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Abstract One of the greatest concern of spur gears
is the edge contact of tooth surfaces that is caused by

misalignment of the gear drive. Such a misalignment is

caused partially by the deflections of the shafts where

the gears are mounted. As a result of the edge contact a

non favorable condition of bearing contact is achieved,
providing a high level of contact and bending stresses.

An intensive research and many practical solutions have

been directed to modify the gear tooth surfaces in or-

der to avoid edge contact. An innovative procedure is
proposed here for: (i) determination of the errors of

alignment at the gear drive caused by shaft deflections,

(ii) incorporation of such errors of alignment in the gen-

eration process of spur gears for compensation of shaft

deflections, and (iii), determination of a favorable func-
tion of transmission errors for the design load. A finite

element model of a spur gear drive including pinion

and wheel shafts is used for the determination of the

errors of alignment along the cycle of meshing. Com-
pensation of misalignments in gear generation is then

accomplished by modification of pinion tooth surfaces

whereas the wheel tooth surfaces are kept unmodified.

Additional modifications of pinion tooth surfaces may
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be required for the obtention of a favorable function
of transmission errors. The effect of several misalign-

ment compensations in the reduction of contact stresses

has been investigated. Postprocessing of load intensity

functions and loaded transmission errors is included.

The developed approach is illustrated with numerical
examples.

Keywords gear geometry · tooth contact analysis ·

finite element analysis · loaded transmission errors ·

shaft deflections

1 Introduction

Spur gear drives are widely applied in the industry and
have been a focus of intensive research to improve the

load capacity and the conditions of meshing of invo-

lute profiles. First modifications on involute profiles,

proposed in [1], were directed to remove some mate-

rial from the borders of the tooth surfaces in order to
minimize transmission errors for the design load. Many

contributions in this area have been done [2, 3, 4, 5, 6]

looking for gear drives with reduced noise and vibra-

tion. Substitution of involute profile by other types of
profiles has been another topic of intensive research. A

pair of circular profiles for the generating cutters was

proposed in [7] and mismatch of the circular profiles of

the cutters was proposed for localization of the bear-

ing contact in [8]. Modification of pinion tooth surfaces
by application of parabolic profiles instead of straight

profiles of the cutters has been proposed in [9] for the

localization of the bearing contact. Localization of the

bearing contact by the application of mismatched pro-
files of the cutters makes the contact less sensitive to

the errors of alignment but, at the same time, increase

contact and bending stresses, and transmission errors.
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A double crowned pinion tooth surface has been pro-

posed in [10] for the localization of the bearing contact

and the predesign of a parabolic function of unloaded

transmission errors that control the transfer of mesh-

ing between adjacent pairs of teeth. A compromise so-
lution was found in [11] combining a straight profile for

the main part of the cutter tooth surface surrounded

by parabolic profiles at the borders of the cutter tooth

surfaces. This partial crowning keeps an involute area
with no modification and allows: (i) reduction of the

sensitivity of the bearing contact when errors of align-

ment are present, (ii) reduction of contact and bend-

ing stresses respect to a whole crowned tooth surface

or respect to an involute tooth surface when errors of
alignment are present, and (iii) reduction of unloaded

transmission errors when misalignments are lower.

The determination of the appropriate topology of

the gear tooth surfaces may not have a only solution.
One of the main problems that may cost the shift of the

bearing contact on the gear tooth surfaces is the deflec-

tion of the shafts where the gears are mounted, specially

when the gears are installed out of the middle location

between bearings. The deflection of the shafts implies
then a misalignment of the wheel respect to the pinion

and, consequently, the shift of the bearing contact. The

main goal of this paper is to consider the shaft deflec-

tions, due to the design load, in the determination of
the pinion tooth surface that provides, under misalign-

ment, an almost conjugate action with the wheel tooth

surface. This idea will allow to get a uniform distributed

bearing contact for the design load. However, the bear-

ing contact will be shifted when the load is far from
the design load. Some additional modifications of the

obtained pinion tooth surface may be required for the

reduction of the sensitivity of the shift of the bearing

contact and the reduction of transmission errors.
More specifically, the presented research has the fol-

lowing goals:

(1) Presentation of a method for determination of shaft

deflections along the cycle of meshing between a pair

of gears mounted on their corresponding shafts.
(2) Generation of the pinion tooth surface in misaligned

conditions in order to have almost linear contact un-

der the design load. The obtained geometry in mis-

aligned condition is called compensated geometry.

(3) Determination of load intensity functions at every
contact position of the cycle of meshing and com-

parison of such functions provided by the standard

geometry, based on involute profiles, and the com-

pensated geometry.
(4) Determination of loaded transmission errors along

the cycle of meshing and modification of the com-

pensated geometry to provide it with a predesign

Fig. 1 Physical model of the gear drive

function of unloaded transmission errors. The pre-

design function of unloaded transmission errors will

help reducing the resulting level of transmission er-
rors.

The developed research is illustrated with numerical

examples and has been applied to the physical model

shown in Fig. 1. The physical model is based on two

gears mounted in their corresponding shafts. The gears
may be mounted out of the middle location between

bearings by modifying lengths L1 and L2. This means

that shaft deflections due to the design load will cost

misalignment between pinion and wheel. A finite ele-
ment model of the physical model shown in Fig. 1 has

been built considering the ideas proposed in [12] for the

development of the presented research.
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Fig. 2 Scheme of the finite element model

2 Determination of gear misalignments due to

shaft deflections

Figure 2 shows schematically the finite element model
of the physical model shown in Figure 1. Linear beam

elements are considered for the modeling of shaft de-

flections. The transversal area of the shafts is consid-

ered as a property of the beam elements. For the por-

tions of the shafts located under the pinion and wheel
rims, the transversal area of the beam elements covers

up to the bottom part of the rims. Torsional deforma-

tion is considered by modeling of rigid edges on the rim

rigidly connected to the nodes of the beam elements
that are located under the rim. A design load is ap-

plied by means of a torque T at bearing A2 while the

rotation of the wheel shaft is blocked at node B2. More

Fig. 3 For determination of misalignments ∆γd and ∆νd due
to shaft deflections

details of the schematic model shown in Figure 2 can

be found in [12].

The misalignment between pinion and wheel is de-

termined from the displacements that reference nodes

P1, P2, W1, and W2 (see Fig. 2) experiment for the

design load T at each given contact position. The whole
cycle of meshing is considered though a certain number

of contact positions. The displacements (uxi, uyi, uzi)

are obtained from the results of the finite element anal-

ysis for each contact position i and are represented in
the fixed coordinate system Sf , shown in Fig. 2. Mean

values (ux, uy, uz) are then determined at each refer-

ence node for the whole cycle of meshing.

The misalignment due to the tangential loading be-

tween the gear tooth surfaces is considered through the

magnitude ∆γd, shown in Fig. 3(a). Here, subindex d
means deflection, since shaft deflection costs the mis-

alignment. Such a magnitude is determined as

∆γd = arctan

[

u
(W1)
x − u

(W2)
x

bw

]

−arctan

[

u
(P1)
x − u

(P2)
x

bp

]

(1)

where bp and bw are the pinion and wheel face widths,
respectively.

The misalignment due to the radial loading between

the gear tooth surfaces is considered through the mag-

nitude ∆νd, shown in Fig. 3(b). Such a magnitude is

determined as

∆νd = arctan

[

u
(W1)
y − u

(W2)
y

bw

]

−arctan

[

u
(P1)
y − u

(P2)
y

bp

]

(2)

The relative displacements of the wheel respect to

the pinion are considered throughmagnitudes∆xd,∆yd,
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Fig. 4 Installment of the rack-cutter in: (a) a standard setting, (b) a setting with ∆γs, and (c) a setting with ∆νs

and ∆zd, and are obtained as

∆xd =

[

u
(W1)
x + u

(W2)
x

2

]

−

[

u
(P1)
x + u

(P2)
x

2

]

(3)

∆yd =

[

u
(W1)
y + u

(W2)
y

2

]

−

[

u
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y + u

(P2)
y

2

]

(4)

∆zd =

[

u
(W1)
z + u

(W2)
z

2

]

−

[

u
(P1)
z + u

(P2)
z

2

]

(5)

3 Gear generation

Gear tooth surfaces can be analytically determined from
any cutter regular tooth surface following the modern

theory of gearing [13]. Two coordinate systems Sc and

S1 are considered rigidly connected to the cutter and

the pinion tooth surfaces. Coordinate transformation
from system Sc to system S1 and observation of the

equation of meshing allow the pinion tooth surface to

be determined from the rack-cutter tooth surface

r1(u, v, ψ) = M1c(ψ1)rc(u, v) (6)
(

∂r1
∂u

×

∂r1
∂v

)

·

∂r1
∂ψ

= 0 (7)

Here, (u, v) are the cutter surface parameters and ψ is

the generalized parameter of generation. Matrix M1c

allows coordinate transformation from system Sc to

system S1. Simultaneous consideration of equations 6
and 7 allows pinion tooth surface to be determined.

Figure 4(a) shows the standard setting of a rack-

cutter over the pinion being generated. Settings of the

rack-cutter with angular magnitudes ∆γs and ∆νs are

shown in Figures 4(b) and 4(c), respectively. Here, co-

ordinate system Sm is an auxiliary fixed coordinate sys-
tem that is parallel to system Sf (see Fig.2). System S′

c

is an auxiliary coordinate system parallel to system Sc,

not shown in Fig. 4. The rack-cutter can also be set with

some displacement values ∆xs, ∆ys, and ∆zs respect
to the standard setting. As a result of the setting of the

cutter with some of those magnitudes mentioned above,

a modified pinion tooth surface may be obtained.

The purpose of generation of the pinion with a mis-

aligned cutter is to be able to obtain a pinion tooth
surface that will be conjugated to the wheel tooth sur-

face when shaft deflections due to the design load are

present. The misalignment of the wheel respect to the

pinion is caused partially by shaft deflections. Magni-
tudes ∆γd, ∆νd, ∆xd, ∆yd, and ∆zd, are obtained for

the design load as it has been explained in previous

section. These misalignment values will be considered

as the settings for the generation of the pinion by its

rack-cutter. In this way, the teeth of rack-cutter are in
the same relative location respect to the pinion as the

teeth of the misaligned wheel.

∆γs = ∆γd

∆νs = ∆νd

∆xs = ∆xd (8)

∆ys = ∆yd

∆zs = ∆zd

Additionally, the pinion tooth surface can be gen-

erated by cutter installed with misalignments and pro-

vided with modified profiles. In such a case, the pinion
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Fig. 5 Definition of the modified profiles of a rack-cutter
for the application of (a) parabolic profile crowning and (b)
parabolic relieves at top and bottom sides

tooth surfaces are modified by two actions, (i) the mis-

aligned installment of the cutter, and (ii) the modified
profiles of the cutter. Different types of profiles can be

applied instead of the standard straight profile. Figure 5

shows two examples of definition of modified profiles in

the normal section of a rack-cutter. Figure 5(a) shows

the definition of a parabolic profile as the main active
profile. A parabola is defined by the parabola coeffi-

cient ap and the profile parameter uo for the location

of the parabola apex respect to the pitch line. Profile

parameter u is measured along the straight reference
profile whereas longitudinal parameter v is not shown

in Fig. 5(a). Figure 5(b) shows another type of modified

profile based on a straight profile and parabolic relieves

at top and bottom sides. Parabola coefficients apb and

apt are considered for definition of the parabolas at top

and bottom sides, respectively. Parabola apexes are lo-

cated by magnitudes uot and uob or, alternatively, by

distances ht and hb.

4 Computerized simulation of gear meshing and

determination of unloaded transmission errors

A general purpose algorithm has been applied for com-

puterized simulation of gear meshing between pinion
and wheel. It is based on a numerical method that takes

into account the position of the surfaces and minimize

the distances until contact is achieved, based on the

work [14] and applied later in the works [15, 16]. This

algorithm assumes rigid body behavior of tooth sur-
faces and can be applied to the analysis of gear drives

in point, lineal, or edge contact. In the present work, no

user defined misalignments will be considered for gear

meshing investigation. The relation between the angle
of rotation of the pinion, φ(1), and the angle of rotation

of the wheel, φ(2), will provide the function of unloaded

transmission errors, which will depend on the geome-

tries of pinion and wheel tooth surfaces.

Transmission error is considered as the angular dif-

ference between the actual position of the wheel and the

theoretical position of the wheel respect to the pinion.

It is considered positive when the wheel moves away

from the pinion and negative when the wheel moves
towards the pinion. The function of unloaded transmis-

sion errors is obtained as the discrete function

∆φ
(u)
i =

(

−φ
(2)
i − φ

(1)
i

N1

N2

)

(9)

where φ
(1)
i and φ

(2)
i are the angular rotations that allows

pinion and wheel, respectively, to become in contact un-

der no load at each contact position i. Here, superscript

(u) means unloaded, N1 and N2 represents the number

of teeth of pinion and wheel, respectively. The minus

sign before angle φ
(2)
i is required since wheel rotation

is considered negative in clockwise direction and φ
(2)
i

makes the wheel to move away from the pinion.

5 Determination of load intensity functions and

loaded transmission errors

Load intensity functions are determined considering the

pressure distribution over the tooth surfaces obtained
from the finite element analysis for each contact po-

sition. Details of determination of load intensity func-

tions are described in [12]. Figure 6 shows an example
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Fig. 6 Example of load intensity function along the face
width for a bearing contact that is shifted

of a load intensity function when the bearing contact is
shifted.

Loaded transmission errors are obtained for the whole

cycle of meshing considering tooth bending deforma-

tions, contact deformations and torsional deformations
of pinion and wheel. Torsional deformations of shafts

are also considered. The procedure for the determina-

tion of the loaded transmission errors is as follows:

(i) Nodal rotations θ
(P1)
i , θ

(P2)
i , θ

(W1)
i , and θ

(W2)
i at

nodes P1, P2,W1,W2 are obtained at each contact
position i from the finite element analysis.

(ii) Mean values of pinion and wheel rotations for each

contact position are then obtained as

θ
(p)

i =
θ
(P1)
i + θ

(P2)
i

2
(10)

θ
(w)

i =
θ
(W1)
i + θ

(W2)
i

2
(11)

where θ
(p)

i results positive when pinion shaft rotates

in counterclockwise direction and θ
(w)

i results nega-

tive when wheel shaft rotates in clockwise direction.

(iii) Since the nodal rotation of node B2 (see Fig. 2) is

blocked, −θ
(w)

i represents the wheel rotation due to

torsional deformation of the wheel shaft between the

end node B2 and the wheel location. The minus sign

is required to make it positive, since the torsional

deformation of the wheel shaft makes the wheel to
move away from the pinion.

(iv) Since the pinion shaft is free to rotate, θ
(p)

i repre-

sents the pinion rotation due to tooth contact defor-

mations, tooth bending deformations, and torsional
deformations of pinion and wheel. To account for

all these deformations in the determination of the

transmission error, −θ
(p)

i ·N1/N2 will represent the

rotation of the wheel towards the pinion due to de-
formations. The minus sign is required to make it

negative, since the deformations make the wheel to

move closer to the pinion.

(v) Finally, the loaded transmission error is obtained as

a discrete function by

∆φ
(l)
i =

(

−θ
(w)

i − θ
(p)

i

N1

N2

)

(12)

Here, superscript l means loaded.

The torsional deformation of the pinion shaft between

the end node A2 (see Fig. 2), where the torque is ap-

plied, and the pinion location, is not included in the
determination of the loaded transmission error between

pinion and wheel.

The set of results ∆φ
(l)
i represents the function of

loaded transmission errors. Such a function has to be

added to the function of unloaded transmission errors

∆φ
(u)
i to obtain the total function of transmission errors

∆φi = ∆φ
(u)
i +∆φ

(l)
i (13)

The peak-to-peak transmission error is then defined

as

∆φmax = max(∆φi)−min(∆φi) (14)

The predesign of function ∆φ
(u)
i may help reducing

the value of ∆φmax. This means that the predesign of

the function ∆φ
(u)
i may partially compensate the func-

tion ∆φ
(l)
i .

6 Numerical examples

Table 1 shows the main design data of the spur gear

drive shown in Fig. 1. The gear drive is misplaced from
the middle location between bearings by distances L1

and L2. The pinion is rotated in counterclockwise direc-

tion by the action of an applied torque T at bearing A2

(see Fig. 2). A finite element model of 94211 elements
and 121523 nodes has been considered.

Table 1 Design data of the spur gear drive represented in
Fig. 1

Magnitudes Values

Module, m [mm] 3.0
Pressure angle, α [degrees] 20.0
Tooth number of the pinion, N1 34
Tooth number of the wheel, N2 57
Face width, b = bp = bw [mm] 25.0
Pinion shaft diameter, dsh1 [mm] 30.0
Wheel shaft diameter, dsh2 [mm] 35.0
Young’s Modulus, E [MPa] 206800
Poisson’s ratio, ν 0.29
Applied torque, T [Nm] 290.0
Distance bearing A2 - pinion, L1 [mm] 100.0
Distance pinion - bearing A1, L2 [mm] 40.0

A total of i = 21 contact positions are considered

distributed along two cycles of meshing. In order to ob-
tain shaft deflections, a standard geometry Σs of the

pinion and a design load of T = 290.0 Nm are consid-

ered. For the determination of standard geometry Σs, a
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Fig. 7 Formation of the bearing contact and maximum contact and bending stresses at contact position 11 for (a) standard
geometry Σs and (b) compensated geometry Σc1
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Fig. 8 Load intensity functions for standard geometry and compensated geometries at contact position 11: (a) comparison
between Σs and Σc1, Σc2, and Σc3; (b) comparison between Σs and Σc1, Σc4, and Σc5

cutter with straight profiles installed in a standard set-

ting (see Fig. 4(a)) is considered. Among the 21 contact
positions, the maximum, minimum, and mean values of

gear misalignments due to shaft deflections are obtained

and shown in Table 2.

Table 2 Gear misalignments due to shaft deflections ob-
tained for the standard geometry Σs and a torque of 290.0
Nm

Max. values Min. values Mean values
∆γd[degrees] -0,024266 -0,023326 -0,023551
∆νd[degrees] -0,008822 -0,008439 -0,008546
∆xd[mm] 0,026187 0,025650 0,025776
∆yd[mm] -0,009536 -0,009311 -0,009378
∆zd[mm] 0,0 0,0 0,0

Several compensated geometries of the pinion are

then obtained by considering the gear misalignments

shown in Table 2 as the settings for the installment of

the cutter (see Section 3). For the obtention of these ge-
ometries, the cutter is provided with straight profiles.

Five types of compensated geometries have been con-

sidered:

– Geometry Σc1 is generated considering the mean

values of gear misalignments shown in Table 2.

– Geometry Σc2 is generated considering the maxi-

mum values of gear misalignments shown in Table 2.
– Geometry Σc3 is generated considering the mini-

mum values of gear misalignments shown in Table 2.

– GeometryΣc4 is generated considering just the mean

value of ∆νd shown in Table 2.
– GeometryΣc5 is generated considering just the mean

value of ∆γd shown in Table 2.

Figure 7 shows the formation of the bearing contact

on the pinion tooth surfaces at contact position 11 for

geometries Σs and Σc1 when a design load of T = 290.0
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Fig. 9 Load intensity functions at contact position 11 for several values of applied torque T = 290.0 Nm at (a) standard
geometry Σs and (b) compensated geometry Σc1

Nm is applied. Figure 7(a) illustrates that the bearing

contact is unevenly distributed and shifted towards the

front face of the pinion when the standard geometry
Σs is considered. However, when the compensated ge-

ometry Σc1 is considered (see Fig. 7(b)), the bearing

contact is uniformly distributed, providing a reduction

on Mises contact stress about 8.85 percent and a reduc-

tion on Mises bending stress about 26.5 percent.

The standard geometry and the compensated ge-

ometries mentioned above are compared through the

load intensity functions obtained at contact position

11. Figure 8(a) shows the load intensity functions for
geometries Σs, Σc1, Σc2, and Σc3. The load intensity

function provided by geometry Σs shows an impor-

tant increment of the load intensity due to shaft de-

flections. However, the function provided by geometry
Σc1 shows an uniform distribution of the load inten-

sity. Figure 8(a) shows as well that the load intensity

functions provided by geometries Σc1, Σc2, and Σc3 are

very similar each other.

Figure 8(b) illustrates that the main contribution

to get an uniform distribution of the load intensity and

compensate the shaft deflections is due to magnitude

∆γd, since the load intensity function provided by ge-

ometry Σc5 is very close to the one provided by geome-
try Σc1. However, the load intensity function provided

by geometry Σc4 is very close to the one provided by

geometry Σs, showing a minor influence of magnitude

∆νd for compensation of shaft deflections.

Regarding the behavior of geometries Σs and Σc1

when the load is different from the design load, Figure 9

illustrates the load intensity functions for both geome-
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Fig. 10 Functions of loaded transmission errors for geome-
tries Σs and Σc1

tries and different values of the applied torque from

0.1T up to 1.0T . The results show that under a low
load, the load intensity is more uniformly distributed

on the standard geometry Σs than on the compensated

geometry Σc1. However and as it is expected, the load

intensity becomes more uniformly distributed when the
load is increased up to the design load for the compen-

sated geometry Σc1.

Regarding gear meshing results (see section 4), stan-
dard geometry Σs and compensated geometry Σc1 pro-

vides a function of zero unloaded transmission errors

due to the conjugated action between pinion and wheel
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Fig. 11 Functions of transmission errors (unloaded, loaded, and total) for geometries: (a) Σc1m1, (b) Σc1m2, and (c) Σc1m3

tooth surfaces when no load is applied. The function
of transmission errors is then obtained as the function

of loaded transmission errors (see section 5). Figure 10

shows the functions of loaded transmission errors for

geometries Σs and Σc1. Two cycles of meshing are ob-

served. The peak-to-peak value of transmission error is
about 14.08 arcsec for geometry Σs and 12.94 arcsec

for geometry Σc1.

Several compensated modified geometriesΣc1mi (i =
1, . . . , 11) are generated for the investigation of the ef-

fect of the predesign of a function of unloaded transmis-

sion errors in the reduction of the peak-to-peak value of

total transmission errors. Tables 3 and 4 show the main
design parameters of the compensated modified geome-

tries. Three compensated modified geometries are based

on a whole crowning of the pinion tooth surfaces by ap-

plication of a rack-cutter with parabolic profiles. Eight

compensated modified geometries are based on a partial
crowning of the pinion tooth surfaces by application of

a rack-cutter with straight profile and parabolic relieves

at bottom and top sides.

Table 3 Compensated modified geometries by application of
whole crowning by parabolic profiles (see Fig. 5(a))

Geometry ap[mm−1] uo [mm]
Σc1m1 0,001 -0,4
Σc1m2 0,002 -0,4
Σc1m3 0,003 -0,4

Figure 11 shows the functions of transmission er-

rors (unloaded, loaded, and total) for geometriesΣc1m1,

Σc1m2, and Σc1m3. The lowest peak-to-peak value of to-
tal transmission errors is reached at geometry Σc1m2,

representing such a geometry the best solution from the

three considered geometries.

Table 4 Compensated modified geometries by application of
partial crowning by parabolic relieves (see Fig. 5(b))

Geometry apt[mm−1] ht [mm] apb[mm−1] hb [mm]
Σc1m4 0,005 2,5 0,005 2,5
Σc1m5 0,010 2,5 0,010 2,5
Σc1m6 0,015 2,5 0,015 2,5
Σc1m7 0,020 2,5 0,020 2,5
Σc1m8 0,004 3,0 0,004 3,0
Σc1m9 0,008 3,0 0,008 3,0
Σc1m10 0,012 3,0 0,012 3,0
Σc1m11 0,016 3,0 0,016 3,0

Figure 12 shows the functions of transmission er-
rors for geometries Σc1m4, Σc1m5, Σc1m6, and Σc1m7

where ht = hb = 2, 5 mm (see Fig. 5(b)). Figure 12(a)

illustrates the increment of the peak-to-peak value of

unloaded transmission errors when parabola coefficient
is increased, whereas Figure 12(b) shows that the peak-

to-peak value of loaded transmission errors is decreased

due in part to the reduction of contact ratio. Figure 12(c)

shows that the minimum peak-to-peak value of total

transmission error is found for geometry Σc1m5 from
the four considered geometries.

Similar results can be found in Fig. 13 for compen-

sated modified geometries Σc1m8, Σc1m9, Σc1m10, and
Σc1m11 where ht = hb = 3, 0 mm. The minimum peak-

to-peak value of total transmission error is found for

geometry Σc1m9 from the four considered geometries.

Regarding stress analysis results, it is important to
notice that the developed research has been perform

along two cycles of meshing and not just at one con-

tact position. Figure 14 shows the evolution of contact

and bending stresses for geometries Σs, Σc1, Σc1m2,
Σc1m5, and Σc1m9. It is observed, along the cycle of

meshing, a reduction of contact and bending stresses in

the compensated geometries respect to the standard ge-
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Fig. 12 Functions of (a) unloaded transmission errors, (b) loaded transmission errors, and (c) total transmission errors for
geometries Σc1m4, Σc1m5, Σc1m6, and Σc1m7
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Fig. 13 Functions of (a) unloaded transmission errors, (b) loaded transmission errors, and (c) total transmission errors for
geometries Σc1m8, Σc1m9, Σc1m10, and Σc1m11

ometry. Considering the modified compensated geome-

tries, the profile crowning is even useful for elimination
of some peaks on contact stresses due the rapid un-

load of teeth in contact. However the level of bending

stresses is increased in modified compensated geome-

tries respect to non-modified compensated geometries.
The great advantage of modified compensated geome-

tries is the reduction of the peak-to-peak transmission

error (see Figs. 11, 12 or 13).

The evolution of the load intensity functions along
the two cycles of meshing has also been investigated.

Figure 15 shows the load intensity functions for all the

21 contact positions for geometries Σc1 and Σc1m2. It

is observed that compensation of shaft deflections is

actually working for each contact position.

7 Conclusions and remarks

The developed research allows the following conclusions

to be drawn:

1. A procedure for compensation of shaft deflections in

gear generation has been proposed and provides a
uniform distribution of load intensity between gear

tooth surfaces for the design load at the driving side.

2. Compensation of shaft deflections in gear genera-

tion is complemented with the predesign of different
types of unloaded functions of transmission errors

that allows the peak-to-peak value of total trans-

mission error to be reduced.

3. The developed research has been accomplished along

two cycles of meshing to assure that the uniform
distribution of load between gear tooth surfaces is

actually kept along the cycle of meshing, and that

the evolution of contact and bending stresses is sat-

isfactory for the proposed geometries.

The developed research has been focus on the com-

pensation of shaft deflections for a given pinion rotation
direction, which means that the non-driving side of pin-

ion teeth is sacrificed. In fact, a finite element analysis

of the gear drive considering the contact at the non-
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Fig. 14 Evolution of stresses for geometries Σs, Σc1, and Σc1m2, Σc1m5, and Σc1m9: (a) contact Mises stresses, and (b)
bending Mises stresses
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Fig. 15 Load intensity functions along the cycle of meshing for geometries: (a) Σc1 and (b) Σc1m2

driving side would provide an even worst load intensity
function for the compensated geometries than for the

standard geometry. Beside this, determination of back-

lash on the non-driving side is highly recommended for

a better performance of the gear drive. All these topics
are subject of future research.
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