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Abstract

This thesis defines a new Orthogonal Frequency Division Multiplexing (OFDM) system 

with Precoded In-band Pilots (PIP) tailored for cognitive radio (CR) communications. The 

motivation, principle, system design, implementation architecture, and CR application spe­

cific considerations of proposed PIP-OFDM system are investigated in this thesis.

Principles and limitations of existing spectrum sensing techniques for cognitive radio 

communications are first analyzed and compared, with a focus on implementation chal­

lenges of pilot-based spectrum sensing for OFDM signals due to its robust performance 

in low signal-to-noise ratio (SNR) conditions. Several technical difficulties which haven’t 

been well addressed in previous pilot-based OFDM spectrum sensing studies, including 

impact of cyclic prefix, frequency offset between transmitter and spectrum sensing device, 

and noise uncertainty in the sensing threshold design, are taken into consideration in the 

analysis.

Considering the poor performance of existing spectrum sensing techniques on user 

identification in cognitive radio network, where multiple secondary users may coexist, a 

precoded in-band pilots design is proposed in this thesis to enhance the user identification 

capabilities at low SNRs. The pilots in proposed PIP-OFDM system consist of uniform 

pilots and identification pilots. Each secondary user is associated with a unique identifica­

tion pilot signal for identification purpose. Encoding of identification pilots is investigated, 

which will be used at the spectrum sensing device to identify the active user on the fre­

quency band of interest.
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Abstract

To demodulate/decode identification pilots for user identification purpose, synchro­

nization between transmitter and spectrum sensing device needs to be established. The 

synchronization in PIP-OFDM system, which is different from that in traditional OFDM 

systems, is subsequently investigated. Coarse time and frequency synchronization are 

achieved by correlation respectively in time and frequency domain. Through phase shift 

estimation in time domain, fine frequency synchronization is reached using a modified max­

imum likelihood estimation algorithm exploiting the redundancy in cyclic prefix. Based on 

this observation, a fine time synchronization algorithm is proposed in this thesis using re­

dundant information on specifically designed uniform pilots. A multiple OFDM symbols 

processing strategy is used to improve the synchronization performance of PIP-OFDM sys­

tem considering the poor performance of synchronization at low SNR.

With the developed synchronization strategies, channel estimation in PIP-OFDM 

system is achieved using well developed estimation techniques in frequency domain. User 

identification is subsequently realized through demodulating the identification pilots. The­

oretical performance and simulation results of user identification in PIP-OFDM system are 

provided to further confirm the effectiveness of the proposed design.
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Chapter 1

Overview of The Thesis

This thesis first analyzes, compares, and summarizes spectrum sensing techniques for cog­

nitive radio communications, with a focus on pilot-based spectrum sensing for Orthogonal 

Frequency Division Multiplexing (OFDM) system. Considering the poor performances of 

these spectrum sensing techniques in user identification, an OFDM system with precoded 

in-band pilots (PIP-OFDM) is proposed to improve user identification capability in low 

signal-to-noise ratio (SNR) conditions. Related system design and enabling techniques for 

the proposed PIP-OFDM system, including encoding/modulation, synchronization, chan­

nel estimation, and decoding/identification are investigated subsequently.

1.1 Overview of the Thesis

Cognitive radio was proposed as a promising solution to improve spectrum resource utiliza­

tion efficiency in wireless communications through dynamic spectrum sharing. Spectrum 

sensing has been regarded as one key enabling technology during the implementation of 

cognitive radio, which determines the availability of frequency band of interest. A major 

challenge for spectrum sensing in cognitive radio is the low SNR requirement. Existing 

spectrum sensing techniques, including energy detection, matched filter detection, cyclo- 

stationary detection, and pilot-based detection, are discussed with technique principles and 

limitations. It is found that pilot-based detection has a relatively better performance at 



Chapter 1: Overview of The Thesis 2

low SNR environment. Factors that impact the performance of pilot-based spectrum sens­

ing algorithm for OFDM signal, including cyclic prefix impact, frequency offset between 

transmitter and sensing device, and noise uncertainty in designing the sensing threshold, 

are subsequently investigated. Specifically, the impact of cyclic prefix during the imple­

mentation of pilot-based spectrum sensing for OFDM signal is analyzed and proved to 

be neglectable with computer simulations. In addition, a sliding frequency correlator is 

proposed in this thesis to address the difficulties in random frequency offset and noise un­

certainty.

It is also observed in the thesis that the existing spectrum sensing techniques perform 

poorly on user identification in low SNR conditions. In cognitive radio network, with the 

coexistence of multiple secondary users, user identity is an essential information in deter­

mining the spectrum sharing mechanism and managing the wireless network. This thesis 

consequently proposes a precoded in-band pilots design for OFDM signal, which improves 

the user identification capability of spectrum sensing device in cognitive radio network. 

Two groups of pilots, uniform pilots and identification pilots, are multiplexed with infor­

mation bearing subcarriers in the proposed PIP-OFDM system. The identification pilots 

built in transmitted signal are specifically designed to carry unique ID information, while 

uniform pilots are kept identical in every secondary user in one cognitive radio network. 

The identity of the active secondary user is then estimated through PIP demodulation at 

spectrum sensing device after synchronization between transmitter and sensing device is 

achieved.

Synchronization in PIP-OFDM system is very challenging due to the low SNR re­

quirement and the elimination of training symbols. Some relative correlation methods are 

adopted to implement coarse frequency and coarse time synchronization for PIP-OFDM 

systems. Fine frequency synchronization is realized by estimating phase shift in time do­

main using redundant information in cyclic prefix. Using this principle, fine time syn­
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chronization is achieved by estimating phase shift in frequency domain considering the 

redundant information on specially designed uniform pilots. Similar to spectrum sensing, 

synchronization in PIP-OFDM system is performed at low SNR. Consequently, a multiple 

OFDM symbols processing strategy is used to improve synchronization performances in 

proposed PIP-OFDM system.

Channel estimation and equalization techniques used in the proposed PIP-OFDM 

system are briefly introduced subsequently, followed by the details of user identification 

algorithm with the decoding/demodulation of identification pilots. The theoretical and 

simulation results on user identification at low SNR further confirm the effectiveness of 

the proposed PIP-OFDM design.

1.2 Thesis Organization

The motivation and background of this work are discussed in Chapter 2. Historical back­

ground and definition of cognitive radio are presented. As one of the most critical difficul­

ties in cognitive radio communications, spectrum sensing is subsequently introduced with 

definition and challenges. Overview of related research works are also presented in Chapter 

2, including previous spectrum sensing techniques and synchronization methods in OFDM 

systems.

Chapter 3 discusses spectrum sensing techniques in cognitive radio communications. 

Existing spectrum sensing techniques are summarized, followed by numerical simulations 

and performance comparisons. Implementation challenges of pilot-based spectrum sensing 

for OFDM signal are analyzed in detail in this chapter. A new pilot-based OFDM spectrum 

sensing algorithm with sliding frequency correlator is proposed subsequently to address 

these challenges.
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The definition and design details of PIP-OFDM system are presented in Chapter 

4. Encoding and modulation on identification pilots are discussed; the user capacity of 

cognitive radio network in the PIP-OFDM design is introduced in this chapter.

Chapter 5 investigates synchronization technologies in PIP-OFDM systems. Princi­

ples of coarse and fine synchronization, both in time and frequency domain, are considered 

in this chapter, followed by theoretical analysis and computer simulations.

Based on the synchronization between transmitter and spectrum sensing device, Chap­

ter 6 develops the identification algorithm by demodulating identification pilots after the 

equalization process. Decoding theory is also presented and analyzed with theoretical per­

formances and simulations.

Finally, this thesis is concluded in Chapter 7. Research contributions and future 

works of the thesis are summarized in this chapter.

1.3 Notations in the Thesis

Standard notations are used in this thesis. Capitalized symbols denote signal in frequency 

domain, and lowercase symbols denote signal in time domain. Vectors and matrices are 

denoted by boldface characters.

Specifically, x is transmitted signal, h is channel response, y is signal at the re­

ceiver side, w is noise (with interference signals), and z is received signal with noise (and 

timing/frequency offsets if exist); k is used as sample index in frequency domain, n is the 

sample index in time domain, and m is the OFDM symbol index in time domain; τ is timing 

offset, and ε is frequency offset; noise’s power in this thesis is denoted by ⅛ and signal’s 

power is 62; C represents correlation, while P denotes probability.

Other variables and notations are defined when used in the thesis.



Chapter 2

Motivation and Background

2.1 Motivation of the Thesis

Spectrum resource scarcity has been accompanying the fast development of broadband 

wireless communications in recent years, creating a lot of challenges for the design and im­

plementation of efficient wireless communication systems. The Federal Communications 

Commission (FCC) frequency allocation table [1] and the National Telecommunications 

and Information Administration’s (NTIA) frequency allocation chart (Figure 2.1) indicate 

an exhausted assignment on current prime radio frequency spectrum (i.e., less than 3GHz). 

At the same time, many studies on the spectrum usage reveal very low utilization efficiency 

in current spectrum allocations [2]-[6]. Cognitive radio (CR), based on an opportunistic 

spectrum sharing mechanism, is being proposed as a revolutionary technology to improve 

the spectrum utilization efficiency [2]. Since then, both academia and industry have been 

searching for an efficient and practical solution for cognitive radio communications. The 

IEEE 802.22 working group has been formed to develop the standard for cognitive radio 

technology in TV bands due to the transition from analog to digital broadcast [7].

As numerous regulation related issues emerged, the recent development of cognitive 

radio brings significant technical challenges in the design of robust adaptive transmission 

technique, reliable spectrum sensing, and efficient wireless resource allocation in hostile 

communication environment [4]. Among the technical difficulties associated with cognitive
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Figure 2.1: U.S. frequency allocation chart (NTIA).
[Available at: http://www.ntia.doc.gov/osmhome/allochrt.PDF.] 

radio design, spectrum sensing (or signal sensing, detection) is emerging as one of the 

fundamental and primary challenges in the implementation of cognitive radio systems [8]­

[14].

For the appropriate operation of a CR network, secondary users (SUs) are allowed to 

use the spectrum resources only when they do not create unacceptable interference to the 

primary users (licensed users) [4]. This means it’s the CR user’s responsibility to detect the 

existence of primary user. In order to ensure the absence of primary user before spectrum 

sharing and to avoid what is called the hidden terminai problem [15], the CR sensing de­

vices must have the capability of performing accurate sensing in very low signal-to-noise 

ratio (SNR) conditions. In addition, the cognitive user’s sensing device should outperform 

the primary receiver by a large margin to minimize the potential impact to the primary user. 

Consequently, the SNR of the received primary signal for spectrum sensing can be as low 

as -25dB to -10dB according to some previous research contributions and the recommen- 

http://www.ntia.doc.gov/osmhome/allochrt.PDF
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dations from FCC [16]-[18].

With such a rigorous low SNR requirement, many conventional spectrum sensing 

techniques such as energy detection are no longer applicable due to its oversensitivity to 

the background noise and interference signals from other transmitters. Some other coherent 

sensing techniques, such as matched filter detection, are also no longer effective because 

of the receiver’s inability to establish synchronization between the primary transmitter and 

local cognitive radio sensing device in low SNR condition.

Cyclostationary detection has improved spectrum sensing performance at low SNR 

because it doesn’t require synchronization between the transmitter and the sensing device 

[19]-[21]. Moreover, cyclostationary detection is able to identify the modulation scheme 

of detected signal according to the power distributions of the signal’s spectral correlation 

[21]. However, the cyclostationary detection requires a high implementation complexity 

from the spectral correlation function as we will see in Chapter 3. Moreover, cyclosta­

tionary detection is also unable to identify the user when several users are using the same 

modulation scheme.

On the other hand, pilot-based spectrum sensing technique, based on detecting the 

energy of embedded pilot signals, shows many significant advantages over existing tech­

niques including good performance at low SNR and the low implementation complexity. 

However, pilot-based spectrum sensing for OFDM signal has its own technical problems, 

including impact of cyclic prefix in OFDM signal, frequency offset between transmitter 

and sensing device, and noise rmcertainty in the sensing threshold design. This thesis will 

further discuss these challenges, and propose a new sliding frequency correlator to address 

the challenges.

In cognitive radio network, spectrum sensing determines the availability of the cur­

rent frequency band of interest. However, to better manage a cognitive radio network, 

where many secondary users coexist, another practical problem appears: Who is currently 
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using this frequency band? The process of identifying the secondary user that is using this 

frequency band is called user identification. Previous spectrum sensing algorithms rarely 

consider the user identification capabilities of spectrum sensing devices. Consequently, a 

more effective transmission signal design in cognitive radio network is necessary for reli­

able spectrum sharing and user identification.

2.2 Review of Related Works

2.2.1 Cognitive Radio and Dynamic Spectrum Access

Cognitive Radio, firstly proposed by Mitola [2] [3], is described in his dissertation [2] as 

“the point at which wireless personal digital assistants (PDAs) and the related networks 

are sufficiently computationally intelligent about radio resources and related computer-to- 

computer communications to: (a) detect user communications needs as a function of use 

context, and (b) to provide radio resources and wireless services most appropriate to those 

needs.”

In the cognitive radio system initially proposed by Mitola, wireless terminals have 

full knowledge of every parameter in the current communication network, which is appar­

ently difficult to achieve. Consequently, a more practical idea appears, known as “Dynamic 

Spectrum Access” (DSA) [22]-[24], which is also called “Opportunistic Spectrum Access” 

(OSA) [25]-[27]. In DSA systems, wireless terminals try to search for “spectrum holes” to 

access to available spectrum resource.

Figure 2.2 shows the resource allocation of DSA in frequency domain, where DSA 

users access to those spectrum holes and at the same time, have no (or limited but accept­

able) influence to primary user(s). DSA is also regarded as a narrow sense and example of 

cognitive radio [22]. However, as a creative and popular definition, cognitive radio is still
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being widely used to represent DSA and OSA, which is the case in this thesis, as a general 

representative for communication with intelligence. Spectrum sensing, which is the pro­

cess that wireless terminals search for spectrum holes, is consequently regarded as one of 

the most fundamental enabling techniques in cognitive radio communications [8] [9].

2.2.2 Spectrum Sensing Techniques for Cognitive Radio

As an enabling technique in cognitive radio system, spectrum sensing has been attracting 

much attention from both academia and industry. Low SNR requirement and user identifi­

cation capability are regarded as two major challenges for spectrum sensing.

2.2.2.1 General Techniques on Spectrum Sensing

Several publications have summarized spectrum sensing techniques, which are normally 

classified into energy detection, matched filter detection, cyclostationary detection, and 

pilot-based detection [6] [8] [9]. In these literatures, the latter two sensing techniques 

are considered to be more effective considering the practicability and performance [8] [9]. 

Cyclostationary detection works well at low SNR since it doesn’t require synchronization 
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between transmitter and spectrum sensing device [20] [21]. In addition, cyclostationaιy de­

tection technique has certain identification capability by identifying the modulation scheme 

of received signal [6].

2.2.2.2 Pilot-based Spectrum Sensing

Pilot-based spectrum sensing method performs very well in low SNR conditions [28]. A 

few pilot-based spectrum sensing techniques for Advanced Television Systems Committee 

(ATSC) standard signals have been investigated [28] [29], with some works being proposed 

for standard in IEEE 802.22 group [30]. Several spectrum sensing algorithms for OFDM 

signals utilizing in-band pilots have also been proposed [31 ]-[34]. Nevertheless, some of 

these works are based on the assumption of perfect synchronization between the OFDM 

signal transmitter and CR sensing device [31]-[33], which is difficult to achieve in low 

SNR conditions. Other techniques have sensing performances very sensitive to timing 

and/or frequency offsets [34]. Moreover, most of these techniques are designed based on 

a sensing threshold that’s sensitive to the unknown noise statistics, which are difficult to 

estimate [35] [36]. At the same time, noise statistics are usually varying over time, which 

makes threshold design more difficult.

2.2.3 User Identification

In cognitive radio communications, spectrum sensing determines the availability of the fre­

quency band of interest. However, to better improve environment awareness in cognitive 

radio network, where many secondary user coexist, it is essential to identify the active user 

who is using this frequency band. Of those spectrum sensing techniques discussed above, 

only cyclostationary detection and pilot-based detection have limited identification capabil­

ities. Some previous works identify user by estimating modulation parameters of the signal 
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[37] [38]. Cyclostationary detection is essentially a detection technique that identifies user 

through differentiating modulation scheme of the received signal [39]. Pilot-based detec­

tion identifies user by recognizing location distributions of pilot tones in frequency domain 

[40]. However, none of these techniques is applicable when secondary users in cognitive 

radio network use the same modulation scheme with same pilot tones locations.

2.2.4 Synchronization Technologies in OFDM System

Precoded in-band pilots is proposed in this thesis for user identification purpose. Synchro­

nization issues need to be addressed at the spectrum sensing device side before user iden­

tification which is realized by demodulating predesigned identification pilot tones. Since 

PIP-OFDM system is essentially an OFDM system, synchronization techniques in tradi­

tional OFDM system are helpful when performing synchronization in PIP-OFDM system. 

Synchronization in OFDM system is divided into frequency synchronization (frequency 

offset estimation) and time synchronization (timing offset estimation).

2.2.4.1 Frequency Synchronization

OFDM system has been proved to be very sensitive to frequency offset since it introduces 

interference among the multiplicity of carriers in the OFDM signal [41]. An arbitrary 

frequency offset normally contains an integer frequency offset and an fractional frequency 

offset, indicating integer subcarrier and fractional subcarrier offsets of OFDM signal in 

frequency domain.

The easiest and frequently used method for the integer frequency offset estimation 

method is frequency domain auto-correlation technique [42]-[44], which is based on a 

correlation between received signal and local reference signal in frequency domain.
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Moose [41 ] first proposed an idea that fractional frequency offset could be estimated 

through calculating phase shift in time domain. In his method, repeating OFDM sym­

bols designed for synchronization purpose are used. Subsequently, several publications 

extended this idea in [45]-[48], of which maximum likelihood estimation method [45] 

contributes the mainstream of fractional frequency offset estimation algorithms. These fre­

quency offset estimation algorithms also require repeating samples in transmitted signal. 

Some of these algorithms are based on specially designed training symbols [41] [45] [46], 

and some utilize cyclic prefix as repeating patterns [48]. However, algorithms using cyclic 

prefix as repeating signal normally have a FFT window length of N (OFDM system sub­

carriers number) samples [45]-[48], which leads to a large error in the estimation results as 

discussed in Chapter 5.

2.2.4.2 Time Synchronization

Similar to frequency offset estimation, timing offset estimation also contains integer timing 

offset estimation (coarse time synchronization) and fractional timing offset estimation (fine 

time synchronization).

Delay and correlation (DC) method is frequently used in integer timing offset estima­

tion because of the low complexity [49]. DC method is sensitive to the power varyings of 

received signal and noise [49]. Consequently, more robust algorithms have been proposed, 

such as maximum likelihood metric [50] and minimum mean squared error (MMSE) metric 

[51].
After coarse time synchronization algorithm provides a rough timing offset estima­

tion result, fractional timing offset still exists, which will cause phase rotations in frequency 

domain. A cross-correlation method using matched filter is proposed in [52], where pream­

bles are used in correlation functions to estimate fractional timing offset. However, this is 
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not achievable for opportunistic communication in cognitive radio, where training symbols 

for spectrum sensing and identification are not available.

2.3 Summary

This chapter introduces the background of the thesis. Specifically, the motivation and re­

lated works of this thesis are presented in details, respectively. Current spectrum sensing 

techniques for cognitive radio communications are briefly introduced in this chapter, fol­

lowed by a discussion on the necessity and current development of user identification. In 

addition, previous synchronization techniques in OFDM system are concluded in this chap­

ter for future usage in the synchronization of proposed PIP-OFDM system.
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Chapter 3

Spectrum Sensing for Cognitive Radio 

Communications

3.1 Background of Spectrum Sensing

3.1.1 Definition of Cognitive Radio

Without any official definition of cognitive radio network’s architecture, current under­

standings of cognitive radio vary among different researchers [3] [4] [8]-[12]. The cog­

nitive radio network in this thesis is defined and illustrated in Figure 3.1, where only one 

primary user exists and multiple secondary users (cognitive users) coexist, sharing the same 

frequency band. In the ideal situation, primary user has the priority to use this frequency 

band (primary user active), and only one secondary user accesses to this resource if pri­

mary user is not using it (primary user idle). Consequently, secondary users not only need 

to detect the existence of primary signal, but also need to detect the existence of secondary 

signal . Furthermore, to better achieve environment awareness and network management, 

secondary users need to identify the user who is currently using the resource if necessary.

Figure 3.1 shows two scenes of cognitive radio network. In Figure 3.1(a), primary 

user is transmitting, while the secondary users are detecting the availability of this fre-

1. Here, “existence/absence” is equivalent to “active/idle” or “using/not using the spectrum re­
source”.
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Figure 3.1: Architecture of cognitive radio network considered in this thesis, (a) Primary 
user is active, and cognitive users are sensing, (b) Primary user is idle, and one cognitive 

user is transmitting, while other cognitive users are sensing.
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quency band2. When primary user is idle, only one secondary user can access to the re­

source, and other secondary users keep sensing (identification if necessary) until the re­

source is set free, as shown in Figure 3.1(b).

2. In general, secondary users also detect other frequency bands for more spectrum sharing 
opportunities. However, we only consider one specific frequency band in this thesis without loss of 
generality.

3.1.2 Definition of Spectrum Sensing

Spectrum sensing, also called “detection” in some cases such as “energy detection”, “cy- 

clostationary detection”, and “pilot-based detection” [6], is defined by Haykin [9] as “the 

task of finding spectrum holes by sensing the radio spectrum in the local neighborhood of 

the cognitive radio receiver in an unsupervised manner”. The “finding” process in this def­

inition needs to be finished on one frequency band after another one. As presented above, 

only the process that sensing device detects the signal on one specific frequency band is 

considered in this thesis.

3.1.3 Requirements and Challenges of Spectrum Sensing

From some previous research contributions [6] [7] [8] [9] and recommendations from FCC 

[16]-[18], several requirements and challenges of spectrum sensing are summarized as 

follows.

3.1.3.1 Low SNR Requirement and Synchronization Challenge

As presented in Chapter 2, spectrum sensing in cognitive radio network must work reliably 

in very low SNR conditions. According to some previous studies and recommendations 

from FCC, this thesis considers SNR range of -25dB to -10dB for spectrum sensing.
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Low SNR requirement also leads to challenges of synchronization during the spec­

trum sensing. The actual design and implementation of the spectrum sensing algorithm 

need to take into consideration of two crucial system imperfections: timing and frequency 

offsets between the primary transmitter and CR sensing devices. The former is a result of 

the lack of temporal synchronism between the transmitter and CR sensing devices while 

the latter is caused by mismatch in the transmitter’s and the sensing device’s oscillators.

3.1.3.2 Sensing Time Requirement

In CR system, it’s secondary user’s responsibility to detect the existence of the primary 

signal. In the situation where a secondary user is using the spectrum when the primary 

user is returning to reclaim this resource, this secondary user needs to release this resource 

within a required time, which indicates that the secondary user has to detect the existence of 

primary user in the required time. Consequently, sensing time is a necessary requirement 

for spectrum sensing in cognitive radio network. For different systems and applications, 

the suggested required time from FCC varies from several milliseconds to several seconds 

[17].

3.1.3.3 User Identification Capability of Spectrum Sensing

In a CR network, it is very likely that there are multiple secondary users and one primary 

user. To enhance environment awareness and network management capabilities such as 

interference estimation and resource allocation with priority, the spectrum sensing devices 

need to identify the user who is using the current spectrum resource, which is called user 

identification in this thesis. Very few previous works consider user identification capability 

of spectrum sensing method in cognitive radio communications. This thesis will focus on 

user identification capability, and propose a precoded in-band pilots design to improve this 

capability in cognitive radio communications.
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3.2 Spectrum Sensing Techniques Overview

3.2.1 Two Hypotheses in Spectrum Sensing

Two hypotheses exist in a general spectrum sensing problem. Specifically, Hi represents 

the hypothesis that signal exists in the frequency band of interest, while Ho represents the 

absence of any signal in concerned frequency band. Mathematically:

H1: z(t) = MO + w(t)
H : z(t) = w(t) 

(3.1)

where the y(t) and w(t) represent the received signal and the noise respectively. Spectrum 

sensing at the CR device side is the process that differentiates these two hypotheses.

3.2.2 Energy Detection and Matched Filter Detection

Based on estimating the power on the frequency band of interest, energy detection is a very 

easy way to detect the existence of signal. Energy detection requires no more than infor­

mation about the carried frequency (bandwidth as well if necessary) of the target signal. 

Ideally, the signal power on the target frequency band will be the noise power on when 

there is no signal on the frequency band of interest, while it becomes into J„ + 62 when 

the target signal exists on the frequency band, where 62 represents the power of the target 

signal. The energies of received signals (with the SNR from -20dB to 10dB) in both two 

hypotheses are shown in Figure 3.2, which also indicates the difficulty to differentiate these 

two hypotheses at low SNR.

Energy detector can estimate the energy of received signal as

N
€ = Xz(n)/2, (3.2)
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Figure 3.2: Received signal power at energy detection device 
(the observation points: 1,000,000).

where z(n) is discrete received signal at energy detection device, and N is the number of 

observation points.

Subsequently, energy detector makes the decision based on the estimated energy as

. Mi
I Wo

if € > A
(3.3)

where A is the detection threshold. Normally, the threshold here is set to meet a target false 

alarm probability, Pf. False alarm probability is defined as the probability that sensing 

device falsely made the sensing decision when signal is absent. Mathematically,

Pf = Prob (€ > A Ho), (3.4)

where Prob(X) represents the probability of event X.
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The main advantage of energy detection is the low implementation complexity. En­

ergy detection doesn’t need much signal’s information nor many processing steps, making 

it as one of the simplest spectrum sensing methods. However, several disadvantages exist 

for the energy detector:

• The decision of the detector is based on a threshold that is sensitive to the noise 

power, which is unknown to the spectrum sensing device and varying over time [8], 

making it very difficult to design sensing threshold in energy detection.

• Since the energy detector doesn’t utilize the frequency/time domain features of the 

signals but treat signal and noise in the same way, the performance of the energy 

detector is very poor when signal is weak as a simulation example shown in Figure 

3.3. Consequently, energy detection requires a long sensing time for the target false 

alarm probability and successful detection probability [6].

• The energy detector is not able to identify the signal, which means the decision by 

the detector could be easily influenced by interference signals.

• Frequency offset exists in most wireless communication systems, causing unreliable 

sensing results for energy detectors.

Similar to energy detection, matched filter detection uses matched filter to get the 

maximum output of target signal’s energy, based on which the detection result is made [8]. 

However, matched filter requires CR device to demodulate the received signal. Hence, it 

requires synchronization between primary transmitter and spectrum sensing device, making 

it very difficult to implement at low SNR [8].
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Figure 3.3: Performance of the energy detection (observation points: 1,000,000; false 
alarm probability: 0.05).

3.2.3 Cyclostationary Detection

Cyclostationary detection techniques utilize the cyclostationary properties of signals for

spectrum sensing.

In practical communication systems, modulated signals contain sinusoidal carrier 

frequencies, pilot tones, cyclic prefix, repeating preambles and some other similar infor­

mation which result in some stationary properties, which are called "cyclostationarity" in 

signals [19].

Normally, the cyclostationary detection is based on applying the spectral correlation 

function (SCF) of the received signal over time [19]:

Sz(v,f) = lim limT—c At—co

At/2
C -Zr(tf+v/2)Z(,f-u/2)di.

—At/2
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Figure 3.4: Cyclostationarity (in terms of spectral correlation) of FSK signals.

where

t-T/2

and υ is the shifted frequency (also cycle frequency [6] sometimes).

Distribution of spectral correlation varies between signals with different modulation 

schemes. Figure 3.4 and Figure 3.5 illustrate respectively cyclostationarity of Frequency 

Shift Keying (FSK) signal and that of Quadrature Phase Shift Keying (QPSK) signal. The 

spectral correlation fonction of noise has very distinctive property that it takes non-zero 

values only when the shifted frequency υ is not zero (see Figure 3.6).

In general, the received signal contains primary signal (if exists) and the noise as 

shown in (3.1). Therefore, the spectral correlation of the received signal is [6] [19]:

H1 : Sz(υ,f) = Sy(v,f) + Sw(υ,f)

Ho: Sz(v,f) = Sw(υ,f)
(3.7)

Within the areas that the shifted frequency υ ≠ 0 in spectral correlation figures, the
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Figure 3.6: Cyclostationarity (in terms of spectral correlation) of noise signals.
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spectral correlation of noise is equal to 0 and signals with different modulation schemes 

have different distinctive distributions (see Figure 3.4-3.6). Ideally, the cyclostationary 

spectrum detector could always make the right spectrum sensing decision if the observation 

time is long enough to get a precise enough spectral correlation result of the received signal 

[20] [21].

Since cyclostationary detector calculates the spectral correlation function of received 

signal, it doesn’t require synchronization between the transmitter and the detector. For 

different modulated signals, cyclostationary detection method is able to show different re­

sults over frequency f and shifted frequency υ, making modulation scheme identification 

achievable for cyclostationary detection. In addition, cyclostationary detection has a better 

performance than the energy detector [6] [8] [20] [21], since it utilizes inherent properties 

of the signals and doesn’t treat the noise and signal in the same way as energy detector 

does.

However, there are still several disadvantages of the cyclostationary detector:

• The cyclostationary detector has to calculate a double integral and a Fourier trans­

form for every time unit At and every frequency unit Af for each shifted frequency 

Av to get the spectral correlation function. Both the time and frequency resolution 

need to be high enough to get a precise enough estimation of the signal’s cyclosta­

tionarity. The calculation complexity for the cyclostationary detector is consequently 

extremely high. Hence it is hardly able to make the decision within required spectrum 

sensing time for cyclostationary detection.

• The cyclostationary detection considers the distribution of signal’s energy in statis­

tical way. Therefore, the performance of cyclostationary detector is also poor when 

the SNR is very low (say -15dB) within the required sensing time [20] [21].
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• Although the cyclostationary detection is able to differentiate signals with different 

cyclostationarities, it can hardly estimate where the signal comes from when many 

transmitters use the same modulation scheme, which is likely to be true in CR net­

works considering the system complexity and management convenience.

3.3 Pilot-based Spectrum Sensing for OFDM

Pilot signals are widely used in wireless communication systems for control, synchroniza­

tion, channel estimation, and/or reference purposes. Pilot-based spectrum sensing tech­

nique determines the existence of signal by estimating the energy of pilot signals built in 

transmitted signals. Considering the previous contributions of pilot-based spectrum sens­

ing techniques in signal-carrier signals, and the widely usage of OFDM signals, this thesis 

only discusses the pilot-based spectrum sensing technique for OFDM signals. Since the 

pilot signals are referred to be pilot tones in OFDM system in this thesis, pilot signals are 

also called pilots or pilot tones hereafter.

3.3.1 System Model and Assumptions

The notations and system models as well as the assumptions used in the investigation of 

pilot-based spectrum sensing technique for OFDM signal (also called pilot-based OFDM 

spectrum sensing hereafter) are introduced here for future usage.

3.3.1.1 OFDM Signal Generation

Let Xm(k) denote the quadrature amplitude modulation (QAM) data sample that appears in 

the k-th subcarrier of the m-th OFDM symbol at the transmitter side. The corresponding
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time domain samples of this OFDM symbol are

x, [xm(1), xm(2),xm(3),...,xm(N)] »

where
1 N-1

Xm(n) =-2 Xm(k)e"2mkn/N, 
VN k=0

(3.8)

(3.9)

and n is the sample index in time domain. The cyclic prefix (guarding interval) with Ng 

samples,

xh = [xm(N - Ng + 1), xm(N - Ng + 2),...,xm(N - 1),Xm(N)] , (3.10)

is inserted at the beginning of the N-length data carrying segment x% to form one complete

OFDM symbol in time domain:

(3.11)

3.3.1.2 In-band Pilots Insertion

In an OFDM system, carried information on pilot tones is normally multiplexed with the 

raw data in the frequency domain to form the OFDM symbols Xm. To simplify the analysis, 

carried information on one specific pilot tone is assumed to be identical over different 

OFDM symbols.

Let A be the total number of pilot subcarriers in OFDM signal, and L represent the 

pilots’ locations (subcarrier indices) in the frequency domain. After the multiplexing of 

the pilot modulating information and data information, the m-th OFDM symbol Xm in
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frequency domain has a structure of

v(⅛) ⅛∈L
Xm(k) = 3

data otherwise
(3.12)

where v(k) is the carried information on the pilot tone with the frequency domain index of 

k. This carried information keeps the same over different OFDM symbols, and is known 

to the receiver. All the pilot tones are assumed to have the same power, i.e., v(k) = vo for 

any k €L, where Vo is a positive real variable. Since the embedded pilots stay on the same 

subcarriers in every transmitted OFDM symbol, the pilot symbol is simply obtained as

v(k) keL
R(k) = (3.13)

0 otherwise

The energy of pilot symbol, ∣Λ(Λ)∣2, will be used as a reference to perform correlation 

in the CR spectrum sensing device to determine the existence of primary signal in later 

discussions.

3.3.1.3 Received Signal at Spectrum Sensing Device

The received signal in the spectrum sensing device is unavoidably corrupted by noise and 

interferences. The noise in the analysis here is assumed to be complex white Gaussian 

noise and is denoted by w ~ N(0, 8h). To simplify the analysis, the noise term in this 

thesis contains all the noises from the internal circuit of the sensing device, the external 

environment, and interference signals that are not from the primary transmitter.

The structure of the received OFDM symbol (Zm) at the CR sensing device depends
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on the existence ^H∖ ) or absence (Ho) of the primary signal. Specifically,

H1: Zm - Ym + Wm

Ho : Zm = Wm

where ym and Wm denote the received signal from primary transmitter and the noise, re­

spectively.

3.3.2 Principle of Pilot-based OFDM Spectrum Sensing

The basic principle of pilot-based spectrum sensing technique for OFDM signal is estimat­

ing the energy on pilot tones after averaging received signal symbol-by-symbol. Figure 3.7 

shows the power changes before and after the average processing in pilot-based spectrum 

sensing algorithm for OFDM signal, where 63,63, and M represent power of noise, power 

of signal, and average times, respectively. Shown in these two figures, the impacts from the 

noise and data subcarriers in the received signal can be effectively mitigated in the average 

processing. In an ideal situation (AWGN channel, no timing/frequency offset, etc.), the 

result of a large enough times of symbol-by-symbol averaging,

Z(k) = X Zm(k), (3.15)
m=1

is approaching to zero when there is no signal on the frequency band of interest, and ap­

proximately equal to the pilot signal in (3.13) when a signal is present.

After averaging, the correlation between the power spectra of averaged signal and 

that of local reference signal is performed. The correlation results allow us to differentiate 

the two spectrum sensing hypotheses. Mathematically, the correlation function could be
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Figure 3.7: Impact of average processing on signal’s power distribution in pilot-based 
OFDM spectrum sensing algorithm. (Shown in frequency domain, and PDF = Probability 

Distribution Function).
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Figure 3.8: Flowchart of pilot-based OFDM spectrum sensing algorithm.

C=E Z(k)]2 • IR(k)/2 (3.16)
keL 

where R(h) is local reference signal, and L is the locations set of pilot tones (see Subsection 

3.3.1 ).

For different hypotheses, the correlation functions have different values. Subse­

quently, spectrum sensing decision will be made based on a threshold 2. Mathematically,

H1, if Cx A
■ (3.17) 

‰ if C <A

This completes the basic principle of pilot-based OFDM spectrum sensing algorithm, 

and Figure 3.8 illustrates the flowchart of this algorithm.

However, the implementation of pilot-based OFDM spectrum sensing algorithm at 

low SNR needs to consider the impacts of unknown timing and frequency offsets, as well 

as threshold design difficulties as discussed later.
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3.3.3 Challenges of Pilot-based OFDM Spectrum Sensing

As presented in Chapter 2, several pilot-based spectrum sensing algorithms are proposed 

for both single-carrier signal and OFDM signal. However, there are still some rarely con­

sidered technical issues in pilot-based spectrum sensing technique for OFDM signal:

• The impact of cyclic prefix in OFDM signal. Cyclic prefix is inserted at the begin­

ning of every transmitted OFDM symbol for the purpose of symbol protection from 

intersymbol interference (ISI). Pilot-based OFDM spectrum sensing technique is de­

signed to perform correlation between carried information on pilot tones and local 

reference signal in frequency domain, which means the cyclic prefix needs to be re­

moved before implementing the correlation operations. However, the elimination of 

cyclic prefix requires a symbol time synchronization between transmitter and spec­

trum sensing device, which is difficult to achieve at low SNR.

• Frequency offset between transmitter and spectrum sensing device. The correlation 

operation between the averaged received OFDM symbol and the local reference sym­

bol requires frequency synchronization between transmitter and spectrum sensing 

device, which is also very challenging at low SNR.

• Unknown noise statistics in sensing threshold design. The threshold, which is λ 

in (3.17), is usually designed to meet the requirements of false alarm probability 

and successful detection probability in spectrum sensing. This makes the threshold 

in pilot-based OFDM spectrum sensing method always sensitive to noise statistics 

which are difficult to estimate. In addition, the noise statistics in most situations are 

varying over the time.
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3.3.4 Impacts of Timing Offsets and Cyclic Prefix

As we discussed earlier, received signals are combined with timing offsets in spectrum 

sensing at low SNR. In pilot-based spectrum sensing algorithm for OFDM signal, the tim­

ing offset will cause phase rotations on the received signal in frequency domain. Assume 

that the timing offset is τ. The averaged OFDM symbol with noise could be written as

z(t) = y(t - T)+ w(t). (3.18)

Considering

Fly(t-r)] = Y(f)-e j2nfr (3.19)

the timing offset does not have any impact on the sensing result because only the energy of 

the signal is considered in the spectrum sensing process. Mathematically,

j2nkr 2^ Y(k)]2 • IR(^)I2 = 2 Y(k)eN • R(k)12.
keL. keL

(3.20)

However, due to the lack of time synchronization between the transmitter and the CR 

sensing device, one received OFDM symbol (ym) from primary user, in general, comprises 

of Ns =(N+ Ng) samples spanning two adjacent OFDM symbols relative to the timing 

offset, in terms of τ samples, as shown in Figure 3.9. This unknown timing offset makes it 

difficult to locate the starting point of one OFDM symbol, hence difficult to eliminate the 

cyclic prefix before correlation in frequency domain (for the reason of eliminating cyclic 

prefix, see Subsection 3.3.3).
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Figure 3.9: Received OFDM signal with unknown timing offset.

The m-th received OFDM symbol then can be written as3

(3.21)

where ya is the data carrying segment, and yh is the cyclic prefix segment.

After average processing, we have the averaged OFDM symbol as

(3.22)

To estimate the energy on the respective subcarriers in the frequency domain, aver­

aged OFDM symbol is performed the A-point discrete Fourier transform. Mathematically, 

we have the averaged OFDM symbol in frequency domain as

Y(k) =NL y(n)e
-j2nkn 

N

To simplify the analysis, while focusing on the impact of cyclic prefix, the channel is

3. Generally, the cyclic prefix segment is not always at the beginning or end of the received 
symbol due to the unknown timing offset. However, since the shift of received signal in time domain, 
as proved in (3.19) and (3.19), doesn’t have any impact on the pilot energy in frequency domain, it 
will not lose any generality to put the cyclic prefix segment at the end of the received symbol as one 
example to simplify the subsequent analysis.
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assumed to be an additive white Gaussian noise (AWGN) chaιmel here. The cyclic prefix 

segment y≡ of the above signal is the same as last Ng samples of the data carrying segment 

yd. Specifically,

yg = yd( -N + 1),yd(N - Ng + 2),... ,yd(M)]T .

From (3.23) and (3.24), we have

Y(k) = N Xyd(n)e-N + vy LMd(N-Ng+n)e-N
n=1 n=1

= Ya()+YE().

(3∙24)

(3.25)

— 2
The frequency correlation between the energy of data carrying segment Y°(k) and 

that of the local pilot reference signal R(k)12 provides a good spectrum sensing result.

While as we can see from (3.25), the cyclic prefix segment will lead to some interference 

(no matter positive or negative) to the pilot subcarriers and influence the subsequent fi­

nal decision of spectrum sensing. Some previous spectrum sensing techniques ignore the 

impact of cyclic prefix by considering perfect synchronization, an assumption difficult to 

realize in practice because of the low SNR requirement [31]. In this thesis, computer sim­

ulations will be used to evaluate the impact of cyclic prefix, as shown in Subsection 3.3.8.

3.3.5 Pilot-based OFDM Spectrum Sensing with SFC

Mismatch between the oscillator of primary transmitter and that of the spectrum sensing 

device will lead to frequency offsets in spectrum sensing. Considering the low SNR re­

quirement for spectrum sensing in cognitive radio communications, these offsets are very 

difficult to eliminate. The oscillators used in wireless communications typically have fre-
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Figure 3.10: Illustration of sliding frequency correlation processing.

quency stability of ±30ppm (parts per million). The corresponding frequency offset could 

lead to detrimental effect in pilot-based OFDM spectrum sensing systems, since it’s real­

ized by frequency correlations. Some previous studies assume the perfect synchronization 

in frequency domain [31] [32] [33], which is difficult to achieve at low SNR. Other studies 

rely on accurate control of the local frequency by deploying a set of parallel correlators that 

address every possible frequency offset within maximum expected range [34]. Even with 

these complex and expensive designs, residual frequency offset from the hardware, as well 

the channel-induced Doppler frequency offset are still unavoidable.

To address the impact from frequency offset, a sliding frequency correlator (SFC) 

is proposed in this thesis to achieve a more robust pilot-based OFDM spectrum sensing 

algorithm. The signal receiver in the proposed spectrum sensing algorithm spans a total of 

(N + B) subcarriers, where ±B/2 denotes the maximum possible frequency offset in terms 

of subcarrier spacing.

Figure 3.10 shows the principle of the proposed spectrum sensing algorithm with 

sliding frequency correlator. Specifically, the algorithm proceeds as follows: The received 

signal has a bandwidth of (N + B) subcarriers with a central frequency of fc; the averaged 

signal z is then converted to the (N + B)-length frequency domain symbol Z; sliding corre-
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lation is performed as shown in Figure 3.10, where ε is frequency offset in terms of OFDM 

subcarrier spacing. A repeated correlation operation will be implemented by shifting the 

received signal with different frequency offset tentatively:

C(B) = 2 R()2 xz(8+k)]2, B = 0,1,...,B-1, (3.26)

k=1

where R is the pilot symbol in (3.13), andβ is the shifted frequency.

After collecting a set of correlation results C for different shifted frequency β, the 

pilot-based OFDM spectrum sensing device with sliding frequency correlator takes the 

maximum correlation result, C (B*), for further usage. Mathematically,

B = arg max C(B). (3.27)

Subsequently, peak-to-remaining ratio (PRR) is defined as

CG*) 
& (3.28)

where C is the averaged value of the remaining correlation results Cs, i.e.,

∑ cm

0<B<B
( β≠β*

(3.29)

The reason that the peak-to-remaining ratio, rather than peak-to-average ratio, is defined 

here is that in the ideal situation (a is correctly located, namely, β* = &), the remaining 

correlation results are all noise, and only one result, C (B*), contains signal information. 

Therefore, potential correlation result from signal component, C (B*), is eliminated to get 

the distribution of noise term for analysis convenience.
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Based on the peak-to-remaining ratio, the spectrum sensing decision will be made as

∣ HI, if R> A
. (3.30)

I Ho, ifR <A

The threshold A in this pilot-based OFDM spectrum sensing algorithm with sliding fre­

quency correlator will be later proved to be not sensitive to noise statistics.

3.3.6 Noise Uncertainty and Threshold Design

The performance of spectrum sensing algorithm is normally evaluated by false alarm prob­

ability and mis-detection probability. False alarm happens when H1 is determined at the 

absence of primary signal. Since the threshold in the spectrum sensing is normally designed 

to meet certain upper limit of false alarm probability, the threshold is always relative to the 

noise power [35] [36]. Chen [31] gives a sensing threshold in traditional pilot-based OFDM 

spectrum sensing algorithm as

2 = J-02InPf, (3.31)

where 6„ is the noise power, and Pf is the target false alarm probability.

However, in the spectrum sensing model where the sensing device doesn’t know 

whether the primary signal is present or not, it is even more difficult to estimate the noise 

statistics. Furthermore, the noise statistics may actually be varying over time. In the 

pilot-based OFDM spectrum sensing algorithm with sliding frequency correlator, a ratio 

threshold, which is not sensitive to the noise power, is derived to eliminate the impact of 

noise uncertainty. The formulation of the threshold under certain false alarm probability 

upper limit is analyzed in Subsection 3.3.7.
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3.3.7 Theoretical Analysis of Pilot-based OFDM Spectrum Sensing

The performance of the proposed spectrum sensing algorithm is assessed according to the 

probability of false alarm Pf, and the successful detection probability Pd. A good spectrum 

sensing device should have a low false alarm probability and a high successful detection 

probability while meeting the sensing time requirement.

3.3.7.1 False Alarm Probability and Threshold Design

According to the false alarm definition above, false alarm in pilot-based OFDM spectrum 

sensing algorithm with sliding frequency correlator occurs at

R> 2, when Ho, (3.32)

where A is the threshold. For any given false alarm probability (Pf), a larger successful 

detection probability (Pd) indicates a better sensing performance. To determine the false 

alarm probability as a function of the threshold 2, we proceed as follows.

Firstly, the false alarm probability Pr for any given threshold A is determined as

Pf(A) = Prob (^ > Ho)
(C(B*) )

Prob-V,I > 2 Ho
C )
(C(B*) )1 -Prob - < A Ho.
∖ C 1

(3.33)

With the absence of the signal from the primary user, the averaged signal in (3.15) is 

simply noise. This means the averaged symbol in the frequency domain

(3.34)
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is noise as well. Consequently, the correlation result in (3.26) takes the form as

C(B) = XvW(]2 
kEL

(3.35)

Split the complex white Gaussian noise W(k) into real and imaginary parts, we have

W(k) = WR(k) +j∙W1(k), (3.36)

where both WR(k) and W1{k) are real Gaussian variables, and they have the same distribu­

tion as
WR() ~ N(o, Sn,w'() - No, Sn •

2M) ( ZM)
(3.37)

2M)

Since there are totally A pilot subcarriers in OFDM symbol, which means the length 

of L is A, the correlation result in (3.35) could be written as

C(B) = Xv(w*(a)° +
a=1

W1(a) )

2A

= Xw'(a)24 (3.38)
a=1

where

W'(a) = NvBXnWo, Wo - M0,1), a = 1,2,3,...,2A. (3.39)

Thus we have _______ 2
2A 2 $2C(B)= 2 N32NWo =/82MXZ4
a=1 ‘

(3.40)

where X3, is a chi-square random variable with 24 degrees of freedom. Therefore the
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probability density function (PDF) of C(B) is

for x > 0

for x ≤ 0

(3.41)

with

0

T(A) =( - 1)! (3.42)

being the Gamma function with integer arguments.

The false alarm probability Pf in (3.33) is difficult to evaluate because the probability 

density function (pdf) of the term R = Ce is not easy to derive. To simplify the analysis, 

we proceed the averaged value of remaining correlation results Cs, which is the square 

average of (B — 1) number of Gaussian noise, as a constant. Mathematically,

~~,2 A8hCNYo M for Ho. (3.43)

Substituting (3.43) into (3.33) allows us to approximate the false alarm probability as

Pf(A)

(3.44)

To find the threshold that meets a given false alarm probability requirement, we rewrite the
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last equation as
Z44=1-(1-P,)b. 3.45)

a=0
This is actually a A -degree inverse Poisson equation of the form

(3.46)

whose implicit solution, in this thesis, is expressed as

x = hp(y, A). (3.47)

Although the inverse Poisson process equation does not have a close-form solution, 

a numerical or table look-up approach can be used to search for the sensing threshold. In 

any event, the spectrum sensing threshold is expressed as

A(P) = Ahp(i-(1-P,)B A). (3.48)

which also indicates pilot-based OFDM spectrum sensing algorithm with sliding frequency 

correlator has a threshold not sensitive to unknown noise statistics.

33.7.2 Probability of Mis-detection

Mis-detection means the spectrum sensing device fails to detect the existence of the primary 

signal. It happens at

R<2, when H1. (3.49)
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According to the definition of successful detection probability, the mis-detection probabil­

ity

Pm = I-Pd- (3.50)

For a certain threshold A, the mis-detection probability could be formulated as

Pm(A) =

(3.51)

From (3.41), we have

Pm(A) =

/ 4-1+∞ 2M 2M, ,,T 2-2X -MxOnn ) $2
----------------- e n 24F(A)

Ay6?
1-1
A-1 (YAM a 
w(7-1) -YM >   —e A-1. (3.52)

where γ denotes the SNR.

3.3.7.3 Pilot-based OFDM Spectrum Sensing Time

In addition to the false alarm probability Pf and the successful detection probability Pd, 

the spectrum sensing time represents another important performance index of a spectrum 

sensing algorithm. The recommendations from FCC [ 16]-[ 18] suggest that when CR users 

are sharing the spectrum resource, they need to release the resource within a required time 
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if the primary user comes back to use the resource. For different systems and standards, 

this suggestion leads to different required spectrum sensing time, varying from several 

milliseconds to several seconds [17] [18].

Comparing to the cyclostationary detection, where the spectral correlation function 

needs a long computation time [6], the proposed sensing algorithm in this thesis has mod­

erate calculation complexity from the average processing, a FFT calculation, and several 

correlation functions. These simple calculations will only cost very short processing time 

considering the fast processing speeds of today’s electronic devices. Consequently, the 

sensing time is actually the time we receive the signal when we neglect the signal process­

ing time. The sensing time for the proposed sensing algorithm then can be approximated 

by M, which is the number of OFDM symbols in average processing. Specifically, the pro­

cessing time Mfor any combination of {Pm, Pf, f) can be obtained from (3.48) and (3.52) 

as

M =

3.3.7.4 Impacts of Interference and Multipath Channel

The proposed spectrum sensing algorithm is based on the detection of the unique pilots’ 

energy in target signal. The probability that the interferences have the same modulation 

scheme, the same symbol period, and the same pilots on the same frequency would be 

extremely low. As a result, all the interferences could be regarded as noise and will be 

significantly mitigated after the average processing and the correlation processing in this 

algorithm. Thus, interference signal will not have much impact on the proposed pilot-based 

OFDM spectrum sensing algorithm.

On the other hand, frequency selective multipath channel can only change the energy 

distribution of received signal and consequently has very limited impact to the proposed
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sensing algorithm which only considers the energy on pilot tones. This is because the 

in-band pilots for OFDM system are distributed evenly across the whole channel bandwidth 

and the combined pilot energy won’t be significantly influenced by the frequency selectivity 

from the multipath channel.

3.3.8 Simulations

To verify the effectiveness of the proposed spectrum sensing algorithm, several simulations 

have been run and presented in this section.

In the spectrum sensing simulations, an OFDM system with 1024 subcarriers, 4MHz 

bandwidth, and 32 pilot subcarriers is adopted. The simulated OFDM system has a carrier 

frequency of 1 GHz and oscillator stability of ±30ppm. Therefore, the maximum frequency 

offset from the ±30ppm oscillator is ±30kHz. To overcome the potential impact of the 

frequency offset on spectrum sensing, a 64kHz of extra processing bandwidth is used in 

the sensing devices, which is equivalent to B = 32 subcarriers. This means the system 

in this simulation has a maximum tolerable frequency offset of ±32kHz. Random timing 

offset and frequency offset (less than the maximum tolerable frequency offset) are included 

in every round of the simulations. Considering some previous research contributions and 

the recommendations from FCC [17] [18], the upper limit of the false alarm probability is 

set as Pf = 0.05 in the simulations. The SNR range in the simulation is set from -25dB 

to -15dB to meet the low SNR recommendations from FCC [ 16]-[l8]. The corresponding 

spectrum sensing threshold is calculated via (3.48).

Figure 3.11 shows the simulation result of the successful detection probability over 

different sensing time M and different SNRs of the received signal from the primary user. 

The simulation results indicate that the proposed spectrum sensing algorithm exhibits a 

very good performance at SNR as low as -20dB, while most existing algorithms can only
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Figure 3.11: Probability of successful detection of pilot-based OFDM spectrum sensing, 
Pd (1,024 subcarriers, 32 pilot subcarriers per OFDM symbol, Pf = 0.05).

-25 -20
SNR [dB]

-15

detect signal with the SNR of minus few dB [20]-[34]. It is also observed from this figure 

that an increase of spectrum sensing time (in terms of the number of OFDM symbols M) 

improves the performance of the algorithm. The mis-detection probability, which is equal 

to 1 - Pd, is also shown in Figure 3.12.

The proposed algorithm is based on detecting the energy on in-band pilots, which 

means an increasing of the power of pilot subcarriers in OFDM symbols will effectively 

improve the performance of the spectrum sensing algorithm. Figure 3.13 shows the per­

formance of the spectrum sensing when an OFDM system with 8096 subcarriers and 512 

pilot tones is adopted. Comparison between these two figures indicates that an increase of 

the pilot subcarriers comes with a better performance in the spectrum sensing.

Also, the impact of cyclic prefix is simulated, and the result is shown in Figure 3.14. 

As we can see from the result, the interference signal from cyclic prefix, which is randomly 

distributed in frequency domain, does not have much impact on the spectrum sensing based
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2

_________ I_________

-20
SNR [dB]

Figure 3.12: Probability of mis-detection of pilot-based OFDM spectrum sensing, Pm
(1,024 subcarriers, 32 pilot subcarriers per OFDM symbol, Pf = 0.05).

-20
SNR [dB]

Figure 3.13: Probability of mis-detection of pilot-based OFDM spectrum sensing, Pm 
(8,096 subcarriers, 512 pilot subcarriers per OFDM symbol, Pf = 0.05).
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Figure 3.14: Pilot-based OFDM spectrum sensing performance, illustration of impacts 
from cyclic prefix (2K subcarriers, 128 in-band pilots, 5% false alarm probability).

on detecting the energy on pilot tones. This is because that the cyclic prefix segment in 

OFDM system is part of data segment, and consequently consists of partial pilot wave, and 

then has very limited impact on the total energy of pilot waves.

To evaluate the sensing time performance of the proposed algorithm, the 2K mode of 

DVB-T signal [53] is used here as an example. For any given {Pm,Pf, γ} combinations, the 

theoretical sensing time M is calculated with (3.53), in which, the inverse Poisson process 

equation, hp(x), is solved with a fast search algorithm. The results in Figure 3.15 show the 

sensing time is in milliseconds. This sensing time of the proposed sensing algorithm meets 

most recommendations from FCC even when SNR is as low as -25dB [16]-[18].
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Figure 3.15: Theoretical spectrum sensing time for DVB-T 2K mode signal.

3.4 Chapter Summary

Energy detection, cyclostationary detection, and pilot-based detection are discussed in this 

chapter, with a focus on pilot-based detection for OFDM signals. The first two techniques 

consider the distribution of the signal energy, and the pilot-based detection use the char­

acteristic of the signal, maximize the contribution of pilot signal, and consequently has a 

better performance at low SNR.

However, several important implementation related technical issues for the pilot-based 

OFDM spectrum sensing technique are rarely considered by previous researchers. Conse­

quently, this thesis investigates the impact of cyclic prefix in OFDM signal, frequency offset 

between transmitter and sensing device, and the noise uncertainty in the sensing threshold 

design. The impact of cyclic prefix is proved to be neglectable in pilot-based OFDM spec­

trum sensing. A new pilot-based OFDM spectrum sensing algorithm with sliding frequency 

correlator is proposed in this Chapter to address the later two issues.
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All the sensing techniques discussed in this chapter have very limited capabilities 

in user identification, which is important for environment awareness in cognitive radio 

network. In the following chapters of this thesis, a new signal design will be proposed to 

enhance the user identification capability in cognitive radio network.
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Chapter 4

Design of PIP-OFDM System

4.1 Motivation of PIP-OFDM

As discussed in Chapter 2 and Chapter 3, previous spectrum sensing methods have very 

limited user identification capabilities. In cognitive radio network, where multiple sec­

ondary users coexist, a reliable user identification technique is needed to achieve a better 

network management. Previous techniques, including cyclostationary detection method, 

identify signal by estimating modulation parameters of received signal. Pilot-based sensing 

method is able to identify some special OFDM signals by differentiating location distribu­

tions of pilot tones in frequency domain [40]. Nevertheless, none of these methods are still 

effective to identify the active secondary user when the secondary users in one cognitive 

radio network use the same modulation method.

Demodulation is an effective solution for identification purpose in some wireless sys­

tems. However, demodulation is very difficult to achieve for spectrum sensing in cognitive 

radio network where the SNRs are very low. Considering the averaging theory gained from 

pilot-based OFDM spectrum sensing technique in Chapter 3, a solution that utilizes pilot 

tones, i.e., PIP-OFDM system, is proposed in this thesis for user identification purpose in 

cognitive radio network. Proposed PIP-OFDM system encodes the pilot tones so that they 

carry ID information of the transmitter. The PIP-OFDM system doesn’t lose any bandwidth 

efficiency because all those precoded in-band pilot tones could be used as traditional pilot
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Figure 4.1: Illustration of pilots in PIP-OFDM signal (frequency domain).

tones in regular communications; at the same time, they could be used for user identifica­

tion during spectrum sensing at low SNR as discussed later.

4.2 Design of PIP-OFDM System

4.2.1 Pilot tones in PIP-OFDM System

Tn the proposed PIP-OFDM system, two groups of pilot tones, uniform pilots and identifi­

cation pilots, are multiplexed with the data-carrying subcarriers in frequency domain. All 

secondary users in one cognitive radio network use the same uniform pilot signal, while 

each secondary user is assigned a unique identification pilot signal. A brief illustration of 

pilot architecture in PIP-OFDM system is shown in Figure 4.1.

Let A be the total number of pilots in the PIP-OFDM signal, including Au of uniform 
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pilots and Ad of identification pilots, which means

A =Au +Ad. (4.1)

Assume that the locations (subcarrier indices) of uniform pilots and identification 

pilots in each OFDM symbol are Lπ and Ld respectively, and the locations are kept the 

same over different symbols. Then the m-th OFDM symbol with N subcarriers from the 

transmitter of s-th secondary user has a structure of

v"(k), keL"

Xs,m(k) = vd(k), ke Ld , k = 0,1,2,...,N-1, (4∙2)

data, otherwise

where vu are the carried information on the uniform pilots, and v, are the identity infor­

mation built in identification pilots, which are also called identification pilot code word. 

Uniform pilots in all transmitters use the same modulating information vu in one CR net­

work for reference purpose, and each transmitter has a unique identification pilot code 

word, vj, with s corresponding to the transmitter ID. To simplify the analysis, the power 

on all pilots is assumed to be the same in this thesis. Mathematically,

v"(ki)l2 = vS(k2) = v3, for ≡ny ki,k2, and s. (4.3)

The corresponding time version of the m-th OFDM symbol in (4.2) could be written

as
1 N-1

Xs,m(n) ==2 Xs,m(k)e)2mkn/N, n = 0, 1,2,...,N- 1. (4.4)
VN k=0

Two pilot reference symbols in frequency domain are introduced here for future use, 
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i.e., uniform pilot reference symbol and spectrum sensing pilot reference symbol. Uniform 

pilot reference symbol is defined as

v"(k) keV
R"(k) = 3 , k=0,1,2....... N-1.

O otherwise
(4.5)

Both the uniform and identification pilots could be used in pilot-based OFDM spec­

trum sensing algorithm, which only considers the energy of one signal. Consequently, the 

spectrum sensing pilot reference symbol is defined as

R(k)12 = 4
k€L

, k = 0,1,2,...,N-1, 
otherwise

(4.6)

where L = IL", LoI are the locations of all pilots.

This completes the architecture of OFDM system with precoded in-band pilots. In 

the PIP-OFDM system, uniform pilots are known to every user in this network, and hence 

could be used for synchronization and channel estimation during the demodulation of iden­

tification pilots. Since the identification pilots are designed to be unique from each sec­

ondary user in one cognitive radio network, user identification is then achievable by iden­

tifying the received signal. Consequently, signal identification, user identification, and 

identification pilots demodulation are equivalent to each other in PIP-OFDM systems.

4.2.2 Design and Precoding of the Pilot Tones

The design of pilot tones in PIP-OFDM system includes the design of uniform pilots and 

that of identification pilots. The design of uniform pilots is similar to traditional pilots 

design in OFDM system, which is a tradeoff between system performances (such as chan­

nel estimation) and bandwidth cost [54]. At the same time, to avoid any direct current
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(DC) component in the transmitted signal, polarity modulated pseudo random sequences 

are frequently used in the design of pilot tones. Details of uniform pilots design, similar to 

traditional pilots design, are not included in this thesis, and could be found in [54].

To facilitate CR receivers (or spectrum sensing device) identify the active secondary 

user through signal identification, it’s apparent to minimize the cross-correlation coefficient 

among identification pilots from different transmitters, which is to maximize the geomet­

ric distance between identification pilot signals from different transmitters in signal space. 

Thereby, the design of identification pilots is similar to channel coding design in digital 

communications (see [55] for channel coding design). Each transmitter has a unique iden­

tification pilot code word vs, and the combination of all the code words make up of a code, 

V , which is the complete identification pilot signals set. With a certain length of identi­

fication pilot code word, an increase of supported users in this network will decrease the 

geometric distance of a code and hence degrade the performance of the user identification. 

Consequently, the design of identification pilot tones is actually a tradeoff between user 

capacity of the network and performance of the user identification.

To design an identification pilot code Vd, a set of orthogonal discrete signals is in­

troduced here:

O= {0ι,02,...,0φ,...,0ψ}. (4.7)

Each of the signal O in this set has the same dimension of identification pilot code word, 

which is the number of subcarriers of identification pilots, A°. There are all together v 

non-zero elements in each signal θφ, and they only take values with the amplitude of vo. 

By orthogonal, it means

Ad ≠ 0, ifi = j
Xoi(k) • o"(k)3 . (4.8) 

k=1 = 0, ifi+j 
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d

Specifically, since there are • non-zero elements in signal Op and they only take 

values with the amplitude of vo, then,

4d 4C.2, ifi=j
>o(k) o'(k) =V 0 . (4.9) 

k=1 0, ifi+j

For the transmitter with the ID of s, the identification pilot code word is expressed as

Ψ 
vS= LCs(p)~ oq, (4∙1°) 

q=1 

where Cs is the unique ID for transmitter s, and cs(q) only takes value of ‘+1’ or ‘-1’. 

Therefore the total number of the active transmitters supported by the proposed identifica­

tion pilots, also called the user capacity of this cognitive radio network, is

S= 2V, vs ad. (4.11)

The distance of the code Vd, which is defined as the minimum geometric distance 

between any two code words in this code, could be expressed as

4d d
D=—=------  (4.12) Ψ log2S

From (4.11), the maximum user capacity (S) of the network with Ad identification 

pilots is 24 . However, having a design with the user capacity of 24 will make the distance 

of the code as D = 1, which would lead to a poor performance for the user identification 

because of the low SNR condition and the strong correlations between identification pilot 

signals from different transmitters. It is therefore necessary to increase the geometric dis­

tance of the designed code to improve the performance of user identification. Fortunately, 
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this is achievable because the number of pilots in a practical system is usually large enough 

to support a large number of identification pilots, and the user capacity of the system does 

not need to be very high in one cognitive radio network. The effectiveness of this design 

will be verified with the user identification theoretical analysis and simulation in Chapter 

6.

This completes the design of PIP-OFDM system. As we presented above, each trans­

mitter has a unique identification pilot code word, and carried information on both the uni­

form pilots and identification pilots for one certain transmitter do not change over time. 

These two important properties of PIP-OFDM signal allow us to identify the active sec­

ondary user using the procedures in the following discussions.

4.3 Spectrum Sensing in PIP-OFDM System

Pilot-based OFDM spectrum sensing algorithm with sliding frequency correlator, as pre­

sented in Chapter 3, could be used in the proposed PIP-OFDM system in cognitive radio 

network for spectrum sensing purpose. The basic principle of pilot-based OFDM spectrum 

sensing is to estimate the energy on the pilot tones of averaged OFDM symbol. The only 

difference between the spectrum sensing in the PIP-OFDM system and that in Chapter 3 is 

that the former one needs to detect the existence of secondary signal, while the later one 

only detects the existence of primary signal. However, the principles of spectrum sens­

ing algorithms in these two conditions are identical. More details of pilot-based spectrum 

sensing for OFDM signal can be found in Chapter 3.
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4.4 Chapter Summary

Since previous signal and system designs for cognitive radio communications perform 

poorly on user identification, an OFDM system with new precoded in-band pilots is pro­

posed in this chapter. Identification pilots in proposed PIP-OFDM system carry unique 

user identity information, and will be used to identify the active user in one cognitive ra­

dio network shown later in Chapter 6. Uniform pilots are also included in the design of 

PIP system, which will be used as reference signal during the synchronization and channel

estimation in the following discussions.
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Chapter5

Synchronization in PIP-OFDM System

5.1 Background of Synchronization in PIP-OFDM

In the proposed PIP-OFDM system, each secondary user is assigned with a unique identifi­

cation pilot signal. Consequently, user identification could be achieved through the demod­

ulation of identification pilots in PIP-OFDM systems, which is based on synchronization 

between transmitter and spectrum sensing device. This Chapter discusses synchronization 

issues in PIP-OFDM systems.

Synchronization in PIP-OFDM systems is different from that in traditional OFDM 

systems mainly in two aspects. First, training symbols are difficult to be utilized for the 

synchronization of PIP-OFDM system considering the lack of handshaking between the 

transmitter and spectrum sensing device. Consequently, some well developed synchroniza­

tion techniques exploiting redundant information in specially designed repeating training 

symbols are not applicable in PIP-OFDM synchronization [41]-[48]. Secondly, since user 

identification is part of spectrum sensing process, the SNR at the receiver side could be very 

low as well. According to some previous research and suggestions [16]-[18], we consider 

the SNR for user identification in CR network from -5dB to 5dB. SNR in synchronization 

is relatively higher than that in spectrum sensing because synchronization is implemented 

to identify the signals from secondary users, which consequently has lower priority and 

lower requirements.
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Repeating signal samples in time domain could be utilized to estimate frequency off­

set by calculating time domain phase shift. This idea was firstly proposed by Moose in 

[41] and has been extended and upgraded in [45]-[48]. Without training symbols or spe­

cially designed repeating segments, PIP-OFDM systems have another option to realize the 

frequency offset estimation, which is exploiting the redundant information in cyclic prefix. 

Using similar approach, fractional timing offset can be estimated, in this thesis, through 

estimating the phase shift of predesigned uniform pilot tones in frequency domain. Con­

sidering low SNR requirement in synchronization, a multiple OFDM symbol processing 

strategy is used in this thesis to improve the synchronization performance.

5.2 Coarse Synchronization Algorithms

An arbitrary timing and frequency offset in OFDM systems include an integer and a frac­

tional parts. Coarse synchronization is also called integer offset estimation. Considering the 

distinctive energy distribution of averaged OFDM signal in frequency domain (see Chapter 

3), coarse frequency synchronization is realized with frequency cross correlation method 

[40]; using the time-domain redundancy in the cyclic prefix of OFDM signal, coarse time 

synchronization is achieved with delay and correlation (DC) method in time domain [49].

5.2.1 Coarse Frequency Synchronization

As discussed in Chapter 3, the power of symbol-by-symbol averaged OFDM symbol has 

a distinctive distribution in frequency domain. As shown in Figure 5.1, noise and data 

subcarriers are mitigated by average processing, while the power on pilot tones keep the 

same. The averaged OFDM symbol Z has a correlation coefficient with local reference
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Figure 5.1: Comparison between the ideal power distribution of an averaged OFDM 
symbol in frequency domain and a simulated example.

(M is the averaged times during the process.)

OFDM symbol in frequency domain as:

( N
2 IR(k)/2 × Z(3 + k)]2

k=1

A82 + A 82/M B=8

A (82 + 82)/ M otherwise
(5.1)

where R(k) is the reference pilot symbol in (3.13), β is the shifted frequency, Si is the integer 

part of frequency offset, and local reference is assumed to be normalized with the power of 

1 unit.

After the average processing, a coarse frequency synchronization can be achieved 

with the cross correlation results between the averaged PIP-OFDM symbol and local refer­

ence. During the coarse frequency synchronization, sliding frequency correlator in Chapter 

3 is used. Similar to the discussion in spectrum sensing, synchronization in PIP-OFDM 

systems also considers M OFDM symbols. A repeating correlation calculation operation 

is implemented by tentatively shifting the averaged received PIP-OFDM symbol, through
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Figure 5.2: Illustration of received OFDM signal with unknown time delay.

which the frequency offset is estimated when maximum cross-correlation is met. Mathe­

matically,
C(B) = ENLI IW2 × Z(+k)2,B= {0,1 ...B- 1}, 

cj = arg maxC(B), 
(5.2)

where B is the additional processing bandwidth in terms of subcarriers number, similar to 

sliding frequency correlator in Chapter 3.

5.2.2 Coarse Time Synchronization

Due to the unknown timing offset, the received OFDM samples contain an unknown delay 

Ti, as shown in Figure 5.2.

Modified delay and correlation (DC) method [49] is proposed to estimate coarse 

timing offset. We first define the index set (see Figure 5.2)

Γ = (Ti, Ti + 1,...,Ti + Ng — 1}. (5.3)

Denote the received time-domain baseband OFDM samples as z(n). The cyclic prefix 

and it’s copies in OFDM signal have a correlation as

H ∈ Γ, (5.4)

0 otherwise
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Figure 5.3: Output of the correlation fonction with DC method. This method can be used 
in PIP-OFDM systems to achieve integer timing offset estimation.

where ε is unknown frequency offset.

Figure 5.3 shows an example of DC method correlation fonction in time domain. 

Using delay and correlation method in time domain, the index of the sample with the max­

imum auto-correlation coefficient of the received OFDM signal is found by [47]:

C(a) =
τj = arg maxC(a). 

a

Considering the low SNR requirement, the performance of the time-domain delay 

and correlation method is very poor. Consequently, similar to coarse frequency synchro­

nization method, performance of coarse time synchronization algorithm can also be im­

proved by processing multiple OFDM symbols. The modified delay and correlation timing 

offset estimation method with multiple processing symbols in the PIP-OFDM system be­

comes to
C(a) = EM EN,2m(n+a)z*(n+N+a),

(5.6) 
τ; = arg maxC(a). Q
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5.3 Fine Synchronization Algorithms

Fine synchronization in OFDM systems is also called fractional offset estimation, including 

fine frequency synchronization and fine time synchronization.

5.3.1 Fine Frequency Synchronization

Fractional frequency offset can be estimated through phase shift estimation in time domain 

with the help of repeating segments or samples [41].

With the assumption that integer offsets have been perfectly estimated, we could 

define the m-th received OFDM symbol with normalized fractional frequency offset of Sf 

and normalized fractional timing offset of Tf as

zm(n) = ym(n - rpe-/2meg"/NS+wm(n),n= O,1,2,...,¾ - 1, (5.7)

where ym(n) is the signal part, and Wm(n) is the noise part. Ns = N + Ng is the length of 

complete OFDM symbol with cyclic prefix, in which Ng is the length of cyclic prefix.

Considering the coherence between cyclic prefix and ending segment of OFDM sym­

bol,

ym(n) = ym(n + N), n = 0,1,2,.,Ng - 1, (5.8)

a correlation function could be written as

M-1 Ng-1
oT=22 zm(n)zm(n+N)

m=0 n=0

M-1 Ng-1
e/2TTEçN/Ns 2 X ym(n-Tpl+%

m=0 n=0

& NgM63 (e/ZTefN/Ns+w), (5.9)
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where w and w‘ are noise terms, and 62 is the power of received signal.

To derive the distribution of w', rewrite the complex Gaussian noise w in (5.9) as

M-1 Ng-1
w=X2 ym(n-Tp)w*(n + N)+m(n + N - TA)Wm(n)+wi(n + N)wm(n), (5.10) 

m=0 n=0

which has a mean of 0, and a variation of

Var(N) = NgM(263 83 + 84), (5.11)

in which δ^ represents the power of noise.

Let y= 83 /oh denote the SNR of received signal, then

w - No, 1+2x .
NgMy2) (5.12)

From (5.9), the fractional frequency offset could be estimated through the correlation 

function:

êr = ----- OT
1 2nN

= ----- tan - 
2πN

Im (HT)

Re (HT)
9 (5.13)

where Re(-) and Im(-) represent the functions of getting the real and imaginary part of the 

variable respectively.

Since the phase can only be resolved in the [-π, π] range, the algorithm above can 

only estimate the frequency offset within -)fs, fs ' where fs = 1/Ts is the sam­

pling frequency. This range is acceptable after the coarse synchronization, which restricts 

the frequency offset in a fractional value.
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5.3.2 Fine Time Synchronization

The OFDM system is not very sensitive to fractional timing offset since the phase rota­

tion caused by fractional timing offset could be corrected in equalization after channel 

estimation in frequency domain. Fine time synchronization is then seldom considered by 

previous researchers. However, subcarriers (uniform pilots) used for channel estimation in 

PIP-OFDM systems are very limited to achieve precise enough channel estimation results. 

Consequently, fine time synchronization is necessary for user identification in PIP-OFDM 

systems.

Some fractional timing offset estimation techniques were proposed in [56]-[59] by 

calculating cross-correlation with the help of preambles or training symbols. Neverthe­

less, as presented above, the absence of training symbols during the synchronization of 

PIP-OFDM systems makes these methods not applicable. A cyclic prefix auto-correlation 

technique was proposed by Sandell [50] to achieve fine time synchronization, while hav­

ing limited performance in multipath channel where cyclic prefix correlation coefficient is 

relatively weak.

In PIP-OFDM systems, carried information on uniform pilots are known to every 

user in this cognitive radio network. This information could be regarded as repeating infor­

mation in frequency domain, and consequently used for fractional timing offset estimation 

similar to fractional frequency offset estimation algorithm.

Two assumptions about the channel need to be made before introducing the frac­

tional timing offset estimation algorithm. Firstly, the channel is assumed to be slow vary­

ing, which means the channel impulse response keep the same during the process of user 

identification, which lasts for M OFDM symbol time. Secondly, the channel is assumed to 

be slow fading, which means channel response is assumed to be the same on two adjacent 

uniform pilots subcarriers in frequency domain.
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Assume that integer timing offset, integer frequency offset, and fractional frequency 

offset have been perfectly estimated through discussions above, the signal in frequency 

domain could actually be written as

Zm(k) = H(k)Xm(k)e-J2rkTg/N + W(k),k = 0,1,2,.. „N- 1, (5.14) 

where, H(k) is the frequency domain channel response (channel transfer function) on the 

k-th subcarrier, and W(k) is the noise in frequency domain.

Fractional timing offset estimation is achieved based on coherence information on 

uniform pilots. This leads us to average the received OFDM signal symbol-by-symbol to 

mitigate the influences from data subcarriers and noise. The averaged OFDM symbol with 

fractional timing offset can be expressed as

_ 1 M-1
Z(k) = — > Zm(k)

m=0
1 M-1

=2 [H(k)X(k)e-J2mTA/N + W(k)]
m=0

= H(k)X(k)e-/2mkTg/N + W(k), ⅛∈Lu, (5.15)

where,

W(k) ~ N (0, 62/M), k € L", (5.16) 

is averaged complex Gaussian noise.

Without loss of generality, we assume transmitted signal has a power of 1, then the 

power of channel response is identical to received signal’s power, 63. Considering the 

coherence of channel response between adjacent uniform pilot tones,

H(L"(D)) ≈ H(Lu(l + 1)), 1 = 0,1,2,... ,Λw - 2, (5.17)
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a correlation function could be defined and calculated as

F - 4S3 Z[L"()] z"["(+1)]
L X[LM(D)] X*[L"(I+ 1)]

Au-2
~ 2 H[L"()]2e/2mTrLZ"C+1)-L"OJN + W.

1=0
(5.18)

Assume that the uniform pilots are evenly distributed in frequency domain, or math­

ematically:

L"(+ 1)-L“() = N,for 7 = 0,1,2,...,J"-2. 
Au (5.19)

Therefore the correlation function in (5.18) could be written as

Au-2
oh = X H[L“()]‘eJ2ug/A" + W 

1=0
% (A"-1)62ej2zTg/A“ + W, (5.20)

where W is noise term.
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For future usage, rewrite the noise W in (5.20) as

AU-2 _
7=X [H*(L"(1+1)) W(L" ()) + H (L"(D) W'(L"(l+1) 

1=0
+ w* (Lu (1+ 1))W(L" ())

A"-2 _ _~ X[H* (L" ()) W(L"() + H(L"(+ 1))W*(L"(+ 1)) 
1=0 ■

+ W'(L"(+1)) W(L"()]

= H* (L" (0)) W(L" (0)) + H(L" (Au - 1)) W (L" (Au - 1))
Au-2

+ E[h (L" (D) W(L" (D) + H(L" (D))w" (L" (D)] 
∕=1

Au-2
+2 w* (L"(+1)) W(L"(I) 

l=o
= H* (L" (0))W (L" (0))+H (L"(Au - 1))W* (L"(Au-1)

Au-2 _ • Au-2 
+2 2 Re[H" (L"(D)) W(L"(D)]+ X W*(L"(I+ 1)) W(L"()) 

1=1 l=0
= W1+WZ, (5.21) 

where A"-2 _ 
Wi=2 2 Re[H* (L" (D)) W(L"(D)] (5.22) 

1=1 
is a zero-mean real Gaussian noise, and 

, 26262 (A" - 2)) Wi ~ N 0, —— 2.
Y M)
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The noise term

W2 = H* (L" (0)) W(L" (0)) + H(L" (Au - 1))W* (Lu(Au - 1)) 

Au-2
+ Σ w°("(+ 1) W(L"()

1=0

is a zero-mean complex Gaussian noise, and

per „( 8 (A" 1) + 2M0263W2NO,- - - - - - M2- - - - - - - (5.25)

From (5.20), fractional timing offset could be estimated using the phase correlation 

function in frequency domain as

Tf = doF 
1 2π

AU . Im (F)
= — tan 1 —-—-

27 Re(pF)
(5.26)

According to the estimation function from (5.26), this algorithm can only be used 

to estimate timing offset within the range of [-A“Ts/2, A"Ts/2]. However, this is usu­

ally larger than a sample period. Since a timing offset larger than half sample period time 

will lead to integer sample timing offsets, and consequently introduce intersymbol interfer­

ence (ISI), the timing offset estimation range of proposed fractional timing frequency offset 

estimation algorithm is [-Ts/2, Ts/2], where Ts is sampling interval. The integer part of 

timing offset could be corrected by the coarse time synchronization in previous discussions.
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5.4 Performance Analysis of Synchronization in

PIP-OFDM

Mean square error (MSE) is frequently used to evaluate the performance of synchroniza­

tion in communication systems. We only consider the performance analysis of fine syn­

chronization in this thesis. Some relative research results about coarse synchronization 

performances could be found in [47] and [49].

5.4.1 Performance of Fine Frequency Synchronization

To formulate the MSE of fractional frequency offset estimator presented above, we firstly 

introduce a formula

— - tan (2"Er) 
Re(T) VNs ∕

* Re(QT) ' Ns f∕

Assume that the observation time is long enough, which means M is large enough, 

making êf - 8 < %. This leads to

23N

Split the complex white Gaussian noise w‘ in (5.12) into real and imaginary part, we 

have

w= wR+j. w‘, (5.29)
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where both wh and w1 are real Gaussian variables, and they have the same distribution as

WR ~ Mo, 1+2y), wi ~ No, 1+2x). (5.30)( 2NgMy2) ( 2NgMy2) ‘

According to (5.28) and (5.29), formula of (5.27) could be written as

êf — Sf ≈

Ns cos(2REçN/Ns )+wR cos(2nEçN/Ns)
2zN1+sin(2zeçN/Ns)+w1 sin(2TeçN/Ns) 

cos(2?EçN/Ns )+wR cos(2reçN/Ns)
2/EeN R . 2/EeN

27N1 + wRcos 2TEEN + wIsin ZTEAN
(5.31)

Since M is large enough, making NgM is large enough to have w‘ ≪ 1. Consequently,

êf — Ef %
NT 27EFN

-----  w cos--------
2xN Ns

Sin
2nEfN

Ns
(5.32)

Assuming that Ef is uniformly distributed:

T( Ns , Ns A 
( 2N2 2N2 ) (5.33)

we have the expected fractional frequency offset estimation error as

and its variance as
( N. 2 1+2yVar (ê-s) = (-)----------- 5, (5.35)

T " (2nN) 2NgMγ2 1 

which is the mean square error of fractional frequency offset estimation.
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5.4.2 Performance of Fine Time Synchronization

The analysis of performance of fine time synchronization is similar to that of fine frequency 

synchronization, but slightly different in noise term distribution.

To formulate the MSE of fractional timing offset estimator presented above, we 

firstly introduce a formula

tan
tan (AZfr) - tan (AWTr) 

1 + tan (AWfr) tan (Art) 
Im(~F) /9. X 
Re(of)-tenla"T)

Re(F) ^ 7
(5.3 6)

From (5.20) and (5.21), the real and image parts of the correlation coefficient of 

could be respectively written as

Re(of) = (A" - 1)63 cos (2xT«/A“) +Re(W)

= (A" - 1)63 cos (2xTr/A")+W + Re(w2), (5.37)

and,

Im (NF) = (A" - 1)62 sin (2xrr/A")+Im (W)

= (A" - 1)62 sin (2*Tr/A“) + Im (W2). (5.38)
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Consequently,

∕ , Im(W) Im (HF) sin (2"Tf/A“)+(4u-1)62

where,

Re(HF) , ,\ ∕ cos (2nTf/A“) +

sin (2AT/A“) +

COS (2ATf/A“) +

Re(w) 
(4"-1)62

Im(w2) 
(A"-1)63 

W{+Re(w2) 
(AW-1)62

_ sin (2πτf∕Au) + WI 
cos (2xTA/Au) + WR'

(5.39)

WR - Wi+Re(W2) 
(A"-1)63 

, Im(w') WI= ——2) . (A"-1)63

(5.40)

are zero-mean real Gaussian noise terms. It is easy to get, from (5.23) and (5.25), the 

distributions of WR and WI as

wR-A(0 4MA"Y-6My+(A"-1))
∖ 2M2,2(Au-1)2)

W1 ~ n(q 2My+(A"-1).)
" r 2M2y2(Au-1)2)°

(5.41)

Assume that the observation time is long enough, which means M is large enough, 

making ff - Tfl < 2 This leads to

(5.42)
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Consequently,

sin(2nTg/A“)+W1 sin(2nTA/.A“) 
Au cos(2nTf/A¥)+wK CGsfatTfjA*)
2z. sin(2zrrç/A")+wl sin(2πτf∕Au)

+ cos(2πτf[Au)+WR cos(2πτf∕Au)
Au wlcos’A# - WRsin 2AT
2T1+wl sin 25+WR sin 2EE (5.43)

Considering M is large enough, making both WR and WI much smaller than 1,

f-TF % A(w'cos 2TIf - WRsin 27Tf).
T 2n Au Au ) (5.44)

For a special case, to get an example of theoretical performance of timing offset esti­

mation algorithm, assume that after the coarse time synchronization, the fractional timing 

offset is small enough to make

cos 2pu a 1, and sin 2*D a 0. (5.45)

Consequently, the variance of fractional timing offset estimation error is

2My+(A-1) 
2M2y2 (qu - 1)2’

(5.46)

which is the mean square error of fractional timing offset estimation.
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5.5 Simulations

Theoretical performances of fractional frequency and timing offset estimation algorithms 

in (5.35) and (5.46) are demonstrated in Figure 5.4. In these two figures, the number of 

subcarriers in OFDM signal is set to be N = 256. A cyclic prefix with length of Ng = 32 is 

inserted in front of each OFDM symbol before transmission. A = 16 pilots are multiplexed 

with data subcarriers in each OFDM symbol, including Au = Z uniform pilots and Ad = 8 

identification pilots. Though the OFDM system is very sensitive to frequency offset, it’s 

shown in this figure that MSE of frequency offset estimation is very small even at very 

low SNR around -5dB. The timing offset estimation has a relatively worse performance. 

However, since the OFDM system is not very sensitive to timing offset, and equalization 

will correct the phase shift caused by timing offset, MSE of timing offset around 10-3 

degree is acceptable for most OFDM systems.

To simulate the synchronization algorithms for PIP-OFDM systems proposed above, 

Monte Carlo simulations are performed. Same parameters as theoretical performances in 

Figure 5.5 are used in these simulations. Random timing offset and frequency offset are 

included in every simulation round. Figure 5.5(a) and Figure 5.5(b) illustrate simulation 

results of fractional frequency offset estimation and fractional timing offset estimation re­

spectively. Theoretical performances are also drawn in these two figures, which are slightly 

different from simulation results when SNRs are lower. This is because approximations in 

theoretical analysis are not precise when SNR is relatively lower.

5.6 Chapter Summary

This chapter discusses synchronization issues of OFDM systems with precoded in-band 

pilots (PIP-OFDM), with a focus on fractional timing and frequency offset estimations,
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Figure 5.4: Theoretical fine synchronization performances in PIP-OFDM system (256 
subcarriers system with 8 uniform pilots, and 8 identification pilots), (a) Theoretical MSE 

of frequency offset estimation, (b) Theoretical MSE of timing offset estimation.
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Figure 5.5: Simulated fine synchronization performances in PIP-OFDM system (256 

subcarriers system with 16 identification pilot tones is used), (a) MSE of frequency offset 
estimation, (b) MSE of timing offset estimation.
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which are realized by estimating phase shift in frequency and time domain, respectively. 

Coarse timing and frequency synchronization algorithms are also briefly discussed with 

correlation methods. Since synchronization in PIP-OFDM systems is achieved at low SNR, 

and consequently has poor performances, we use a multiple OFDM symbol processing 

strategy to improve the performance at low SNR during the synchronization considering 

the special pilots design of PIP-OFDM.



79

Chapter 6

User Identification in PIP-OFDM System

In the proposed PIP-OFDM system, identification pilots carry ID information of the trans­

mitter. The demodulating of identification pilots in proposed PIP-OFDM systems is then 

equivalent to user identification, which is also called signal identification considering the 

unique identification pilots design of every secondary user in one cognitive radio network.

The demodulation of identification pilots in the PIP-OFDM system is different from 

data demodulation in traditional OFDM systems. The properties that the modulated in­

formation on pilots remain unchanged over different symbols, and that the modulating 

information on uniform pilot tones are known to every user in this network, enable us 

to explore following processing to identify the signal. During the user identification in 

PIP-OFDM systems, uniform pilots are regarded as pilots in conventional OFDM systems; 

identification pilots are considered as data subcarriers in normal OFDM systems; and the 

data subcarriers in PIP-OFDM systems are processed as noise in traditional OFDM sys­

tems. Since there is an average processing in spectrum sensing device, the data subcarriers 

will not have much impact on the user identification process, similar to pilot-based OFDM 

spectrum sensing in Chapter 3.

6.1 Channel Estimation and Equalization

In order to mitigate channel effects on the received signal, channel estimation is required 

to provide information for further processing of the received signal. Channel estimation 
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is achievable for synchronized OFDM signal with known uniform pilots. In PIP-OFDM 

system, carried information on uniform pilots are known to each user in current cognitive 

radio network, therefore channel estimation can be achieved with Comb-type Pilot Symbol 

[60]-[61]. Consequently, MMSE estimator [62], low-rank approximation of MMSE esti­

mator [63], reduced-order ML [64] estimator are all applicable in the PIP-OFDM system 

for channel estimation purpose. Note that in PIP-OFDM system, the ML estimator and the 

low rank approach can be derived only if the number of pilot subcarrier, meaning uniform 

pilots here (A“), is greater than the number of channel taps or the length of the guard in­

terval (cyclic prefix). Subsequently, equalization can be achieved with channel estimation 

results easily using traditional equalization methods [65]. Details of channel estimation 

and equalization are not included in this thesis.

6.2 User Identification Algorithm

According to the insertion of identification pilots as discussed in Chapter 4, user identifica­

tion could be realized by demodulating identification pilots.

6.2.1 Demodulation and Identification Process

Since the channel has been estimated, and for the convenience of discussion, channel is 

assumed to be additive white Gaussian noise (AWGN) channel in the demodulation and 

decoding discussions, with the channel response of Hol in frequency domain.

From the PIP-OFDM architecture presented in Chapter 4, the identity of the received 

signal is estimated by

c(φ) = sgn∖Re 2 Z(k)oç(k)
LkeLd

•, φ=l,2....... ψ, (6.1)
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where.

sgn(x) = 4 (6.2)

Since each transmitter has a unique ID Cs, the signal is then identified by the esti­

mated ID c.

6.2.2 Performance Analysis of User Identification in PIP-OFDM

Lower bound of the Identification Error Rate (IER) is provided in this thesis to evaluate the 

theoretical performance of user identification in PIP-OFDM system. Identification Error 

Rate means the probability that the receiver side falsely identified the active user. By lower 

bound, it means the IER is calculated in ideal situation where OFDM symbol is perfectly 

synchronized using algorithms in Chapter 5, and channel frequency response is perfectly 

estimated using channel estimation method above. In this situation, the ID of received 

signal is estimated as

(6.3)

— 82
in which, φ = 1,2,..., ψ, and the averaged noise W(k) has a variance of 7. Function Re(∙) 

means getting the real part of the variable.

Since carried information on pilots keep the same on every transmitted OFDM sym­

bol, and from the structure of transmitted signal Xm in (4.2), the estimated ID in (6.3) could
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be written as

e(p) = sgn Re 2 Holvg@k)oç()+W()oq() .
I keLd Jj

(6.4)

From (4.10), where

vg(k) = X cs(qp)-oq(k), k ∈ Ld, (6.5)

the estimation of ID can be written as

c(φ) = Holcs(q) • oq(k)oc(k) + W(k)oç(k)

sgn3Re 2 Holcs(qp) ■ 0qp(k)2 + W(k)oG(k) |
( LkeLdJJ 

Cs(qp) + W'(q), (6.6)

where W' is an equivalent noise term.
d

Since Og has only V non-zéro points (see Chapter 4), and each takes value with the 

amplitude of vo, consequently.

W'~N
0____⅛____
2Mv3Hol2Ad

(6.7)

Assume that pilot tones have the same power with data subcarriers. Then the received 

OFDM signal has the power of v3Hol2. Consequently, the SNR of the received signal could 

be written as
⅛∣¾∣2 

7=62
Therefore,

WN(0, ψ J. 
∖ 2MyAd)

(6.8)

(6.9)
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The bit error rate (BER) of the ID estimation is

. ‘ 2MyAdPb = Q ∖∖——

where the Q-function is defined as

(6.10)

(6.11)

Any bit error in ID c will lead to an identification error. Therefore, the lower bound 

of identification error rate (IER) is formulated as

Pi = 1 - (1 - Pp)Y

2MyAd
(6.12)

6.2.3 Simulations

Simulation results are provided in this section to verify the effectiveness of the proposed 

PIP-OFDM design. An OFDM system with 2K subcarriers is adopted in these simulations.

There are altogether A = 128 pilot tones in the designed OFDM signal, which includes 

Au = 64 uniform pilots and A° = 64 identification pilots. To simulate the performance of 

user identification, two scenarios are considered in this simulation, i.e., ψ = 8 in Figure 

6.1(a), and ψ = 16 in Figure 6.1(b), representing cognitive radio networks with the user 

capacity of S = 28 and S = 216, respectively. For comparison purpose, the theoretical 

lower bound of IER is also calculated through (6.12), and plotted in the figures. It is shown 

in both figures that the simulated IERs are slightly higher than the corresponding lower 

bounds of IERs, which are caused by the synchronization errors. Comparing Figure 6.1 (a)
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Figure 6.1: User identification performance in terms of identification error rate (2K 
subcarriers system with 64 identification pilot tones is used), (a) ψ = 8. (b) ψ = 16. 
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and Figure 6.1(b), it is anticipated that the identification performance degrades when the 

user capacity of one cognitive radio network increases. During the design and implemen­

tation of this system, the user capacity of the system is set to be the maximum possible 

number of secondary users in this network.

6.3 Chapter Summary

This chapter presents the identification process in PIP-OFDM system. With synchroniza­

tion algorithms described in Chapter 5, channel estimation and equalization can be realized 

with the help of uniform pilots. Demodulation and decoding are then performed to achieve 

user identification. Methodology, principle, theoretical performance, and simulations of 

identification algorithm in PIP-OFDM system are presented in this chapter.
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Chapter7

Conclusions and Future Works

7.1 Contributions of This Thesis

Three main contributions have been achieved in this thesis, including a comparison and 

improvement on spectrum sensing technologies, the proposal and design of a new Precoded 

In-band Pilots (PIP) system and its application of user identification in cognitive radio 

communications, and the development of enabling techniques for the proposed PIP-OFDM 

system.

Major spectrum sensing techniques for cognitive radio communications are discussed 

and compared with the essential principle of energy acquisition during the sensing process, 

with a focus on pilot-based spectrum sensing for OFDM signals. A new pilot-based OFDM 

spectrum sensing algorithm with sliding frequency correlator is proposed to address tech­

nical difficulties caused by frequency offset and noise uncertainty.

Considering the poor user identification performances of current spectrum sensing 

techniques, this thesis proposes a new OFDM system design with precoded in-band pilots 

(PIP-OFDM), which embeds uniform pilots and identification pilots in transmitted signal, 

and carries user ID information on identification pilots. By demodulating identification 

pilots in PIP-OFDM system, user identification in cognitive radio network can be realized 

in low SNR conditions.
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Enabling techniques for the implementation of PIP-OFDM system are investigated 

in this thesis, with a focus on synchronization algorithms at low SNR. Without specifi­

cally designed training symbols, coarse synchronization in PIP-OFDM system is realized 

with correlation methods; fractional frequency offset estimation in PIP-OFDM system is 

realized by a modified maximum likelihood algorithm in this thesis; a new fractional tim­

ing offset estimation algorithm is proposed by estimating phase shift in frequency domain 

using predesigned uniform pilots. To meet the low SNR requirement, synchronization 

performance is improved using a multiple OFDM symbols processing strategy in these 

algorithms.

7.2 Future Works

Due to the existence of unknown sampling frequency offset, the maximum number of aver­

aging times during the spectrum sensing has its limit. This is also one of the technical prob­

lems for pilot-based spectrum sensing method at low SNR. A practical sampling frequency 

offset estimation method is needed for the implementation of pilot-based spectrum sensing 

and PIP-OFDM system. Alternatively, a maximum number of averaging times should be 

determined for different maximum sampling frequency offset during the implementation of 

PIP-OFDM system.

The average processing time in the proposed pilot-based spectrum sensing technique 

and implementation of PIP-OFDM system has yet one requirement on the stability of the 

transmission channel, i.e., channel coherence time requirement. Channels used in this the­

sis are assumed to be either static or slow varying. Similar to the difficulty caused by 

sampling frequency offset, channel variation also limits the maximum number of average 

times in the investigations of this thesis.
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Precoded in-band pilots, in this thesis, are used to carry ID information of transmitter. 

Actually, as a general design, precoded in-band pilot technique can be used in other areas, 

such as bandwidth efficiency improvement and controlling information transmission.

The encoding method in this thesis is based on a simple orthogonal encoding the­

ory. However, in practical systems, other encoding techniques, such as pseudo random 

sequence, can be used in precoded in-band pilots design for a better efficiency and robust­

ness.



89

References
[1] Federal Communications Commission, “FCC Online Table of Frequency Alloca­

tions,” Jan. 2010.

[2] J. Mitola, “Cognitive radio an integrated agent architecture for software defined 
radio,” Ph.D. dissertation, KTH Royal Institute of Technology, Stockholm, 2000.

[3] J. Mitola, Software Radios: Wireless Architecturefor the 21st Century, John Wiley 
& Sons Inc, 2000.

[4] S. Haykin, “Cognitive Radio: Brain-Empowered Wireless Communications,” IEEE 
J. SelectedAreas in Commun., vol. 23, no. 2, pp. 201-220, Feb. 2005.

[5] J. Yang, “Spatial channel characterization for cognitive radios,” Master’s thesis, 
EECS Department, University of California, Berkeley, CA, USA, 2004.

[6] D. B. Cabric and R. W. Brodersen, “Cognitive radios: System design perspective,” 
Ph.D. dissertation, EECS Department, University of California, Berkeley, Berke­
ley, CA, USA, Dec. 2007.

[7] IEEE 802.22, IEEE 802 LAN/MAN Standards Committee 802.22 
WG on WRANs (Wireless Regional Area Networks). [Online]. 

.http://grouper.ieee.org/groups/802/22

[8] T. Yucek and H. Arslan, “A survey of spectrum sensing algorithms for cognitive 
radio applications,” IEEE Commun. Survers & Turorials, vol. 11, no. 1, pp. 116­
130, First Quarter 2009.

[9] S. Haykin, D. J. Thomson, and J. H. Reed, “Spectrum Sensing for Cognitive Ra­
dio,” Proceedings of the IEEE, vol. 97, no. 5, pp. 849-877, May 2009.

[10] D. Cabric, S. Mishra, and R. Brodersen, “Implementation issues in spectrum sens­
ing for cognitive radios,” in Proc. Conference Record of the Thirty-Eighth Asilomar 

http://grouper.ieee.org/groups/802/22


References 90

Conference on Signals, Systems and Computers (ACSSC ’04), Nov. 2004, pp. 772­
776.

[11] Y. D. Alemseged and H. Harada, “Spectrum sensing for cognitive radio,” in Proc. 
IEEE Radio and Wireless Symposium (RAWCON’08), Jan. 2008, pp. 356-359.

[12] A. Ghasemi and E. Sousa, “Spectrum sensing in cognitive radio networks: require­
ments, challenges and design trade-offs,” IEEE Commun. Mag, vol. 46, no. 4, pp. 
32-39, April 2008.

[13] R. Chen, J. Park, and J. Reed, “Defense against Primary User Emulation Attacks 
in Cognitive Radio Networks,” IEEE J. Select. Areas Commun., vol. 26, no. 1, pp. 
25-37, Jan. 2008.

[14] Z. Quan, S. Cui, A. Sayed, and H. Poor , “Optimal Multiband Joint Detection for 
Spectrum Sensing in Cognitive Radio Networks,” IEEE T. Signal Process., vol. 57, 
no. 3, pp. 1128-1140, March 2009.

[15] Z. Han and H. Jiang, “Replacement of spectrum sensing and avoidance of hidden 
terminai for cognitive radio,” in Proc. IEEE Wireless Communications and Net­
working Conference (WCNC’08), March-April 2008, pp. 1448-1452.

[16] Advanced Television Systems Committee, “ATSC Recommended Practice: Re­
ceiver Performance Guidelines,” June 2004.

[17] G. Chouinard, D. Cabric, and M. Ghosh, “Sensing thresholds,” IEEE 802.22 (IEEE 
802.22-06/005 Ir3), May 2006.

[18] FCC, “FCC OET Bulletin No. 69: Longley-Rice methodology for Evaluating TV 
Coverage and Interference,” Feb. 2004.

[19] W. A. Gardner, A. Napolitano, and L. Paura, “Cyclostationarity: half a century of 
research,” Signal Process., vol. 86, no. 4, pp. 639-697,2006.

[20] A. Fehske, J. Gaeddert, and J. Reed, “A new approach to signal classification using 
spectral correlation and neural networks,” in Proc. First IEEE International Sympo­
sium on New Frontiers in Dynamic Spectrum Access Networks (DySPAN’05), Nov. 
2005, vol. 1, pp. 144-150.



References 91

[21] P. Sutton, K. Nolan, L. Doyle, “Cyclostationary Signatures in Practical Cognitive 
Radio Applications,” IEEE J. Select. Areas Commun., vol. 26, no. 1, pp. 13-24, 
Jan. 2008.

[22] Q. Zhao and B. M. Sadler, “A Survey of Dynamic Spectrum Access,” IEEE Signal 
Processing Magazine, vol. 24, no. 3 pp. 79-89, May 2007.

[23] Y. Xing, R. Chandramouli, S. Mangold, and S. Shankar, “Dynamic spectrum access 
in open spectrum wireless networks,” IEEE J. SelectedAreas Commun., vol. 24, no. 
3, pp. 626-637, March 2006.

[24] I. Akyildiz, W. Lee, M. Vuran, and S. Mohanty, “Next generation/ dynamic spec­
trum access/cognitive radio wireless networks: a survey,” Elsevier Computer Net­
works, vol. 50, pp. 2127-2159,2006.

[25] C. Santivanez et al., “Opportunistic Spectrum Access: Challenges, Architecture, 
Protocols,” in Proc. Wireless Internet Conf, Aug. 2006.

[26] Q. Zhao and A. Swami, “A Decision-Theoretic Framework for Opportunistic Spec­
trum Access,” IEEE T. Wireless Commun., vol. 14, no. 4, pp. 14—20, Aug. 2007.

[27] Q. Zhao, L. Tong, A. Swami, and Y. Chen, “Decentralized cognitive MAC for 
opportunistic spectrum access in ad hoc networks: A POMDP framework,” IEEE 
T. Wireless Commun., vol. 25, no. 3, pp. 589-600, April 2007.

[28] N. Tewfik and A. Acoustics, “Sequential pilotsensing of ATSC signals in IEEE 
802.22 cognitive radio networks Kundargi,” in Proc. IEEE International Confer­
ence on Speech and Signal Processing (ICASSP ’08), April 2008, pp. 2789-2792.

[29] C. Carlos, M. Ghosh, C. Dave, and C. Kiran, “Spectrum Sensing for Dynamic 
Spectrum Access of TV Bands,” in Proc. International Conference on Cognitive 
Radio Oriented Wireless Networks and Communications (CrownCom ’08), Aug. 
2007, pp. 225-233.

[30] M. Ghosh, “Text on FFT-based Pilot Sensing,” IEEE 802.22 (doc. 22-07-0298-01­
0000), July 2007.

[31] H. Chen, W. Gao, and D. Daut, “Spectrum Sensing for OFDM Systems Employing 
Pilot Tones and Application to DVB-T OFDM,” in Proc. IEEE ICC ’08, May 2008, 
pp. 3421-3426.



References 92

[32] F. Socheleau, P. Ciblat, and S. Houcke, “OFDM System Identification for Cognitive 
Radio Based on Pilot-Induced Cyclostationarity,” in Proc. IEEE Wireless Commu­
nications and Networking Conference (WCNC ’09), April 2009.

[33] S. Tu, K. Chen, and R. Prasad, “Spectrum Sensing of OFDMA System for Cog­
nitive Radios,” in Proc. IEEE International Symposium on Personal, Indoor and 
Mobile Radio Communications (PIMRC’07), Sep. 2007, pp. 1-5.

[34] X. Wang, H. Chen, Y. Wu, J. Chouinard, and C. Wang, “Identification of PCP- 
OFDM Signals at Very Low SNR for Spectrum Efficient Communications,” in 
Proc. IEEE VTC‘09 Spring, April 2009.

[35] B. Shent, L. Huang, C. Zhao, Z. Zhou, and K. Kwak, “Energy Detection 
Based Spectrum Sensing for Cognitive Radios in Noise of Uncertain Power,” in 
Proc. International Symposium on Communications and Information Technologies 
(ISCIT’07), Oct. 2008, pp. 628-633.

[36] D. Chen, J. Li, and J. Ma, “Cooperative Spectrum Sensing under Noise Uncertainty 
in Cognitive Radio,” in Proc. International Conference on Wireless Communica­
tions, Networking and Mobile Computing (WiCOM’08), Oct. 2008, pp. 1-4.

[37] B. Le, T. W. Rondeau, D. Maldonado, and C. W. Bostian, “Modulation Identifica­
tion Using Neural Network for Cognitive Radios,” in Proc. Software Defined Radio 
Forum Technical Conference, Anaheim, CA, 2005.

[38] T. Yucek and H. Arslan, “OFDM Signal Identification and Transmission Parameter 
Estimation for Cognitive Radio Applications,” in Proc. IEEE Globecom ’07, Nov. 
2007, pp. 4056-4060.

[39] P. D. Sutton, K. E. Nolan and L. E. Doyle, “Cyclostationary Signatures in Practical 
Cognitive Radio Applications,” IEEE Journal on Selected Areas in Communica­
tions, vol. 26, no. 1, pp. 13-24, Jan. 2008.

[40] C. Wang, X. Wang, H. Li, and P. Ho, “Multi-window Spectrum Sensing of Un­
synchronized OFDM Signal at Very Low SNR,” in Proc. IEEE Globecom ’09, Dec. 
2009.



References 93

[41] P. H. Moose, “A technique for orthogonal frequency division multiplexingfre­
quency offset correction,” IEEE T. Commun., vol. 42, no. 10, pp. 2908-2914, Oct. 
1994.

[42] D. S. Han, J. H. Seo, and J. J. Kim, “Fast carrier frequency offset compensation in 
OFDM systems,” IEEE T. Consumer Electronics, vol. 47, no. 3, pp. 364—369, Aug. 
2001.

[43] T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for 
OFDM,” IEEE T. Commun., vol. 45, no. 12, pp. 1613-1621, Dec. 1997.

[44] B. Ai, J. Ge, Y. Wang, S. Y. Yang, P. Liu, and G. Liu, “Frequency offset estimation 
for OFDM in wireless communications,” IEEE T. Consumer Electronics, vol. 50, 
no. 1, pp. 73-77, Feb. 2004.

[45] M. Hlaing, V. K. Bhargava, and K. B. Letaief, “A robust timing and frequency 
synchronization for OFDM systems,” IEEE T. Wireless Commun., vol. 2, no. 4, pp. 
822-839, July 2003.

[46] M. Morelli and U. Mengali, “An improved frequency offset estimator for OFDM 
applications,” IEEE Commun. Lett., vol. 3, no. 3, pp. 75-77, March 1999.

[47] T. Keller, L. Piazzo, P. Mandarini, and L. Hanzo, “Orthogonal frequency divi­
sion multiplex synchronization techniques for frequency-selective fading chan­
nels,” IEEEJSAC, vol. 19, no. 6, pp. 999-1008, June 2001.

[48] J. J. van de Beek, M. Sandell, and P. O. Bogesson, “ML estimation of time and 
frequency offset in OFDM systems,” IEEE T. Signal Processing, vol. 45, no. 7, pp. 
1800-1805, July 1997.

[49] T. Keller, and L. Hanzo, “Orthogonal frequency division multiplex synchronisation 
techniques for wireless local area networks,” in Proc. IEEE PIMRC ’96, Oct. 1996, 
vol. 3, pp. 963-967.

[50] M. Sandell, J. J. van de Beek, and P. O. Borjesson, “Timing and frequency synchro­
nization in OFDM systems using the cyclic prefix,” in Proc. International Symm- 
posium on Synchronization 1995, Dec. 1995, pp. 16-19.



References 94

[51] P. Chevillat, D. Maiwald, and G. Ungerboeck, “Rapid Training of a Voiceband 
Data-Modem Receiver Employing an Equalizer with Fractional-T Spaced Coeffi­
cients,” IEEE T. Commun., vol. 35, no. 9, pp. 869-876, Sep. 1987.

[52] M. L. Lieu and T. D. Chiueh, “A low-power digital matched filter for direct- 
sequencespread-spectrum signal acquisition,” IEEE J. Solid-State Circuits, vol. 36, 
no. 6, pp. 933-943, June 2001.

[53] ETSI Standard, “Digital Video Broadcasting (DVB); Framing structure, channel 
coding and modulation for digital terrestrial television,” EN 300 744 V1.5.1, June 
2004, available at http://pda.etsi.org/pda/queryform.asp

[54] M. Dong and L. Tong, “Optimal Design and Placement of Pilot Symbols for Chan­
nel Estimation,” IEEE T. Signal Process., vol. 50, no. 12, pp. 3055-3069, Dec. 
2002.

[55] S. Haykin, Communication Systems, 4th Ed. New York: Wiley, 2001.

[56] F. Tufvesson, O. Edfors, and M. Faulkner, “Time and frequency synchronization 
for OFDM using PN-sequence preambles,” in Proc. IEEE VTC 99 ’fall, Sep. 1999, 
vol. 4, pp. 2203-2207.

[57] M. Lieu, and T. Chiueh, “A low-power digital matched filter for direct- 
sequencespread-spectrum signal acquisition,” IEEE J. Solid-State Circuits, vol. 36, 
no. 6, pp. 933-943, June 2001.

[58] A. Fort, J. W. Weijers, V. Derudder, W. Eberle, and A. Bourdoux, “A perfor­
mance and complexity comparison of auto-correlation and cross-correlation for 
OFDM burst synchronization,” in Proc. IEEE International Conference on Acous­
tics, Speech, and Signal Processing (ICASSP ’03), April 2003, vol. 2, pp. II- 341-4.

[59] R. van Nee, and R. Prasad, OFDMfor Wireless Multimedia Communications, Nor­
wood, MA: Artech House Publishers, Jan. 2000.

[60] M. Hsieh and C. Wei, “Channel estimation for OFDM systems based on comb-type 
pilot arrangement in frequency selective fading channels,” IEEE Transactions on 
Consumer Electronics, vol. 44, no.l, pp. 217-225, Feb. 1998.

http://pda.etsi.org/pda/queryform.asp


References 95

[61] M. Morelli and U. Mengali, “A comparison of pilot-aided channel estimation meth­
ods for OFDMsystems,” IEEE T. Signal Processing, vol. 49, no. 12, pp. 3065-3073, 
Dec. 2001.

[62] J. J. van de Beek, O. Edfors, M. Sandell, S. K. Wilson, and P. 0. BGrjesson, “On 
channel estimation in OFDM systems,” in Proc. IEEE Veh. Tech. Conf. (VTC’95), 
July 1995, pp. 815-819.

[63] O. Edfors, M. Sandell, J. J. van de Beek, S. K. Wilson, and P.O. Brjesson, “OFDM 
channel estimation by singular value decomposition,” IEEE T. Commun., vol. 46, 
no. 7, pp. 931-939, July 1998.

[64] L. Deneire, P. Vandenameele, L. van der Perre, B. Gyselinckx, and M. Engels, “A 
low-complexity ML channel estimator for OFDM,” IEEE T. Commun., vol. 51, no. 
2, pp. 135-140, Feb. 2003.

[65] T. D. Chiueh and P. Y. Tsai, OFDMBaseband Receiver Designfor Wireless Com­
munications, John Wiley and Sons (Asia) Pte Ltd, 2007, pp. 138-140.


	PIP-OFDM System Design and Application for Cognitive Radio Communications
	Recommended Citation

	PIP-OFDM System Design and Application for Cognitive Radio Communications

	Abstract

	Acknowledgements

	Table of Contents

	List of Figures

	Acronyms

	Chapter 1

	Overview of The Thesis

	1.1	Overview of the Thesis

	1.2	Thesis Organization

	1.3	Notations in the Thesis


	Chapter 2

	Motivation and Background

	2.1	Motivation of the Thesis

	UNITED


	2.2	Review of Related Works

	2.2.1	Cognitive Radio and Dynamic Spectrum Access

	2.2.2	Spectrum Sensing Techniques for Cognitive Radio

	2.2.3	User Identification

	2.2.4	Synchronization Technologies in OFDM System


	2.3	Summary


	Chapter 3

	Spectrum Sensing for Cognitive Radio Communications

	3.1	Background of Spectrum Sensing

	3.1.1	Definition of Cognitive Radio

	3.1.2	Definition of Spectrum Sensing

	3.1.3	Requirements and Challenges of Spectrum Sensing


	3.2	Spectrum Sensing Techniques Overview

	3.2.1	Two Hypotheses in Spectrum Sensing


	H1: z(t) = MO + w(t)

	H : z(t) = w(t) 
	3.2.2	Energy Detection and Matched Filter Detection



	€ = Xz(n)/2,	(3.2)

	3.2.3	Cyclostationary Detection

	At/2

	C -Zr(tf+v/2)Z(,f-u/2)di.

	3.3	Pilot-based Spectrum Sensing for OFDM

	3.3.1	System Model and Assumptions

	x, [xm(1), xm(2),xm(3),...,xm(N)] »

	Xm(n) =-2 Xm(k)e"2mkn/N, VN k=0

	H1: Zm - Ym + Wm


	Ho : Zm = Wm

	3.3.2	Principle of Pilot-based OFDM Spectrum Sensing


	Z(k) = X Zm(k),

	3.3.3	Challenges of Pilot-based OFDM Spectrum Sensing

	3.3.4	Impacts of Timing Offsets and Cyclic Prefix


	z(t) = y(t - T)+ w(t).

	Y(k) =NL y(n)e

	yg = yd( -N + 1),yd(N - Ng + 2),... ,yd(M)]T .

	= Ya()+YE().

	3.3.5	Pilot-based OFDM Spectrum Sensing with SFC

	3.3.6	Noise Uncertainty and Threshold Design

	3.3.7	Theoretical Analysis of Pilot-based OFDM Spectrum Sensing




	C(B) = XvW(]2 kEL

	C(B) = Xv(w*(a)° +

	= Xw'(a)2

	4

	Wo - M0,1),

	2A 2	$2


	C(B)= 2 N32NWo =/82MXZ4

	~~,2 A8h

	for Ho.


	Pf(A)

	Z44=1-(1-P,)b.	3.45)

	a=0

	3.3.8 Simulations

	3.4 Chapter Summary



	Chapter 4

	Design of PIP-OFDM System

	4.1	Motivation of PIP-OFDM

	4.2	Design of PIP-OFDM System

	4.2.1	Pilot tones in PIP-OFDM System

	4.2.2	Design and Precoding of the Pilot Tones

	>o(k) o'(k) =V 0	.	(4.9) k=1	0,	ifi+j

	S= 2V, vs ad.	(4.11)

	D=—=-			(4.12) Ψ log2S



	4.3	Spectrum Sensing in PIP-OFDM System

	4.4	Chapter Summary


	Chapter5

	Synchronization in PIP-OFDM System

	5.1	Background of Synchronization in PIP-OFDM

	5.2	Coarse Synchronization Algorithms

	5.2.1	Coarse Frequency Synchronization

	5.2.2	Coarse Time Synchronization


	5.3	Fine Synchronization Algorithms

	5.3.1	Fine Frequency Synchronization

	M-1 Ng-1


	oT=22 zm(n)zm(n+N)

	M-1 Ng-1

	e/2TTEçN/Ns 2 X ym(n-Tpl+%

	M-1 Ng-1

	w=X2 ym(n-Tp)w*(n + N)+m(n + N - TA)Wm(n)+wi(n + N)wm(n), (5.10) m=0 n=0

	Var(N) = NgM(263 83 + 84),

	(5.12)

	Re (HT)

	5.3.2	Fine Time Synchronization


	Z(k) = — > Zm(k)

	1 M-1

	=2 [H(k)X(k)e-J2mTA/N + W(k)]

	m=0


	= H(k)X(k)e-/2mkTg/N + W(k), ⅛∈Lu,	(5.15)

	F - 4S3 Z[L"()] z"["(+1)]

	L X[LM(D)] X*[L"(I+ 1)]

	Au-2

	~ 2 H[L"()]2e/2mTrLZ"C+1)-L"OJN + W.

	1=0

	(5.19)


	Au-2

	Tf = doF 1 2π


	AU . Im (F)

	= — tan 1 —-—-

	27 Re(pF)



	5.4	Performance Analysis of Synchronization in

	PIP-OFDM

	5.4.1	Performance of Fine Frequency Synchronization



	WR ~ Mo, 1+2y), wi ~ No, 1+2x).	(5.30)

	( 2NgMy2) ( 2NgMy2) ‘

	Ns cos(2REçN/Ns )+wR cos(2nEçN/Ns)

	5.4.2	Performance of Fine Time Synchronization


	wR-A(0 4MA"Y-6My+(A"-1))

	∖ 2M2,2(Au-1)2)

	W1 ~ n(q 2My+(A"-1).)

	" r 2M2y2(Au-1)2)°


	(5.41)

	2z. sin(2zrrç/A")+wl sin(2πτf∕Au)

	+ cos(2πτf[Au)+WR cos(2πτf∕Au)

	Au wlcos’A# - WRsin 2AT

	2T1+wl sin 25+WR sin 2EE

	(5.43)

	f-TF % A(w'cos 2TIf - WRsin 27Tf).

	(5.44)

	cos 2pu a 1, and sin 2*D a 0.	(5.45)

	2My+(A-1) 2M2y2 (qu - 1)2’

	(5.46)


	5.5	Simulations

	5.6	Chapter Summary


	Chapter 6

	User Identification in PIP-OFDM System

	6.1	Channel Estimation and Equalization

	6.2	User Identification Algorithm

	6.2.1	Demodulation and Identification Process

	2 Z(k)oç(k)


	sgn(x) = 4

	6.2.2	Performance Analysis of User Identification in PIP-OFDM

	vg(k) = X cs(qp)-oq(k),

	(6.11)

	Pi = 1 - (1 - Pp)Y

	(6.12)


	6.2.3	Simulations



	6.3	Chapter Summary


	Chapter7

	Conclusions and Future Works

	7.1	Contributions of This Thesis

	7.2	Future Works


	References



