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Abstract A nonparametric test for assessing the inde-

pendence between a directional random variable (circular

or spherical, as particular cases) and a linear one is pro-

posed in this paper. The statistic is based on the squared

distance between nonparametric kernel density estimates

and its calibration is done by a permutation approach. The

size and power characteristics of various variants of the test

are investigated and compared with those for classical

correlation-based tests of independence in an extensive

simulation study. Finally, the best-performing variant of

the new test is applied in the analysis of the relation

between the orientation and size of Portuguese wildfires.
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1 Introduction

Characterization of wildfire orientation patterns at land-

scape scale has important management implications

(Moreira et al. 2001; Lloret et al. 2002; Moreira et al.

2011). It has been shown that landscape fuel reduction

treatments will only be successful if strategically placed in

order to intersect fire spread in the heading direction

(Finney 2001; Schmidt et al. 2008).

Barros et al. (2012) assessed the existence of preferen-

tial fire perimeter orientation at watershed level, to support

the spatial layout of fuelbreak networks. Their analysis

identified clusters of watersheds where fire perimeters were

preferentially aligned along the NE/SW and the SE/NW

axes. Those watersheds included fire perimeters that

together account for roughly 65% of the overall burnt area

in Portugal, over the period from 1975 to 2005, while in the

remaining watersheds fire perimeters were randomly

aligned. In Fig. 1, some descriptive maps of the data of

interest are displayed. The left plot shows the total area

burnt in each watershed, whereas the middle plot represents

the mean slope of the fires in each region. Finally, the right

plot indicates which watersheds exhibit a preferred fire

orientation, versus a random orientation, according to

Barros et al. (2012). The authors argued that spatial pat-

terns of fire perimeter orientation found in the 31-year

dataset could be explained by dominant weather during the

Portuguese fire season (Pereira et al. 2005). However,

given that fire perimeter orientation analysis is event-based

(i.e., it is based on the orientation of each fire event) all

perimeters are treated equally independently of their size.

In this paper, a test for assessing independence between

wildfire size and orientation is presented, complementing

the work of Barros et al. (2012). Furthermore, orientation

of the wildfire will be considered in two-dimensional and

three-dimensional spaces.

Spatial characterization of a wildfire, by means of its

main orientation, and the associated burnt area, must be

handled by non-standard statistical approaches, given the

special nature of fire orientation. Specifically, it can be

measured as an angle in the plane (two-dimensional ori-

entation) or as a pair of angles identifying a direction in the
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three-dimensional sphere, if the main slope of the wildfire

is taken into account. Hence, appropriate methods for

handling circular and, more generally, directional data

must be considered, jointly with suitable combinations of

directional and linear techniques.

The analysis of the relation between directional and

linear variables has been classically approached through

the construction of circular-linear correlation coefficients.

The adaptation of the classical linear correlation coefficient

to the circular-linear setting was introduced by Mardia

(1976) and Johnson and Wehrly (1977) and further studied

by Liddell and Ord (1978), who obtained its exact distri-

bution under certain parametric assumptions. For the cir-

cular-linear case, a rank-based test of association was also

proposed by Mardia (1976), who derived its asymptotic

distribution. Later, Fisher and Lee (1981) adapted Ken-

dall’s s as a measure of circular-linear association based on

the notion of concordance in the cylinder. To the best of the

authors’ knowledge, these three tests are the only ones

available for testing the independence in directional-linear

variables. As they are based on correlation coefficients,

these tests are only powerful against deviations in the

conditional expectation that can be measured by the cor-

responding coefficient. As a consequence, none of these

tests is able to capture all possible types of dependence,

neither for the conditional expectation nor for more com-

plex types of dependence.

From a different perspective, circular and linear vari-

ables can also be jointly modeled by the construction of

circular-linear distributions. Johnson and Wehrly (1978)

introduced a method for deriving circular-linear densities

with specified marginals. A new family of circular-linear

distributions based on nonnegative trigonometric sums,

which proved to be more flexible in capturing the data

structure, was proposed by Fernández-Durán (2007),

adapting the method by Johnson and Wehrly (1978). More

recently, Garcı́a-Portugués et al. (2012) exploited the

copula representation of the Johnson and Wehrly (1978)

family, allowing for a completely nonparametric estimator,

which was applied to analyze SO2 concentrations and wind

direction. Nevertheless, the aforementioned methods are

designed for the circular-linear case, whereas in our con-

text, a more general tool for handling directional-linear

relations is needed, provided that wildfire orientation may

be reported in two or three dimensions.

In this paper, the assessment of the relation between a

directional (circular or spherical, as particular cases) and a

linear variable is approached through the construction of a

formal test to check directional-linear independence.

Inspired by the ideas of Rosenblatt (1975) and Rosenblatt

and Wahlen (1992) for the linear setting (see also Ahmad

and Li (1997)), the proposed test statistic is based on a

nonparametric directional-linear kernel density estimator

and an L2 distance is taken as a discrepancy measure

between the joint estimator and the one constructed under

the independence hypothesis. The new test presents some

interesting advantages: it is designed in a general fashion

for directional variables of all dimensions and it is able to

capture all kinds of deviations from independence by virtue

the nonparametric density estimation. Besides, one gets a

Fig. 1 Descriptive maps of wildfires in Portugal with the 102

watersheds delineated by Barros et al. (2012). The left map shows the

number of hectares burnt from fire perimeters associated with each

watershed. Each fire perimeter is associated with the watershed that

contains its centroid. The center map represents the mean slope of the

fires of each watershed, where the slope is measured in degrees (0�
stands for plain slope and 90� for a vertical one). Finally, the right

map shows watersheds where fires display preferential alignment

according to Barros et al. (2012)
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kernel density estimate as a spin-off, which provides fur-

ther information about the form of dependence when

independence is rejected.

The remainder of the paper is organized as follows. In

Sect. 2 , some background to kernel density estimation, for

linear, directional and directional-linear data is presented.

Section 3 is devoted to the introduction of the test statistic,

introducing a simplified version of the test and describing

in detail its practical application. The finite sample per-

formance of the test, in terms of size and power, is assessed

through a simulation study for circular-linear and spheri-

cal-linear variables. Application to real data is provided in

Sec. 4, including data description and results, focusing on

the assessment of independence between wildfire orienta-

tion and burnt area size in Portugal. Some discussion and

final comments are given in Sect. 5.

2 Background to kernel density estimation

In the linear setting, the basic building block for the

independence test introduced by Rosenblatt (1975) is a

kernel density estimator. Independence between two linear

random variables is assessed through an L2 distance

between a bidimensional kernel density estimator and the

product of the marginal kernel density estimators. In order

to extend such a procedure to the directional-linear case,

kernel density estimation for linear, directional and direc-

tional-linear variables is required. A brief background on

kernel density estimators will be provided in this section.

2.1 Linear kernel density estimation

The well-known kernel density estimator for linear data

was introduced by Rosenblatt (1956) and Parzen (1962).

Given a random sample Z1; . . .; Zn from a linear random

variable Z (i.e. with support SuppðZÞ � R) with density

f, the kernel density estimator at a point z 2 R is defined as

f̂gðzÞ ¼
1

ng

Xn

i¼1

K
z� Zi

g

� �
;

where K is a kernel function, usually a symmetric density

about the origin, and g [ 0 is the smoothing or bandwidth

parameter, which controls the roughness of the estimator.

Properties of this estimator have been deeply studied (see

Silverman (1986) or Wand and Jones (1995) for compre-

hensive reviews). It is also well known that the choice of

kernel (normal, Epanechnikov, etc.) has little effect on the

overall shape of the kernel density estimate. However, the

bandwidth is a key tuning parameter: large values produce

oversmoothed estimates of f, whereas small values provide

undersmoothed curves. Comprehensive reviews on

bandwidth selection are given in Cao et al. (1994), Chiu

(1996) and Jones et al. (1996), among others.

2.2 Directional kernel density estimation

Denote by X a directional random variable with density f.

The support of such a variable is the q-dimensional sphere,

namely Xq ¼ fx 2 R
qþ1 : x2

1 þ � � � þ x2
qþ1 ¼ 1g; endowed

with the Lebesgue measure in Xq; that will be denoted by

xq. Therefore, a directional density is a nonnegative

function that satisfies
R

Xq
f ðxÞx ¼ 1:

The directional kernel density estimator was introduced

by Hall et al. (1987) and Bai et al. (1988). Given a random

sample X1; . . .;Xn; of a directional variable X with

SuppðXÞ � Xq and density f, at a point x 2 Xq the esti-

mator is given by

f̂hðxÞ ¼
ch;qðLÞ

n

Xn

i¼1

L
1� x0Xi

h2

� �
; ð1Þ

where L is the directional kernel, h [ 0 is the bandwidth

parameter and ch,q(L) is a normalizing constant depending

on the kernel L, the bandwidth h and the sphere dimension

q. The scalar product of two vectors, x and y; is denoted by

x0y; where 0 denotes the transpose operator.

A common choice for the directional kernel is

L(r) = e-r, r C 0, also known as the von Mises kernel due

to its relation with the von Mises–Fisher distribution

(Watson 1983). In a q-dimensional sphere, the von Mises

density vMðl; jÞ is given by

fvMðx; l; jÞ ¼ CqðjÞ exp jx0lf g;

CqðjÞ ¼ j
q�1

2 ð2pÞ
qþ1

2 I q�1
2
ðjÞ

h i�1

;
ð2Þ

where l 2 Xq is the mean direction, j C 0 is the

concentration parameter around the mean and I m is the

modified Bessel function of order m,

I mðzÞ ¼
z
2

� �m

p1=2C mþ 1
2

� �
Z1

�1

ð1� t2Þm�
1
2eztdt:

For the von Mises kernel, the value of ch,q(L) is

Cq 1=h2ð Þ e1=h2

and the directional estimator (1) can be

interpreted as a mixture of q-von Mises–Fisher densities:

f̂hðxÞ ¼
1

n

Xn

i¼1

fvM x; Xi; 1=h2
� �

:

Note that large values of h provide a small concentration

parameter, which results in a uniform model in the sphere,

whereas small values of h give high concentrations around

the sample observations, providing an undersmoothed curve.

Cross-validation rules based on likelihood cross validation
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(LCV) and least squares cross validation (LSCV) for

bandwidth selection were discussed by Hall et al. (1987).

2.3 Directional-linear kernel density estimation

Consider a directional-linear random variable, ðX; ZÞ with

support SuppðX; ZÞ � Xq � R and joint density f. For the

simple case of circular data (q = 1), the support of the

variable is the cylinder and, in general, the support is a

multidimensional cylinder. Following the ideas in the

previous sections for the linear and directional cases, given

a random sample X1; Z1ð Þ; . . .; Xn; Znð Þ; the directional-

linear kernel density estimator at a point ðx; zÞ 2 Xq � R

can be defined as:

f̂h;gðx; zÞ ¼
ch;qðLÞ

ng

Xn

i¼1

LK
1� x0Xi

h2
;
z� Zi

g

� �
; ð3Þ

where LK is a directional-linear kernel, g [ 0 is the linear

bandwidth parameter, h [ 0 is the directional bandwidth

and ch,q(L) is the directional normalizing constant. The

estimator (3) was introduced by Garcı́a-Portugués et al.

(2013a), who also studied its asymptotic properties in terms

of bias and variance, and established its asymptotic

normality.

A product kernel LKð�; �Þ ¼ Lð�Þ � Kð�Þ; specifically, the

von Mises–normal kernel

LKðr; tÞ ¼ e�r � /ðtÞ; r 2 ½0;1Þ; t 2 R;

will be considered throughout this paper in order to

simplify computations, where / denotes the standard

normal density. Similarly to the linear and directional

kernel density estimators, a smoothing parameter

(bidimensional, in this case) is involved in the estimator

construction. The cross-validation procedures introduced

by Hall et al. (1987) can be adapted to the directional-

linear setting, yielding the following bandwidth selectors:

ðh; gÞLCV ¼ arg max
h;g [ 0

Xn

i¼1

log f̂�i
h;gðXi; ZiÞ;

ðh; gÞLSCV ¼ arg max
h;g [ 0

�
2n�1

Xn

i¼1

f̂�i
h;gðXi; ZiÞ

�
Z

Xq�R

f̂h;gðx; zÞ2xz

�
;

where fh,g
-i represents the kernel density estimator computed

without the ith datum.

3 A test for directional-linear independence

The new test statistic for assessing independence between a

directional and a linear variable is described in this section.

3.1 The test statistic

Consider the joint directional-linear density fðX;ZÞ for the

variable ðX; ZÞ: fX and fZ denote the directional and linear

marginal densities, respectively. The null hypothesis of

independence between both components can be stated as

H0 : fðX;ZÞðx; zÞ ¼ fXðxÞfZðzÞ; 8ðx; zÞ 2 Xq � R

and the alternative hypothesis as

Ha : fðX;ZÞðx; zÞ 6¼ fXðxÞfZðzÞ;
for any ðx; zÞ 2 Xq � R:

Following the idea of Rosenblatt (1975), a natural

statistic to test H0 arises from considering the L2 distance

between the nonparametric estimation of the joint density

fðX;ZÞ by the directional-linear kernel estimator (3), denoted

by f̂ðX;ZÞ;h;g; and the nonparametric estimation of fðX;ZÞ
under H0, given by the product of the marginal directional

and linear kernel estimators, denoted by f̂X;h and f̂Z;g;

respectively. We therefore propose the following test

statistic:

Tn ¼ D2

�
f̂ðX;ZÞ;h;g; f̂X;hf̂Z;g

	
; ð4Þ

where D2 stands for the squared L2 distance in Xq � R

between two functions f1 and f2:

D2ðf1; f2Þ ¼
Z

Xq�R

f1ðx; zÞ � f2ðx; zÞð Þ2xqðdxÞdz:

The test statistic depends on a pair of bandwidths

(h, g), which is used for the directional-linear estimator,

and whose components are also considered for the mar-

ginal directional and linear kernel density estimators.

Under the null hypothesis of independence, H0, it holds

that E f̂ðX;ZÞ;h;gðx; zÞ
h i

¼ E f̂X;hðxÞ

 �

E f̂Z;gðzÞ

 �

:

Asymptotic properties of (4) have been studied by

Garcı́a-Portugués et al. (2013b), who proved its asymptotic

normality under independence, but with a slow rate of

convergence that does not encourage its use in practice. For

that reason, a calibration mechanism will be needed for the

practical application of the test.

In addition, the construction of Tn requires the calcula-

tion of an integral over Xq � R; which may pose compu-

tational problems since it involves the calculation of

several nested integrals. However, if the kernel estimators

are obtained using von Mises and normal kernels, then an

easy to compute expression for Tn can be obtained, as

stated in the following lemma.

Lemma 1 If the kernel estimators involved in (4),

obtained from a random sample fðXi; ZiÞgn
i¼1 of ðX; ZÞ; are
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constructed with von Mises and normal kernels, the fol-

lowing expression for Tn holds:

Tn ¼1n

�
1

n2
WðhÞ �XðgÞ � 2

n3
WðhÞXðgÞ

þ 1

n4
WðhÞ1n10nXðgÞ

�
10n;

ð5Þ

where o denotes the Hadamard product and WðhÞ and

XðgÞ are n 9 n matrices given by

WðhÞ ¼
 

Cq 1=h2ð Þ2

Cq kXi þ Xjk=h2
� �

!

ij

;

XðgÞ ¼
�
/ ffiffi

2
p

g Zi � Zj

� ��
ij
;

where 1n ¼ ð1; . . .; 1Þ; with length n, Cq is the normalizing

function (2) and / ffiffi
2
p

g is the normal density with zero mean

and standard deviation
ffiffiffi
2
p

g:

The proof of this result can be seen in Appendix A. Note

that expression (5) for Tn only requires matrix operations.

This will be the expression used for computing the test

statistic. It should also be noted that the effect of the

dimension q appears only in the definition of Cq and in

kXi þ Xjk; and both are easily scalable for large q. Thus,

an important advantage of (5) is that computing require-

ments are similar for different dimensions q, something

which is not the case if (4) is employed with numerical

integration.

3.2 Calibration of the test

The null hypothesis of independence is stated in a non-

parametric way, which determines the resampling methods

used for calibration. However, as the null hypothesis is of a

non-interaction kind, a permutation approach (which is not

at all foreign to hypothesis testing) seems a reliable option.

If Xi; Zið Þf gn
i¼1 is a random sample from the directional-

linear variable X; Zð Þ and r is a random permutation of

n elements, then Xi; ZrðiÞ
� � �n

i¼1
; represents the resulting

r-permuted sample. Tn
r denotes the test statistic computed

from the r-permuted random sample. Under the assump-

tion of independence between the directional and linear

components, it is reasonable to expect that the distribution

of Tn is similar to the distribution of Tn
r, which can be

easily approximated by Monte Carlo methods.

In addition to its simplicity, the main advantage of the

use of permutations is its easy implementation using

Lemma 1, as it is possible to reuse the computation of the

matrices WðhÞ and XðgÞ needed for Tn to compute a r-

permuted statistic Tn
r. In virtue of expression (5) and the

definition of Tn
r, the r-permuted test statistic is given by

Tr
n ¼ 1n

�
1

n2
WðhÞ �XrðgÞ � 2

n3
WðhÞXrðgÞ

þ 1

n4
WðhÞ1n10nX

rðgÞ
�

10n;

where the ijth entry of the matrix XrðgÞ is the r(i)r(j)-

entry of XðgÞ: For the computation of WðhÞ and XðgÞ;
symmetry properties reduce the number of computations

and can also be used to optimize the products WðhÞ �
XrðgÞ and WðhÞXrðgÞ: The last addend of Tn

r is the same

as that of Tn and there is no need to recompute it. The

testing procedure can be summarized in the following

algorithm.

Algorithm 1 Let ðXi; ZiÞf gn
i¼1 be a random sample from a

directional-linear variable ðX; ZÞ:

1. Obtain a suitable pair of bandwidths (h, g).

2. Compute the observed value of Tn from (5), with kernel

density estimators taking bandwidths (h, g).

3. Permutation calibration. For b ¼ 1; . . .;B� n! com-

pute Trb
n with bandwidths (h, g) for a random permu-

tation rb.

4. Approximate the p-value by #


Tn� Trb
n

��
B; where #

denotes the cardinal of the set.

In Steps 2 and 3, a pair of bandwidths must be chosen.

For the directional-linear case, as commented in Section 2,

cross-validation bandwidths, namely ðh; gÞLCV and

ðh; gÞLSCV; can be considered. However, as usually happens

with cross-validatory bandwidths, these selectors tend to

provide undersmoothed estimators, something which a

priori is not desirable as introduces a substantial variability

in the statistic Tn.

To mitigate this problem, a more sophisticated band-

width selector will be introduced. Considering the von

Mises–normal kernel, the bootstrap version for the mean

integrated squared error (MISE) of the directional-linear

kernel density estimator (3) was derived by Garcı́a-Portu-

gués et al. (2013a):

MISE�hp;gp
h; gð Þ ¼

�
Cq 1=h2
� �2

Cq 2=h2
� ��1

2p
1
2gn
	�1

þ n�21n



ð1� n�1ÞW�2ðhÞ �X�2ðgÞ

� 2W�1ðhÞ �X�1ðgÞ
þW�0 �X�0

�
10n;

where matrices W�aðhÞ and X�aðgÞ; a ¼ 0; 1; 2 are
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W�0 ¼
Cqð1=h2

pÞ
2

Cq kXi þ Xjk=h2
p

� 	

0
@

1
A

ij

;

W�1ðhÞ ¼
Z

Xq

Cq 1=h2ð ÞCqð1=h2
pÞ

2
ex0Xj=h2

p

Cq kx=h2 þ Xi=h2
pk

� 	 xqðdxÞ

0
B@

1
CA

ij

;

W�2ðhÞ ¼
 Z

Xq

Cq 1=h2ð Þ2

Cq kx=h2 þ Xi=h2
pk

� 	

�
Cqð1=h2

pÞ
2

Cq kx=h2 þ Xj=h2
pk

� 	xqðdxÞ
!

ij

;

X�0 ¼ / ffiffi
2
p

gp
ðZi � ZjÞ

� 	

ij
;

X�aðgÞ ¼ /ra;g
ðZi � ZjÞ

� 	

ij
;

with ra;g ¼ ag2 þ 2g2
p

� 	1
2

; a ¼ 1; 2; and (hp, gp) a given

pair of pilot bandwidths. Then, the estimation bandwidths

are obtained as

ðh; gÞbo ¼ arg min
h;g [ 0

MISEhp;gp

�ðh; gÞ:

The choice of (hp, gp) is needed in order to compute (h, g)bo.

This must be done by a joint criterion for two important

reasons. Firstly, to avoid the predominance of smoothing in

one component that may dominate the other (this could

happen, for example, if the directional variable is uniform, as

in that case the optimal bandwidth tends to infinity). Secondly,

to obtain a test with more power against deviations from

independence. Based on these comments, a new bandwidth

selector, named Bootstrap LCV (BLCV), is introduced:

ðh; gÞBLCV ¼ arg min
h;g [ 0

MISE�ðh;gÞMLCV
h; gð Þ;

where the pair of bandwidths (h, g)MLCV are obtained by

enlarging the order of (h, g)LCV to be of the kind
�
O
�
n�

1
6þq

�
;O
�
n�

1
7

��
; the order that one would expect for a

pair of directional-linear pilot bandwidths. For the linear

component, this can be seen in the paper by Cao (1993),

where the pilot bandwidth is proved to be gp ¼ O
�
n�

1
7

�
;

larger than the order of the optimal estimation bandwidth,

n�
1
5: For the directional case there is no pilot bandwidth

available, but considering that the order of the optimal

estimation bandwidth is n�
1

4þq (Garcı́a-Portugués et al.

2013a), then a plausible conjecture is hp ¼ O
�
n�

1
6þq

�
:

3.3 Simulation study

Six different directional-linear models were considered in

the simulation study. The models are indexed by a d

parameter that measures the degree of deviation from the

independence, where d = 0 represents independence and

d[ 0 accounts for different degrees of dependence. The

models show three kind of possible deviations from the

independence: first order deviations, that is, deviations in

the conditional expectation (models M1, M2 and M3);

second order deviations or conditional variance deviations

(models M4 and M5) and first and second order deviations

(model M6). In order to clarify notation, /ð�; m; rÞ and

fLNð�; m; rÞ represent the density of a normal and a log-

normal, with mean/log-scale m and standard deviation/

shape r. Notation 0q represents a vector of q zeros.

M1. f1ðx; zÞ ¼ /ðz; dð2þ xTlÞ; rÞ � fvMðx; l; jÞ; with

l ¼ ð0q; 1Þ; j ¼ 1 and r = 1.

M2. f2ðx; zÞ ¼ fLNðz; dð1þ ðxTlÞ2Þ; rÞ � fvMðx; l;jÞ;
with l ¼ ð�1; 0qÞ; j ¼ 0 and r ¼ 1

4
:

M3. f3ðx; zÞ ¼ ½rfLNðz; dð1þ ðxTl1Þ
3Þ; r1Þ þ ð1� rÞ

/ðz; m; r2Þ	 � ½pfvMðx; l1; j1Þ þ ð1� pÞfvMðx; l2;

j2Þ	; with l1 ¼ ð0q; 1Þ; l2 ¼ ð0q;�1Þ; j1 ¼ 2;

j2 ¼ 1; p ¼ 3
4
; r1 ¼ r2 ¼ 1

4
; m ¼ 1 and r ¼ 1

4
:

M4. f4ðx; zÞ ¼ / z; m; 1
4
þ dð1� ðxTlrÞ

3Þ
�

� fvMðx; l; jÞ;
with l ¼ ð0q; 1Þ; j ¼ 1; lr ¼ ð�1; 0qÞ and m = 0.

M5. f5ðx; zÞ ¼ fLN z; m; 5þ dð3xTl2 � xTl1Þð Þ�1
� 	

� pfvMðx; l1; j1Þ þ ð1� pÞfvMðx; l2; j2Þ½ 	; with

l1 ¼ ð0q; 1Þ; l2 ¼ ð0q;�1Þ; j1 ¼ j2 ¼ 2; p ¼ 1
2

and m = 0.

M6. f6ðx; zÞ ¼


rfLNðz; m;rÞ þ ð1� rÞ/ z; dð2þ xTlrÞ;ð

1
4
þ dðxTlrÞ

2Þ
�
� fvMðx; l; jÞ; with l ¼ ð0q; 1Þ; lr ¼

ð�1; 0qÞ; j ¼ 1; p ¼ 3
4
; r ¼ 1

2
; m ¼ 0 and r ¼ 3

4
:

The choice of the models was done in order to capture

situations with heteroskedasticity, skewness in the linear

component and different types of von Mises mixtures in the

directional component.

For the proposed models, different deviations from inde-

pendence have been considered, by setting d ¼ 0; 0:25; 0:50:

The proposed test statistic has been computed for all the

models and sample sizes n = 50, 100, 200, 500, 1000. The

new test based on the permutation resampling described in

Algorithm 1, depending on the bandwidth choice, is denoted

by TLCV
n and TBLCV

n : The number of permutations considered

was B = 1000 and the number of Monte Carlo replicates was

M = 1000. Both the circular-linear and spherical-linear cases

were explored. For the circular-linear case, the test was

compared with the three tests available for circular-linear

association, described as follows:

– Circular-linear correlation coefficient from Mardia

(1976) and Johnson and Wehrly (1977), denoted by Rn
2.

– Rank circular-linear correlation coefficient from Mar-

dia (1976), denoted by Un.
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Table 1 Proportion of rejections for the Rn
2, Un, k4n

* , Tn
LCV and Tn

BLCV tests of independence as a function of sample size, n, and model, for a

nominal significance level of 5 %

n Model Circular-linear Spherical-linear

Rn
2 Un k4n

* Tn
LCV Tn

BLCV Tn
LCV Tn

BLCV

50 H1,0.00 0.047 0.040 0.047 0.050 0.047 0.059 0.045

H2,0.00 0.051 0.044 0.042 0.055 0.052 0.057 0.052

H3,0.00 0.047 0.045 0.051 0.059 0.054 0.051 0.048

H4,0.00 0.047 0.040 0.047 0.050 0.046 0.059 0.046

H5,0.00 0.042 0.045 0.053 0.055 0.047 0.070 0.057

H6,0.00 0.058 0.065 0.062 0.057 0.055 0.065 0.054

H1,0.25 0.162 0.120 0.092 0.132 0.139 0.099 0.094

H2,0.25 0.055 0.074 0.088 0.143 0.071 0.072 0.050

H3,0.25 0.535 0.538 0.365 0.511 0.543 0.238 0.246

H4,0.25 0.051 0.044 0.067 0.239 0.234 0.103 0.097

H5,0.25 0.046 0.049 0.059 0.128 0.121 0.110 0.094

H6,0.25 0.354 0.332 0.239 0.436 0.432 0.284 0.275

H1,0.50 0.512 0.412 0.235 0.378 0.421 0.231 0.253

H2,0.50 0.054 0.124 0.261 0.633 0.291 0.219 0.078

H3,0.50 0.925 0.845 0.734 0.929 0.949 0.662 0.666

H4,0.50 0.058 0.050 0.081 0.424 0.420 0.149 0.139

H5,0.50 0.055 0.059 0.094 0.501 0.491 0.320 0.298

H6,0.50 0.782 0.706 0.536 0.754 0.756 0.556 0.540

100 H1,0.00 0.052 0.054 0.063 0.068 0.061 0.072 0.068

H2,0.00 0.044 0.046 0.052 0.053 0.048 0.051 0.055

H3,0.00 0.047 0.050 0.046 0.061 0.054 0.064 0.049

H4,0.00 0.052 0.054 0.063 0.067 0.060 0.072 0.071

H5,0.00 0.056 0.050 0.057 0.073 0.063 0.074 0.063

H6,0.00 0.046 0.046 0.050 0.062 0.059 0.077 0.071

H1,0.25 0.291 0.227 0.102 0.211 0.213 0.155 0.163

H2,0.25 0.051 0.073 0.092 0.263 0.094 0.114 0.067

H3,0.25 0.889 0.851 0.407 0.805 0.849 0.487 0.500

H4,0.25 0.060 0.049 0.074 0.478 0.484 0.222 0.219

H5,0.25 0.063 0.050 0.067 0.260 0.251 0.171 0.171

H6,0.25 0.547 0.574 0.283 0.720 0.718 0.492 0.479

H1,0.50 0.847 0.721 0.290 0.669 0.718 0.416 0.460

H2,0.50 0.053 0.122 0.279 0.940 0.660 0.530 0.123

H3,0.50 1.000 0.997 0.872 0.999 0.999 0.942 0.957

H4,0.50 0.058 0.053 0.103 0.784 0.803 0.341 0.355

H5,0.50 0.083 0.056 0.107 0.836 0.860 0.602 0.630

H6,0.50 0.965 0.951 0.642 0.968 0.967 0.864 0.845

200 H1,0.00 0.049 0.056 0.064 0.057 0.054 0.065 0.060

H2,0.00 0.055 0.063 0.055 0.053 0.054 0.046 0.041

H3,0.00 0.051 0.054 0.058 0.053 0.050 0.045 0.042

H4,0.00 0.049 0.056 0.064 0.057 0.053 0.065 0.057

H5,0.00 0.049 0.056 0.043 0.066 0.063 0.060 0.061

H6,0.00 0.048 0.059 0.052 0.049 0.046 0.054 0.048

H1,0.25 0.529 0.444 0.099 0.349 0.373 0.192 0.208

H2,0.25 0.058 0.081 0.106 0.551 0.154 0.178 0.052

H3,0.25 0.996 0.995 0.431 0.980 0.987 0.795 0.818

H4,0.25 0.054 0.057 0.085 0.839 0.862 0.337 0.348
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– k4n measure of cylindrical association of Fisher and

Lee (1981), implemented with its incomplete version

k4n
* considering m = 5000 random 4-tuples.

Although there exists an exact distribution for Rn
2 under

certain normality assumptions on the linear response and

asymptotic distributions for Un and k4n
* , for a fair com-

parison, the calibration of these tests has also been done by

permutations (B = 1000). The exact and asymptotic dis-

tributions for Rn
2 and Un were also tried instead of the

permutation approach, providing empirical levels and

powers quite similar to the ones based on permutations.

The proportion of rejections under Hk,d (for model

number k with d deviation) is reported in Tables 1 and 2,

for the circular-linear and spherical-linear cases, with dif-

ferent sample sizes. In the circular-linear case, the empir-

ical size is close to the nominal level for all the competing

tests. The Tn
LCV test for this case shows in general a satis-

factory behavior under the null hypothesis, except for some

cases in models M1, M4 and M5, where the test tends to

reject the null hypothesis more than expected. This is

mostly corrected by Tn
BLCV, with a decrease of power with

respect to Tn
LCV in model M2. For the spherical-linear case,

the improvement in size approximation Tn
BLCV is notable,

specially for small sample sizes. If the tests maintain the

nominal significance level of 5 %, it is expected that

approximately 95% of the observed proportions of rejec-

tions under the null hypothesis (i.e. when d = 0) to lie

within the interval (0.036,0.064) to three decimal places.

Regarding power, the test for Rn
2 is the most powerful

one for models M1 and M3, although the performance of

Tn
LCV and Tn

BLCV, specially for model M3, is quite similar.

This was to be expected, as the circular-linear association

tests should present more power against deviations of the

first order. However, for models M2, M4 and M5, all these

tests are not able to distinguish the alternatives and the

rejection ratios are close to the nominal level, resulting in

k4n
* , being the test with better behavior among them. In

contrast, Tn
LCV and Tn

BLCV correctly detect the deviations

from the null. In Model M6, Rn
2 is only the most compet-

itive for the situation with n = 50, with Tn
LCV and Tn

BLCV

the most competitive for the remainder of situations. Un

shows a similar performance to Rn
2, but with more power in

M2 and less in M5. k4n
* is less affected than Rn

2 and Un by

the change of models, but also has lower power than them

for models M1, M3 and M6. The results for the spherical-

linear case are quite similar to the previous ones for the

empirical size, but with lower power in comparison with

the circular-linear scenario, something expected as a con-

sequence of the difference in dimensionality.

Some final comments on the simulation results follow.

For the different sample sizes and dimensions, the running

times for Tn
LCV and Tn

BLCV are collected in Table 3. Com-

putation times for Tn
LCV are very similar for different

dimensions q, whereas Tn
BLCV is affected by q due to the

choice of the bandwidths (h, g)BLCV. The choice of the

kernels was corroborated to be non-important for testing, as

similar results were obtained for the test Tn
LCV using the

directional-linear kernel LKðr; tÞ ¼ ð1� rÞ1½0;1	ðrÞ �
3
4
ð1� t2Þ1½�1;1	ðtÞ: Cross-validatory bandwidths LSCV and

BLSCV were also tried in the simulation study, providing

worse results (this is also what usually happens with

directional data, as it can be seen in Garcı́a-Portugués

(2013)). Finally, it is worth mentioning that bootstrap

calibration was also tried as an alternative to the permu-

tation approach, using a pair of bandwidths for estimation

and another pair for the smooth resampling. The results in

terms of size, power and computing times were substan-

tially worse than the ones obtained for permutations.

In conclusion, both Tn
LCV and Tn

BLCV tests show a com-

petitive behavior in all the simulation models, sample sizes

Table 1 continued

n Model Circular-linear Spherical-linear

Rn
2 Un k4n

* Tn
LCV Tn

BLCV Tn
LCV Tn

BLCV

H5,0.25 0.056 0.052 0.058 0.459 0.487 0.303 0.343

H6,0.25 0.830 0.896 0.277 0.974 0.971 0.842 0.830

H1,0.50 0.982 0.957 0.299 0.924 0.940 0.721 0.750

H2,0.50 0.061 0.145 0.325 0.999 0.967 0.899 0.249

H3,0.50 1.000 1.000 0.913 1.000 1.000 1.000 1.000

H4,0.50 0.053 0.058 0.122 0.981 0.984 0.595 0.618

H5,0.50 0.124 0.051 0.105 0.991 0.995 0.921 0.950

H6,0.50 1.000 1.000 0.691 1.000 1.000 0.994 0.993

For the six different models the values of the deviation from independence parameter are d = 0 (independence), 0.25 and 0.50. Each proportion

was calculated using B = 1000 permutations for each of M = 1000 random samples of size n simulated from the specified model
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and dimensions considered, only being outperformed by Rn
2

in models M1 and M3. Nevertheless, for those models, the

rejection rates of both tests are in general close to the ones

of Rn
2. The test Tn

BLCV corrects the over rejection of Tn
LCV in

certain simulation models, without a significant loss in

power but at the expense of a high computational cost.

Finally, the classical tests Rn
2, Un and k4n

* presented critical

problems on detecting second order and some first order

deviations from the independence. For all those reasons,

the final recommendation is to preferably use the test

Tn
BLCV for inference on directional-linear independence and

Tn
LCV for a less computing intensive exploratory analysis.

Table 2 Proportion of rejections for the Rn
2, Un, k4n

* , Tn
LCV and Tn

BLCV tests of independence as a function of sample size, n, and model, for a

nominal significance level of 5 %

n Model Circular-linear Spherical-linear

Rn
2 Un k4n

* Tn
LCV Tn

BLCV Tn
LCV Tn

BLCV

500 H1,0.00 0.053 0.060 0.054 0.069 0.064 0.055 0.045

H2,0.00 0.060 0.050 0.053 0.062 0.055 0.046 0.048

H3,0.00 0.054 0.059 0.064 0.050 0.044 0.045 0.042

H4,0.00 0.053 0.060 0.054 0.069 0.062 0.056 0.050

H5,0.00 0.042 0.038 0.058 0.050 0.047 0.051 0.059

H6,0.00 0.052 0.050 0.053 0.059 0.062 0.059 0.055

H1,0.25 0.916 0.842 0.088 0.698 0.727 0.422 0.447

H2,0.25 0.050 0.073 0.095 0.973 0.511 0.557 0.073

H3,0.25 1.000 1.000 0.443 1.000 1.000 0.995 0.997

H4,0.25 0.057 0.060 0.077 0.999 0.999 0.764 0.786

H5,0.25 0.080 0.038 0.068 0.850 0.865 0.679 0.750

H6,0.25 0.998 1.000 0.263 1.000 1.000 1.000 0.998

H1,0.50 1.000 1.000 0.264 0.998 0.999 0.982 0.986

H2,0.50 0.053 0.125 0.322 1.000 1.000 1.000 0.910

H3,0.50 1.000 1.000 0.942 1.000 1.000 1.000 1.000

H4,0.50 0.064 0.060 0.090 1.000 1.000 0.982 0.987

H5,0.50 0.258 0.043 0.108 1.000 1.000 1.000 1.000

H6,0.50 1.000 1.000 0.709 1.000 1.000 1.000 1.000

1,000 H1,0.00 0.059 0.053 0.060 0.056 0.057 0.061 0.060

H2,0.00 0.043 0.042 0.070 0.045 0.046 0.058 0.051

H3,0.00 0.063 0.054 0.062 0.057 0.054 0.038 0.037

H4,0.00 0.059 0.053 0.060 0.056 0.054 0.061 0.054

H5,0.00 0.055 0.060 0.047 0.053 0.051 0.078 0.074

H6,0.00 0.045 0.047 0.054 0.057 0.058 0.052 0.048

H1,0.25 0.997 0.992 0.084 0.938 0.947 0.730 0.747

H2,0.25 0.046 0.067 0.109 1.000 0.910 0.947 0.123

H3,0.25 1.000 1.000 0.459 1.000 1.000 1.000 1.000

H4,0.25 0.061 0.052 0.074 1.000 1.000 0.989 0.991

H5,0.25 0.129 0.059 0.059 0.993 0.995 0.936 0.971

H6,0.25 1.000 1.000 0.257 1.000 1.000 1.000 1.000

H1,0.50 1.000 1.000 0.281 1.000 1.000 1.000 1.000

H2,0.50 0.049 0.125 0.305 1.000 1.000 1.000 1.000

H3,0.50 1.000 1.000 0.954 1.000 1.000 1.000 1.000

H4,0.50 0.058 0.057 0.099 1.000 1.000 1.000 1.000

H5,0.50 0.486 0.058 0.106 1.000 1.000 1.000 1.000

H6,0.50 1.000 1.000 0.751 1.000 1.000 1.000 1.000

For the six different models the values of the deviation from independence parameter are d = 0 (independence), 0.25 and 0.50. Each proportion

was calculated using M = 1000 permutations of each of B = 1000 random samples of size n simulated from the specified model
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4 Real data analysis

4.1 Data description

The original Portuguese fire atlas, covering the period from

1975 to 2005, is the longest annual and country-wide car-

tographic fire database in Europe (Pereira and Santos

2003). Annual wildfire maps were derived from Landsat

data, which represents the world’s longest and continu-

ously acquired collection of moderate resolution land

remote sensing data, providing a unique resource for those

who work in forestry, mapping and global change research.

For each year in the dataset, Landsat imagery covering

Portugal’s mainland was acquired after the end of the fire

season, thus providing a snapshot of the fires that occurred

during the season. Annual fire perimeters were derived

through a semi-automatic procedure that starts with

supervised image classification, followed by manual edit-

ing of classification results. Minimum Mapping Unit

(MMU), i.e., the size of the smallest fire mapped, changed

according to available data. Between 1975 and 1983 (the

MultiSpectral Scanner era), spatial resolution of satellite

images is 80 m and MMU of 35 ha. From 1984 onwards

with data availability at spatial resolution of 30 m (The-

matic Mapper and Enhanced Thematic Mapper era) MMU

is 5 ha, allowing to map a larger number of smaller fires

than in the 1975–1983 era. Below an MMU of *5 ha the

burnt area classification errors increase substantially, and

given the very skewed nature of fire size distribution, the

5 ha threshold ensures that over 90% of total area actually

burned is mapped. For consistency, and due to discrepan-

cies in minimum mapping unit between 1975–1983 and

1985–2005, in this study only fire perimeters mapped in the

latter period were considered, which results in 26,870 fire

perimeters.

This application is based on the watershed delineation

proposed by Barros et al. (2012). In their work, watersheds

were derived from the shuttle radar topography mission

(SRTM) digital terrain model (Farr et al. 2007) using the

ArcGIS hydrology toolbox (ESRI 2009). Minimum

watershed size was interactively increased so that each

watershed contained a minimum of 25 fire observations

(see the cited work for more details). Fire perimeters

straddling watershed boundaries were allocated to the

watershed that contained its centroid.

The orientation of fire perimeters and watersheds was

determined by principal component analysis, following the

approach proposed by Luo (1998, pp. 131–136). Specifi-

cally, principal component analysis was applied to the

points that constitute the object’s boundary (fire or water-

shed), with orientation given by the first principal com-

ponent (PC1). Boundary points can be represented either in

bidimensional space defined by each vertex’s latitude and

longitude coordinates, or in tridimensional space, taking

also into account the altitude. Then, the PC1 corresponds to

an axis that passes through the center of mass of the object

and maximizes the variance of the projected vertices,

represented in R
2 or in R

3: The fact of computing the PC1

also in R
3 aims to take into account the variability of fires

according to their slope, which, as the center plot of Fig. 1

shows, presents marked differences between regions. Then,

the orientation of the object is taken as the direction given

by its PC1.

It is important to notice that an orientation is an axial

observation, and that some conversion is needed for apply-

ing the directional-linear independence test. In the two-

dimensional case, the orientations can be encoded by an

angular variable H 2 ½0; pÞ; with period p, so 2H is a cir-

cular variable. Then, with this codification, the angles 0, p/

2, p, 3p/2 represent the E/W, NE/SW, N/S and NW/SE

orientations, respectively. In the three-dimensional space,

the orientation is coded by a pair of angles ðH;UÞ using

spherical coordinates, where H 2 ½0; pÞ plays the same role

as the previous setting and U 2 ½0; p=2	 measures the incli-

nation (U ¼ p
2

for flat slope and U ¼ 0 for vertical; only

positive angles are considered as the slope of a certain angle

x equals the slope of -x). Therefore, points with spherical

coordinates ð2H;UÞ;which lie on the upper semisphere, can

be regarded as a realization of a spherical variable.

Table 3 Computing times (in s) for Tn
LCV and Tn

BLCV as a function of sample size and dimension q, with q = 1 for the circular-linear case and

q = 2 for the spherical-linear case

Test q Sample size

50 100 200 500 1,000

TLCV
n

1 0.17 0.25 0.93 6.15 28.41

2 0.09 0.27 0.93 6.14 28.83

TBLCV
n

1 0.66 1.11 2.05 9.12 33.79

2 4.27 5.18 9.98 26.27 71.89

The tests were run with B = 1000 permutations and the times were measured in a 3.5 GHz core
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4.2 Results

The null hypothesis of independence between wildfire

orientation and its burnt area (in log scale) is rejected,

either using orientations in R
2 or in R

3; with a common p-

value 0.000. The test is carried out using the bandwidth

selector BLCV (considered from now on) and all the

26,870 observations for years 1985–2005, ignoring strati-

fication by watershed, and with B = 1000 permutations.

The p-values for the null hypothesis of independence

between the orientation of a watershed and the total burnt

area of fires within the region are 0.008 and 0.000 for

orientations in R
2 and in R

3; respectively. Therefore, the

null hypothesis is emphatically rejected.

After identifying the presence of dependence between

wildfire orientation and size, it is possible to carry out a

watershed-based spatial analysis by applying the test to

each watershed, in order to detect if the presence of

dependence is homogeneous, or if it is only related to some

particular areas. Figures 2 and 3 represents maps of p-

values of the test applied to the observations of each

watershed, using PC1 in R
2 and in R

3 (from left to right,

first and third plots of Fig. 3, respectively). The maps

reveal the presence of 13 and 27 watersheds where the null

hypothesis of independence is rejected with significance

level a = 0.05, for the circular-linear and the spherical-

linear cases, respectively. This shows that the presence of

dependence between fire orientation and size is not

homogeneous and it is located in specific watersheds (see

Fig. 4). It is also interesting to note that the inclusion of the

altitude coordinate in the computation of the PC1 leads to a

richer detection of dependence between the wildfire ori-

entation and size at the watershed level. This is due to the

negative relation between the fire slope and size (see

Fig. 4), as large fires tend to have a flatter PC1 in R
3

because they occur over highly variable terrain. Finally, the

resulting p-values from the watershed analysis can also be

adjusted using the false discovery rate (FDR) procedure of

Benjamini and Yekutieli (2001) (from left to right, second

and fourth plots of Fig. 3). It is also possible to combine

the p-values of the unadjusted maps with the FDR to test

for independence between the wildfire orientation and the

log-burnt area. The resulting p-values are 0.000 for the

circular-linear and spherical-linear cases.
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Fig. 2 Random samples of n = 500 points for the simulation models

in the circular-linear case, with d = 0.50 (situation with dependence).

From up to down and left to right, models M1 to M6. Models M1, M2

and M3 present a deviation from the independence in terms of the

conditional expectation; models M4 and M5 account for a deviation

in terms of the conditional variance and model M6 includes

deviations both in conditional expectation and variance

Stoch Environ Res Risk Assess

123



Fig. 3 p-values from the independence test for the first principal

component PC1 of the fire perimeter and the burnt area (on a log

scale), by watersheds. From left to right, the first and second maps

represent the circular-linear p-values (PC1 in R
2) and their corrected

versions using the FDR, respectively. The third and fourth maps

represent the spherical-linear situation (PC1 in R
3), with uncorrected

and corrected p-values by FDR, respectively

Fig. 4 Left: density contour plot for fires in watershed number 31,

the watershed in the second plot on the left of Fig. 3 with p-

value = 0.000. The number of fires in the watershed is n = 1543.

The contour plot shows that the size of the area burnt is related with

the orientation of the fires in the watershed. Right scatter plot of the

fires slope and the burnt area for the whole dataset, with a

nonparametric kernel regression curve. The plot evidences the

negative correlation between fire slope and size
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5 Discussion

A nonparametric test for assessing independence between a

directional and a linear component has been proposed, and

its finite sample performance has been investigated in a

simulation study. Simulation results support a satisfactory

behavior of the permutation test implemented with LCV

and BLCV bandwidths, in most cases outperforming the

available circular-linear testing proposals, and being com-

petitive in other cases. The proposed BLCV bandwidths

presents better results in terms of empirical size, although

further study is required in bandwidth selection. In addi-

tion, when the null hypothesis of independence is rejected,

the kernel density estimate can be used to explore the form

of dependence, at least for the circular-linear and spherical-

linear cases.

The application of the test to the entire wildfire orien-

tation and size dataset makes possible the detection of

dependence between these two variables, for both two-

dimensional or three-dimensional orientation. The same

conclusion holds for watershed orientation and total area

burnt. A detailed study of each watershed allows for a more

specific insight into the problem. The evidence of inde-

pendence between fire size and fire orientation in some

watersheds, suggests that an event-based analysis (such as

the work of Barros et al. (2012)) should yield results

similar to those that would be expected from an area-based

analysis. On the other hand, detection of dependence

between fire size and orientation in watersheds with uni-

form orientation (Barros et al. 2012) highlights cases

where there may be a mixture of orientations. In such

cases, an analysis taking fire size into account might find

evidence of preferential orientation in fire perimeters. In

watersheds where fire events show preferential orientation

(non-uniform distribution) and there is dependence

between size and orientation, fire orientation distributions

are structured in relation to fire size, especially considering

the typically asymmetric nature of fire size distributions,

dominated by a small number of very large events (Strauss

et al. 1989). In these cases, an area-weighted analysis of

fire perimeter orientation might lead to different results

than those found by Barros et al. (2012). When altitude is

included in calculation of the PC1 in R
3; it highlights the

negative relation between fire slope and size, which is

mostly due to the fact that larger fires present flatter PC1.

Slope has a skewed distribution, with low mean value and a

relatively long right tail. Thus, while small fires usually

occur on high slopes, large fires on consistently steep areas

are unlikely.

Finally, it can be argued that the data are probably not

independent and identically distributed over space and

time. Unfortunately, given the data gathering procedure

(detailed at the beginning of Section 4) dependence pat-

terns cannot be clearly identified. Accounting for temporal

or spatial dependence directly in the directional-linear

kernel estimator and in the testing procedure is an open

problem.
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Appendix

A Proof of Lemma 1

Proof The closed expression (just involving matrix com-

putations) for Tn is obtained by splitting the calculation into

three addends:

Tn ¼
Z

Xq�R

f̂ðX;ZÞ;h;gðx; zÞ � f̂X;hðxÞf̂Z;gðzÞ
� 	2

xqðdxÞdz

¼
Z

Xq�R

ch;qðLÞ
ng
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L
1� x0Xi
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� �
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z� Zi
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�2

xqðdxÞdz
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Xn
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Xn
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Z

Xq�R

ch;qðLÞ2

n2g2
L

1� x0Xi
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� �
K

z� Zi

g

� �

� L 1� x0Xj
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� �
K

z� Zj

g

� �
xqðdxÞdz

� 2
Xn
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Z

Xq�R

ch;qðLÞ
ng

L
1� x0Xi

h2

� �
K

z� Zi

g

� �

� f̂X;hðxÞf̂Z;gðzÞxqðdxÞdz

þ
Z

Xq�R

f̂X;hðxÞ2 f̂Z;gðzÞ2xqðdxÞdz

¼ð6Þ � ð7Þ þ ð8Þ:
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The first addend is:

ð6Þ ¼ ch;qðLÞ2

n2g2

Xn

i¼1

Xn
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1� x0Xi
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For the second addend,
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Finally, the third addend is obtained as

ð8Þ ¼
Z

Xq�R
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From the previous results and after applying some matrix

algebra, it turns out that

Tn ¼ 1n

�
1

n2
WðhÞ �XðgÞ � 2

n3
WðhÞXðgÞ

þ 1

n4
WðhÞ1n10nXðgÞ

�
10n;

where

WðhÞ ¼ Cq 1=h2ð Þ2

Cq kXi þ Xjk=h2
� �

 !

ij

;

XðgÞ ¼ / ffiffi
2
p

g Zi � Zj

� �� 	
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:
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Exploring wind direction and SO2 concentration by circular-

linear density estimation. Stoch Environ Res Risk Assess

27(5):1055–1067.

Garcı́a-Portugués E, Crujeiras R, González-Manteiga W (2013a)
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