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Abstract. Let A1, ..., Ak be function algebras (or more generally, dense subspaces of uniformly

closed function algebras) on locally compact Hausdorff spaces X1, ..., Xk, respectively, and let Z

be a locally compact Hausdorff space. A k-linear map T : A1 × ... × Ak −→ C0(Z) is called a

multilinear (or k-linear) isometry if

∥T (f1, ..., fk)∥ =

k∏
i=1

∥fi∥ ((f1, ..., fk) ∈ A1 × ...×Ak).

Based on a new version of the additive Bishop’s Lemma, we provide a weighted composition

characterization of such maps. These results generalize the well-known Holsztyński’s theorem ([9])

and the bilinear version of this theorem provided in [10] by a different approach.

1. Introduction

Let X be a locally compact Hausdorff space. As usual, C0(X) (resp. C(X) if X is compact)

stands for the Banach algebra of all continuous scalar-valued functions on X which vanish at infinity,

endowed with the supremum norm, ∥ · ∥. In [9], W. Holsztyński inaugurated a new direction of gen-

eralization of the famous Banach-Stone Theorem. Namely, he provided the following non-surjective

version: If there exists a (not necessarily onto) linear isometry T : C(X) −→ C(Y ), then T is a

weighted composition operator on a subset of Y . More precisely, there are a closed subset Y0 of Y , a

continuous map h from Y0 onto X and a unimodular continuous function a defined on Y0 such that

T (f)(y) = a(y)f(h(y)) for all y ∈ Y0 and all f ∈ C(X).

In [10], the authors proved, based on the powerful Stone-Weierstrass Theorem, the following

bilinear version of Holsztyński’s theorem:

Let T : C(X) × C(Y ) −→ C(Z) be a bilinear (or 2-linear) isometry. Then there exist a closed

subset Z0 of Z, a surjective continuous mapping φ : Z0 −→ X × Y and a unimodular function

a ∈ C(Z0) such that T (f, g)(z) = a(z)f(πx(φ(z)))g(πy(φ(z))) for all z ∈ Z0 and every pair (f, g) ∈

C(X)× C(Y ), where πx and πy are projection maps.

Key words and phrases: function algebra, k-linear isometry, Choquet boundary, additive Bishop’s Lemma, peaking

function, uniform algebra.
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In this paper we extend this bilinear version of Holsztyński’s theorem to a more general context,

where Stone-Weierstrass Theorem is not applicable. Namely, let A1, ..., Ak be function algebras (or

more generally, dense subspaces of uniformly closed function algebras) on locally compact Hausdorff

spaces X1, ..., Xk, respectively, and let Z be a locally compact Hausdorff space. A k-linear map

T : A1 × ...×Ak −→ C0(Z) is called a multilinear (or k-linear) isometry if

∥T (f1, ..., fk)∥ =
k∏

i=1

∥fi∥ ((f1, ..., fk) ∈ A1 × ...×Ak).

We provide a complete characterization of such maps as follows: given a k-linear isometry T :

A1 × ... × Ak −→ C0(Z), there exist a nonempty subset Z0 of Z, a continuous surjective map

φ : Z0 −→ Ch(A1) × ... × Ch(Ak) and a unimodular continuous function a : Z0 −→ T such that

T (f1, ..., fk)(z) = a(z)
k∏

i=1

fi(πi(φ(z))) for all (f1, ..., fk) ∈ A1 × ...×Ak and z ∈ Z0, where πi is the

ith projection map.

The main tool we use to prove this characterization is a recent stronger version of the additive

Bishop’s Lemma (see [12] or Lemma 2.2 below). This technique also lets us fix some inaccuracies

detected in [6], particularly in the bounds obtained in the proof of [6, Lemma 3.3]. Furthermore, for

the sake of completeness and in order to give a unified version of the proofs involved in this topic,

the (known) results for 1-linear isometries are also included and proved straightforwardly by using

this version of the additive Bishop’s Lemma.

2. preliminaries

Let X be a locally compact Hausdorff space and let X∞ be its one point compactification. Let us

recall that C0(X) is the algebra of all continuous scalar-valued functions on X vanishing at infinity.

A function algebra A on X is a subalgebra of C0(X) which separates strongly the points of X, i.e.

for each x, x′ ∈ X with x ̸= x′, there exists an f ∈ A with f(x) ̸= f(x′) and for each x ∈ X, there

exists an f ∈ A with f(x) ̸= 0. If X is a compact Hausdorff space, each unital uniformly closed

function algebra on X is called a uniform algebra on X.

Let A be a function algebra on a locally compact Hausdorff space X. We denote the uniform

closure of A by A. The unique minimal closed subset of X with the property that every function

in A assumes its maximum modulus on this set, which exists by [2], is called the Šilov boundary

for A and is denoted by ∂A. The Choquet boundary Ch(A) of A is the set of all x ∈ X for which

δx, the evaluation functional at the point x, is an extreme point of the unit ball of the dual space

of (A, ∥ · ∥). So it is apparent that Ch(A) = Ch(A). Besides, note that for a function algebra A,

∂A is the closure of Ch(A) [2, Theorem 1]. A point x ∈ X is called a strong boundary point (or

weak peak point) for A if for every neighborhood V of x, there exists a function f ∈ A such that

∥f∥ = 1 = |f(x)| and |f | < 1 on X \ V . It is known that if A is a uniformly closed function algebra
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on a locally compact Hausdorff space X, then Ch(A) coincides with the set of all strong boundary

points (see [11]). However, according to the example given in [4], this coincidence is not true for all

function algebras, although the Choquet boundary always contains the strong boundary points.

A function f ∈ A is a peaking function if ∥f∥ = 1 and for each x ∈ X, either |f(x)| < 1 or

f(x) = 1. If we fix x0 ∈ X, then PA(x0) denotes the set of peaking functions f in A with f(x0) = 1.

Moreover, if A is a subspace of C0(X), for an element x ∈ X, we set Cx := {f ∈ A : |f(x)| = 1 =

∥f∥}. Besides, for g ∈ A we denote the maximum modulus set of g by Mg := {x ∈ X : |g(x)| = ∥g∥}.

As mentioned in the introduction, the proofs of the technical lemmas preceding our main result

are based essentially on extensions of Bishop’s Lemma in the context of uniform algebras [3, The-

orem 2.4.1], a result which has been generalized in many directions. Next we include the following

generalizations (given in [8] and [12] respectively) which we shall use in the next sections.

Lemma 2.1. Let A be a uniformly closed function algebra on a locally compact Hausdorff space X,

f ∈ A and x0 ∈ Ch(A). If f(x0) ̸= 0, then there exists a peaking function h ∈ PA(x0) such that

fh
f(x0)

∈ PA(x0).

Proof. The result can be concluded by the arguments similar to [8, Lemma 2.3], where X is a

compact Hausdorff space. �

Lemma 2.2. Assume that A is a uniformly closed function algebra on a locally compact Hausdorff

space X and f ∈ A. Let x0 ∈ Ch(A) and arbitrary r > 1 (or r ≥ 1 if f(x0) ̸= 0), then there exists

a function h ∈ r∥f∥PA(x0) = {r∥f∥k : k ∈ PA(x0)} such that

|f(x)|+ |h(x)| < |f(x0)|+ |h(x0)|

for every x /∈ Mh and |f(x)|+ |h(x)| = |f(x0)|+ |h(x0)| for all x ∈ Mh. Consequently, ∥|f |+ |h|∥X =

|f(x0)|+ |h(x0)|.

Proof. The proof is exactly the same as that of [12, Lemma 1], where X is a compact Hausdorff

space. �

Let us remark that Lemma 2.1 is a version of the multiplicative Bishop’s Lemma and Lemma 2.2

is the strong version of the additive Bishop’s Lemma (see [7] for further details concerning Bishop’s

Lemma).

3. 1-linear isometries between function algebras

In this section we shall assume that A and B are dense subspaces of uniformly closed function

algebras on locally compact Hausdorff spaces X and Y , respectively, and characterize linear (i.e.,

1-linear) isometries T : A −→ B. It should be noted that although these results can be deduced
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from [1], here we provide new shorter proofs based on Lemma 2.2 in order to give a self-contained

unified vision of this topic. We refer the reader to [5] for a summary on the study of isometries.

Theorem 3.1. Let T : A −→ B be a linear isometry. Then there exist a nonempty subset Y0 of Y ,

a continuous surjective map φ : Y0 −→ Ch(A), a unimodular continuous function a : Y0 −→ T, such

that T (f)(y) = a(y)f(φ(y)) for all f ∈ A and y ∈ Y0. Moreover, a(y) = T (g)(y) for any g ∈ A with

g(φ(y)) = 1.

First note that we can extend easily T : A −→ B to a linear isometry T : A −→ B between their

uniform closures. Besides, notice that the Choquet boundary for a linear subspace of continuous

functions on a locally compact Hausdorff space is defined similar to the function algebra case. So

since the Choquet boundary of a subspace equals the Choquet boundary of its uniform closure,

without loss of generality, we can assume that A and B are uniformly closed function algebras.

Before providing the proof of Theorem 3.1, we need several lemmas.

Lemma 3.2. Let x ∈ Ch(A). Then the set Ix :=
∩

f∈Cx

MT (f) is nonempty.

Proof. The proof is the same as that of [1, Lemma 2.2]. �

Lemma 3.3. Let x ∈ Ch(A). If f ∈ A such that f(x) = 0, then T (f)(y) = 0 for all y ∈ Ix.

Proof. Let f ∈ A with f(x) = 0 and y ∈ Ix. Suppose, on the contrary, that T (f)(y) ̸= 0. We

may assume, without loss of generality, that ∥f∥ = 1 and T (f)(y) = α, where 0 < α ≤ 1. Fix a

constant r > 1. By Lemma 2.2, there is a peaking function h ∈ PA(x) such that ∥|f |+ r|h|∥ = r. In

particular, ∥f + rλ̄h∥ = r, where λ = T (h)(y) ∈ T. Hence

r = ∥f + rλ̄h∥ = ∥T (f + rλ̄h)∥ ≥ |T (f)(y) + r| = α+ r,

which is a contradiction showing that T (f)(y) = 0. �

Lemma 3.4. If f ∈ A and x ∈ Ch(A), then |T (f)(y)| = |f(x)| for all y ∈ Ix.

Proof. Let f ∈ A, x ∈ Ch(A) and y ∈ Ix. If f(x) = 0, then, by the preceding lemma, T (f)(y) = 0.

Now let us suppose that f(x) ̸= 0. Since x ∈ Ch(A), there is a peaking function h ∈ Cx. If we

define

g(t) := f(t)− f(x)h(t) (t ∈ X),

then g ∈ A and g(x) = 0. So, by Lemma 3.3, 0 = T (g)(y) = T (f)(y) − f(x)T (h)(y). Hence

T (f)(y) = f(x)T (h)(y). On the other hand, since y ∈ Ix and h ∈ Cx, |T (h)(y)| = 1. Therefore,

|T (f)(y)| = |f(x)|. �

Lemma 3.5. For different points x and x′ in Ch(A), Ix ∩ Ix′ = ∅.
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Proof. Choose a peaking function f ∈ Cx such that |f(x′)| < 1. Now if y ∈ Ix∩Ix′ , then from Lemma

3.4, it follows that |T (f)(y)| = |f(x)| = 1 and |T (f)(y)| = |f(x′)| < 1, which is a contradiction.

Thereby, Ix ∩ Ix′ = ∅. �

Now we are ready to complete the proof of Theorem 3.1:

Proof. Let Y0 :=
∪

x∈Ch(A)

Ix. Clearly, Y0 ̸= ∅, by Lemma 3.2. Define the map φ : Y0 −→ Ch(A) by

φ(y) := x if y ∈ Ix. Note that, since for different points x and x′ in Ch(A), Ix ∩ Ix′ = ∅, the map

φ is well-defined. Furthermore, φ is surjective because Ix ̸= ∅ for each x ∈ Ch(A). Meantime, since

for all f ∈ A, |T (f)| = |f ◦ φ| on Y0 and the set {|f | : f ∈ A} separates the points of X∞, it is not

difficult to check that φ is continuous.

Now we define the function a : Y0 −→ T. For this purpose, let y ∈ Y0. Then take f ∈ A with

f(φ(y)) = 1 and define a(y) := T (f)(y). Note that the definition is independent of the choice of f

because if f, f ′ ∈ A and f(φ(y)) = 1 = f ′(φ(y)), then f − f ′ ∈ A with (f − f ′)(φ(y)) = 0. Hence,

by Lemma 3.3, we conclude that T (f − f ′)(y) = 0 and so T (f)(y) = T (f ′)(y). Moreover, by Lemma

3.4, it is evident that |a(y)| = 1.

Next, we give the representation of T . Let f ∈ A and y ∈ Y0. The function g := f − f(φ(y))k,

where k is a function in PA(φ(y)), belongs to A and g(φ(y)) = 0. So by Lemma 3.3, T (f)(y) =

f(φ(y))T (k)(y), i.e., T (f)(y) = a(y)f(φ(y)).

We finally show the continuity of a. Let y0 ∈ Y0 and choose f ∈ A such that f(φ(y0)) ̸= 0.

If we define W := {x ∈ Ch(A) : f(x) ̸= 0}, then φ−1(W ) is a neighborhood of y0. Moreover,

a(y) = T (f)(y)
(f◦φ)(y) holds for all y ∈ φ−1(W ). Now from the continuity of T (f)

f◦φ on φ−1(W ), it follows

that a is also continuous at y0. �

Remark 3.6. (i) Notice that φ sends Ch(T (A)) onto Ch(A). In fact, T : A −→ T (A) is a bijective

isometry, then the adjoint of T , T ∗ : T (A)∗ −→ A∗ is a bijective isometry. Therefore, ext(T (A)∗1)

is sent onto ext(A∗
1), where T (A)∗1 and A∗

1 are the unit ball of T (A)∗ and A∗, respectively. Thus,

by Lemma 3.4, it follows easily that φ(Ch(T (A))) ⊆ Ch(A). Next repeating the same arguments

for T−1 and noting that (T−1)∗ = (T ∗)−1, finally we conclude that φ(Ch(T (A))) = Ch(A). In

particular, if T is surjective, then φ is a homeomorphism of Ch(B) onto Ch(A).

(ii) We note that if a map T : A −→ C0(Y ) is defined by T (f) = af ◦ φ on Y0, where Y0 ⊆ Y

is a boundary for T (A), a is a unimodular continuous function on Y0, and φ : Y0 −→ Ch(A) is a

surjective map, then T is a linear isometry.
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4. k-linear isometries between function algebras

Let A1, ..., Ak be dense subspaces of uniformly closed function algebras on locally compact Haus-

dorff spaces X1, ..., Xk, respectively, and let Z be a locally compact Hausdorff space. We recall that

a k-linear map T : A1 × ...×Ak −→ C0(Z) is called a multilinear (or k-linear) isometry if

∥T (f1, ..., fk)∥ =
k∏

i=1

∥fi∥ ((f1, ..., fk) ∈ A1 × ...×Ak).

In this section we shall deepen in these maps. First note that it is not difficult to extend T :

A1 × ... × Ak −→ C0(Z) to a k-linear isometry T : A1 × ... × Ak −→ C0(Z), where Ai is the

uniform closure of Ai (i = 1, ..., k). So, as before, without loss of generality, we can assume each Ai

(i = 1, ..., k) is a uniformly closed function algebra.

Let us recall that for an element xi ∈ Xi, we set Cxi := {f ∈ Ai : |f(xi)| = 1 = ∥f∥}. Moreover,

for g ∈ C0(Z), Mg := {z ∈ Z : |g(z)| = ∥g∥} stands for the maximum modulus set of g.

Lemma 4.1. Let (x1, ..., xk) ∈ Ch(A1)× ...× Ch(Ak). The set

Ix1,...,xk
:= {z ∈ Z : z ∈ MT (f1,...,fk) for all (f1, ..., fk) ∈ Cx1 × ...× Cxk

}

is nonempty.

Proof. The proof is a modification of the proof of [6, Lemma 3.1]. Since for each (f1, ..., fk) ∈

Cx1 × ...×Cxk
, the maximum modulus set of T (f1, ..., fk), MT (f1,...,fk), is a compact subset of Z∞,

so it is enough to check that the family {MT (f1,...,fk) : (f1, ..., fk) ∈ Cx1 × ... × Cxk
} has the finite

intersection property. For this, let (f1
1 , ..., f

1
k ), ..., (f

n
1 , ..., f

n
k ) be members in Cx1 × ...×Cxk

. Define

fi :=
1

n

n∑
j=1

1

f j
i (xi)

f j
i , i ∈ {1, ..., k}.

Clearly, (f1, ..., fk) ∈ Cx1 × ...×Cxk
. Hence ∥T (f1, ..., fk)∥ = ∥f1∥...∥fk∥ = 1. Then there is a point

z0 ∈ Z such that

1 = |T (f1, ..., fk)(z0)| =
1

nk

∣∣∣∣∣∣
∑

1≤i1,...,ik≤n

1

f i1
1 (x1)

...
1

f ik
k (xk)

T (f i1
1 , ..., f ik

k )(z0)

∣∣∣∣∣∣ .
Since for each 1 ≤ i1, ..., ik ≤ n, f i1

1 ∈ Cx1 , ..., f
ik
k ∈ Cxk

and ∥T (f i1
1 , ..., f ik

k )∥ = 1, we conclude that

|T (f i1
1 , ..., f ik

k )(z0)| = 1. In particular, z0 ∈
n∩

i=1

MT (fi
1,...,f

i
k)
. Therefore

n∩
i=1

MT (fi
1,...,f

i
k)

̸= ∅, as was

to be proved. �

Lemma 4.2. Fix i ∈ {1, ..., k} and let (x1, ..., xk) ∈ Ch(A1) × ... × Ch(Ak). If f = (f1, ..., fk) ∈

Cx1
× ...× Cxi−1

×Ai × Cxi+1
× ...× Cxk

such that fi(xi) = 0 and z ∈ Ix1,...,xk
then T (f)(z) = 0.
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Proof. For simplicity, we can take i = 1. Let f = (f1, ..., fk) ∈ A1 × Cx2 × ... × Cxk
such that

f1(x1) = 0 and suppose that there exists z0 ∈ Ix1,...,xk
such that T (f)(z0) ̸= 0. We can assume,

without loss of generality, that ∥f1∥ = 1 and T (f)(z0) = α, where 0 < α ≤ 1. Fix a constant r > 1.

By Lemma 2.2, there is a peaking function h1 ∈ A1 such that h1(x1) = 1 and ∥|f1|+ r|h1|∥ = r. In

particular, ∥f1 + rλ̄h1∥ = r, where λ = T (h1, f2, ..., fk)(z0) ∈ T. Then we have

r = ∥f1 + rλ̄h1∥∥f2∥...∥fk∥ = ∥T (f1 + rλ̄h1, f2, ..., fk)∥,

while

T (f1 + rλ̄h1, f2, ..., fk)(z0) = T (f1, f2, ..., fk)(z0) + rλ̄T (h1, f2, ..., fk)(z0) = α+ r,

a contradiction which yields T (f)(z) = 0 for all z ∈ Ix1,...,xk
. �

Lemma 4.3. Let (x1, ..., xk) ∈ Ch(A1) × ... × Ch(Ak) and z ∈ Ix1,...,xk
. Let also I and J be two

disjoint sets with I ̸= ∅ and I ∪ J = {1, ..., k}. Assume that for each j ∈ J , hj ∈ Cxj and for each

i ∈ I, fi ∈ Ai with fi(xi) = 0, then T (F1, ..., Fk)(z) = 0, where Ft = ft if t ∈ I and Ft = ht if t ∈ J .

Proof. Let us suppose, contrary to what we claim, that there exists z0 ∈ Ix1,...,xk
such that

T (F1, ..., Fk)(z0) ̸= 0. Without loss of generality, we may assume that ∥fi∥ = 1 for each i ∈ I

and T (F1, ..., Fk)(z0) = α with 0 < α ≤ 1. Fix a constant r > 1. For each i ∈ I, we can choose, by

Lemma 2.2, a peaking function hi ∈ Cxi such that ∥|fi| + r|hi|∥ = r. In particular, for each i ∈ I

we have ∥fi + rλ̄hi∥ = r, where λ = T (h1, ..., hk)(z0) ∈ T.

Let us first suppose that I = {1, 2}. Hence, by Lemma 4.2, we can conclude that

T (f1 + rλ̄h1, f2 + rh2, h3, ..., hk)(z0) = T (f1, f2, h3, ..., hk)(z0) + rλ̄T (h1, f2, h3, ..., hk)(z0)

+ rT (f1, h2, h3, ..., hk)(z0) + r2λ̄T (h1, ..., hk)(z0) = α+ r2

> r2 = ∥f1 + rλ̄h1∥∥f2 + rh2∥∥h3∥...∥hk∥

= ∥T (f1 + rλ̄h1, f2 + rh2, h3, ....hk)∥,

a contradiction which implies that the result is true when I = {1, 2}. Similarly, this result is held

for all the cases where card(I) = 2.

Now we can continue by induction: noting to the above explanation, let us assume that the result

is true for card(I) = l − 1 and 3 ≤ l ≤ k. We shall show that the result is held if card(I) = l. We
7



suppose that card(I) = l and I = {x1, ..., xl}, without loss of generality. If l < k, then we get

rl = ∥f1 + rλ̄h1∥∥f2 + rh2∥...∥fl + rhl∥∥hl+1∥...∥hk∥

= ∥T (f1 + rλ̄h1, f2 + rh2, ..., fl + rhl, hl+1, ..., hk)∥

≥ |T (f1 + rλ̄h1, f2 + rh2, ..., fl + rhl, hl+1, ..., hk)(z0)|

= |T (f1, ..., fl, hl+1, ..., hk)(z0) + rlλ̄T (h1, ..., hk)(z0)| = α+ rl,

which is impossible. Therefore, T (f1, ..., fl, hl+1, ..., hk)(z) = 0 for all z ∈ Ix1,...,xk
. Now if l = k,

then I = {x1, ..., xk} and

rk = ∥f1 + rλ̄h1∥∥f2 + rh2∥...∥fk + rhk∥ = ∥T (f1 + rλ̄h1, f2 + rh2, ..., fk + rhk)∥

≥ |T (f1 + rλ̄h1, f2 + rh2, ..., fk + rhk)(z0)|

= |T (f1, ..., fk)(z0) + rkλ̄T (h1, ..., hk)(z0)| = α+ rk,

which is a contradiction showing that T (f1, ..., fk)(z) = 0 for all z ∈ Ix1,...,xk
. �

Lemma 4.4. Let (x1, ..., xk) and (x′
1, ..., x

′
k) be distinct points in Ch(A1) × ... × Ch(Ak). Then

Ix1,...,xk
∩ Ix′

1,...,x
′
k
= ∅.

Proof. Contrary to what we claim, assume that there exists z0 ∈ Ix1,...,xk
∩Ix′

1,...,x
′
k
. Since (x1, ..., xk)

and (x′
1, ..., x

′
k) are distinct, the set L = {i : 1 ≤ i ≤ k, xi ̸= x′

i} is nonempty. For each i ∈ L, we

can choose a function gi ∈ Ai such that gi(xi) = 1 and gi(x
′
i) = 0, and then, by Lemma 2.1,

a peaking function hi ∈ PAi(xi) such that gihi ∈ PAi(xi). Now if we let fi = gihi for every

i ∈ L, then fi ∈ Cxi with fi(xi) = 1 and fi(x
′
i) = 0. Moreover, for each j ∈ {1, ..., k} \ L, we

can also choose a peaking function fj ∈ Cxj . On one side, since (f1, ..., fk) ∈ Cx1 × ... × Cxk
,

|T (f1, ..., fk)(z0)| = 1. On the other side, by Lemma 4.3, T (f1, ..., fk)(z0) = 0, which is impossible.

Therefore, Ix1,...,xk
∩ Ix′

1,...,x
′
k
= ∅. �

Theorem 4.5. Suppose that T : A1 × ... × Ak −→ C0(Z) is a k-linear isometry. Then there exist

a nonempty subset Z0 of Z, a continuous surjective map φ : Z0 −→ Ch(A1) × ... × Ch(Ak) and a

unimodular continuous function a : Z0 −→ T such that T (f1, ..., fk)(z) = a(z)
k∏

i=1

fi(πi(φ(z))) for

all (f1, ..., fk) ∈ A1 × ...×Ak and z ∈ Z0, where πi is the ith projection map.

Proof. Let Z0 := {z ∈ Ix1,...,xk
: (x1, ..., xk) ∈ Ch(A1) × ... × Ch(Ak)} which is a nonempty set,

by Lemma 4.1. Fix (x1, ..., xk) ∈ Ch(A1) × ... × Ch(Ak) and hi ∈ Cxi with hi(xi) = 1 for each i,

i = 1, ..., k. Then for each i, i = 1, ..., k, we can define an isometry as follows: Ti : Ai −→ C0(Z)

Ti(f) = T (h1, ..., hi−1, f, hi+1, ..., hk).
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According to Theorem 3.1, there exist a subset Zi of Z, a continuous surjective map φi : Zi −→

Ch(Ai) such that

Ti(fi)(z) = T (h1, ..., hk)(z)fi(φi(z)), (fi ∈ Ai, z ∈ Zi).

Namely, Zi ⊇
∪

x′
i∈Ch(Ai)

Ix1,...,x′
i,...,xk

and if z ∈ Ix1,...,x′
i,...,xk

, then φi(z) = x′
i.

Let (f1, ..., fk) ∈ A1 × ...×Ak. Now for a given z ∈ Ix1,...,xk
, by Lemma 4.3 and using the above

reasonings, we conclude that

0 = T (f1 − f1(x1)h1, f2 − f2(x2)h2, h3, ..., hk)(z)

= T (f1, f2, h3, ..., hk)(z)− f1(x1)T (h1, f2, h3, ..., hk)(z)

− f2(x2)T (f1, h2, h3, ..., hk)(z) + f1(x1)f2(x2)T (h1, ..., hk)(z)

= T (f1, f2, h3, ..., hk)(z)− f1(x1)T2(f2)(z)− f2(x2)T1(f1)(z) + f1(x1)f2(x2)T (h1, ..., hk)(z)

= T (f1, f2, h3, ..., hk)(z)− f1(x1)T (h1, ..., hk)(z)f2(x2)

− f2(x2)T (h1, ..., hk)(z)f1(x1) + f1(x1)f2(x2)T (h1, ..., hk)(z)

= T (f1, f2, h3, ..., hk)(z)− f1(x1)f2(x2)T (h1, ..., hk)(z).

Thus T (f1, f2, h3, ..., hk)(z) = T (h1, ..., hk)(z)f1(x1)f2(x2). By continuing this process and applying

Lemma 4.3, finally we see that

0 = T (f1 − f1(x1)h1, ..., fk − fk(xk)hk)(z)

= T (f1, ..., fk)(z)− T (h1, ..., hk)(z)f1(x1)...fk(xk),

thereby, T (f1, ..., fk)(z) = T (h1, ..., hk)(z)f1(x1)...fk(xk).

Now we define the map φ : Z0 −→ Ch(A1)× ...× Ch(Ak) by φ(z) := (x1, ..., xk) if z ∈ Ix1,...,xk
.

Since for distinct points (x1, ..., xk) and (x′
1, ..., x

′
k) in Ch(A1) × ... × Ch(Ak), Lemma 4.4 yields

Ix1,...,xk
∩ Ix′

1,...,x
′
k
= ∅, so the map φ is well-defined. Moreover, we can define the unimodular

function a : Z0 −→ T such that if z ∈ Z0 then a(z) := T (h1, ..., hk)(z), where hi ∈ PAi(πi(φ(z))).

Lemma 4.3 implies that the definition of a(z) is independent of the choice of h1, ..., hk. Besides, from

the above argument, it follows that if z ∈ Z0 with φ(z) = (x1, ..., xk) and (f1, ..., fk) ∈ A1 × ...×Ak

then

T (f1, ..., fk)(z) = a(z)
k∏

i=1

fi(xi) = a(z)
k∏

i=1

fi(πi(φ(z))).

Next we prove that φ is continuous. Suppose that z0 ∈ Z0, φ(z0) = (x1, ..., xk) and U1×...×Uk is a

neighborhood of (x1, ..., xk) in Ch(A1)× ...×Ch(Ak). For each i, i = 1, ..., k, there is a neighborhood

U ′
i of xi in Xi with Ui = U ′

i ∩ Ch(Ai). Choose a peaking function fi ∈ Cxi such that |fi| < 1
2 on
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Xi \ U ′
i (i = 1, ..., k). Then |T (f1, ..., fk)(z0)| = 1. Set

V := {z ∈ Z0 : |T (f1, ..., fk)(z)| >
1

2
}.

Clearly V is a neighborhood of z0 such that φ(V ) ⊆ U1 × ... × Uk because if z ∈ V and φ(z) =

(x′
1, ..., x

′
k), then

1

2
< |T (f1, ..., fk)(z)| =

k∏
i=1

|fi(x′
i)| ≤ |fi(x′

i)| (i = 1, ..., k).

Hence x′
i ∈ Ui and so (x′

1, ..., x
′
k) ∈ U1 × ...× Uk.

To complete the proof, it suffices to check the continuity of a. Let z0 ∈ Z0. Then z0 ∈ Ix1,...,xk

for a unique (x1, ..., xk) in Ch(A1)× ...×Ch(Ak). For each i, i = 1, ..., k, choose a peaking function

fi ∈ PAi(xi) and take

Ui := {x ∈ Ch(Ai) : fi(x) ̸= 0}.

Then U = U1 × ...×Uk is a neighborhood of (x1, ..., xk) in Ch(A1)× ...×Ch(Ak) and consequently

φ−1(U) is a neighborhood of z0. We have

a(z) =
T (f1, ..., fk)(z)∏k
i=1 fi(πi(φ(z)))

(z ∈ φ−1(U)).

So from the continuity of the function T (f1,...,fk)∏k
i=1 fi◦πi◦φ

on φ−1(U), we conclude that a is continuous at

z0. �
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