Soil respiration in alley-cropping system composed of black locust and poplar trees, Germany.

University of Technology

Introduction

The understanding of changes in soil respiration after establishment of alley-cropping systems is crucial for mitigation of greenhouse gas CO_2 . This study investigates soil CO_2 flux in young (2 y.o.) alley-cropping system composed of hedgerows of hybrid poplar (Max 1) and black locust (Robinia pseudoacacia L.) and adjacent to them crop strips (*Lupinus/ Solarigol*), Germany.

Methods

Soil CO₂ flux was measured monthly over March – November 2012 period, using a LI-COR LI-8100A automated device, in poplar, black locust and crop strips (9 measurement collars per sampling area). Simultaneously with CO_2 flux each measurements, soil and air temperature, soil moisture, microbial C and hot water-extractable carbon (HWC) were recorded for soils collected nearby each measurement collar. Root biomass was measured to a depth of 15 cm.

Tetiana Medinski, Dirk Freese, Christian Böhm, Sebastian Heller

Chair of Soil Protection and Recultivation, Brandenburg University of Technology Cottbus-Senftenberg, Germany (medintet@tu-cottbus.de)

In all vegetation types, soil CO₂ flux increased from May to August, showing a significant positive correlation with air and soil temperature. Over the March - August period. CO_2 flux was significantly (p<0.05) higher in trees compared to crops, with the highest values in poplar, followed by black locust and lupines. Over the September - November period, CO₂ flux was significantly (p<0.05) higher in catch crop Solarigol cultivated in August compared to trees.

Soil moisture was positively (r=0.553, p<0.001) correlated with CO₂ flux over the May - October period.

	Black locust	Poplar	- Crop	
CO_2 flux (µmol m ⁻² s ⁻¹)	2.5(1.1)	3.2 (2.1)	2.9 (1.5)	
Soil T (°C)	11 (4)	12(5)	12 (5)	
Air T (°C)	14 (5)	15 (7)	14(6)	
Soil Moisture (%)	13(6) ^{ab}	11(5) ^a	13(3) ^b	
Microbial C (mg/kg)	241(91)	236(71)	275(70)	
HWC (mg/kg)	618 (162) ^a	489(147) ^b	618(108) ^a	
HWN (mg/kg)	96(19) ^a	73(20) ^b	102(22) ^a	
Roots biomass (Mg/ha)	2.0(0.5) ^a	2.2(0.3) ^a	0.8(0.0) ^b	

Measured properties, averaged for the whole sampling period (March - November 2012). ^{a,b} - different letters indicate significant difference between sampling areas (Mann-Whitney U Test, p<0.05).

Microbial C showed a positive (r=0.577, p<0.001) correlation with HWC, showing higher values in March and October - November periods.

		Microbial C	HWC	HWN	HWC:HWN	Moisture	Soil T	Air T
CO ₂ flux	r	365**	-0.238	-0.027	-0.573 **	-0.103	.643**	.613**
	р	.003	.061	.833	.000	.421	.000	.000
Microbial C	C r		.577**	.500**	.260*	.112	447**	478 ^{**}
	р		.000	.000	.039	.382	.000	.000
HWC	r			.900**	.174	.125	29 1 [*]	239
	р			.000	.172	.328	.021	.060

**Correlation is significant at the 0.01 level (2-tailed). *Correlation is significant at the 0.05 level (2-tailed).

Spearman correlation coefficients (r) for the relationships between variables (n=63) for the data collected across all sampling areas over the March - November 2012 period.

4-6 June 2014, **EURAF** conference, Cottbus, Germany.

Conclusion

- A positive correlation observed between CO_2 soil flux and soil temperature may be a reflection of higher photosynthetic activity in warm summer months, which results in the higher CO₂ assimilation and translocation belowground via tree stems and roots. Higher roots respiration, and root exudation in summer may prime microbial activity and increase CO_2 flux.

- CO₂ flux varied between vegetation types, and showed peaks in different seasonal periods. Populus and Black locust showed higher CO₂ flux in March - July. In this period trees have higher photosynthetic rates. Greater root density in trees may result in higher root respiration, compared to Lupines.

- After photosynthetic rates decline in trees in autumn, CO_2 flux declines. In contrast, in cultivated in catch crop, August, photosynthesis reaches its peak in September at a period of fast growth of aboveground biomass and roots. This could have resulted in higher CO₂ flux in Solarigol crop compared to the tree strips over September - November period.

- A greater C loss with soil respiration from trees hedgerows in summer period may be compensated by greater C assimilation and storage in woody biomass, as well as the lower respiration in autumn, compared to the tilled and reseeded crop strips.

Acknowledgements

This work was supported by the Brandenburg Ministry of Science, Research and Culture (MWFK) as a part of an International Graduate School at Brandenburg University of Technology Cottbus-Senftenberg, Germany.