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Abstract

The time dependent quantum perturbation theory developed by Born,
Heisenberg and Jordan in 1926 is revisited. We show that it not only re-
produces the standard theory formulated in the interaction picture, but
also allows one to construct more accurate approximations if time averag-
ing techniques are employed. The theory can be rendered unitary even if
the expansion is truncated by using a transformation previously suggested
by Heisenberg. We illustrate the main features of the procedure on a sim-
ple example which clearly shows its advantages in comparison with the
standard perturbation theory.
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1 Introduction

In their formulation of matrix mechanics in the context of the (then) new quan-
tum mechanics, Born, Heisenberg and Jordan [13, 7, 8] were guided by two basic
principles. First, the new formalism had to be kept as close to classical Hamil-
tonian dynamics as possible. Thus, the dynamical equations satisfied by the
quantum analogues q̂ and p̂ of the classical coordinates and momenta, respec-
tively, had the same form as in the classical theory, but the variables no longer
satisfied the commutative property of multiplication. Second, the formalism
had to be consistent with Bohr’s correspondence principle: the quantum the-
ory should reproduce classical mechanics in the limit of large quantum numbers.
This led them, in particular, to represent the new variables as (infinite) Hermi-
tian matrices, whereas the eigenvalues of the Hamiltonian H(q̂, p̂) (the energy
values of the system) allowed them to get the frequencies of transition.

The first guideline is much evident, in particular, in their quantum-mechani-
cal perturbation theory for non-degenerate and degenerate systems. According
to Heisenberg, “the analogy with the classical Hamilton–Jacobi technique was
the beginning of all efforts; what we did first was just to try to imitate the old
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methods as closely as we could” [16, p. 103]. The purpose was then, in anal-
ogy with classical perturbation theory, to construct perturbatively a “canonical
transformation” S on the variables q̂ and p̂ to a new set of variables in which
the Hamiltonian W of the perturbed system is diagonal. When dealing with
time-dependent external forces, an appropriate perturbation scheme was formu-
lated from the preceding one, this time involving an explicitly time-dependent
transformation matrix S(t). At each step of the procedure, a choice had to be
made for the matrix W and subsequently the transformation S was determined
by solving the corresponding equation.

By contrast, the procedure followed in the wave mechanics approach and
later in the standard formulation of quantum mechanics was more analytical in
character: the purpose is to get the quantum time-evolution operator U(t). If
the Hamiltonian H does not depend on time, then one has to solve the time-
independent Schrödinger equation Hψ = Eψ. This is done by determining
both the eigenvalues En and the eigenfunctions ψn as a power series of the
perturbation parameter, whereas if H depends explicitly on time, U(t) is con-
structed by considering the interaction representation, i.e., as a factorization of
the evolution operator corresponding to the unperturbed part of the Hamilto-
nian operator and the evolution of an appropriately transformed Hamiltonian
describing the perturbation, which is then approximated as a power series in
the perturbation parameter [17].

Both perturbation theories lead of course to the same results when the
Hamiltonian is independent of time [23], although the original connection with
classical mechanics is somehow lost in wave mechanics, particularly when deal-
ing with time-dependent problems. Perhaps for this reason, several papers have
been published along the years emphasizing this relation, by using techniques of
classical mechanics and dynamical systems in a quantum mechanical context:
normal forms [1, 12], averaging theory to avoid secular terms [14, 19], unitary
transformations in time-dependent perturbation theory [20, 21, 11, 9], etc.

Here we consider once again the time-dependent perturbation theory as
originally proposed by Born, Heisenberg and Jordan in [8] and analyze the
formalism after expressing it in modern quantum mechanics language. We
show that this technique is indeed more general than the standard procedure
of wave mechanics, in the sense that different choices for the new Hamiltonian
are possible, thus leading to different kinds of approximations. It is with a
particular election of W , namely by taking as W the unperturbed part of the
original Hamiltonian, that the standard perturbation theory is recovered. We
then explore other options that avoids the presence of secular terms by using
high-order averaging, a well known technique in classical perturbation theory
[3]. Although the approximations resulting from truncating the series are not
unitary, they turn out to be more accurate than those arising in the standard
treatment over longer time intervals. Moreover, a unitary formalism can be
obtained even when truncating the series, by following the initial approach
designed by Heisenberg. Here we analyze this alternative and illustrate the
different procedures in a simple two-level system whose exact solution can be
obtained in closed form.

We believe the approach proposed by Born, Heisenberg and Jordan has sev-
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eral advantages when dealing with time-dependent perturbations in quantum
mechanics. On the one hand, the procedure is formally similar to the time-
independent case. On the other hand, the treatment is obtained by applying
standard techniques of classical perturbation theory (transformations of vari-
ables, averaging), so that it highlights the connection with classical mechanics,
something that might be helpful for students taking a course in quantum me-
chanics but already familiar with the mathematical aspects of classical and
celestial mechanics. In addition, the standard perturbation theory is easily
recovered in this framework, if desired, although by applying averaging it is
possible to get more accurate results.

2 Standard time-dependent perturbation (STDP) the-
ory in quantum mechanics

In the standard quantum mechanical treatment of a given quantum system
interacting with an external environment, such as that created by an external
field explicitly depending on time, one considers a constant (non perturbed)
Hamiltonian H0 associated with the system and an additional time-dependent
part H̃(t, ε), so that the dynamics is governed by the Hamiltonian

H(t, ε) = H0 + H̃(t, ε) ≡ H0 +
∞∑
n=1

εnHn(t). (1)

Here, for generality, we assume that H̃(t, ε) depends on a small parameter ε that
controls the perturbation in such a way that H̃(t, 0) = 0. In many situations,
though, the power series expansion of H̃(t, ε) collapses just to the first term:
H̃(t, ε) = εH1(t).

Under these circumstances the goal consists in determining the time-evolution
unitary operator UH(t, t0) by solving the Schrödinger equation

i~
∂

∂t
UH(t, t0) = H(t, ε)UH(t, t0), U(t0, t0) = I. (2)

The state at time t, characterized by the wave function ψ(t), is then related
to the initial state ψ(t0) by ψ(t) = U(t, t0)ψ(t0). If H(t, ε) = H0 the solution
of (2) reads UH0(t, t0) = exp(−i(t − t0)H0/~), but the general case is not so
simple. A convenient way to proceed consists in transforming the problem into
the interaction picture [17], i.e. the solution is factorized as

UH(t, t0) = e−i(t−t0)H0/~ UI(t, t0), (3)

where the unknown operator UI obeys the Schrödinger equation

i~
∂

∂t
UI(t, t0) = HI(t, ε)UI(t, t0), UI(t0, t0) = I, (4)

with the new Hamiltonian given by

HI(t, ε) = ei(t−t0)H0/~ H̃(t, ε) e−i(t−t0)H0/~ ≡
∞∑
n=1

εnHI
n(t). (5)
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In this way, the transformation defined by (3) allows to incorporate the solv-
able piece H0 of the Hamiltonian and focus the problem in the (approximate)
integration of the perturbation as given by (5). In general, however, it is not
possible to get analytical solutions of (4), and so one must turn to a perturbative
analysis, looking for an expansion of UI in terms of the parameter ε,

UI(t, t0) =
∞∑
n=0

εn Un(t, t0), (6)

where Un(t, t0) stands for the contribution of order n in ε. This can be obtained
by substituting (6) into (4) and then equating terms of the same power in ε.
Thus, for the first terms we get

U0(t, t0) = I, U1(t, t0) = − i
~

∫ t

t0

dsHI
1 (s)

U2(t, t0) = − i
~

∫ t

t0

dsHI
2 (s) +

(
− i
~

)2 ∫ t

t0

dt1

∫ t1

t0

dt2H
I
1 (t1)H

I
1 (t2),

where we have denoted HI
j (t) ≡ ei(t−t0)H0/~Hj(t)e

−i(t−t0)H0/~. If H̃ = εH1,
then the general expression of Un in (6) is given by

Un(t, t0) =

(
− i
~

)n ∫ t

t0

dt1 · · ·
∫ tn−1

t0

dtnH
I
1 (t1)H

I
1 (t2) · · ·HI

1 (tn). (7)

Very often, it is sufficient to determine the first few terms to describe transition
probabilities between states. The resulting approximations, however, present
some undesirable features. First, any truncation of the infinite sum (6) is no
longer unitary, and thus the computed transition probability between different
quantum states may exceed unity. Second, secular terms in time (i.e., terms of
the form tm) may appear at each order, and so the quality of the approximation
degrades considerably with time. In this way, one cannot represent the solution
for all t using a finite number of terms in the series, and is only when the infinite
series is summed up that the unitary character is restored.

Example. We will use as illustration along the paper the simple two-level
quantum system described by the Hamiltonian

H(t, ε) =
1

2
~ω0 σ3 + ε (σ1 cosωt+ σ2 sinωt) , (8)

where σj denote the Pauli matrices and and ε, ω0, ω 6= ω0 are real parameters. If
1 and 2 stand for the spin up and down states, respectively, the exact transition
probability from state 1 to state 2 is given by (t0 = 0)

|(UH(t))21|2 =

(
2ε

~ω′
sin

ω′t

2

)2

with ω′ =

(
(ω − ω0)

2 +
4ε2

~2

)1/2

.

(9)
Clearly, in this case H(t, ε) = H0 + εH1(t), with

H0 =
1

2
~ω0 σ3, H1(t) = σ1 cosωt+ σ2 sinωt (10)
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and Hn = 0, n ≥ 2. When the STDP theory is applied to this Hamiltonian we
get

U1(t) = − i

~(ω − ω0)

(
sin(ω − ω0)t σ1 + (1− cos(ω − ω0)t)σ2

)
U2(t) =

1

~2(ω − ω0)2
(
(−1 + cos(ω − ω0)t)I + i((ω − ω0)t− sin(ω − ω0)t)σ3

)
We see then that secular terms already appear at order 2, and so one expect
that the truncated (non unitary) approximation obtained from (3)

UH(t) ≈
(

cos(ω0t/2)I − i sin(ω0t/2)σ3
)(
I + εU1(t) + ε2U2(t)

)
(11)

will be valid only for short times. The resulting transition probability up to
this order is

Pt =
2ε2(1− cos(ω − ω0)t)

~2(ω − ω0)2
. (12)

Secular terms appear in Pt at higher orders in ε.

3 Time dependent perturbation theory in matrix me-
chanics

Historically, however, the first treatment of perturbations in quantum mechan-
ics proceeded in a different way, more related to the usual approach followed in
classical Hamiltonian mechanics. The objective there is to construct a canonical
transformation (a symplectic change of coordinates in phase space) such that
in the new variables the dynamics of the resulting Hamiltonian is easily solved.
This transformation can be obtained in particular by solving the corresponding
Hamilton–Jacobi equation [3, 15].

Analogously, the idea of Born, Heisenberg and Jordan in [8] when devel-
oping a perturbation theory in matrix mechanics was to construct a unitary
transformation that renders ‘solvable’ the Hamiltonian (see e.g. [4]). In their
procedure the (perturbed) system to be solved is described by a Hamiltonian
H of the form

H = H0 + εH1 + ε2H2 + · · · , (13)

where the dynamics corresponding to H0 is known. This means that the Hamil-
tonian H0 is diagonal in the momentum p̂0(t) and coordinate q̂0(t), so that their
time evolution is given by

p̂0(t) =
(
(p0)mneiωmnt

)
, q̂0(t) =

(
(q0)mneiωmnt

)
,

where (p0)mn, (q0)mn are the quantum amplitudes of the operators p̂0 and q̂0,
respectively, and ωmn is the frequency of transition between two stationary
states with energies E0

m and E0
n, so that ~ωmn = E0

m − E0
n. In addition, q̂0

and p̂0 satisfy the quantum condition [q̂0, p̂0] = q̂0p̂0 − p̂0q̂0 = i~I. Thus, if H0

corresponds, in particular, to the one-dimensional harmonic oscillator,

H0 =
1

2m0
p̂2 +

k

2
q̂2,
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then

E0
n = ~ω

(
n+

1

2

)
, n = 0, 1, 2, . . . ω =

√
k/m0.

Assume for the time being that time does not enter explicitly in the Hamiltonian
H (13). Then the goal in the Born–Heisenberg–Jordan (BHJ) perturbation
theory is to construct a “canonical transformation” S such that

p̂ = Sp̂0S
−1, q̂ = Sq̂0S

−1 (14)

and the transformed Hamiltonian is a diagonal matrix W ,

H(p̂, q̂) = SH(p̂0, q̂0)S
−1 = W. (15)

In other words, by means of the unitary transformation S one aims to diago-
nalize H. Notice that S leaves invariant the fundamental condition: [q̂, p̂] =
[q̂0, p̂0] = i~I. Expanding the transformation matrix S and its inverse S−1 in
powers of ε,

S = I + εS1 + ε2S2 + · · · , S−1 = I − εS1 + ε2(S2
1 − S2) + · · · , (16)

inserting these expansions into (15) and collecting together terms of the same
power in ε, the following equations are obtained [8]:

W0 = H0

W1 = [S1, H0]

Wr = [Sr, H0] + Fr(H0, . . . ,Hr;S1, . . . , Sr−1) r ≥ 2.

(17)

Here H0, H1, . . . are to be taken as having the arguments p̂0 and q̂0 and the
matrix S is unitary: S−1 = S†. These equations can be solved in sequence, by
first building the mean value 〈Fr〉 to determine the new Hamiltonian, Wr =
〈Fr〉, and then obtaining the matrix elements of Sr [8] at each order. In this
setting, the mean value corresponds to take the diagonal values of Fr. Then, the
S series is substituted into (14) to get the evolution of the dynamical variables:

q̂ = q̂0 + εq̂1 + ε2q̂2 + · · · = q̂0 + ε[S1, q̂0] + · · ·
p̂ = p̂0 + εp̂1 + ε2p̂2 + · · · = p̂0 + ε[S1, p̂0] + · · ·

In this way, it is possible to obtain general formulae for the first terms in
the expansion of the eigenvalues of W (i.e., the energy levels of H) even for
degenerate systems [8].

What happens if time enters explicitly into H1, H2, . . ., but not into H0 (as it
is the case, for instance, when time-dependent external forces act on a system)?
Then, according to [8, p. 336 ], “simple considerations show that for this case
the perturbation formulae ensue from those cited earlier” (i.e., equations (17))
on replacing

[H0, Sr] by [H0, Sr]− i~
∂Sr
∂t

. (18)

Again, Wr is determined as the mean value of Fr and Sr is obtained by solving
the resulting matrix equation. Moreover, Born, Heisenberg and Jordan assume
that the formalism also applies when the external forces are not periodic in
time (even though this assumption was incorporated into the derivation of the
formulae) [8].
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4 Reformulating the BHJ perturbation theory

At this point, a natural question arises: is this time-dependent perturbation
theory equivalent to the standard one developed in section 2? Whereas in the
autonomous case the procedure (14)-(17) reproduces the standard perturbative
formalism for determining the eigenvalues of H [17], this is by no means obvious
in the general case of a time dependency. Our claim here is that the BHJ
formalism is indeed more general than the standard treatment of section 2, but
reproduces it as a particular case.

To substantiate this claim, let us first rephrase the BHJ time-dependent
perturbation theory in modern quantum mechanics language as follows. Sup-
pose we have a quantum problem defined by the Hamiltonian (1) so that the
dynamics associated with H0 has been solved, i.e., we have computed UH0(t, t0).
Then, a unitary transformation S(t, ε) is sought such that the equation satisfied
by the new wave function Ψ(t) = Sψ(t), or equivalently, by the new evolution
operator UW (t, t0), with Ψ(t) = UW (t, t0)Ψ(t0),

i~
∂

∂t
UW (t, t0) = W (t, ε)UW (t, t0), UW (t0, t0) = I (19)

is easier to solve than (2). It is clear that both evolution operators are then
related by

UW (t, t0) = S(t, ε)UH(t, t0)S
−1(t0, ε), (20)

whereas the corresponding Hamiltonians H and W verify [9]

W (t, ε) = S(t, ε)H(t, ε)S−1(t, ε) + i~
∂S(t, ε)

∂t
S−1(t, ε). (21)

In this setting the new Hamiltonian W has to be fixed and afterwards the trans-
formation S(t, ε) is determined. This can be done perturbatively by expanding
W and S as power series in ε,

W (t, ε) = W0 + W̃ , with W̃ ≡ εW1(t) + ε2W2(t) + · · · (22)

S(t, ε) = I + S̃, with S̃ ≡ εS1(t) + ε2S2(t) + · · · ,

substituting series (22) into (21), or alternatively in WS = SH + i~∂S∂t . This
results in W0 = H0 and

i~
∂S̃

∂t
+ [S̃,H0] = W̃ − H̃ − S̃H̃ + W̃ S̃. (23)

Equating terms with the same power of ε in (23) we get for n = 1, 2, . . .

i~Ṡn + [Sn, H0] = Wn − Vn, with Vn = Hn +
n−1∑
j=1

(Sn−jHj −WjSn−j).

(24)
From equations (23) and (24) we clearly see the origin of the prescription (18)
for getting the perturbation formulae as given in [8].
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4.1 Recovering the STDP theory

Next we analyze how the present framework allows one to reproduce the stan-
dard time-dependent perturbation theory developed in section 2. More specifi-
cally, we show that the STDP theory just corresponds to taking the unperturbed
part H0 as the new Hamiltonian. In other words, the expression (3) for the evo-
lution operator UH with (6) is recovered when the unitary transformation S is
designed such that W = H0.

To keep the treatment as simple as possible, we analyze the case H̃(t, ε) =
εH1(t) in (1) and take t0 = 0. We also drop the second argument t0 in the defini-
tion of UH , etc. If W = H0, then the solution of (19) is UW (t) = exp(−itH0/~),
so that, from (20),

UH(t) = S−1(t, ε) e−itH0/~

if S(0, ε) = I. To determine the inverse of the transformation S, instead of
working with equations (24), it is more convenient to formulate a similar equa-
tion for the series

S−1(t, ε) = I + εS−11 (t) + ε2S−21 (t) + · · ·

This can be done as before from (21), or equivalently

S−1W = HS−1 − i~∂S
−1

∂t
. (25)

An easy calculation leads to

i~Ṡ−1n + [S−1n , H0] = H1S
−1
n−1, n = 1, 2, . . .

with S−10 = I, whose formal solution reads [9]

S−1n (t) = e−itH0/~gn(t)eitH0/~, (26)

with

gn(t) = − i
~

∫ t

0
du eiuH0/~H1(u)S−1n−1(u) e−iuH0/~. (27)

Thus, inserting (26) into (27) we get

gn(t) = − i
~

∫ t

0
HI

1 (u)gn−1(u)du, n = 1, 2, . . .

and g0 ≡ I. Notice then that gn(t) = Un(t, 0), as given by (7). In consequence,

UH(t) =

I +
∑
n≥1

εnS−1n (t)

 e−itH0/~ = e−itH0/~

I +
∑
n≥1

εngn(t)


= e−itH0/~

∞∑
n=0

εnUn(t)

and the standard formalism (3)-(7) is recovered.
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4.2 Averaging

As a matter of fact, Born, Heisenberg and Jordan pursued a different course
of action to deal with equations (24). Inspired by the classical treatment of
perturbations in Hamiltonian classical mechanics (see e.g. [3]), they proposed
instead to take as the new Hamiltonian Wn the mean value (or time average)
of Vn(t) at each order, and subsequently to determine the matrix Sn(t) from
(24) [8].

What is the “mean value” of Vn(t)? If the function is periodic with period
T , then the answer is clear: the mean value is just

〈Vn〉 =
1

T

∫ T

0
Vn(t)dt. (28)

The mean value is also well defined for quasi periodic functions of time. We
recall that a function V is said to be quasi-periodic with basic frequencies ω =
(ω1, . . . , ωr) if V (t) = f(θ1, . . . , θr), where f is 2π-periodic with respect to
θ1, . . . , θr and θj = ωjt for j = 1, . . . , r. The mean value (or average) of V is
then defined as

〈V 〉 ≡ lim
T→∞

1

T

∫ a+T

a
V (t) dt, (29)

and this limit does not depend on the particular value of a considered [10]. If
V is periodic with period T , (29) reproduces the expression (28).

A formal solution of equation (24), n ≥ 1, is given by

Sn(t) = e−itH0/~
(
Sn(0)− i

~

∫ t

0
du eiuH0/~

(
Wn − Vn(u)

)
e−iuH0/~

)
eitH0/~,

(30)
but, as shown in [2], Sn(t) does not contain secular terms (i.e., it is quasi
periodic with the same basic frequencies as Vn(t)) if one takes

Wn = 〈Vn〉 (31)

Sn(t) = e−itH0/~Gn(t)eitH0/~,

where Gn(t) denotes the antiderivative

Gn(t) = − i
~

∫
dt eitH0/~

(
〈Vn〉 − Vn(t)

)
e−itH0/~.

Notice that with prescription (31), Sn(t) is compatible with (30) and moreover
Sn(0) = Gn(0). In the matrix case, this solution is well defined provided that
Vn(t) is quasi-periodic with basic frequencies ω = (ω1, . . . , ωr), the distinct
eigenvalues of H0 are E0

1 , . . . , E
0
s and the quantities |ω`m + (k, ω)| > c|k|−γ ,

1 ≤ `,m ≤ s, for all vectors k with integer components. Here c, γ are positive
constant, ω`m = (E0

`−E0
m)/~, |k| = |k1|+· · ·+|kr| and (k, ω) = k1ω1+· · ·+krωr.

This inequality prevents of course the presence of small denominators in the
expression of Sn(t) [2].
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When the procedure is carried out for m steps, the series are truncated at
terms of order εm, and the resulting transformation defined by the correspond-
ing S is considered, in the new picture the evolution is given by

UW (t) = e−itW
[m](ε)/~, with W [m](ε) = H0 +

m∑
j=1

εjWj ,

and Wj = 〈Vj〉. Finally, the approximation reads, according to (20),

UH(t) =

I +
m∑
j=1

εjS−1j (t)

 e−itW
[m](ε)/~

I +
m∑
j=1

εjSj(0)

 . (32)

Should the series S(t, ε) for the change of variables converge, the procedure
described above would allows us to solve the original perturbed problem.

Notice that with this procedure we have to compute the terms S−1j (t) for
the inverse truncated series to get the actual approximation (32) from the cor-
responding Sk(t) and this typically involves several matrix products. Thus, in
particular, S−11 and S−12 are given in (16), whereas S−13 = −S3

1 +S1S2+S2
2−S3.

It might be then more convenient to reformulate the problem in terms of S−1n (t)
and obtain a solution verifying Sn(0) = 0. This can be done as in section 4.1,
first obtaining from (25) the equation to be satisfied by S−1n (t), and then choos-
ing appropriately the solution. In any event, there are no secular terms in the
approximation (32) thus obtained. By applying averaging, all these terms are
removed from S(t, ε), just as in the classical perturbation theory of Hamiltonian
systems. Still, when the series S(t, ε) is truncated, the resulting operator is no
longer unitary.

Example (cont. I). We next apply the BHJ formalism with averaging to
the Hamiltonian (8). In this case, clearly 〈H1〉 = 0, so that

W1 = 0 and S−11 (t) =
i

~(ω − ω0)

(
cosωt σ2 − sinωt σ1

)
(33)

whereas for the second order one has

W2 =
1

~(ω − ω0)
σ3, S−12 (t) = 0, (34)

and thus, in this approximation,

UH(t) ≈
(
I + εS−11 (t)

)
e−it(H0+ε2W2)/~ (I + εS1(0)) (35)

with S1(0) = −S−11 (0) =
−i

~(ω − ω0)
σ2.

5 Unitary perturbation theory with averaging

At this point it is worth remarking that before the publication of [8], Heisenberg
proposed a slightly different perturbation formalism for the time independent
case, in terms of a skew-Hermitian operator S such that

S(t, ε) = eS(t,ε), with S = εS1 + ε2S2 + · · · (36)
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Then, equations similar to (17) are obtained, but now involving iterated com-
mutators of the terms Si [22, p. 47]. Although this approach was considered
more involved than the one based on a direct power expansion of S (and even
wrong at first sight [22, p. 49]), since the corresponding formulae differ from
(17) already at order two), we could say that, in a sense, it is qualitatively
superior. For the unitary character of the transformation is guaranteed even
when the series S is truncated, in contrast with the approach (13)-(18), where
unitary is only preserved up to the order of the approximation.

When this approach is applied to the explicitly time dependent case, equa-
tion (21) can be rewritten in terms of the exponent S as

W = eSH e−S + i~dexpS(Ṡ), (37)

where the symbol dexpS(C) stands for the (everywhere convergent) power series

dexpS(C) =

∞∑
k=0

1

(k + 1)!
adkS(C) ≡ exp(adS)− I

adS
(C)

which naturally arises when differentiating the exponential of a non constant
matrix [6]. Here adS(C) is a short-hand notation for the (iterated) commutator

adS(C) = [S, C], adjS(C) = [S, adj−1S (C)], ad0
S(C) = C.

Inverting the operator dexpS(C), one has

i~Ṡ = dexp−1S

(
W − eSH e−S

)
, (38)

where

dexp−1S (C) =
adS

exp(adS)− I
(C) =

∞∑
k=0

Bk
k!

adkS(C)

and Bk are the Bernoulli numbers [18]. Inserting the corresponding series for
H, W and S into (38) and collecting terms of the same power in ε one arrives
at W0 = H0 and

i~Ṡn + [Sn, H0] = Wn − Fn, n = 1, 2, . . . , (39)

with

F1 = H1, F2 = H2 +
1

2
[S1,W1 +H1] (40)

and in general Fn = Hn+F̃n, where F̃n is a linear combination of nested commu-
tators involving S1, . . . ,Sn−1, H1, . . . ,Hn−1,W1, . . . ,Wn−1 whose expression
can be determined using the same techniques as in e.g. [5]. By following a
similar approach as in section 4.2, we get the solution of (39) such that Sn(t)
is free of secular terms as

Wn = 〈Fn〉 (41)

Sn(t) = e−itH0/~Jn(t)eitH0/~
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with

Jn(t) = − i
~

∫
dt eitH0/~

(
〈Fn〉 − Fn(t)

)
e−itH0/~.

Finally, the approximation is constructed as

UH(t) ≈ e−S
[m](t,ε) e−itW

[m](ε)/~ eS
[m](0,ε), (42)

where

S[m](t, ε) =

m∑
n=1

εnSn(t), W [m](ε) =

m∑
n=0

εnWn.

We thus get formally the same expressions as in section 4.2, but there are
important differences, though. First, equations (39) for determining Sn are
formulated only in terms of skew-Hermitian operators and commutators. If, as
it is often the case, the original problem is defined in a Lie algebra of finite
dimension, one can use the constants of structure to compute the commutators
appearing in Fn and thus render a more efficient algorithm. Second, the proce-
dure renders unitary approximations by construction even if the series S(t, ε) is
truncated after m terms. Third, computing the inverse transformation S−1(t, ε)
is trivial once S has been obtained: we only have to change the sign of S and
evaluate S−1(t, ε) = exp(−S(t, ε)) (or the corresponding truncation of S).

A variation of this procedure, considered in the context of quantum averag-
ing [21] and the design of unitary transformations [9] is the following: introduce
a skew-Hermitian operator L(t, ε) such that S(t, ε) is the formal solution of the
operator differential equation

∂

∂ε
S(t, ε) = L(t, ε)S(t, ε), S(t, 0) = I (43)

with L(t, ε) = L1(t) + εL2(t) + · · · . In other words, the required unitary trans-
formation S(t, ε) is obtained by shifting a “time” ε along the trajectories of
the differential equation (43). The operator L can be seen as the generator
of the transformation. This is in complete analogy with the procedure pro-
posed by Deprit in classical mechanics [15], and leads to some computational
simplifications in the procedure.

Example (cont. II). For the two-level system (8) the first orders obtained by
applying this procedure are

W1 = 0, S1(t) =
−i

~(ω − ω0)

(
cosωt σ2 − sinωt σ1

)
W2 =

−1

~(ω − ω0)
σ3, S2(t) = 0

(44)

and so the approximation up to ε2 reads

UH(t) ≈ exp(−εS1(t)) exp((−i/~)(H0 + ε2W2)) exp(εS1(0)) (45)

Notice that, by expanding the exponentials exp(−εS1(t)) and exp(εS1(0)) up
to order ε, we recover the result (35) obtained with the BHJ formalism.
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In Figure 1 we represent the exact result for the transition probability be-
tween states (solid line) together with the second order approximations achieved
by the different procedures: approximations (11) (dot-dashed curve), (35) (da-
shed line) and (45) (dotted curved) when ω0 = 1, ω = 3, ε = 0.5 (and ~ = 1).
Even when there are no secular terms in (12), we see that the result furnished
by the STDP theory is clearly less accurate than the approximations rendered
by both the BHJ and the unitary schemes.

Figure 1: Transition probability when ω0 = 1, ω = 3, ε = 0.5 obtained by the different

perturbation schemes up to orden ε2 analyzed in this paper together with the exact

result (9) (solid line): STDP theory (dot-dashed curve), BHJ theory (dashed line) and

the unitary version (dotted curved).

To illustrate how the different approximations behave for longer times, in
Figure 2 we collect the errors in the transition probability obtained with the
STDP theory (solid line), the BHJ formalism with averaging (dashed line) and
the unitary version (dotted line), for the same value of the parameters but now
up to order ε6 after 100 periods of the exact result T = 2π/ω′. Whereas BHJ
and its unitary version provide almost undistinguishable results (although the
former is not unitary), those achieved the standard perturbation theory are
completely useless for large times.

To clarify the nature of the error in the BHJ and its unitary variant, in
Figure 3 we depict the transition probability in the interval t ∈ [280, 283], where
now the solid line corresponds to the exact result (the result given by STDP
theory is by large out of the scale of the graph). Only the result obtained by
BHJ theory is depicted, since the curve corresponding to the the unitary version
is almost identical. Notice that the amplitude of the approximations is quite
similar to the exact result, and the error is mainly due to a shift in the graph
of the function describing the transition probability.

13



Figure 2: Error in the transition probability when ω0 = 1, ω = 3, ε = 0.5 after

100 periods of the exact result furnished by the STDP theory (solid line), the BHJ

formalism (dashed line) and the unitary version (dotted curve) up to ε6.

Figure 3: Transition probability when ω0 = 1, ω = 3, ε = 0.5: exact result (solid line)

and approximation furnished by the BHJ formalism (dashed-dotted line) up to ε6 (the

result achieved by the unitary version is almost identical to BHJ; for this reason it is

not collected here).

6 Discussion

In this paper we have reformulated in modern quantum mechanical language
the original time dependent theory developed by Born, Heisenberg and Jordan
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in matrix mechanics. The formalism is based on designing a unitary transfor-
mation S such that in the new representation the dynamics associated with the
corresponding Hamiltonian W is easier to solve than the original problem. In
the case of autonomous problems, W is taken as diagonal. When time enters
explicitly, the new Hamiltonian is chosen as constant. Both S and W are con-
structed as power series in the perturbation parameter. We have shown that the
choice W = H0 leads directly to the STDP theory, whereas the application of
averaging eliminates secular terms and allows one to construct approximations
that are reasonably accurate for longer time intervals. This is so although the
approximations are not unitary when the series are truncated. Nevertheless, by
constructing S as the exponential of a anti-Hermitian operator S, as Heisenberg
first proposed, the theory can be rendered unitary even after truncation.

Here we have proceeded on a purely formal level, and several important
issues should be further studied, in particular the convergence of the procedure
and the conditions to be satisfied by the operators so that the formal solution
(30) is well defined in a functional analytic framework. On the other hand,
when only matrices are involved, this formalism can be seen as a particular
case of application of high order averaging to linear systems [3].

Several studies exist in the literature where quantum mechanical analogues
of classical Hamiltonian perturbation methods have been proposed, involving
averaging techniques and even several unitary transformations [11, 19, 20, 21].
These transformations can be designed to be unitary by applying an analogy
of the Deprit technique in classical mechanics [9]. The novelty of the treat-
ment exposed here is that, in one way or another, all these contributions can be
obtained from the original Born–Heisenberg–Jordan treatment, and that this
formalism constitutes indeed an effective alternative to the usual time depen-
dent perturbation theory when dealing with practical problems in quantum
mechanics.
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