Zina, for helping in the mealybug and parasitoid rearing in the 

laboratory; this research was supported by the Fundação para a Ciência e Tecnologia (project 

nº PTDC/AGR-AAM/099560/2008). The first author benefited from a PhD grant from the 

Libyan Government.  



66 

 

 

4.6. References 

Avidov, Z., Rössler, Y., & Rosen, D. (1967). Studies on an Israel strain of Anagyrus 

pseudococci (Girault) (Hym., Encyrtidae). II. Some biological aspects. Biocontrol, 12, 111-

118. 

Beltrà, A., Soto, A., Germain, J.-F., Ferrero, D. M., Mazzeo, G., Pellizzari, G., … Williams, D. 

J. (2010). The Bougainvillea mealybug Phenacoccus peruvianus, a rapid invader from 

South America to Europe. Entomologia Hellenica, 19, 137-143.  

Beltrà, A., Tena, A., & Soto, A. (2013). Fortuitous biological control of the invasive mealybug 

Phenacoccus peruvianus in Southern Europe. BioControl, 58, 309-317. 

Ben-Dov, Y. (1994). A systematic catalogue of the mealybugs of the world (Insecta: 

Homoptera: Coccoidea: Pseudoccocidae and Putoidae) with data on their geographical 

distribution, host plants, biology and economic importance. Andover, MA: Intercept. 

Blumberg, D. (1997). Parasitoid encapsulation as a defense mechanism in the Coccoidea 

(Homoptera) and its importance in biological control. Biological Control, 8, 225-236. 

Blumberg, D., Klein, M., & Mendel, Z. (1995). Response by encapsulation of four mealybug 

species (Homoptera: Pseudococcidae) to parasitization by Anagyrus pseudococci. 

Phytoparasitica, 23, 157-163.  

Blumberg, D., & Van Driesche, R. G. (2001). Encapsulation rates of three encyrtid parasitoids 

by three mealybug species (Homoptera: Pseudococcidae) found commonly as pests in 

commercial greenhouses. Biological Control, 22, 191-199.  

Bugila, A. A. A., Branco, M., Silva, E. B., & Franco, J. C. (2014a). Host selection behavior and 

specificity of the solitary parasitoid of mealybugs Anagyrus sp. nr. pseudococci (Girault) 

(Hymenoptera, Encyrtidae). Biocontrol Science & Technology 24, 22-38.  

Bugila, A. A. A., Franco J. C., Silva, E. B., & Branco, M. (2014b). Defense response of native 

and alien mealybugs (Hemiptera: Pseudococcidae) against the solitary parasitoid Anagyrus 

sp. nr. pseudococci (Girault) (Hymenoptera: Encyrtidae). Journal of Insect Behaviour, doi: 

10.1007/s10905-014-9440-x. 

Charnov, E. L. (1982). The Theory of Sex Allocation. Princeton: Princeton University Press.  

Chong, J. H., & Oetting, R. D. (2007). Specificity of Anagyrus sp. nov. nr. sinope and 

Leptomastix dactylopii for six mealybug species. BioControl, 52, 289-308. 

Downie, D. A., & Gullan P. J. (2004). Phylogenetic analysis of mealybugs (Hemiptera: 

Coccoidea: Pseudococcidae) based on DNA sequences from three nuclear genes, and a 



67 

 

review of the higher classification. Systematic Entomology, 29, 238-259. 

doi:10.1111/j.0307-6970.2004.00241.x 

Firlej, A., Lucas, E., Coderre, D., & Boivin, G. (2007). Teratocytes growth pattern reflects host 

suitability in a host–parasitoid assemblage. Physiological Entomology, 32, 181-187.  

Franco, J. C., Silva, E. B., Cortegano, E., Campos, L., Branco, M., Zada, A., & Mendel, Z. 

(2008). Kairomonal response of the parasitoid Anagyrus sp. nov. near pseudococci to the 

sex pheromone of the vine mealybug. Entomologia Experimentalis et Applicata, 126, 122-

130.  

Franco, J. C, Silva, E. B. D., Fortuna, T., Cortegano, E., Branco, M., Suma, P., … Mendel, Z. 

(2011). Vine mealybug sex pheromone increases citrus mealybug parasitism by Anagyrus 

sp. near pseudococci (Girault). Biological Control, 58, 230-238.  

Franco, J. C., Zada, A., & Mendel, Z. (2009). Novel approaches for the management of 

mealybug pests. In I. Ishaaya & A. R. Horowitz (Eds.), Biorational control of arthropod 

pests: Application and resistance management (pp. 233–278). Dordrecht: Springer.  

Godfray, H. C. J. (1994). Parasitoids: Behavioral and Evolutionary Ecology. Princeton: 

Princeton University Press.  

Guerrieri, E., & Pellizzari, G. (2009). Parasitoids of Pseudococcus comstocki in Italy Clausenia 

purpurea and Chrysoplatycerus splendens: First records from Europe. Bulletin of 

Insectology, 62, 179-182.  

Gülec, G., Kilincer, A., Kaydan, M., & Ülgentürk, S. (2007). Some biological interactions 

between the parasitoid Anagyrus pseudococci (Girault) (Hymenoptera: Encyrtidae) and its 

host Planococcus ficus (Signoret) (Hemiptera: Coccoidea: Pseudococcidae). Journal of 

Pest Science, 80, 43-49.  

Hardy, N. B, Gullan, P. J., & Hodgson, C. J. (2008). A subfamily-level classification of 

mealybugs (Hemiptera: Pseudococcidae) based on integrated molecular and morphological 

data. Systematic Entomology, 33, 51-71.  

Harvey, J. A. (2005). Factors affecting the evolution of development strategies in parasitoid 

wasps: the importance of functional constraints and incorporating complexity. 

Entomologia Experimentalis et Applicata 117, 1-13.  

Harvey, J. A., & Strand, M. R. (2002). The developmental strategies of endoparasitoid wasps 

vary with host feeding ecology. Ecology, 83, 2439-2451.  

Henry, L. M., Gillespie, D. R., & Roitberg, B. D. (2005). Does mother really know best? 

Oviposition preference reduces reproductive performance in the generalist parasitoid 

Aphidius ervi. Entomologia Experimentalis et Applicata, 116, 167-174.  



68 

 

Jervis, M. A., & Copland, M. J. W. (1996). The life cycle. In: M. Jervis & N. Kidd (Eds.), Insect 

Natural Enemies: Practical approaches to their study and evaluation (pp. 63-161). 

London, UK: Chapman & Hall. 

Karamaouna, F., Menounou, G., Stathas, G. J., & Avtzis, D. N. (2011). First record and 

molecular identification of the parasitoid Anagyrus sp. near pseudococci Girault 

(Hymenoptera: Encyrtidae) in Greece - Host size preference for thevine mealybug Pl. ficus 

(Signoret) (Hemiptera: Pseudococcidae). Hellenic Plant Protection Journal, 4, 45-52.  

King, B. H. (1987). Offspring sex ratios in parasitoid wasps. Quarterly Review of Biology, 62, 

367-396.  

Mgocheki, N., & Addison, P. (2009). Effect of contact pesticides on vine mealybug parasitoids, 

Anagyrus sp. near pseudococci (Girault) and Coccidoxenoides perminutus (Timberlake) 

(Hymenoptera: Encyrtidae). South African Journal of Enology and Viticulture, 30, 110-

116.  

Noyes, J. S., & Hayat, M. (1994). Oriental mealybug parasitoids of the Anagyrini 

(Hymenoptera: Encyrtidae). Wallingford: CAB International. 

Pennacchio, F., & Strand, M. R. (2006). Evolution of developmental strategies in parasitic 

Hymenoptera. Annual Review of Entomology 51, 233-58. 

Rameshkumar A., Noyes J. S., Poorani J., & Chong J. H. (2013). Description of a new species 

of Anagyrus Howard (Hymenoptera: Chalcidoidea: Encyrtidae), a promising biological 

control agent of the invasive Madeira mealybug, Phenacoccus madeirensis Green 

(Hemiptera: Sternorrhyncha: Pseudococcidae). Zootaxa 3717, 76-84.  

Sagarra, L. A., Peterkin, D. D., Vincent, C., & Stewart, R. K. (2000). Immune response of the 

hibiscus mealybug, Maconellicoccus hirsutus Green (Homoptera: Pseudococcidae), to 

oviposition of the parasitoid Anagyrus kamali Moursi (Hymenoptera: Encyrtidae). Journal 

of Insect Physiology, 46, 647-653.  

Sagarra, L. A., Vincent, C., & Stewart, R. K. (2001a). Body size as an indicator of parasitoid 

quality in male and female Anagyrus kamali (Hymenoptera: Encyrtidae). Bulletin of 

Entomological Research, 91, 363-367.  

Sagarra, L. A., Vincent, C., & Stewart, R. K. (2001b). Suitability of nine mealybug species 

(Homoptera: Pseudococcidae) as hosts for the parasitoid Anagyrus kamali (Hymenoptera: 

Encyrtidae). Florida Entomologist, 84, 112-–116.  

Shaw, M. R. (1994). Parasitoid host ranges. In: B. A. Hawkins & W. Sheehan (Eds.), Parasitoid 

Community Ecology (pp. 111-144). Oxford; Oxford University Press.  



69 

 

Strand, M. R., & Casas, J. (2008). Parasitoid and host nutritional physiology in behavioral 

ecology. In: E. Wajnberg, C. Bernstein, & J. van Alphen (Eds.), Behavioral Ecology of 

Insect Parasitoids: From Theoretical Approaches to Field Applications (pp. 113-128). 

Malden, USA: Blackwell Publishing Ltd.  

Suma, P., Mansour, R., La Torre, I., Bugila, A. A., Mendel, Z., & Franco, J. C. (2012a). 

Developmental time, longevity, reproductive capacity and sex ratio of the mealybug 

parasitoid Anagyrus sp. nr. pseudococci (Girault) (Hymenoptera: Encyrtidae). Biocontrol 

Science and Technology 22, 737-745.  

Suma, P., Mansour, R., Russo, A., La Torre, I., Bugila, A. A., & Franco J. C. (2012b). 

Encapsulation rates of the parasitoid Anagyrus sp. nr. pseudococci, by three mealybug 

species (Hemiptera: Pseudococcidae). Phytoparasitica 40, 11-16.  

Tschopp, A., Riedel, M., Kropf, C., Nentwig, W., & Klopfstein, S. (2013). The evolution of 

host associations in the parasitic wasp genus Ichneumon (Hymenoptera: Ichneumonidae): 

convergent adaptations to host pupation sites. BMC Evolutionary Biology, 13, 74.  

Triapitsyn, S. V., Gonzalez, D., Vickerman, D. B., Noyes, J. S., & White, E. B. (2007). 

Morphological, biological, and molecular comparisons among the different geographical 

populations of Anagyrus pseudococci (Hymenoptera:Encyrtidae), parasitoids of 

Planococcus spp. (Hemiptera: Pseudococcidae), with notes on Anagyrus daetylopii. 

Biological Control, 41, 14-24.  

Vinson, S. B. (1998). The general host selection behavior of parasitoid Hymenoptera and a 

comparison of initial strategies utilized by larvaphagous and oophagous species. Biological 

Control 11, 79-96.  

Vinson, S. B., & Iwantsch, G. F. (1980). Host suitability for insect parasitoids. Annual Review 

of Entomology, 25, 397-419.  

West, S. A., Flanagan, K. E., & Godfray, H. C. J. (1996) The relationship between parasitoid 

size and fitness in the field, a study of Achrysocharoides zwoelferi (Hymenoptera: 

Eulophidae). Journal of Animal Ecology, 65, 631-639.  

West, S. A., Reece, S. E., & Sheldon, B. C. (2002). Sex ratios. Heredity, 88, 117-124.  

Zaldivar-Riverón, A., Shaw, M. R., Sáez, A. G., Mori, M., Belokobylskij, S. A., Shaw, S. R., 

& Quicke, D. L. J (2008). Evolution of the parasitic wasp subfamily Rogadinae 

(Braconidae): phylogeny and evolution of lepidopteran host ranges and mummy 

characteristics. BMC Evolutionary Biology, 8, 329.  



 

 

 

5. Functional response of the solitary parasitoid of mealybugs Anagyrus sp. 

nr. pseudococci (Hymenoptera, Encyrtidae): comparative analysis between a 

native and an alien host species 

 

 

 

 

  



71 

 

Abstract 

Anagyrus sp. nr. pseudococci is a solitary parasitoid worldwide used in biological control of 

pest mealybugs. In this work, we compared the functional response of A. sp. nr. pseudococci 

between a Mediterranean native host species, Planococcus ficus and an alien mealybug species, 

Pseudococcus calceolariae. Densities of 2, 5, 10, 20, 30, 40, 50 and 60 pre-reproductive adult 

females of each of the two studied mealybug species were exposed to mated and fed parasitoid 

females during 24h. The number and gender of the emerged parasitoid offspring was 

determined. The results showed that the functional response of the parasitoid varied between 

host species. A type II response was observed for Ps. calceolariae, whereas for Pl. ficus a type 

III model better describe the response of the parasitoid. The upper limit of the functional 

response, i.e. the highest number of progeny produced per wasp, was about three times higher 

in Pl. ficus (18.1±5.40) than in Ps. calceolariae (6.31±1.24). The estimated handling time of 

the parasitoid was longer in Ps. calceolariae (0.159 d) than in Pl. ficus (0.067 d). The proportion 

of female progeny was significantly higher in Pl. ficus (0.78±0.02) than in Ps. calceolariae 

(0.70 ±0.02) (P=0.031). However, the progeny sex ratio was not affected by host density 

(P=0.824). The results are discussed in terms of host traits and practical implications for 

biological control. 

 

 

Key-words: host density, handling time, sex ratio, Planococcus ficus, Pseudococcus 

calceolariae, Pseudococcidae, biological control 
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5.1. Introduction 

The efficiency of a biological control organism depends in great part on its response to the 

variation in population density of its host/prey (Mills & Getz, 1996). Two non-exclusive 

mechanisms can play a role in this density-dependent relationship: i) a numerical response, in 

which the predator/parasitoid responds to the increase in prey/host density by increasing its 

reproductive or migratory rate; and ii) a functional response, where the response is translated 

by an increase in the number of prey/host consumed per individual and per unit of time (van 

Alphen & Jervis, 1996). Three main types of functional response have been considered, in 

function of the curve shape (Holling, 1959; van Alphen & Jervis, 1996). In type I, a positive 

linear relationship is assumed; type II is described by a decelerated curve, with a constantly 

decreasing rate; whereas in type III the relationship is sigmoid, initially accelerating and then 

decelerating. In any case, there is a saturation level, corresponding to a maximum in the number 

of prey/host attacked per predator/parasitoid, imposed by its behavioral and physiological 

characteristics. In terms of mortality rate the three types of curves result in a constant (type I), 

decreasing (type II), or modal variable, with an initial increasing and then decreasing curve 

(type III).  

For population biologists, the density response, linking two trophic levels, greatly explains 

the fluctuation dynamics of predator/prey or parasitoid/host populations in an interdependent 

way (Hassell, 2000). Functional and numerical responses can be used for evaluating the 

potential of a parasitoid to regulate the populations of its host species (Luck, van Lenteren, 

Twine, Juenen, & Unruh, 1979; Murdoch & Briggs, 1996). The stabilization and destabilization 

of the population dynamics in host-parasitoid interactions has been associated with type III and 

type II functional responses, respectively (Chong & Oetting, 2006; Hassell, 1978; Murdoch, & 

Oaten, 1975). Functional responses may also be used in biological control inundative releases 

for estimating the optimal dose to obtain a fast decrease in pest numbers (Chong & Oetting, 

2006; Mills & Lacan, 2004). Nevertheless, some authors question the relevance of the 

functional response for the success of biological control (Fernández-Arhex & Corley, 2003; 

Lester & Harmsen, 2002).  

Anagyrus sp. nr. pseudococci (Girault) is a solitary koinobiont parasitoid of the vine 

mealybug, Planococcus ficus (Signoret) and the citrus mealybug, Pl. citri (Risso) (Hemiptera: 

Pseudococcidae), among other mealybug species of economic importance, which has been 

recently separated from its sibling species A. pseudococci (Girault) (Triapitsyn, González, 

Vickerman, Noyes, & White, 2007). Since then, several studies have been conducted in order 

to clarify its host-parasitoid relationships, including the kairomonal response to host sex 
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pheromone (Franco et al., 2008, 2011), host selection behavior (Bugila, Branco, Silva, & 

Franco, 2014a), host defenses (Bugila, Franco, Silva, & Branco, 2014b; Suma et al., 2012b), 

and host suitability (Bugila, Franco, Silva, & Branco, 2014c; Suma et al., 2012a). In the present 

work, we aimed at investigating the functional response of A. sp. nr. pseudococci by comparing 

two host species with different evolutionary relationships with the parasitoid, as well as 

different geographical origin: the vine mealybug, Planococcus ficus (Signoret), a 

Mediterranean native host species which is considered the primary host of A. sp. nr. 

pseudococci in its region of origin (Franco et al., 2008), and the citrophilus mealybug, 

Pseudococcus calceolariae (Maskell), an Australasian alien species (Pellizzari & Germain, 

2010). The parasitoid is believed to have a close evolutionary relationship with Pl. ficus, 

whereas its relationship with Ps. calceolariae is much more recent, as this mealybug species 

possibly invaded the Mediterranean basin only few centuries ago (Bugila et al., 2014a and 

references therein). Our main aim was to test if the functional response of the parasitoid could 

be affected by the host species, depending on its evolutionary history. Besides the effect on the 

progeny production by the parasitoid, we also considered the effect on sex allocation as an 

indicator of fitness. All together, the accumulated knowledge on the host-parasitoid 

relationships will contribute to further clarify the taxonomic status of A. sp. nr. pseudococci, as 

well as to improve its effective use as a biological control agent of pest mealybugs.  

 

5.2. Material and Methods 

5.2.1. Mealybug rearing 

Specimens of the two mealybugs species Pl. ficus and Ps. calceolariae were collected in 

Algarve, Portugal, from vineyards and sweet orange orchards, respectively. The collected 

individuals were used to start laboratory colonies. The two mealybug species were reared on 

sprouted potatoes (Solanum tuberosum L.) under controlled conditions (25.0±0.5oC, 60-70% 

r.h., in the dark). Seven days before the experiments, third instars of each species were isolated 

on sprouted potatoes within ventilated plastic boxes to standardize age, physiological state and 

obtain pre-reproductive adult females and kept at laboratory conditions as described above.  

 

5.2.2. Parasitoid rearing  

Specimens of A. sp. nr. pseudococci were obtained from parasitized colonies of Pl. citri 

collected in citrus orchards in the region of Silves (Algarve, Portugal) and reared within 

ventilated plastic boxes on Pl. citri under laboratory conditions (25.0±0.5oC, 60.0-70% r.h., and 
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photoperiod 16L:8D). To obtain naive adult female wasps, the rearing boxes were first observed 

and kept free of parasitoids, and then checked every 24h, in order to collect wasps less than 24h 

old. For each replicate, two males and one female were introduced into a plastic box containing 

one drop of honey as food and maintained for 72h under laboratory conditions until the setup 

of the experiments for allowing mating. 

 

5.2.3. Experiments 

Eight densities of each of the two studied mealybug species (2, 5, 10, 20, 30, 40, 50, and 60 

adult females) were exposed to the parasitoid. For Pl. ficus density 70 was further tested. For 

each density 20 replicates were performed in separated boxes. For each of the 20 replicates 

considered in each mealybug density, the mealybugs were exposed inside a plastic box to one 

mated and fed adult female during 24h under controlled conditions (24°C, 60-70% r.h., and 

photoperiod 16L:8D). After the exposure period the parasitoid was removed from the box and 

the mealybugs were kept under the same controlled conditions until the emergence of the 

parasitoid progeny. The total number of emerged wasps per replicate was recorded, as well as 

the corresponding gender of each individual. 

 

5.2.4. Model fitting and data analysis 

Model fitting was done in two steps. In a first step, we used a logistic regression to model the 

proportion of parasitized host mealybugs, p=Na/No, considering a binomial response. The 

model was fitted to all data using Generalized Linear Models (GLM) and maximum likelihood 

estimation techniques. The functional response data satisfy the assumptions of logistic 

regression analysis and this method is considered more robust than applying least squares 

techniques (Trexler, Charles, & Joseph, 1988). As dependent variables, we used linear, 

quadratic and cubic terms of the host density. The sign of the parameter estimates for the 

polynomial equation allows the differentiation between types of functional response models. A 

negative estimate for the linear term indicates type II model, whereas a positive estimate for the 

linear term associated with a negative quadratic term reveals type III model (Griffen & Delaney, 

2007; Chong & Oetting, 2007). Plotting the proportion of parasitized mealybugs against 

mealybug density allowed further confirmation of the type of functional response. A decreasing 

function reveals type II model, whereas a modal curve confirms Type III model. 

 

In a second step, we fitted by non-linear regression the two types of models, according to 

the following equations:  
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Type II Na= No(1-exp(-ab/(b+aNo)))    (eq. 1) 

       Na= a No/(1+ (a/b)No))     (eq. 2) 

Type III Na= No(1-exp(-aNo/(1+cNo+(a/b)No
2)))   (eq. 3) 

  Na= a No
2/(b2 + No

2)     (eq. 4) 

whereas Na is the number of parasitized mealybugs, No is the total number of available 

hosts and a, b and c are constant parameters determined by model fitting. 

 

We used the mean estimate of parasitoid progeny for each initial host density to fit 

equations (1) to (4). Several initial set of values were used for the parameters a, b, and c, to 

guarantee best and unique parameter estimate and eliminate the possibility of local minima 

estimates. From Holling type II model, the prey capture rate increases linearly with the prey 

density. The handling time is thus constant allowing to estimate the handling time of the 

parasitoid h, i.e. the average time spent in host processing, using the following equation: h=1/b 

(Holling, 1959). 

A univariate ANOVA was used to analyse differences in the progeny sex ratio between 

host species, considering the initial host density as covariate. 

Data are presented as mean ± standard error (SE), unless otherwise referred.  

 

5.3. Results 

5.3.1. Functional response 

The average maximum number of parasitized mealybugs, indicating the threshold of the 

functional response, i.e. the highest number of progeny produced by wasp, was 18.4±9.34 

wasps for Pl. ficus and 6.2±0.02 wasps for Ps. calceolariae (Figure 4.1). The proportion of 

parasitized mealybugs varied between 0.20 and 0.45 for Pl. ficus and between 0.04 and 0.58 for 

Ps. calceolariae. The shape of the function relating the proportion of parasitized mealybugs 

with host density further indicates a modal function for Pl. ficus, whereas a monotonous 

decreasing function is observed for Ps. calceolariae (Figure 5.1). 

Results from the logistic regression support a type II model for Ps. calceolariae with a 

negative parameter estimate for the linear term (Table 5.1). Yet, for Pl. ficus a positive linear 

trend together with a negative quadratic term suggests a type III model (Table 5.1). Model 

fitting was better adjusted for Ps. calceolariae than for Pl. ficus as indicated by the likelihood 

ratio Chi-Square (Table 5.1).   
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Figure 5.1 - Relationship between mean (±SEM) density (number of exposed adult female 

mealybugs) of the mealybug species Planococcus ficus (●) and Pseudococcus calceolariae (�) 

and the number (top) and proportion (bottom) of parasitized mealybugs by Anagyrus sp. nr. 

pseudococci. The solid and dashed lines represent the best-fitted functional response curves for 

Pl. ficus (type III model) and Ps. calceolariae (type II model), respectively.  
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Both Type II and type III models were fitted by non-linear regression. Due to difficulties 

with model convergence, host density N=70 for Pl. ficus was excluded from the non-linear 

regression analysis. Type III equation (3) provided better fit to Pl. ficus but was only slightly 

better than type II model equation (Table 5.2). Parameter estimates a, and c were not 

significantly different from zero. As expected from previous analysis, Type II model provided 

the best fit to Ps. calceolariae (Table 5.2). Estimated curves are indicated in Figure 5.1. 

The estimated handling times were 0.067 days for Pl. ficus and 0.159 days for Ps. 

calceolariae. 

 

5.3.2. Sex ratio 

The sex ratio of the wasp progeny was higher for Pl. ficus (0.778±0.024) compared to that 

obtained for Ps. calceolariae (0.703±0.024). A significant effect of host species was observed, 

(F1,282=4.674, P=0.031), but not of host density (F1,282=0.761, P=0.384).  

 
Table 5.1 - Results from logistic regression for the response variable proportion of parasitized 
mealybugs in relation to the linear, quadratic and cubic terms of the initial density. 
 

Parameter Estimate Standard 
error 

Wald Chi-
Square 

P 

Planococcus ficus (LRC*=84.63, df=3, P<0.001) 

Intercept -0.500 0.2063 5.874 0.015 

Linear 0.024 0.0210 1.356 0.244 

Quadratic -0.002 0.0006 6.653 0.010 

Cubic 1.61 10-5 5.36 10-6 9.005 0.003 

Pseudococcus calceolariae (LRC=290.80, df=3, P<0.001) 

Intercept 0.927 0.2413 14.763 <0.001 

Linear -0.219 0.0312 49.131 <0.001 

Quadratic 0.006 0.0011 31.222 <0.001 

Cubic -5.88 10-5 1.10 10-6 28.836 <0.001 

* Likelihood Ratio Chi-Square 
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Table 5.2 - Results from non-linear regression to relate the number of parasitized mealybugs 
and the initial host density.  
 

Species / Model Parameter Estimate Standard error R2 

Planococcus ficus 

Type II eq. (1) 

a 0.776 0.269 0.954 

b 20.158 4.528  

Type II eq. (2) a 0.543 0.130 0.954 

b 20.401 4.566  

Type III eq. (3) a 0.338 0.856 0.956 

b 18.143 5.400  

c 0.326 1.082  

Type III eq. (4) a 12.536 1.130 0.937 

b 15.616 3.356  

Pseudococcus  

calceolariae* 

Type II eq. (1) 

a 1.064 0.699 0.819 

b 6.280 1.035  

Type II eq. (2) a 0.675 0.272 0.820 

b 6.312 1.024  

Type III eq. (4) a 4.929 0.538 0.731 

b -5.388 1.907  

* Type III eq. (3) is not displayed as convergence was not achieved. 

 

5.4. Discussion 

We investigated the functional response of A. sp. nr. pseudococci and tested if the parasitoid 

could respond differently depending on its evolutionary relationship with the host mealybug. 

The results showed that both the asymptote, as well as the type of functional response of the 

parasitoid was affected by the host species. A higher asymptote of the curve (upper threshold) 

was observed in Pl. ficus compared with Ps. calceolariae. At higher mealybug densities, the 

progeny produced by A. sp. nr. pseudococci was about three times higher in Pl. ficus 

(18.4±3.38) than in Ps. calceolariae (6.2±0.02). This result may be explained by different 

behavioral responses exhibited by the parasitoid against the two mealybug species, as well as 

by their different host suitability. In a previous study, we observed that rate of host acceptance 
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by A. sp. nr. pseudococci was significantly higher in Pl. ficus than in Ps. calceolariae, when 

the parasitoid was exposed to a density of 10 mealybug adult females (Bugila et al., 2014a). 

Furthermore, Ps. calceolariae also showed to be a host with higher level of defenses against A. 

sp. nr. pseudococci in comparison with Pl. ficus (Bugila et al., 2014b; Suma et al., 2012b). In 

accordance, we recently observed that the survival rate of A. sp. nr. pseudococci when 

developing in Pl. ficus was significantly higher than in Ps. calceolariae (Bugila et al., 2014c). 

The results obtained by Chong and Oetting (2007) when comparing between stages of the host 

mealybug, Phenacoccus madeirensis Green, the response of Anagyrus amnestos 

Rameshkumar, Noyes & Poorani (=Anagyrus sp. nr. sinope Noyes & Menezes) (Rameshkumar, 

Noyes, Poorani, & Chong, 2013) to increasing host densities also indicate that host suitability 

can influence parasitoid functional response. These authors reported that although the type of 

functional response was not affected by the host stage, the asymptote of the curve was highest 

for the preferred host stage. 

Anagyrus sp. nr. pseudococci exhibited a type III functional response when foraging in the 

native mealybug species, Pl. ficus, whereas a type II response was observed in the case of the 

alien mealybug species, Ps. calceolariae. Most of the studied parasitoids of homopteran species 

showed either a type II or type III functional response (Chong & Oetting, 2006, and references 

therein), but type II has been the most common functional response documented for parasitoids 

(Chen, Leopold, & Harris, 2006; Chong & Oetting, 2007; Sagarra, Vincent, Peters, & Stewart, 

2000), including other Anagyrus species, such as A. amnestos (Chong & Oetting, 2006, 2007) 

and A. ananatis (González-Hernández, H., Pandey, & Johnson, 2005). However, it has been 

suggested that this lower frequency of type III functional response might be an experimental 

artifact (Chong & Oetting, 2006; van Lenteren & Bakker, 1977). For example, Sagarra et al., 

(2000) reported that A. kamali could exhibit either a type II or type III functional response 

depending on the experimental conditions: a type II response was observed when parasitoids 

were restricted to the experimental arenas during all the bioassay, where a type III response was 

shown if the parasitoids were free to decide their residence time within the arenas. Nevertheless, 

in our study the observed differences in the type of functional response between host species 

were not due to the experimental conditions as these were the same for both mealybug species 

studied.  

Host specificity may influence the type of functional response of parasitoids (van Lenteren, 

Cock, Hoffmeister, & Sands, 2006). It is expected that specialists tend to have a type III 

functional response, whereas generalists tend to show a type II response (Chesson, 1983; 

Hassell, Lawton, & Beddington, 1978; Jeschke, Kopp, & Tollrian, 2002). Overall, the 
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accumulated data from previous studies on the kairomonal response of A. sp. nr. pseudococci 

to the sex pheromone of Pl. ficus (Franco et al., 2008, 2011), as well as on the host selection 

behavior (Bugila et al., 2014a), host defenses (Bugila et al., 2014b), and host suitability (Bugila 

et al., 2014c) support the hypothesis that the parasitoid evolved from a specialist, with a close 

relationship with Pl. ficus, its possible principal host in the region of origin (Franco et al., 2008), 

to a more generalist strategy, by recruiting new host species such as Ps. calceolariae (Bugila et 

al., 2014c). Therefore, the observed differences in the type of functional response of A. sp. nr. 

pseudococci, between Pl. ficus and Ps. calceolariae, may reflect this evolutionary trait. 

The estimated handling time of A. sp. nr. pseudococci for Pl. ficus (0.067 d) was about half 

of that for Ps. calceolariae (0.159 d). These values, determined based on the parameters of the 

functional response models, are apparently in contradiction with those estimated in a previous 

study based on direct observations of the parasitoid behavior (Bugila et al., 2014a), in which 

the estimated handling time for Pl. ficus (5.2±0.6 minutes) was higher but not significantly 

different from that for Ps. calceolariae (4.3±0.7 minutes). This apparent contradiction is at least 

in part explained by the different criteria for estimating handling time in the two studies, as well 

as by the different exposure times of the parasitoid to the host mealybugs. The handling time in 

Bugila et al. (2014a) corresponded to the mean time spent by the parasitoid in antennation, 

probing and oviposition per parasitized mealybug. Here we used the emergence rate of the 

parasitoid progeny for determining the parasitism level in the functional response. Therefore, 

the obtained response reflects not only the host-selection behavioral characteristics of the 

parasitoid, but also the level of suitability of the host species. As mentioned before, Ps. 

calceolariae exhibits higher level of defenses against A. sp. nr. pseudococci (Bugila et al., 

2014b; Suma et al., 2012b), and is a less suitable host for the parasitoid (Bugila et al., 2014c), 

in comparison with Pl. ficus. In the present study, the exposure time of A. sp. nr. pseudococci 

to the host mealybugs was 24h, whereas in Bugila et al. (2014a) the observation of the host 

selection behavior of the parasitoid was limited to 30 minutes. Furthermore, estimates of the 

parasitoid’s handling times obtained from functional response models tend to be overestimated, 

and thus direct behavioral observations are essential for more reliable estimates (Chong & 

Oetting, 2007).  

Sex ratio of the parasitoid progeny is an indicator of its fitness (Visser, 1994). We 

registered a significant higher proportion of A. sp. nr. pseudococci female progeny when the 

parasitoid developed on Pl. ficus compared to that observed on Ps. calceolariae, corroborating 

the results obtained in a previous work in which Ps. calceolariae was shown to be a less suitable 

host (Bugila et al., 2014b). On the other hand we did not find an effect of host density on the 



81 

 

sex ratio of A. sp. nr. pseudococci progeny for both mealybug species. Similar results were 

reported for other Anagyrus species, such as A. (=Epidinocarsis) lopezi (De Santis) and A. 

kamali Moursi (van Dijken, van Alphen, & van Stratum, 1989; Sagarra et al., 2000). However, 

Chong and Oetting (2006) observed that A. amnestos significantly increased the proportion of 

female progeny in response to the increase of host density for both studied stages of the host 

mealybug, Ph. madeirensis. The observed differences among parasitoid species might be 

related with their different reproductive behavior: A. sp. nr. pseudococci, A. lopezi, and A. 

kamali are a solitary parasitoids, whereas A. amnestos is gregarious. 

Our study was performed in laboratory conditions with a fixed amount of time. This 

allowed controlling for environmental factors that might influence parasitoid behavior (Sagarra 

et al., 2000). In field conditions, other factors, such as weather, refuges, competitors, patch size, 

and host plant, interfere directly or indirectly with predators or parasitoids activity and thus may 

affect their functional response (Bezemer & Mills, 2001; Farrokhi, Ashouri, Shirazi, Allahvari, 

& Huigens, 2010; Milonas, Dimitrios, & Angélique, 2011). 

Studies comparing the functional response of a parasitoid among different host species are 

rare. Here, we have shown that the host species may affect the functional response of A. sp. nr. 

pseudococci, not only regarding the efficiency of the parasitoid, but also the asymptote of the 

curve, as well as the type of curve, with type III and type II functional responses exhibited when 

foraging on a suitable and marginal host, respectively. To our knowledge, this is the first time 

a parasitoid of mealybugs is shown to exhibit different type of functional response depending 

on the host species. The results have practical implications for biological control of pest 

mealybugs. Based on the type III functional response exhibited by A. sp. nr. pseudococci in the 

case of Pl. ficus, we would expect that the parasitoid is capable of maintaining a stable host–

parasitoid dynamics after augmentative releases for controlling this mealybug species 

(Berryman, 1999). In contrast, the type II functional response observed for Ps. calceolariae 

indicates that in this case the parasitoid may not be able to guaranty a stable dynamics, due to 

inverse density-dependent host mortality (Chong & Oetting, 2006). Nevertheless, no clear 

relationship between the type of functional responses and success in biological control was 

found by Fernández-Arhex and Corley (2003). Further studies are needed, namely by 

comparing the response of A. sp. nr. pseudococci to other mealybug species, in order to confirm 

if the parasitoid exhibit the same type of functional response observed by us in the present study 

and to assess whether our results reflect the type of response of the parasitoid to varying host 

densities in field conditions.  
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6. Conclusions  
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• Anagyrus sp. nr. pseudococci recognized and accepted all five tested mealybug species 

as potential hosts despite their different geographical origin and phylogenetic 

relationships. Nevertheless, the behavioral pattern of host recognition and the level of 

host acceptance exhibited by the parasitoid varied among host species. The parasitism 

level in Planococcus species was about twice as higher as in Pseudococcus and 

Phenacoccus species. We suggested that waxy secretions covering the body of 

mealybugs, as well as their ostiolar secretions may influence host recognition and 

acceptance by parasitoid females. 

• We hypothesized that the females of Anagyrus sp. nr. pseudococci are capable of 

assessing the level of host resistance through probing and eventualy use this information 

for host rejection or acceptance. 

• Our results suggest a broader host range and a more generalist behavior for A. sp. nr. 

pseudococci in comparison with other Anagyrus species, which is in accordance with 

the hypothesis that this wasp might have evolved by expanding its host range. 

• The host handling (antennation + probing + oviposition) time by female A. sp. nr. 

pseudococci was affected by host species, with the highest value registered in Pl. ficus, 

the host for which the parasitoid showed highest host searching efficiency. 

• The studied mealybugs responded differently to the attack of A. sp. nr. pseudococci by 

combining different levels of three types of defensive behavior, which can be classified 

according to the following two categouries: i) Evasive behavior (walking away); and ii) 

Aggressive behavior (reflex bleeding and abdominal flipping). Globally, considering all 

types of defense behavior, both Pseudococcus species, which were probably introduced 

in the Mediterranean basin over 400 years ago, and the recently introduced Ph. 

peruvianus exhibited higher active defensive behavior than the two most common host 

species in the Mediterranean, the native Pl. ficus and the phylogenetic related Pl. citri.  
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• Our observations lead us to hypothesize that the defense behaviors of mealybugs are 

likely generalist responses, as they probably did not evolve in response to a specific 

parasitoid or predator speciesWe observed an inverse relationship between the level of 

mealybug defense behaviors and the parasitism rate of the mealybugs by A. sp. nr. 

pseudococci suggesting that defensive behaviors in the studied mealybug species were 

effective in affecting host acceptance, and thus parasitism rate by the parasitoid.We 

hypothesised that the intensity of ant-tending (associative defenses) may differ among 

mealybug species depending on the amount of honeydew they are capable of excreting 

and that a trade-off between associative defenses and mealybug behavioral defenses 

may exist.   

• The hypothesis of collective defensive behaviors, which has been recently shown in 

aphids, also occurring in mealybugs should be investigated as these insects often 

aggregate in large colonies of related individuals descending from one or few females. 

• The probability of A. sp. nr. pseudococci encapsulation varied among the studied 

mealybug species, with the highest value registered in Ps. viburni and the lowest one in 

Ph. peruvianus, whereas intermediate encapsulation probabilities were registered for 

the native Pl. ficus, the congener Planococcus species and for Ps. calceolariae. 

• Based on our results on the immune defences of the studied mealybug species against 

A. sp. nr. pseudococci, we proposed a new hypothesis to explain the differences in the 

level of encapsulation exhibited by mealybug species against parasitoids, according to 

which both low and high levels of encapsulation by mealybugs are connected with 

recent host-parasitoid associations, such as between A. sp. nr. pseudococci and the two 

alien mealybugs Ph. peruvianus and Ps. viburni, respectivelly. Intermediate levels are 

expected in associations between a parasitoid and its principal host or closely related 

ones, such as between A. sp. nr. pseudococci and the native Pl. ficus or with its closely 
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related species Pl. citri. Similar levels of encapsulation in closely related mealybug 

species may further result from cross resistance. Further studies comparing the immune 

defense of a range of mealybugs in response to the attack by parasitoids with different 

host selectivity are needed in order to test our hypothesis and further clarify this issue. 

• Anagyrus sp. nr. pseudococci was able to complete development in all five studied 

mealybug species, but the emergence rate of the parasitoid varied among mealybug 

species, with the highest values observed in the native Pl. ficus and the phylogenetically 

related Pl. citri, intermediate values in Ps. calceolariae, and the lowest ones in Ps. 

viburni and Ph. peruvianus. The observed differences in host suitability apparently 

reflect the phylogenetic relationships of the studied mealybug species and the 

differences in their co-evolutionary history with the parasitoid.     

• It is expected that parasitoid females will recognize and accept the hosts that will allow 

the development of larvae and optimize their fitness. Our results did not support this 

prediction, suggesting that in the case of A. sp. nr. pseudococci not always “mother 

knows the best”. However, these apparent wrong decisions of the wasp females in host 

acceptance may favour the recruitment of new host species. 

• We found as expected that the body size of adult females of A. sp. nr. pseudococci varied 

with host suitability and was positively correlated with other measures of parasitoid 

fitness, such as the emergence rate and the sex-ratio of the progeny. 

• In opposition to other fitness parameters, no clear relationship between parasitoid 

development time and host suitability was found. The development time was longer in 

females than in males. 

• We found a significant relationship between sex ratio A. sp. nr. pseudococci progeny 

and the emergence rate of the parasitoid. That is, the proportion of females in the 

parasitoid progeny was highest (female biased sex ratio) in the native mealybug species, 
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Pl. ficus and lowest (male biased sex ratio) in the alien Neotropical mealybug species, 

Ps. viburni and Ph. peruvianus. 

• The higher emergence rate, larger tibia length of wasp females, and higher proportion 

of progeny females clearly indicate that Pl. ficus is the most suitable host for A. sp. nr. 

pseudococci, closely followed by Pl. citri. In contrast, the lower emergence rate, smaller 

tibia length of wasp females, as well as the male biased sex ratio registered in the 

parasitoid progeny obtained from Ps. viburni and Ph. peruvianus suggest that these two 

mealybug species are poor quality hosts for A. sp. nr. pseudococci, and thus may be 

considered marginal hosts. Pseudococcus calceolariae seems to be in an intermediate 

position.  

• Host suitability of the studied mealybug species seems to fit a 

phylogenetic/biogeographic trend, showing the highest level in Pl. ficus and its closely 

related congener Pl. citri, followed by the Australasian Ps. calcelolariae, and the 

Neotropical Ps. viburni and Ph. peruvianus. 

• Both the asymptote, as well as the type of functional response of A. sp. nr. pseudococci 

was affected by the host species. A higher asymptote of the curve was observed in Pl. 

ficus compared with Ps. calceolariae. The parasitoid exhibited a type III functional 

response when foraging in the native mealybug species, Pl. ficus, whereas a type II 

response was observed in the case of the alien mealybug species, Ps. calceolariae.  

• We did not find an effect of host density on the sex ratio of A. sp. nr. pseudococci 

progeny for both Pl. citri and Ps. calceolariae. 

• All the available data indicate that A sp. nr. pseudococci evolved from a specialist to a 

more generalist strategy, expanding the host range from its possible original host, Pl. 

ficus by recruiting new host species, specially within the genera Planococcus and 

Pseudococcus, but also in Phenacoccus. 
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• The specificity of a parasitoid is considered an important attribute in selected candidates 

for classical biological control programs aiming to minimize the risks of impacts on 

non-target native species. In this respect, the use of A. sp. nr. pseudococci in classical 

biological control may present risks of impact on native species of mealybugs due to its 

apparent generalist behavior. Nevertheless, it has been used both in classical biological 

control and augmentative releases in different areas and there is no evidence of negative 

impacts on native mealybug species. On the other hand, the existence of alternative 

hosts is considered important for the success of biological control as it will support 

parasitoid populations over periods of scarcity of the primary hosts. 

• Based on the type III functional response exhibited by A. sp. nr. pseudococci in the case 

of Pl. ficus, we would expect that the parasitoid is capable of maintaining a stable host–

parasitoid dynamics after augmentative releases for controlling this mealybug species. 

In contrast, the type II functional response observed for Ps. calceolariae indicates that 

in this case the parasitoid may not be able to guaranty a stable dynamics, due to inverse 

density-dependent host mortality. Nevertheless, further studies are needed, namely by 

comparing the response of A. sp. nr. pseudococci to other mealybug species, in order to 

confirm if the parasitoid exhibit the same type of functional response observed by us in 

the present study and to assess whether our results reflect the type of response of the 

parasitoid to varying host densities in field conditions.  
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