
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2008

SOFTWARE DEFECT REDISCOVERIES: CAUSES, TAXONOMY AND SOFTWARE DEFECT REDISCOVERIES: CAUSES, TAXONOMY AND

SIGNIFICANCE SIGNIFICANCE

Shyamsundar Kulkarni
Western University

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Kulkarni, Shyamsundar, "SOFTWARE DEFECT REDISCOVERIES: CAUSES, TAXONOMY AND SIGNIFICANCE"
(2008). Digitized Theses. 4558.
https://ir.lib.uwo.ca/digitizedtheses/4558

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4558&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/4558?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4558&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

SOFTWARE DEFECT REDISCOVERIES:
CAUSES, TAXONOMY AND SIGNIFICANCE

(Spine title: Software Rediscoveries: Causes, Taxonomy and Significance)

(Thesis format: Monograph)

by

Shyamsundar Kulkarni

Graduate Program in Computer Science

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Science

Society of Graduate and Postdoctoral Studies
The University of Western Ontario

London, Ontario, Canada

© Shyamsundar Kulkarni 2008

THE UNIVERSITY OF WESTERN ONTARIO
SCHOOL OF GRADUATE AND POSTDOCTORAL STUDIES

CERTIFICATE OF EXAMINATION

Supervisor

Dr. Nazim Madhavji

Supervisory Committee

Dr. Mechelle Gittens

Examiners

Dr. Mike Bauer

Dr. Mark Perry

Dr. Matt Davison

The thesis by

Shyamsundar Kulkarni

entitled:

Software Defect Rediscoveries: Causes, Taxonomy and Significance

is accepted in partial fulfillment of the
requirements for the degree of

Master of Science

Date___________________________ ________________________________
Chair of the Thesis Examination Board

ii

Abstract

A software defect rediscovery is a software failure caused by a previously reported

defect. It has been observed that a majority of field software failures are

rediscoveries which account for typically 50% but sometimes as much as 90% of

the total failures. A number of causes for defect rediscoveries have been identified

in the literature and solutions have been designed to address some of them. For an

organization aiming at reducing the cost due to the rediscoveries, it is important to

understand the significance of each of these causes. The significance of each cause

will guide the organization to utilize the known solutions or design new ones if

necessary, to ultimately reduce the cost to the organization due to rediscoveries.

In this thesis, we identify and define the causes for rediscoveries, both on the side of

the software provider as well as the software user and design a taxonomy for these

causes. We establish the significance of each of the causes for rediscoveries by

conducting two exploratory based empirical case studies.

The overall findings of this study suggest that the delay on the software providers’

side to provide the patch contributes to approximately 50% of the rediscoveries;

whereas, that on the software users’ side to install the patch contributes to

approximately 50% of the rediscoveries. This overall result is further broken down

quantitatively into specific causes, which are all described in this thesis.

From a practitioner’s point of view, the results of this investigation will provide the

decision support regarding the designing and prioritizing of various policies and

solutions aimed at reducing the cost due to rediscoveries. From a research point of

view, the results of our investigation add to the existing body of knowledge on the

causes for rediscoveries in software systems.

Keywords: software engineering, software rediscoveries, causes for rediscoveries,

empirical study, and software quality

iii

Acknowledgements

First and foremost, I would like to thank my supervisor, Dr. Nazim H. Madhavji,

and my co-supervisor, Dr. Mechelle Gittens, for their guiding support, motivation

and supervision in the carrying out of this research.

I am also thankful to all my colleagues: Andriy Miranskyy and Remo Ferrari for

numerous discussions that helped in refining my research investigation; Zude Li,

Syed Shariyar Murtaza and Colin Taylor for their help with data gathering; Quazi

Rahman for his helpful comments and suggestions during my research.

I would like to thank Mark Wilding and Dave Godwin from IBM, Toronto for their

help with research validation and overall support throughout the research process.

I also would like to thank Mitch Dawson and Marguerite Doyon from Research

Infotech, London for their help with research design and validation as well as data

gathering.

Lastly, I would like to thank the participants of the study; I greatly appreciate the

effort that was expended in the research, and hope that the research output will be of

good value to everyone.

iv

TABLE OF CONTENTS

Certificate of Examination...ii
Abstract..iii
Acknowledgements... iv
Chapter 1: Introduction... 1

1.1 Motivation... 1
1.2 Purpose of the Study.. 3
1.3 Significance and Originality of the Study... 4
1.4 Thesis Organization..4

Chapter 2: Background...5
2.1 Preventive Maintenance Policy... 5
2.2 Diagnosis Technologies...6
2.3 Patch Risk Evaluation...8
2.4 Patch Management Tools... 11

Chapter 3: Literature analysis and Research Problem definition................13
Chapter 4: Rediscovery causes and their Inter-relationships..................... 15
Chapter 5: Significance of Rediscovery causes...21

5.1 The Research Methodology...21
5.1.1 The Goal Question Metric Approach..21

5.1.1.1 GQM Measurement Model..22
5.1.2 Formulation of Research Objectives at the GQM Operational
Level...22
5.1.3 Motivation for choosing the Case Study approach as the
research method...37

5.2 The Case Studies...39
5.2.1 The Case Study - Software Provider...39

5.2.1.1 Components of Research Design..39
5.2.1.2 Quality of Research Design...42
5.2.1.3 The Customer Technical Support Process..............................45
5.2.1.4 Bookkeeping across the Customer Technical Support
Process..46
5.2.1.5 Dataset profile...48
5.2.1.6 Analysis of Failure and Defect data..49
5.2.1.7 Results and Interpretation..53

5.2.2 The Case Study - Software User... 55
5.2.2.1 Components of Research Design..55
5.2.2.2 Quality of Research Design... 57
5.2.2.3 Data Collection...60
5.2.2.4 Dataset profile...61
5.2.2.5 Results and Interpretation..63

Chapter 6: Implications, Future work and Summary..................................... 87
6.1 Implications of Research Findings...87

6.1.1 Maintenance processes in the software industry......................... 87

V

6.1.2 Customer Technical Support processes in the software industry
 88
6.1.3 Development of framework for measuring the impact of
rediscovery causes..88
6.1.4 Patch management policies of software users..............................88

6.2 Future Work...88
6.3 Conclusion... 89

Glossary.. 91
Bibliography...93
Appendices...97

Appendix A..97
Curriculum Vitae...102

vi

List of Tables

Table 1 Short Description about causes for rediscoveries... 18
Table 2 Experts who participated in the validation of rediscovery cause taxonomy.....19
Table 3 GQM Research Objective 1... 23
Table 4 GQM Research Objective 2... 24
Table 5 GQMResearch Objective 3... 24
Table 6 GQM Research Objective 4... 25
Table 7 GQM Research Objective 5... 25
Table 8 GQM Research Objective6... 27
Table 9 GQM Research Objective 7... 29
Table 10 GQM Research Objective 8... 31
Table 11 GQM Research Objective 9...33
Table 12 GQM Research Objective 10... 35
Table 13 GQM Research Objective 11... 37
Table 14 Relevant Situations for Different Research Strategies [Yin 2003].................. 38
Table 15 Attribute descriptions of the ER diagram (Figure 8) of the bookkeeping
activities during customer technical support process... 48
Table 16 Results: Case study - Software Provider...53
Table 17 Statistical interpretation of results: Case study - Software Provider [Rumsey]
..54
Table 18 Experts involved in the validation of questionnaire (see Appendix A for
questionnaire)..59
Table 19 Relative delays in patch installation due to various causes for rediscoveries..84

vii

List of Figures

Figure 1 Software Development and Service Process... 1
Figure 2 Diagnosing rediscovered software problems...6
Figure 3 Diagnosis and recovery from rediscovered software problems........... 7
Figure 4 Patch Risk Evaluation..9
Figure 5 Optimal time to patch [Beattie 2002]...10
Figure 6 Rediscovery cause taxonomy...16
Figure 7 The Customer Technical Support Process..45
Figure 8 Entity Relationship Diagram of bookkeeping data in the technical
support process...47
Figure 9 Results (Chart): Case study - Software Provider................................. 53
Figure 10 Demographic data of respondents - Software type.......................... 61
Figure 11 Demographic data of respondents - Industry....................................62
Figure 12 Demographic data of respondents -Organization size..................... 62
Figure 13 Demographic data of respondents - IT department size..................63
Figure 14 Demographic data of respondents - Experience level......................63
Figure 15 Results - Research Objective 06..64
Figure 16 Results - Research Objective Q7..65
Figure 17 Results - Research Objective - Q8..66
Figure 18 Results - Research Objective Q9..67
Figure 19 Results -Research Objective Q10... 68
Figure 20 Results - Research Objective 011..69
Figure 21 Results - Research Objective 012..70
Figure 22 Results - Research Objective 013..71
Figure 23 Results-Research Objective Q14...72
Figure 24 Results - Research Objective Q15..73
Figure 25 Results - Research Objective 016..74
Figure 26 Results - Research Objective Q17..75
Figure 27 Results - Research Objective Q18..76
Figure 28 Results - Research Objective 019..77
Figure 29 Results - Research Objective Q20..78
Figure 30 Results - Research Objective Q21..79
Figure 31 Results - Research Objective Q22..80
Figure 32 Results - Research Objective Q23.. 81
Figure 33 Results - Research Objective Q24.. 82
Figure 34 Relative importance of causes (2.2.2 - 2.2.6) w.r.t. the decision to
delay a patch installation..83
Figure 35 Relative importance of causes (2.2.2 - 2.2.6) w.r.t. the decision to
cancel a patch installation..85

viii

Chapter 1: Introduction

1.1 Motivation

It is difficult to create a very large, complex software system that is completely free of

defects [Adams 1984]. Once the software, whether the very first release or subsequent

enhancements with new features, is developed and released to the field many users run

the software and report problems. These problems are addressed by the software

provider in several steps. Problems are subjected to diagnosis to identify the defect,

fixes for these defects are created, and interim versions of the software are released to

the field [Lee Iyer 2000]. The interim versions containing defect fixes are known as

software patches or more simply as patches. This process is represented in figure 1.

New
Feature

Users

Failure
Report

Diagnosis

Designing VerificationRequirements
Engineering

Designing
of Fix

Implementation

Figure 1 Software Development and Service Process

A software defect rediscovery, henceforth referred to as rediscovery, is a software

failure caused by a previously reported defect. It has been observed that a majority of

field software failures are rediscoveries. The study by Lee and Iyer shows that about

70% of the reported software failures are rediscoveries [Lee Iyer 2000]. The study by

Alan Wood shows that more than 50% of the reported software failures are

rediscoveries [Wood 2003]. The study by Brodie et al. shows that rediscoveries are

1

common in large software products and form a major cost component of product

support [Brodie 2005]. The research further quantifies the number of rediscoveries as

accounting for typically half and sometimes as many as 90% of the software failures.

Rediscoveries exist for several reasons. Firstly, resolving a failure to identify a defect,

designing, testing and disseminating of the fix of the software defect can take a

significant amount of time. In the meantime, the defect can cause failures in the same

user site or different user sites [Lee Iyer 2000]. Secondly, patch installation requires

system downtime. However, business requirements limit the amount of downtime

available to the users. This may force the users to postpone the patch installation to the

next available maintenance opportunity. This delay can cause rediscoveries [Lee Iyer

2000] [Baumann 2004] [Baumann 2005] [Altekar 2005]. Thirdly, a purported patch for

a defect can fail [Lee Iyer 2000]. Fourthly, users who do not experience the failure due

to a particular defect may not be inclined towards installing the available patch for that

defect for fear that doing so might cause new problems, as is sometimes the case with

patches [Lee Iyer 2000] [Altekar 2005] [Ballintijn 2005] [Gerace 2005] [Jansen 2005]

[Gkantsidis 2006] [Pasala 2006] [Crameri 2007] [Pasala 2008]. Users like to test the

patches before installation to overcome the skepticism that it might cause new problems

[Beattie 2002]. This delay could also lead to rediscoveries. Also, some users limit the

number of patches they install on their systems since they want to keep the changes

made to their systems minimal due to this skepticism [Crameri 2007]. This could lead to

more rediscoveries. Fifthly, patch management involves a number of sub-processes like

analyzing the risk to which the systems are exposed, testing the patches before

installation, the actual patch installation on production systems, etc which necessitates

considerable IT staff resource. Some users do not have adequate IT staff resource for

this purpose, which forces them to limit the frequency of patch installation on their

systems [Beattie 2002] [Gerace 2005]. Finally, the complexity of the patch installation

process might cause the users to limit the frequency of patch installation on their

systems [Wood 2003].

2

A variety of approaches have been proposed to reduce the product support cost due to

rediscoveries. The research by Adams [Adams 1984], Cobb et al. [Cobb 1992], Lee, Pitt

and Iyer [Lee Pitt Iyer 1996], Lee and Iyer [Lee Iyer 2000], and Brodie et al. [Brodie

2005] are all efforts in this direction, each directed at one or more causes for the

rediscoveries discussed before. However none of these solutions individually can be a

“silver bullet” against the rediscoveries since none of them address all the causes for

rediscoveries. An assortment of these solutions and some new ones may be necessary to

eliminate most of the cost due to rediscoveries. Hence, for an organisation aiming at

reducing the cost due to the rediscoveries, it is important to understand the significance

of each of these causes for rediscoveries. The significance of each cause will guide the

organization to utilize the known solutions or design new ones if necessary to ultimately

reduce the cost to the organisation due to rediscoveries.

1.2 Purpose of the Study

A number of causes for rediscoveries have been mentioned in the literature as identified

in section 1.1. Also, a variety of approaches have been mentioned in the literature which

target one or more of these causes for rediscoveries as identified as well in section 1.1

and further elaborated on in chapter 2. However none of these solutions individually

addresses all the causes1 for rediscoveries. An assortment of these solutions and some

new approaches may be necessary to eliminate most of the cost due to rediscoveries.

Hence, for an organisation aiming at reducing the cost due to the rediscoveries, it is

important to understand the significance of each of these causes for rediscoveries. The

significance of each cause will provide decision support for designing and prioritizing

of various policies and solutions targeted at the rediscovery causes so that associated

costs can be reduced.

Here we do not address rediscoveries caused due to the software providers’ decision to release a
software product with known defects.

From a software engineering practitioner’s point of view the knowledge regarding

various causes for rediscoveries and their significance will guide an organisation, which

is aiming to reduce the cost due to rediscoveries, to cost-effectively adopt solutions to

3

reduce the cost due to rediscoveries. From a research point of view, the results of this

investigation would add to the existing body of knowledge on the causes for

rediscoveries in software systems.

1.3 Significance and Originality of the Study

Understanding the causes for rediscoveries and their significance is critical to reduce the

cost due to rediscoveries. The insight gained from the study may prove invaluable in

this case. To achieve this, the study is aimed at creating a list of causes for rediscoveries

identified both from literature and industry practitioners. A software development

organisation operates under critical resource constraints. The cost of any effort directed

at a ‘cause’ must justify the benefits gained from the effort. Some causes may be more

significant than others. Hence, it is not only important to identify the causes but also to

determine the significance of each cause, which is one of the goals of the study.

In the limited work done on software rediscoveries, to our knowledge, there is no work

which exclusively deals with causes for rediscoveries and their significance, which we

have accomplished in our study.

1.4 Thesis Organization

The thesis is structured as follows: Chapter 2 presents a synthesis of related works from

the research literature; Chapter 3 presents the literature analysis and research problem in

detail; Chapter 4 presents the rediscovery cause taxonomy; Chapter 5 is where we

address the significance of rediscovery causes, and present the methodology of our

investigation and also the two case studies conducted as a part of this research; Chapter

6 summarizes the thesis by discussing the implications of the findings and conclusions

from the study, and also suggests future work in this area.

4

Chapter 2: Background

There has been extensive research regarding software defect rediscoveries - the cost

incurred due to the rediscoveries [Lee Iyer 2000] [Wood 2003] [Brodie 2005], the

causes for rediscoveries [Lee McRee Bartlett 1996] [Baumann 2004] [Baumann 2005]

[Altekar 2005] [Ballintijn 2005] [Jansen 2005] [Gkantsidis 2006] [Pasala 2006]

[Crameri 2007] [Pasala 2008] and various approaches to reduce the cost due to the

rediscoveries [Adams 1984] [Cobb 1992] [Lee Pitt Iyer 1996] [Lee Iyer 2000] [Brodie

2005] [Thornton Quema 2005] [Dungan 2004] [Beattie ‘2002]. All these approaches

target one or more causes for rediscoveries identified in section 1.1. These approaches

can be broadly classified into three categories based on the cause they target. Preventive

maintenance policy deals with the delay in dispatching of the fix to users which can

cause rediscoveries [Adams 1984]. Diagnosis technologies deal with the delay in the

diagnosis of the failure to identify the defect [Cobb 1992] [Lee McRee Bartlett 1996]

[Lee Iyer 2000] [Brodie 2005]. Patch risk evaluation approaches deal with the

skepticism of users that the patch would cause more harm than good on installation

[Thornton Quema 2005] [Dungan 2004] [Beattie 2002]. Finally, we deal with

technologies which automate most of the tasks involved in patch installation, thus

simplifying it. It is important to note here that a complex patch installation process is

one of the reasons for users not frequently installing patches made available by the

software provider, on their systems thus causing rediscoveries.

2.1 Preventive Maintenance Policy

The delay to dispatch the patch for a defect can add to the overall delay on part of the

software provider in providing the patch for a defect thus causing rediscoveries at user

sites. Some defects cause isolated rediscoveries among users whereas others are more

widespread. Thus the cost of this delay is more in case of defects which cause

widespread rediscoveries than in case of defects which cause isolated rediscoveries.

Hence it is prudent to immediately dispatch the fixes for defects which are known to

cause widespread rediscoveries among users. This policy was introduced and advocated

by E.N. Adams [Adams 1984] and is known as preventive maintenance. E.N. Adams

further concluded in his study that defects which surface during the initial days of

5

product release are the ones which cause widespread rediscoveries among users.

Although these defects form a small percentage of total defects discovered throughout

the product life cycle they account for relatively large percentage of rediscoveries

[Mullen Gokhale 2005]. Hence, he advises that preventive maintenance policy makes

most sense in case of defects identified in the initial stages of product release. However

we can argue that this can be extended beyond the “version 1.0” release of the software

product. It is a common knowledge that in the case of a commercial software product,

features are continuously being added to the software product as it evolves. Hence each

release of a new feature can itself be regarded as “version 1.0” release for that particular

feature and expect that the defects related to that feature which surface during the initial

days after this feature release will cause widespread rediscoveries among users who are

using that particular feature. Hence, it is possible to extend the application of this policy

throughout the life cycle of a software product to reduce the cost due to rediscoveries.

2.2 Diagnosis Technologies

Each failure has to be analyzed to identify the defect in software, which is termed as

diagnosis [Lee Iyer 2000]. The delay in diagnosis can add to the overall delay on the

part of the software provider to provide the fix for a defect. Cobb et al. addressed a

systematic failure data collection method to support manual diagnosis performed by

analysts which will hasten the failure resolution [Cobb 1992].

User System Service Center

Failed
Software

Local
Diagnosis

Tool

Alarm Failure
Database

Failure
Data

Diagnosis Rediscovery
Service Info

Development
Problem

Resolution

Figure 2 Diagnosing rediscovered software problems

[Lee Iyer 2000]

6

Diagnosis consumes many service resources when no automated help is available. In

work by Lee and Iyer [Lee Iyer 2000], the researchers propose an approach to

automatically determine whether a new failure reported is a rediscovery or not. The

block diagram of the system designed by Lee and Iyer is shown in figure 2. At each user

site, along with the actual software, a local diagnosis tool is installed. Whenever a

failure occurs the local diagnostic tool collects various data regarding the failure and

sends it online to the diagnostic tool in the service center. The diagnostic tool in the

service center compares this data with the data of the previous failures to determine

whether this new failure is due to an already known defect, in which case it is a

rediscovery. Hence, the system after analysis can determine whether the current failure

is a ‘rediscovery’ or a ‘discovery’. In case of a rediscovery, the service information

necessary to recover from the current failure and to prevent such failures in future is

immediately dispatched to the user. And in the case of a discovery the development

team is engaged to determine the defect in the software product which caused the failure

and fix it. The patch containing the defect fix is later dispatched to the user. The work

by Brodie et al. [Brodie 2005] proposes a solution similar to the one by Lee and Iyer

[Lee Iyer 2000].

Center
User ! Service

System Impending
Failure Alarm

Recovery
Info. A

Local
Diagnosis
Tool

Failing
Software

Diagnosis Tool

Failure Database
- Symptoms
- Service Info.

Figure 3 Diagnosis and recovery from rediscovered software problems

[Lee McRee Bartlett 1996]

7

Lee, MeRee and Bartlett [Lee McRee Bartlett 1996] propose an approach to recover

from impending failures due to known defects. The idea is to use the knowledge of the

characteristic symptoms of an already known defect and the appropriate recovery action

for the defect to detect the impending failure and recover from it. The whole process is

shown by the block diagram in figure 3. A local diagnosis tool, installed with the

software at the user site, detects an impending failure through data collected during

program execution. It sends the relevant data online to the diagnosis tool at the service

center. The diagnosis tool at the service center compares this data with the data of

historical failures in the failure database. If a suitable match is found, which means the

impending failure is in fact an impending rediscovery, the relevant service information

is extracted and sent online back to the local diagnosis tool at the user site. The local

diagnosis tool interprets this service information and takes necessary steps to recover

from the impending failure.

2.3 Patch Risk Evaluation

One of the causes for rediscoveries is the users’ failure to install the patch in spite of it

being made available by the software provider. One of the reasons for a user not to

install the patch is the skepticism of the user that the patch will cause more ‘harm’ than

‘good’. The ‘harm’ may come in the form of a breakage in functionality, degradation in

performance, etc. The work by Thornton and Quema [Thornton Quema 2005] deals

with the skepticism of users that patching their systems may cause more harm than

good. They provide a decision support tool for the users to evaluate the risk due to patch

installation on their systems. One common reason for this skepticism is the existence of

third-party and in-house applications that are probably not tested with the patch by the

software provider.

8

Clearin ghouse
1

1

— —

_

«

(------------------)
Client

Figure 4 Patch Risk Evaluation

[Thornton Quema 2005]

Thornton and Quema [Thomton Quema 2005] advocate a system which has a central

repository where users who have already installed the patch upload their experience,

‘good’ or ‘bad’, with respect to the patch and their context which is nothing but their

configuration and interfacing applications. This activity is shown by the clients on the

left side of the clearing house in figure 4. Any new user can now get a measure of the

‘goodness’ of the patch with respect to his context by querying the repository. This

activity is shown by the client on the right side of clearing house in figure 4. This

measure of ‘goodness’, which is shown as ‘prob=0.95’ for patch P45 as an example in

figure 4, can be used for decision making related to patch installation.

The work by Beattie et al. also deals with the skepticism of users that patching their

systems may cause more harm than good [Beattie 2002]. When a new patch is released

not all users install the patch immediately as some are skeptical about the ‘goodness’ of

the patch. Here the term ‘goodness’ means the ability of the patch to render the systems

working normally without any issues related to functionality or performance. A patch is

defined as ‘good’ if does not cause any issues with system functionality or performance

after installation. Users who have IT staff resources will do a second round of testing

9

before installing the patch. Any information about encountered problems related to the

patch will be shared with others, like the provider of the patch and in other user forums

including those on the internet. Users who have not installed the patch and have no

resources to test the patch themselves will make use of this information to decide

whether to install the patch or not. Just ignoring the patch will increase the risk of

hitting the relevant failure with time. However, the risk of a bad patch decreases with

time as other people install the patch and share their experience. Hence, there is an

optimal time after the release of the patch when systems can be patched. The study by

Beattie et al. calls this the ‘optimal time to patch’ [Beattie 2002].

Risk

Time

Bad patch risk «
Failure risk •

Optimal time to patch ■

A hypothetical graph of risks of loss from failure
and from application of bad patch. The optimal
time to patch is the time where the risk lines cross

Figure 5 Optimal time to patch [Beattie 2002]

The work by Dungan et al. also deals with the skepticism of users that patching their

systems may cause more bad effects than good effects [Dungan 2004]. The policy that

Dungan et al. propose for estimating the likelihood that a patch will be destabilizing is

10

based on the following thesis: patches from one software provider that impact dynamic

libraries or configuration files loaded by applications from another software provider

are the least likely to have been previously tested together. The organization releasing

the patch may be able to test some applications beforehand, but it is unlikely to be able

to test all third-party applications affected by the patch. These patch-application

combinations pose the greatest concern during patch deployment. The policy Dungan et

al. propose for targeted rollout during the testing phase is to patch the minimum number

of machines that still provides the required coverage of impacted applications.

The suite of components implemented by Dungan et al. provides the self-monitoring

infrastructure to allow this targeted deployment. Even with this ability to target, an

organization may still not have sufficient testing resources to thoroughly test patches

before deployment. In this case, these same polices can also guide the deployment of

patches automatically. If a phased rollout is desired, the patches can be incrementally

rolled out to machines based on each machine’s mix of running applications - the

component suite provides sufficient visibility that an organization can avoid patching all

of the machines performing one operation at once. If instead the desire is to classify

some patches for immediate deployment, and to delay other patches for testing, those

patches that do not directly affect libraries or configuration settings used by mission-

critical third-party applications can be identified and chosen for immediate deployment.

2.4 Patch Management Tools

One of the causes for rediscoveries is the users’ failure to install the patch in spite of it

being made available by the software provider. One of the reasons for a user not to

install the patch is the complexity of the patch installation process. State-of-the-art

patch management tools automate many aspects of the patch installation process. These

relieve the user from the complexity of the patch installation process. Commercial

products such as Microsoft Baseline Security Analyzer [MBSA], Tivoli [Tiv],

Microsoft Systems Management Server [SMS], or Corporate Windows Update [WU]

offer the ability to automatically check for the availability of relevant patches,

download and apply them. These tools are especially critical when patches need to be

11

installed over a network on a large number of systems. However, these solutions deal

only with simplifying the patch installation process.

12

Chapter 3: Literature analysis and Research Problem definition

Each of the approaches described in chapter 2 is targeted towards one or more causes

for rediscoveries. Preventive maintenance policy and diagnosis technologies are

targeted at reducing the delay on the part of the software provider to provide the patch

to the user. Patch risk evaluation technologies provide decision support to the users in

their patch installation decisions by resolving their skepticism to some extent. Patch

management tools simplify most of the aspects of the patching process and eliminate

complexity from the process to encourage users to install patches whenever they are

made available by the software provider.

However, none of these solutions individually can be a ‘silver bullet’ to eliminate most

of the cost due to rediscoveries. Hence, we need an assortment of these solutions, and

possibly new ones, to eliminate most of the cost due to rediscoveries. In such a situation

it becomes increasingly important to understand the phenomenon of rediscoveries more

deeply. That is, we need to understand not only the causes for rediscoveries but also any

inter-relationships among them (i.e., taxonomy) and the significance of each cause. The

taxonomy adds to the knowledge-base on rediscoveries. From a cost perspective, the

significance of a cause is the proportion of the cost that particular cause is contributing

to the total rediscovery cost. Knowing the significance of each cause could guide

organisations to efficiently utilize the known solutions, or design new ones if necessary,

to ultimately reduce software costs due to rediscoveries.

To our knowledge, there is no published literature on taxonomy for causes of defect

rediscoveries or the relative significance of the various causes of rediscoveries. Thus,

the focus of our research is to consolidate the knowledge regarding various causes for

rediscoveries from different sources such as the literature and software practitioners,

and empirically establish the significance of these causes. Given the fragmented body of

knowledge on the topic of software rediscoveries, the findings from this study would

add considerably to this knowledge base.

13

With the preceding as the backdrop, the overall research question is:

What are the causes of software rediscoveries, including the taxonomy describing the

inter-relationships between causes, and what is the significance of each of these

causes?

We split this overall question into two parts:

Pl: What are the causes of software rediscoveries, including the taxonomy describing

the inter-relationships between causes?

P2: What is the significance of each of these causes?

These two questions are dealt with, respectively, in Chapter 4 and Chapter 5.

14

Chapter 4: Rediscovery causes and their Inter-relationships

In this chapter, we present our research with respect to a part of our overall research

question stated in chapter 3. The particular research question we are addressing in this

chapter is as follows:

Pl: What are the causes of software rediscoveries, including the taxonomy describing

the inter-relationships between causes?

Based on background literature and practice assessment, we have designed a

hierarchical classification of various causes for rediscoveries, as depicted in Figure 6.

Table 1 describes each of the causes in this taxonomy. The hierarchy in Figure 6 is

based on two fundamental branches - patch not available to the user (cause-1) and patch

available to the user (cause-2) - because of the separation of concern between the

software provider and the software user. These two causes are further decomposed into

related sub-causes.

The motivation for this hierarchical classification was to establish relationships between

causes to be able to clearly identify the stakeholders under whose scope each cause

prevails. The stakeholders in this phenomenon of rediscoveries are the software

provider and the software user. For example, cause-1 (patch not available to the user)

and its sub-causes are clearly in the scope of software provider as the causes address the

delay on the software provider’s side to provide a patch to the software users. Similarly,

cause-2.2 and its sub-causes are in the scope of the software user as the causes address

various reasons for a software user not installing a patch. Another motivating factor was

to identify the various causes at a granularity where they can be addressed by specific

solutions - existing or new. For example, causes-1.1 deals with ‘Delay in defect

diagnosis’. The ‘Diagnosis Technologies’ mentioned in section 2.1 can be adopted by a

software provider to address this cause, i.e. ‘Delay in defect diagnosis’. Hence the two

objectives for creating the rediscovery cause taxonomy were as follows:

15

TI: Establish relationships between causes to be able to clearly identify the

stakeholders under whose scope each cause prevails.

T2: Identify the various causes at a granularity where they can be addressed by specific

solutions - existing or new.

Delay in fix
release

(1.3)

Faulty defect
Fixes

(2.1)

(User did not
install the

patch
1(2.2)

Delay in
defect
fixing
(1.2).

Delay in I
defect

diagnosis
(11)

IT staff
availability

(2.2.5)-

(Complexity of
patch

(2.2.6)

Pro-
ctivenes
(2.2.3) (2.2.4)

Awareness
(2.2.1)

Causes for
Rediscover as

Patch not available to the user
(1)

Patch available to the user
(2)

Figure 6 Rediscovery cause taxonomy

16

1 Rediscoveries can occur where the patch for the defect is not available to the
user. Here the cause is the delay on the part of the software provider to provide
the relevant patch to the user [Lee Iyer 2000].

1.1 Rediscoveries can occur due to delay in defect diagnosis. Diagnosis is the
resolution of the defect from the failure. If proper data is not collected at each
failure, its resolution may become difficult and hence it may take more failures
before the defect is finally identified [Lee Iyer 2000].

1.2 One of the delays on the software provider’s side could be the delay in actually
fixing the defect after its resolution. This may be due to a variety of reasons
like inadequate number of developers, poor development process, poor
developer quality - less experience, untrained, etc. [Lee Iyer 2000].

1.3 Software Providers normally release interim versions of the software
periodically. These releases, called patches, contain fixes to the new defects
which have been found in the software system. Hence there is a delay in time
between the actual fixing of the defect by the developers and the time when the
patch containing fix actually gets into the users’ systems. This delay can be a
cause of more rediscoveries [Lee Iyer 2000].

2 Rediscoveries can occur even when the software patch is provided by the
software provider [Lee Iyer 2000].

2.1 Sometimes a purported fix can fail. This can occur due to improper diagnosis
development-testing-release process on the software provider’s side. This can
cause more rediscoveries in the users’ sites. [Lee Iyer 2000]

2.2 Rediscoveries can occur when users fail to install the available software patch
on their systems. The specific reasons are listed from 2.2.1 to 2.2.7 [Lee Iyer
2000].

2.2.1 Awareness: Some users may not know about the new defects discovered in the
software product and the relevant patches. This lack of awareness may prevent
them from installing the patches which will result in more rediscoveries [Lee
Iyer 2000] [Gerace 2005].

17

Table 1 Short Description about causes for rediscoveries

Cause,
2.2.2 Skepticism: Some users are skeptical about patches that they can sometimes

cause changes to system behavior - issues with functionality, performance or
interfacing. This skepticism forces the users to test the patches before
installation which involves expenditure of lot of resources in terms of people
and time. The underlying delay results in more rediscoveries. Also, some users
limit the number of patches installed on their systems as they want to keep the
changes made to their systems minimal due to this skepticism. This failure to
keep the systems up to date may cause more rediscoveries [Lee Iyer 2000]
[Altekar 2005] [Ballintijn 2005] [Gerace 2005] [Jansen 2005] [Pasala 2006]
[Crameri 2007] [Pasala 2008].

2.2.3 Pro-activeness: Some users don’t prefer to install a software patch for a
particular defect unless they themselves hit a failure due to that defect. This
lack of pro-activeness results in more rediscoveries [Lee Iyer 2000] [Gkantsidis
2006].

2.2.4 Downtime availability: Software patch installation needs system downtime.
However downtime is limited due to business requirements. This lack of
adequate system downtime results in decrease in the frequency of patch
installation on the systems. This failure to keep the systems up to date results in
more rediscoveries [Lee Iyer 2000] [Baumann 2004] [Altekar 2005] [Baumann
2005] [Gerace 2005].

2.2.5 IT staff availability: Patch management involves a number of sub-processes
like analyzing the risk to which the systems are exposed, testing the patches
before installation, the actual patch installation on production systems, etc
which necessitates considerable IT staff resource. Some users do not have
adequate IT staff resource for this purpose, which forces them to limit the
frequency of patch installation on their systems [Beattie 2002] [Gerace 2005].

2.2.6 Complexity of patch installation process: The patch installation process may
include various sub-processes like taking backups and restoration which in the
absence of proper tools can be quite tedious when the number of systems to be
patched is large. This complexity of patch installation process may discourage
the users from frequently installing patches on their systems. This failure to
keep the systems up to date results in more rediscoveries [Wood 2003].

The taxonomy depicted in Figure 6 has been construct-validated by 6 experts -

researchers and practitioners - involved in the contextual research project of which the

present thesis forms a part.

18

Table 2 Experts who participated in the validation of rediscovery cause taxonomy

Expert | Researcher /
Practitioner

years of
Experience

Experience Areas of Expertise

1 Researcher 30 Developer (small
scale); Architect;
Researcher; Research
Lead; Consultant;
Pedagogue;

Requirements
Engineering,
Empirical Studies,
Software Quality,
Software
Maintenance,
Software Process
Engineering.

2 Practitioner 18 Developer (large
scale); Project
Manager; Architect;
Consultant;

Operating Systems,
Databases,
Hardware
Utilization
(memory, cache,
etc.) Networks,
Software Quality,
Serviceability.

3 Researcher and
Practitioner

15 Developer; Quality
Assurance Specialist;
Consultant; Research
Lead; Collaboration
Manager; Team
Lead;

Software
Engineering,
Software Quality
Assurance,
Software
Maintenance,
Project Estimation.

4 Practitioner 20 Quality Assurance
Specialist; Project
Manager;

Software Quality
Assurance and
Customer Service

5 Researcher and
Practitioner

10 Developer (small to
large scale);
Architect; Project
Manager; Researcher;
Consultant ;

Software Quality,
Software
Maintenance

6 Practitioner 6 Quality Assurance
Specialist;

Software Quality
Assurance with
focus of test
methodologies
development and
implementation;
Applied research

19

Construct validity refers to the degree to which inferences can legitimately be made

from the operationalizations in the study to the theoretical constructs on which those

operationalizations were based [SRM]. The theoretical constructs here are nothing but

the two objectives for creating the rediscovery cause taxonomy - Tl and T2, both of

which were validated by the experts in Table 2 as being in accordance with our research

goal P1. The two types of construct validity that were applied in this case were content

and face validity [SRM].

Content validity is based on the extent to which the operationalization reflects the

specific intended domain of content [Carmines 1991]. This was established in our study

by examining key software conferences, journals and magazines for literature relevant

to the topics of software rediscoveries and patch management. We found 43 research

papers relevant to these topics out of which 13 were central to our work.

In face validity, “you look at the operationalization and see whether ‘on its face’ it

seems like a good translation of the construct” [SRM]. Face validity is concerned “with

how a measure or procedure appears. Does it seem like a reasonable way to gain the

information the researchers are attempting to obtain? Does it seem well designed? Does

it seem as though it will work reliably?” [CSU]. This is met in our study by involving

six experts in reviewing the operationalization, both content and form. This was carried

out in a series of 6 iterative discussions with the experts in Table 2. The coverage of

literature was considered to be comprehensive and the analysis of literature to be

acceptable by the experts. In the end, rediscovery cause taxonomy was considered as

reasonable based on the criteria for the hierarchical classification, which are nothing but

the theoretical constructs - Tl and T2.

20

Chapter 5: Significance of Rediscovery causes

In this chapter, we present our research with respect to the second part of the overall

research question stated in chapter 3. The particular research question we are addressing

in this chapter is as follows:

P2: What is the significance of each of the causes for software rediscoveries?

We first describe the research methodology used, followed by the case studies

conducted using this methodology.

5.1 The Research Methodology

Starting with goal P2 above, it is important to derive specific objectives in a top-down

fashion to facilitate quantitative interpretation. The Goal Question Metric Approach

[Basili 1994] is a valuable tool which describes a top-down approach to divide goals

into objectives. These objectives, defined in quantitative terms, will drive the

investigative process. Based on the quantitative interpretation of the objectives we

identify various sources of data necessary for the study. Once the various sources of

data are identified, we define various methods for data acquisition followed by data

analysis and interpretation.

5.1.1 The Goal Question Metric Approach

The Goal Question Metric (GQM) approach is based upon the assumption that for an

organisation to measure in a purposeful way it must first specify the goals for itself and

its projects, then it must trace those goals to the data that are intended to define those

goals operationally, and finally provide a framework for interpreting the data with

respect to the stated goals. It shows that it is important to make clear, at least in general

terms, what information needs the organisation has, so that these needs for information

can be quantified whenever possible, and the quantified information can be analysed as

to whether or not the goals are achieved.

21

5.1.1.1 GQM Measurement Model

The GQM measurement model [Basili 1994] has three levels:

1. Conceptual Level (GOAL): A goal is defined for an object, for a variety of

reasons, with respect to various models of quality, from various points of view,

relative to a particular environment. Objects of measurement are

• Products: Artefacts, deliverables and documents that are produced

during the system life cycle; for example, requirements specification

document, design document, source code and test suite.

• Processes: Software related activities normally associated with time; for

example, requirement specification, designing, coding and testing.

• Resources: Items used by processes in order to produce their output; for

example, personnel, hardware, software and office space.

2. Operational Level (QUESTION): A set of questions is used to characterize

the way the assessment or achievement of a specific goal is going to be

performed based on some characterizing model. Questions try to characterize

the object of measurement (product, process, resource) with respect to a

selected quality issue and to determine its quality from the selected viewpoint.

3. Quantitative Level (METRIC): A set of data is usually associated with every

question in order to answer it in a quantitative way. That data can be

• Objective: Ifthey depend only on the object that is being measured and

not on the viewpoint from which they are taken; for example, number of

versions of a document, staff hours spent on a task, size of a program.

• Subjective: If they depend on both the object that is being measured

and the viewpoint from which they are taken; for example, readability of

text, level of user satisfaction.

5.1.2 Formulation of Research Objectives at the GQM Operational Level

The very first step with GQM is to redefine our research goals in a more quantitative

manner. To establish the significance of various causes for rediscoveries, we need to

22

first define the term ‘significance’ in quantitative terms. The definition for

‘significance’ of a cause for rediscoveries should be a measure of the proportion of the

cost contributed by that particular cause to the total cost incurred due to all

rediscoveries. Also, it is important to define the term in such a way that it can be

reduced to an appropriate metric, quantitative or qualitative, which can be determined

from an accessible source of data. The definition which we adopt is as follows:

Significance of a ‘cause’ for rediscoveries: The significance of a ‘cause’ for

rediscoveries is defined as the percentage of rediscoveries caused by that particular

‘cause’.

It is important to note here that the above definition does not take into consideration that

the cost of each rediscovery may not be the same. However, data which is necessary to

find the cost of each rediscovery was not available in our case. That is one of the

subjects of a follow-up work to this one. Hence, we base the above definition of

‘significance’ on the assumption that cost of each rediscovery is the same.

Using this definition for significance of a cause for rediscoveries and the rediscovery

taxonomy presented in Figure 6, we describe the research objectives in the format

prescribed by the GQM measurement model as in Table 3 to 13:

Table 3 GQM Research Objective 1

Goal Purpose Determine
Issue the significance of cause-1.1 (Delay in defect diagnosis)

with respect to
Object
(Process)

Occurrence of software defect rediscoveries

Viewpoint Based on our definition of‘Significance’ (section 5.1.2)

Question Q1 What is the percentage of rediscoveries which occur due
to cause-1.1 (Delay in defect diagnosis)?

Metrics Ml (Number of rediscoveries which occur before defect is
diagnosed) * 100 / (Total number of rediscoveries)

23

Table 4 GQM Research Objective 2

Goal Purpose Determine
Issue the significance of cause-1.2 (Delay in defect fixing)

with respect to
Object
(Process)

occurrence of software defect rediscoveries

Viewpoint Based on our definition of ‘Significance’ (section 5.1.2)

Question Q2 What is the percentage of rediscoveries which occur due
to cause-1.2 (Delay in defect fixing)?

Metrics M2 (Number of rediscoveries which occur after the defect is
diagnosed but before the defect is fixed by making
necessary source code changes) * 100 / (Total number
of rediscoveries)

Table 5 GQM Research Objective 3

Goal Purpose Determine
Issue the significance of cause-1.3 (Delay in fix release) with

respect to
Object
(Process)

occurrence of software defect rediscoveries

Viewpoint Based on our definition of ‘Significance’ (section 5.1.2)

Question Q3 What is the percentage of rediscoveries which occur due
to cause-1.3 (Delay in fix release)?

Metrics M3 (Number of rediscoveries which occur after the defect is
fixed by making the necessary source code changes but
before the fix is bundled into patches and released to
users) * 100 / (Total number of rediscoveries)

24

Table 6 GQM Research Objective 4

Goal Purpose Determine
Issue the significance of cause-2.1 (Defective fixes) with

respect to
Object
(Process)

occurrence of software defect rediscoveries

Viewpoint Based on our definition of ‘Significance’ (section 5.1.2)

Question Q4 What is the percentage of rediscoveries which occur due
to cause-2.1 (Defective fixes)?

Metrics M4 (Number of rediscoveries which occur after the defect
fix is released in a patch and the user has installed the
patch) * 100 / (Total number of rediscoveries)

Table 7 GQM Research Objective 5

Goal Purpose Determine
Issue the significance of cause-2.2 (User did not install the

patch) with respect to
Object
(Process)

occurrence of software defect rediscoveries

Viewpoint Based on our definition of‘Significance’ (section 5.1.2)

Question Q5 What is the percentage of rediscoveries which occur due
to cause-2.2 (User did not install the patch)?

Metrics M5 (Number of rediscoveries which occur after the defect
fix is released in a patch and the user has not installed
the patch) * 100 / (Total number of rediscoveries)

Metrics Ml to M5 can be determined by using the defect and failure data collected in

issue tracking systems by the software provider. Such defect and failure data would

include various attributes like date of occurrence of the failure or defect, date on which

the diagnosed from the failure, date on which the defect was fixed, date on which fix for

the defect was bundled into a patch and released, etc which can be used to determine

metrics Ml to M5. However to determine the significance of causes from cause-2.2.1 to

cause-2.2.6 the defect and failure data does not prove to be sufficient. We figured out in

our situation that the only way to go after these causes is to ask the users directly

whether a particular cause was relevant to them when it came to delaying or cancelling

25

a patch installation, which leads to the occurrence of rediscoveries. For cause-2.2.1, we

do this by asking the software users (i.e., system administrators who handle patch

installations) to rate the cause on a 7-point Likert scale of agreement with respect to

their software providers’ efforts to keep the software users (i.e., system administrators

who handle patch installations) updated with information regarding new defects and the

relevant patches. The Likert scale is a psychometric scale commonly used in

questionnaires [Wiki]. For causes from cause-2.2.2 to cause-2.2.6, we try to establish

the significance of the causes by asking the software users (i.e., system administrators

who handle patch installations) to rate the causes from cause-2.2.2 to cause-2.2.6 on a

7-point Likert scale of importance with respect to their decision to delay or cancel a

patch installation due to that particular cause. A questionnaire has been designed for this

purpose. Again, GQM approach, Table 8 to 13, is used to design the questionnaire.

26

Table 8 GQM Research Objective 6

Goal Purpose Determine
Issue the significance of cause-2.2.1 (Awareness) with

respect to
Object
(Process)

the occurrence of rediscoveries

Viewpoint from the software users’ view point

Question Q6 Please indicate your agreement with the following
statement.
In general, your organization’s software vendors
provide you with timely notices about new defects and
patch releases.
1 - Strongly Disagree
2 - Disagree
3 - Somewhat Disagree
4 - Neutral
5 - Somewhat Agree
6 - Agree
7 - Strongly Agree

Metrics M6 Average rating on the 7-point Likert scale

Question Q7 Please indicate your agreement with the following
statement.
In general, your organization’s software vendors
provide you with relevant information regarding new
defects to help you analyze whether your systems are
under risk.
1 - Strongly Disagree
2 - Disagree
3 - Somewhat Disagree
4 - Neutral
5 - Somewhat Agree
6 - Agree
7 - Strongly Agree

Metrics M7 Average rating on the 7-point Likert scale

27

Goal Purpose Determine
Issue the significance of cause-2.2.2 (Skepticism) with

respect to
Object
(Process)

the occurrence of rediscoveries

Viewpoint from the software users’ view point

Question Q8 If there was a delay to install a patch from your
software vendor in the last 24 months, how important
was the following factor in your organization’s IT
department’s decision to delay patch installation?
There was a delay in testing the patch before installation
on production systems.
1 - Not Important
2 - Slightly Important
3 - Somewhat Important
4 - Moderately Important
5 - Important
6 - Very Important
7 - Extremely Important

Metrics M8 Average rating on the 7-point Likert scale

Question Q9 What was the average delay in patch installation on
production systems at your organization in the last 24
months due to the following factor?
Testing the patch before installation.
1 - Less than 1 hour
2 - More than 1 hour but less than 1 day
3 - More than 1 day but less than 1 week
4 - More than 1 week but less than 1 month
5 - More than 1 month but less than 3 months
6 - More than 3 months but less than 6 months
7 - More than 6 months

Metrics M9 Statistical mode of all the responses

28

Table 9 GQM Research Objective 7

Question Q10 If there was a decision to cancel the installation of a
patch from your software vendor in the last 24 months,
how important was the following factor in your
organization’s IT department’s decision to cancel the
patch installation?
We keep the changes made to our systems minimal.
1 - Not Important
2 - Slightly Important
3 - Somewhat Important
4 - Moderately Important
5 - Important
6 - Very Important
7 - Extremely Important

Metrics M10 Average rating on the 7-point Likert scale

29

Goal Purpose Detennine
Issue the significance of cause-2.2.3 (Pro-activeness) with

respect to
Object
(Process)

the occunence of rediscoveries

Viewpoint from the software users’ view point

Question Q11 Please indicate your agreement with the following
statement.
In practice, your organization would install a software
patch even if you have not experienced a defect, which
the patch is purported to fix.
1 - Strongly Disagree
2 - Disagree
3 - Somewhat Disagree
4 - Neutral
5 - Somewhat Agree
6 - Agree
7 - Strongly Agree

Metrics M11 Average rating on the 7-point Likert scale

Question Q12 If there was a delay to install a patch from your
software vendor in the last 24 months, how important
was the following factor in your organization’s IT
department’s decision to delay patch installation?
The systems were functioning normally and we had not
experienced any defect which the patch was known to
fix.
1 - Not Important
2 - Slightly Important
3 - Somewhat Important
4 - Moderately Important
5 - Important
6 - Very Important
7 - Extremely Important

Metrics M12 Average rating on the 7-point Likert scale

30

Table 10 GQM Research Objective 8

Question Q13 If there was a decision to cancel the installation of a
patch from your software vendor in the last 24 months,
how important was the following factor in your
organization’s IT department’s decision to cancel the
patch installation?
The systems were functioning normally and we had not
experienced any defect that the cancelled patch was
known to fix.
1 - Not Important
2 - Slightly Important
3 - Somewhat Important
4 - Moderately Important
5 - Important
6 - Very Important
7 - Extremely Important

Metrics M13 Average rating on the 7-point Likert scale

31

Goal Purpose Determine
Issue the significance of cause-2.2.4 (Downtime Availability)

with respect to
Object
(Process)

the occurrence of rediscoveries

Viewpoint from the software users’ view point

Question Q14 If there was a delay to install a patch from your
software vendor in the last 24 months, how important
was the following factor in your organization’s IT
department’s decision to delay patch installation?
There was a delay due to lack of available system
downtime.
1 - Not Important
2 - Slightly Important
3 - Somewhat Important
4 - Moderately Important
5 - Important
6 - Very Important
7 - Extremely Important

Metrics M14 Average rating on the 7-point Likert scale

Question Q15 What was the average delay in patch installation on
production systems at your organization in the last 24
months due to the following factor?
Lack of available system downtime
1 - Less than 1 hour
2 - More than 1 hour but less than 1 day
3 - More than 1 day but less than 1 week
4 - More than 1 week but less than 1 month
5 - More than 1 month but less than 3 months
6 - More than 3 months but less than 6 months
7 - More than 6 months

Metrics M15 Statistical mode of all the responses

32

Table 11 GQM Research Objective 9

Question Q16 If there was a decision to cancel the installation of a
patch from your software vendor in the last 24 months,
how important was the following factor in your
organization’s IT department’s decision to cancel the
patch installation?
The lack of available system downtime limited the
number of patch installations.
1 - Not Important
2 - Slightly Important
3 - Somewhat Important
4 - Moderately Important
5 - Important
6 - Very Important
7 - Extremely Important

Metrics M16 Average rating on the 7-point Likert scale

33

Goal Purpose Determine
Issue the significance of cause-2.2.5 (IT staff availability)

with respect to
Object
(Process)

the occurrence of rediscoveries

Viewpoint from the software users’ view point

Question Q17 Please indicate your agreement with the following
statement.
Your organization has adequate IT staff resource to
timely address all potential patch installations.
1 - Strongly Disagree
2 - Disagree
3 - Somewhat Disagree
4 - Neutral
5 - Somewhat Agree
6 - Agree
7 - Strongly Agree

Metrics M17 Average rating on the 7-point Likert scale

Question Q18 If there was a delay to install a patch from your
software vendor in the last 24 months, how important
was the following factor in your organization’s IT
department’s decision to delay patch installation?
There was a delay due to lack of available IT staff to
handle the patch installation process.
1 - Not Important
2 - Slightly Important
3 - Somewhat Important
4 - Moderately Important
5 - Important
6 - Very Important
7 - Extremely Important

Metrics M18 Average rating on the 7-point Likert scale

34

Table 12 GQM Research Objective 10

Question Q19 What was the average delay in patch installation on
production systems at your organization in the last 24
months due to the following factor?
Lack of available IT staff to install the patch.
1 - Less than 1 hour
2 - More than 1 hour but less than 1 day
3 - More than 1 day but less than 1 week
4 - More than 1 week but less than 1 month
5 - More than 1 month but less than 3 months
6 - More than 3 months but less than 6 months
7 - More than 6 months

Metrics M19 Statistical mode of all the responses

Question Q20 If there was a decision to cancel the installation of a
patch from your software vendor in the last 24 months,
how important was the following factor in your
organization’s IT department’s decision to cancel the
patch installation?
The lack of available IT staff limited the number of
patch installations.
1 - Not Important
2 - Slightly Important
3 - Somewhat Important
4 - Moderately Important
5 - Important
6 - Very Important
7 - Extremely Important

Metrics M20 Average rating on the 7-point Likert scale

35

Goal Purpose Determine
Issue the significance of cause-2.2.6 (Complexity of the patch

installation process) with respect to
Object
(Process)

the occurrence of rediscoveries

Viewpoint From the software users’ view point

Question Q21 Please indicate your agreement with the following
statement.
Your organization has adequate automation to make
patch installation a straightforward task.
1 - Strongly Disagree
2 - Disagree
3 - Somewhat Disagree
4 - Neutral
5 - Somewhat Agree
6 - Agree
7 - Strongly Agree

Metrics M21 Average rating on the 7-point Likert scale

Question Q22 If there was a delay to install a patch from your
software vendor in the last 24 months, how important
was the following factor in your organization’s IT
department’s decision to delay patch installation?
There was a delay due to lack of adequate automation
or non-usage of patch management tools, to handle the
patch installation process.
1 - Not Important
2 - Slightly Important
3 - Somewhat Important
4 - Moderately Important
5 - Important
6 - Very Important
7 - Extremely Important

Metrics M22 Average rating on the 7-point Likert scale

36

Table 13 GQM Research Objective 11

Question Q23 What was the average delay in patch installation on
production systems at your organization in the last 24
months due to the following factor?
Lack of adequate automation of the patch installation
process.
1 - Less than 1 hour
2 - More than 1 hour but less than 1 day
3 - More than 1 day but less than 1 week
4 - More than 1 week but less than 1 month
5 - More than 1 month but less than 3 months
6 - More than 3 months but less than 6 months
7 - More than 6 months

Metrics M23 Statistical mode of all the responses

Question Q24 If there was a decision to cancel the installation of a
patch from your software vendor in the last 24 months,
how important was the following factor in your
organization’s IT department’s decision to cancel the
patch installation?
The lack of adequate automation of the patch
installation process or non-usage of patch management
tools, limited the number of patch installations.
1 - Not Important
2 - Slightly Important
3 - Somewhat Important
4 - Moderately Important
5 - Important
6 - Very Important
7 - Extremely Important

Metrics M24 Average rating on the 7-point Likert scale

5.1.3 Motivation for choosing the Case Study approach as the research method

Further to designing the questionnaire using the GQM paradigm, we conducted two

case studies on defect rediscoveries - to identify the significance of causes. Our

motivation for choosing the case study approach as our research method is derived from

the factors shown in Table 14 [Yin 2003]. Our research objectives span across two

different stakeholders involved in software quality: the software pro vider and the

software user. The research objectives implied by questions Q1 to Q5 relate to the

37

software provider; whereas, the research objectives implied by Q6 to Q24 relate to the

software user.

Table 14 Relevant Situations for Different Research Strategies [Yin 2003]

Strategy Form of Research
Question

Requires Control
of Behavioural
Events

Focuses on
Contemporary Events

Experiment How, why? Yes Yes
Survey Who, what where,

how many, how
much?

No Yes

Archival
analysis

Who, what, where,
how many, how
much?

No Yes / No

History How, why? No No
Case study How, why? No Yes

For research objectives implied by questions Q1 to Q5, the root question is ‘how much’

(percentage of rediscoveries). This, ‘how much’ factor, filters our available strategies

shown in Table 14 to ‘Survey’ and ‘Archival analysis’. Also, each of these metrics, Ml

to M5, does not require any control of behavioural events. Hence, our current list of

available strategies remains unchanged. Although the metrics, Ml to M5, focus on both

contemporary and historical events, since the historical data is readily available, it is

prudent to utilize the historical data rather than using the data from contemporary

events. This makes ‘Archival analysis’ our only option. However, it is the source of this

data needed for archival analysis which forces us to rethink the term we use for this

research method. The archival data belongs to a single software product. Hence, going

by the classical definition of a Case study, an empirical inquiry that investigates a

phenomenon within its real-life context [Yin 2003], we would like to term the

research method a ‘Case study’ at the highest level. An ‘Archival analysis’ within a

‘Case study’, would be a detailed and more accurate description of the research method

used in our study of research objectives implied by questions Ql to Q5.

For research objectives implied by questions Q6 to Q24 the basic question is: Why do

software users (i.e., system administrators who handle patch installations) not install a

software patch whenever it is made available by the software provider? Hence the root

38

question here is ‘why’. Also, it is not necessary to control the behavioural events to

answer the question. Finally, the question ‘does’ focus on contemporary events as

software installation and upgradation is a on-going activity for software users (i.e.,

system administrators who handle patch installations). Therefore, we conclude that a

case study would be the appropriate research method to achieve our research objectives

Q6 to Q24.

5.2 The Case Studies

We have undertaken two different case studies, one on a software provider and the other

on a software user. The first case study is on the software provider of a commercial

software system with many millions of lines of code, multiple versions and thousands of

users. The second case study is on a medium sized [SME] (50-200 employees) software

service provider which provides system administration services to various other

organisations who actually use the software systems.

5.2.1 The Case Study - Software Provider

We start with the description of the components of research design followed by an

analysis of the quality of research design. We then describe the customer technical

support process (part of software maintenance) in general followed by a description of

the various bookkeeping activities which take place during this process. In the end, we

describe the formulation of quantitative level GQM research objectives, using various

metrics involving the bookkeeping data from customer technical support process, from

the operational level GQM research objectives.

5.2.1.1 Components of Research Design

For case studies, the following five components (i.e., Questions, Propositions, Unit of

analysis, Logic linking data to propositions, and Criteria for interpreting the findings) of

a research design are especially important [Yin 2003].

39

5.2.1.1.1 Questions

1. What is the significance of cause-1.1 (see Figure 6; Delay in defect diagnosis)

with respect to occurrence of software defect rediscoveries?

2. What is the significance of cause-1.2 (see Figure 6; Delay in defect fixing) with

respect to occurrence of software defect rediscoveries?

3. What is the significance of cause-1.3 (see Figure 6; Delay in fix release) with

respect to occurrence of software defect rediscoveries?

4. What is the significance of cause-1.4 (see Figure 6; Faulty defect fixes) with

respect to occurrence of software defect rediscoveries?

5. What is the significance of cause-1.5 (see Figure 6; User did not install the

patch) with respect to occurrence of software defect rediscoveries?

5.2.1.1.2 Propositions

A proposition (i.e., hypothesis) directs attention to something that should be examined

within the scope of the study. For example, let’s consider the research question: How

and why do organisations collaborate with one another to provide joint services (for

example, a manufacturer and a retail store collaborating to sell certain computer

products)? A prospective proposition for a case study involving the above research

question would be: Organisations collaborate because they derive mutual benefits. This

proposition, besides reflecting an important theoretical issue, also begins to indicate

where one should look for relevant evidence, i.e., evidence for collaboration and

benefits from that collaboration [Yin 2003].

However an exploratory study, where we do not begin the study with a theory but

instead conduct the study to develop a theory which may be tested by another study, has

a legitimate reason for not having any propositions [Yin 2003]. That said, an

exploratory study should have some purpose as structured by the GQM statements.

Therefore, instead of propositions, the design of an exploratory study should state this

purpose, as well as the criteria by which an exploration would be judged successful. It

happens so that by our research questions mentioned in section 5.2.1.1.1, our study is an

40

exploratory study. This is because we are not doing this study to test any theory but in

turn to develop a theory regarding the ‘significance’ of various causes for rediscoveries.

The research objectives implied by questions Q1 to Q5 from section 5.1.2 will serve as

the purpose of this case study and the finding of valid answers to these questions would

be the criteria for successful completion of the study.

5.2.1.1.3 Unit of Analysis

In order to investigate our research questions we need data regarding failures and

defects of software products. Based on the feasibility in our current situation the best we

can do is a single case study. Similar multiple case studies can follow this investigation

for further proof. Hence, for the current study it is imperative that we select a typical

case which is fairly representative of the population of software products based on the

context of our research questions. We believe that in the context of our research

questions, the case which is accessible to us is a typical case in the sense that the

software development and service process of the software product is in agreement with

the process shown in Figure 1. However software products can be characterized based

on variety of factors such as whether the software product is commercial or not, or the

number of lines of source code of the software product, or the number of versions of the

software product till date, or the number of users of the software product, etc. Although

we believe that these factors have no influence in the context of our research questions,

as we understand it, we would like to state the characteristics of our case in the research

design to assist other researchers and practitioners to derive conclusions about the

results based on their understanding regarding these factors. The case under

consideration for the study is a commercial software product, with millions of lines of

code, multiple versions and thousands of users. To be specific, the data used in the

study to investigate the research questions comprises of all the failures which occurred

over a span of 4 years. The number of versions of the software product involved in the

study is 15.

41

5.2.1.1.4 Logic linking data to propositions

This component of the research design is one of the least developed in case studies. One

promising approach for case studies is the idea of “pattern matching” described by

Donald Campbell [Campbell 1975]. An example of a “pattern” can be a graphical

depiction of the data. Based on the propositions and the possible outcomes of the study,

several prospective patterns of data are prepared. Each possible outcome is associated

with a pattern. When the data is collected and its pattern determined, this resultant

pattern is compared with all the prospective patterns. The outcome of the study is then

determined by the outcome associated with the prospective pattern which most closely

matches the resultant pattern. However, the exploratory nature of our study leaves us

with no propositions and hence makes it impossible for us to use this approach. Hence,

the purpose of the case study as mentioned in section 5.2.1.1.2 will be the sole guiding

criteria in this regard.

5.2.1.1.5 Criteria for interpreting the findings

This component of the research design is one of the least developed in case studies. This

component is important mostly in case studies with pre-defined theoretical propositions.

In the case of “pattern matching” technique by Donald Campbell [Campbell 1975],

which is described in section 5.2.1.1.4, this particular component of case study design

would deal with the question of ‘How close should the resultant pattern be to a

prospective pattern in order to be considered a match’ [Yin 2003]. However, the

exploratory nature of our study does not provide us with any propositions. Hence, this

component has no relevance in our case. Hence, the purpose of the case study as

mentioned in section 5.2.1.1.2 will be the sole guiding criteria in this regard.

5.2.1.2 Quality of Research Design

The quality of empirical research needs to be established by four tests described below.

5.2.1.2.1 Construct Validity

Construct validity deals with establishing correct operational measures for the concepts

being studied. In our study, we have concretely defined how the concepts under study

42

are formulated into research objectives using the GQM method in section 5.1.1. These

research objectives have been further elaborated at the quantitative level in the section

5.2.1.6. By applying the GQM method we are ensuring that the operational measures

used to analyze data are in tune with the high level goals of our research.

The construct validation of the operationalization was critical to the overall validity of

the study. The two types of construct validity that applied to this operationalization

were content and face validity [SRM]. These types of validity cannot be measured in a

quantitative way, but we believe that we have met these through the extensive design

procedures described.

Content validity is based on the extent to which the operationalization reflects the

specific intended domain of content [Carmines 1991]. This was established in our study

by covering all the “causes for rediscoveries” (causes - 1.1, 1.2, 1.3, 2.1 and 2.2) from

Figure 6, which was in turn construct validated, using both content and face validity, by

six experts in listed in Table 2.

Face validity is concerned “with how a measure or procedure appears. Does it seem like

a reasonable way to gain the information the researchers are attempting to obtain? Does

it seem well designed? Does it seem as though it will work reliably?” [CSU]. This is

met in our study by involving six experts, listed in Table 2, in reviewing the

operationalization, both content and form. The experts found the metrics Ml to M5, to

be the correct operationalization of the research objectives implied by questions Q1 to

Q5 respectively (see section 5.1.2 for questions Q1 to Q5 and metrics Ml to M5).

5.2.1.2.2 Internal Validity

Internal Validity is defined by Cooke and Campbell as the “approximate validity with

which we infer that a relationship between two variables is causal” [Cooke 1979].

Internal validity is only a concern for causal case studies, in which an investigator is

trying to determine whether event 'x' led to event ‘y’. If the investigator incorrectly

concludes that there is a causal relationship between ’x’ and 'y' without knowing that

43

some third factor 'z' may actually have caused ‘y’, the research design has failed to deal

with some threat to internal validity. However, this validity is not a concern in case of

exploratory studies, which happens to be the type of study we are pursuing.

5.2.1.2.3 External Validity

External validity deals with the problem of knowing whether a study’s findings are

generalizable beyond the immediate case study. In this study, as mentioned in section

5.2.1.1.3, the case is ‘typical’ and fairly representative of the population of software

products in the context of our research questions. However, as mentioned in section

5.2.1.1.3, there is a vast diversity of available software products. Hence, we describe the

characteristics of our case suitably in section 5.2.1.1.3 to be able to generalize the

findings of the study to software products with similar characteristics in the worst case.

5.2.1.2.4 Reliability

The objective of this test is to be sure that if a later investigator followed the same

procedures as described by an earlier investigator and conducted the same case study all

over again, the later investigator should arrive at the same findings and conclusions.

The goal of reliability is to minimize the errors and biases in a study. In this study, we

have properly documented our research process using GQM method from top to

bottom, from research goals to research objectives, questions and metrics at the

quantitative level. There is little or no room for errors and bias with respect to the

metrics at the quantitative level. Hence, we conclude that our research design is reliable.

5.2.1.2.5 Conclusion Validity

Conclusion validity in the degree to which conclusions we make based on the findings

are reasonable. We discuss the conclusions in section 6, and there we demonstrate that

all our conclusions are rooted in the results, thereby maintaining conclusion validity.

44

5.2.1.3 The Customer Technical Support Process

The Customer Technical Support is an integral part of the software product life cycle.

Today, factors such as shorter product life cycles and faster time to market present

major challenges when it comes to customer satisfaction. Hence, an effective customer

technical support process forms an important component of the software product

package.

Maintenance

Build / Test

Fix

Problem SolvedCustomer

Customer
Interface

Failure
Report
(FR)

Problem
persists

Close
Defect

A

1. Patch
2. Request

for problem
closure

Raw
Problem
Data

Tech Support

Open Failure Report
- First call resolution

• - Check FR duplicates
- Validate scenario
- Package and send data

" Solutions to
known problems Close

Failure
Report

Verify
Solution

Integrate fix
- Build
- Package
- Test

Reopen Defect
- Update problem

data
- Analyze

Work on Defect
- Debug
- Formulate fix
- Update code

Legend

• Task

_____• Control

Analyze Failure Report
- Validate FR
- Reproduce problem
- Suggest workaround
- Open Defect

Figure 7 The Customer Technical Support Process

The customer, on experiencing a problem, calls the technical support of the software

provider. The technical support team addresses the call. If the problem is due to a

known one then they will provide the solution to the customer immediately. If the

problem appears to be a new one then they validate the scenario under which the

problem occurred by checking issues such as improper configuration of the software

product, invalid use case, etc. Once the scenario is validated, all relevant data regarding

the problem is collected and a Failure Report (FR) is opened.

45

The maintenance team validate the FR by subjecting it to defect diagnosis to verify that

the failure is not due to a known defect. They will then try and reproduce the problem.

If there is any possibility of a workaround then it is conveyed to the customer through

the technical support team. A defect record is created and all relevant data and analysis

is updated into the issue tracking system.

The development team analyzes the defect, designs the fix and updates the source code

of the software product. The testing team then integrates the fix by building the

executable from source code, and then packages it to produce a patch. The patch is then

installed on the test machines and tested. The tested patch is provided to the

maintenance team along with the test report. The maintenance team validates the test

report to close the defect. It then provides the patch to the customer through the

technical support team.

The technical support team provided the patch to the customer and requests for closure

of the FR. If the customer finds the patch to be appropriate then he asks the technical

support to close the FR. If the customer’s problem continues to persist then the

technical support team asks the maintenance team to reopen the defect and updates it

with the latest data regarding the problem.

5.2.1.4 Bookkeeping across the Customer Technical Support Process

The Technical Support process involves various bookkeeping activities. Data regarding

each failure and defect is recorded for managing the entire technical support process.

The data model for the bookkeeping data regarding user failures and defects can be

summarized by the Entity-Relationship Diagram below (see Figure 8).

46

<Failure_Create_Date

(Failure_Id) (User_Id)FAILURE

M

1 /Severity)_ _ _ —Priority)

< REFERS

DEFECT

Duplicate

(State
(Fix_Release_Date —- (Phase Inject)

(Defect _Id

Symptom.

<Add_Date)
End_Date

(Abstract) Last_Update

Phase_Found)

Figure 8 Entity Relationship Diagram of bookkeeping data in the technical support process

47

Table 15 Attribute descriptions of the ER diagram (Figure 8) of the bookkeeping activities during
customer technical support process

Attribute
Failure_Id Unique identifier for the failure
F ai lure_Create_D at e Date on which failure was reported
User_Id Identifier of the user who reported the Failure
Defect_Id Unique identifier of the defect
Duplicate Defect_Id of a duplicate defect
Abstract A short description of the defect
Severity The estimated impact of the reported problem. Attribute values

can be:
I-Critical, 2-Severe, 3-Moderate, 4-Minimal

Priority A parameter indicating ‘the right to take precedence’ among
defects when it comes to fix development.

Release_Id The release against which the problem is reported
Component Name of the component of the software product where the

defect exists.
Phase_Found The phase of the development cycle where the defect was

discovered
Phase_Inject The phase of the development cycle where the defect was

injected
Environment The platform or environment under which the defect was

observed
State An indication of the progress made with respect to the defect.

Attribute values can be: Open, Working, Verify, Cancel,
Returned, Closed

Add_Date Date on which the defect was created
End_Date Date on which the defect was closed
Last_Update Date on which the last update on the defect was made
Symptom A description of the manifestation of the defect. (Eg.,

application crash, application hang)
Fix_Release_Date Date on which the defect fix was released in a patch

5.2.1.5 Dataset profile

The failure and defect data, whose schema is described in section 5.2.1.4, belongs to a

commercial software product with millions of lines of code, multiple versions and

thousands of users. The data used for the study comprises of failures that occurred over

a period of about 4 years and belong to about 15 versions of the software product. The

number of failures is significantly large but is not mentioned here because of

confidentiality issues. However all the failures could not be accommodated in the

48

analysis due to missing attributes of the failure and defect data which were necessary

for the analysis. Hence, only 24.15% of the total failures were used for the analysis.

5.2.1.6 Analysis of Failure and Defect data

In this section we explain how we use the failure and defect data, whose details are

given in section 5.2.1.4 and section 5.2.1.5, to determine the GQM metrics M1-M5

defined in section 5.1.2.

5.2.1.6.1 Metric M1

Metric Ml, used to establish the significance of cause 1.1 (Delay in defect diagnosis), is

defined in section 5.1.2 as follows:

Number of rediscoveries which
occur before defect is diagnosed

--- X 100
Total number of rediscoveries

A single defect can cause multiple failures. Generally, each failure is analysed

thoroughly by the maintenance team of the software provider to determine the defect

which caused the failure. However, sometimes failures cannot be resolved to identify

the associated defect due to insufficient data needed for analysis. Hence, there can be a

number of failures, many of whom are rediscoveries, before the actual defect is

diagnosed. The identification of such rediscoveries is a fairly simple task based on the

information presented in section 5.2.1.4. Each failure refers to the relevant defect. The

information with respect to a failure also includes the identification of the failure which

actually helped in the diagnosis of the relevant defect. The date of occurrence of each

failure is also available (Failure_Create_Date). Hence, the rediscoveries which occurred

before the failure which ‘originated’ (caused a defect to be identified) the defect gives

us the rediscoveries which occurred before the defect is diagnosed. The total number of

rediscoveries can be easily determined as the difference of the total number of failures

taken over all defects and the total number of defects.

2 Note that these failures include both discoveries and rediscoveries of defects.

49

5.2.1.6.2 Metric M2

Metric M2, used to establish the significance of cause 1.2 (Delay in defect fixing), is

defined in section 5.1.2 as follows:

Number of rediscoveries which occur after the
defect is diagnosed but before the defect is
fixed by making necessary source code
changes
-- X 100

Total number of rediscoveries

Once the defect is diagnosed the maintenance team of the software provider designs a

fix to eliminate the defect from the software product. The fix generally involves making

changes to the source code of the software product and testing the fix. This process can

sometimes take a significant amount of time during which rediscoveries of the defect

continue to occur in the field. These rediscoveries can be easily identified based on the

data presented in section 5.2.1.4. Whenever a new defect is diagnosed an entry is

created into the issue tracking system. The corresponding data is available in the

attribute ‘Add_Date‘. When the defect is eliminated by fixing it the maintenance team

changes the ‘State’ attribute of the defect in the issue tracking system to ‘closed’. The

corresponding date is available in the attribute 'End_Date'. Hence, all rediscoveries

which occurred after the 'Add_Date' and until the 'End_Date' give us the number of

rediscoveries which occurred after the defect was diagnosed but before the defect was

fixed by making the necessary source code changes.

5.2.1.6.3 Metric M3

Metric M3, used to establish the significance of cause 1.3 (Delay in fix release), is

defined in section 5.1.2 as follows:

50

Number of rediscoveries which occur after
the defect is fixed by making the necessary
source code changes but before the fix is
bundled into patches and released to users
-- X 100

Total number of rediscoveries

Generally, patches are released to the users periodically. There is pre-planned date on

which the next patch is to be released. All defect fixes which are available by this date

are bundled into the patch and released to the users of the software product. Hence,

there is a certain delay after the defect is fixed before the fix is actually made available

in a patch to the users during which rediscoveries continue to occur in the field. These

rediscoveries can be easily identified based on the data presented in section 5.2.1.4.

Each defect has a ‘End_Date‘, which gives the date on which the defect was fixed, and

‘Fix_Release_Date’, which gives the date on which the fix was bundled into a patch and

released to the users of the software product. Hence, all rediscoveries corresponding to

the defect which occurred after the ‘End_Date‘ until the ‘Fix_Release_Date’ give us the

number of rediscoveries which occurred after the defect was fixed by making the

necessary source code changes but before the fix was bundled into a patch and released

to users.

5.2.1.6.4 Metric M4

Metric M4, used to establish the significance of cause 2.1 (Faulty defect fixes), is

defined in section 5.1.2 as follows:

Number of rediscoveries which occur after the
defect fix is released in a patch and the user
has installed the patch
-- X 100

Total number of rediscoveries

51

In isolated cases, the fixes may turn out to be defective. In such case the rediscoveries

continue to occur even after the patch containing the fix is available and is already

installed by the users. These rediscoveries can be easily identified based on the data

presented in section 5.2.1.4. In case of such a defect with a defective fix, a new defect

entry is made into the issue tracking system. The symptom of the old defect entry in the

issue tracking system is changed to a specific value ‘X’ and the ‘Defect_Id‘ of the new

defect is added to the ‘Duplicate’ attribute of the old defect entry. Hence, the number of

rediscoveries after the ‘Fix_Release_Date’ of the old defect entry until the

'Fix_Release_Date' of the new defect entry gives us the number of rediscoveries which

occur after the defect fix is released in a patch and the user has installed the patch.

5.2.1.6.5 Metric M5

Metric M5, used to establish the significance of cause 2.2 (User did not install the

patch), is defined in section 5.1.2 as follows:

Number of rediscoveries which occur
after the defect fix is released in a
patch and the user has not installed
the patch
--- X 100

Total number of rediscoveries

Knowing the rediscoveries which accounted for metrics Ml to M4 it is very simple to

determine the number of rediscoveries which occurred because of the users’ failure to

install the patch. Any rediscovery which was not accounted in any of the metrics from

Ml to M4 will be accounted here, which gives us the number of rediscoveries which

occurred after the defect fix was released in a patch and the user did not install the

patch.

52

5.2.1.7 Results and Interpretation

The results of the analysis of the data described in section 5.2.1.4 and section 5.2.1.5 are

shown in the following table (Table 16).

Table 16 Results: Case study - Software Provider

Cause (see Figure 6) Significance
Cause 1 (Patch not available to
the user)

Cause 1.1 (Delay in diagnosis)

Metric Ml
1.1 %

Cause 1.2 (Delay in fixing)

Metric M2
39.8 %

Cause 1.3 (Delay in fix release)

Metric M3
7.1 %

Cause 2 (Patch available to the
user)

Cause 2.1 (Faulty defect fixes)

Metric M4
0%

Cause 2.2 (User did not install
the patch)

Metric M5

52 %

The same results are graphically represented by the following pie chart (Figure 9).

Cause 1.1
(Delay in

diagnosis), 1.1

Cause 2.2 (Userl
did not install
the patch), 52

Cause 1.2
(Delay in fixing),

39.2

Pause 1.3
- (Delay in fix

release), 7.1

Cause 2.1
(Faulty defect

fixes), 0

□ Cause 1.1 (Delay in
diagnosis)

■ Cause 1.2 (Delay in fixing)

□ Cause 1.3 (Delay in fix
release)

□ Cause 2.1 (Faulty defect
fixes)

■ Cause 2.2 (User did not
install the patch)

Figure 9 Results (Chart): Case study - Software Provider

53

Since only a sample (24.15%) of all the failures was used for analysis the results can be

statistically interpreted [Rumsey] as shown in the following table (Table 17).

Table 17 Statistical interpretation of results: Case study - Software Provider [Rumsey]

Confidence Level - 95 %
Cause (sec Figure 6) Significance !

Cause 1 (Patch not available to
the user)

Cause 1.1 (Delay in diagnosis)

Metric Ml
0.63 to 1.57 %

Cause 1.2 (Delay in fixing)

Metric M2
37.6 to 42 %

Cause 1.3 (Delay in fix release)

Metric M3
5.95 to 8.25 %

Cause 2 (Patch available to the
user)

Cause 2.1 (Faulty defect fixes)

Metric M4
0%

Cause 2.2 (User did not install
the patch)

Metric M5

49.76 to 54.25 %

The confidence level used for the statistical interpretation is 95%. The formula used for

calculating the confidence intervals is as below [Rumsey].

Confidence _t
Interval nlX

S

∩

This formula contains the sample standard deviation (s), the sample size (n), and a t-

value representing how many standard errors you want to add and subtract to get the

confidence you need. Notice that 't' has 'n-1' as a subscript to indicate which of the

myriad t-distributions you use for your confidence interval. The ‘n-l’ is called degrees

of freedom, where 'n' is the sample size.

54

To calculate the confidence interval for a cause we need to calculate the standard

deviation (s) for that particular cause. Standard deviation (s) is calculated using the

formula below [Rumsey].

s=px(1-p)

The variable 'p' here is probability in the case of a binomial distribution, in our case

given by the significance of each cause calculated from the sample (see column with

heading ‘Significance’ in Table 16).

5.2.2 The Case Study - Software User

The second case study is done on a medium size (50-200 employees) software service

provider which provides system administration services to various other organisations

who actually use the software [SME]. The employees of this organization, which

provides system administration services, were requested to respond to a questionnaire

and their responses were analyzed to achieve our research objectives.

5.2.2.1 Components of Research Design

For case studies, the following five components of a research design (i.e., Questions,

Propositions, Unit of analysis, Logic linking data to propositions, and Criteria for

interpreting the findings) are especially important [Yin 2003].

5.2.2.1.1 Questions

1. What is the significance of cause-2.2.1 (see Figure 6; Awareness) with respect to

occurrence of software defect rediscoveries?

2. What is the significance of cause-2.2.2 (see Figure 6; Skepticism) with respect

to occurrence of software defect rediscoveries?

3. What is the significance of cause-2.2.3 (see Figure 6; Pro-activeness) with

respect to occurrence of software defect rediscoveries?

55

4. What is the significance of cause-2.2.4 (see Figure 6; Downtime availability)

with respect to occurrence of software defect rediscoveries?

5. What is the significance of cause-2.2.5 (see Figure 6; IT staff availability) with

respect to occurrence of software defect rediscoveries?

6. What is the significance of cause-2.2.6 (see Figure 6; Complexity of patch

installation process) with respect to occurrence of software defect rediscoveries?

5.2.2.1.2 Propositions

As explained in section 5.2.1.1.2, an exploratory study by its nature has a legitimate

reason for not having any propositions [Yin 2003]. This is because in an exploratory

study we do not begin the study with a theory but instead conduct the study to develop a

theory which may be tested by another study. However, an exploratory study should

have some purpose. Therefore, instead of propositions, the design of an exploratory

study should state this purpose, as well as the criteria by which an exploration would be

judged successful. In our case, the research objectives implied by questions Q6 to Q24,

defined in section 5.1.2, will serve as the purpose of the study as well as the criteria for

successful completion of our study.

Appendix A contains the questionnaire which incorporates the questions Q6 to Q24.

5.2.2.1.3 Unit of Analysis

The unit of analysis is an SME [SME] providing system administration services to

various other organizations. All the respondents of the questionnaire in Appendix A

belong to this SME under study. It is important to note here that the study itself is

exploratory in nature and hence based on the feasibility in our current situation the best

we can do is a single case study. Similar multiple case studies can follow this

investigation for further proof. We believe that in the context of our research questions,

the case which is accessible to us is a typical case. The customer organisations of the

organisation under study are diverse with respect to the various factors like software

products under use, business models, industry, etc. However as the system

administrators, who are the participants of the study and also the employees of the SME

56

under study, belong to the same organisation they may share some common

characteristics with respect to the practice of system administration.

5.2.2.1.4 Logic linking the data to the propositions

As mentioned in section 5.2.1.1.4, this component of the research design is one of the

least developed in case studies. The “pattern matching” approach by Donald Campbell

[Campbell 1975] cannot be used here because of non-availability of propositions as our

study is exploratory in nature. Hence, the purpose of the case study as mentioned in

section 5.2.2.1.2 will be the sole guiding criteria in this regard.

5.2.2.1.5 Criteria for interpreting the findings

As mentioned in section 5.2.1.1.5, this component of the research design is one of the

least developed in case studies. This component is important mostly in case of case

studies with pre-defined theoretical propositions. However, the exploratory nature of

our study does not provide us with any propositions. Hence, this component has no

relevance in our case.

5.2.2.2 Quality of Research Design

The quality of empirical research needs to be established by four tests described below

[Yin 2003].

5.2.2.2.1 Construct Validity

The construct validation of the questionnaire was critical to the overall validity of the

study. The two types of construct validity that applied to the design of this

questionnaire were content and face validity. These types of validity cannot be

measured in a quantitative way, but we believe that we have met these through the

extensive design procedures described.

Content validity is based on the extent to which a questionnaire reflects the specific

intended domain of content [Carmines 1991]. This was established in our study by

covering all the factors which influence software users in their decision making with

57

respect to the installation of a patch from Figure 6, which were in turn identified from

literature dealing with software rediscoveries and patch management. All these factors,

which are the causes for rediscoveries (causes 2.2.1 to 2.2.6 in Figure 6), have been

identified in the taxonomy of rediscovery causes (see Figure 6), which in turn has been

construct validated by the six experts listed in Table 2.

Face validity is concerned “with how a measure or procedure appears. Does it seem like

a reasonable way to gain the information the researchers are attempting to obtain? Does

it seem well designed? Does it seem as though it will work reliably?” [CSU]. This is

met in our study by involving six experts (see Table 18) in reviewing the questionnaire,

both content and form.

58

Table 18 Experts involved in the validation of questionnaire (see Appendix A for questionnaire)

Expert Researcher /
Practitioner

years of
Experience

Experience Areas of Expertise

1 Researcher 30 Developer (small
scale); Architect;
Researcher; Research
Lead; Consultant;
Pedagogue;

Requirements
Engineering,
Empirical Studies,
Software Quality,
Software
Maintenance,
Software Process
Engineering.

2 Researcher and
Practitioner

15 Developer; Quality
Assurance Specialist;
Consultant; Research
Lead; Collaboration
Manager; Team
Lead;

Software
Engineering,
Software Quality
Assurance,
Software
Maintenance,
Project Estimation.

3 Practitioner 16 Statistical Consultant Statistics,
Optimization.

4 Researcher 6 Developer (small
scale); Researcher;
Pedagogue;

Software Quality,
Software Metrics,
Empirical Studies,
Software
Process(Agile).

5 Researcher 6 Lead programmer
(mid-sized industrial
projects); Researcher;
Tester; Designer;
Architect

Empirical studies,
Requirements
Engineering,
Software
Architecture,
Software Quality,
Video Game
Design, Usability

6 Practitioner 4 Statistical Analyst; IT
Technician

Statistics, Software
System
Administration

5.2.2.2.2 Internal Validity

Internal Validity is defined by Cooke and Campbell as the “approximate validity with

which we infer that a relationship between two variables is causal” [Cooke 1979]. As

mentioned in section 5.2.1.2.2, this validity is not a concern in case of exploratory

studies, which happens to be the type of study we are pursuing.

59

5.2.2.2.3 External Validity

External validity deals with the problem of knowing whether a study’s findings are

generalizable beyond the immediate case study [Yin 2003]. In this study, as mentioned

in section 5.2.2.1.3, the case is ‘typical’ and fairly representative of the population of

software administrators in the context of our research questions. As mentioned in

section 5.2.2.1.3, all the respondents of the questionnaire are system administrators who

belong to the same organization. However, they provide system administration services

to various other organizations which are diverse with respect to factors like software

products under use, business models, industry, etc.

5.2.2.2.4 Reliability

The objective of this test is to be sure that if a later investigator followed the same

procedures as described by an earlier investigator and conducted the same case study all

over again, the later investigator should arrive at the same findings and conclusions.

The goal of reliability is to minimize the errors and biases in a study. In this study, we

have properly documented our research process using GQM method from top to

bottom, from research goals to research objectives, questions and metrics at the

quantitative level. Also, the data is collected using a questionnaire. Hence, we conclude

that our research design is reliable.

5.2.2.2.5 Conclusion Validity

Conclusion validity in the degree to which conclusions we make based on the findings

are reasonable. We discuss the conclusions in section 6, and there we demonstrate that

all our conclusions are rooted in the results, thereby maintaining conclusion validity.

5.2.2.3 Data Collection

Based on our case study questionnaire design (see Appendix A), the organization

forming the unit of analysis gathered the data from the system administrators. This data

was made available to us for analysis. The system administrators who participated in

this case study are associated with the organization for various market research

60

activities. The participation was voluntary. Although these participants may not be

representative of the entire population of system administrators they do have diverse

background in terms of the types of software products they administer, the size of IT

teams and organizations they work for and their experience level. This diversity has

been quantitatively described in section 5.2.2.4.

5.2.2.4 Dataset profile

The number of system administrators involved in the case study was 100. The profile of

the dataset with respect to various attributes is shown in the following figures (Figure

10 to Figure 14).

Attribute 1: Software Products administered by Respondents

Other

0

36

81

81

• Series1

Email servers (Eg. Microsoft Exchange
Server, IBM Lotus Domino, etc)

Database Management Systems (Eg,
DB2, MySQL, Oracle, etc)

Middleware (Eg. Application servers -
Websphere, Sun Java Application Server,

WebLogic, JBOSS, etc)

Web servers (Eg. Apache, Microsoft IIS,
etc)

System software (Eg. Operating systems,
etc)

Content / Data Management Applications
(Eg. Alfresco, Apache Lenya, Joomla,

etc)

CRM∕ERP softwares (Eg. SAP, Oracle,
etc)

20 40 60 80 100
Number of Respondents

Figure 10 Demographic data of respondents - Software type

2
I

6
&

61

Attribute 2: Industries of Organizations for which the system administrators

worked

Education
9%

Healthcare
8%

Wholesale/Retail
4%

Financial Services
21%

Business Services
26%

Transport/Utilities
14%

—----- — Manufacturing
Government 11%

7%

□ Education
■ Healthcare
□ Wholesale/Retail
□ Transport/Utilities
■ Manufacturing
□ Government
■ Financial Services
□ Business Services

Figure 11 Demographic data of respondents - Industry

Attribute 3: Number of Employees of the Organizations for which the system

administrators worked

□ 1 to 25 Employees
■ 26 to 150 Employees
□ 151 to 800 Employees
□ 801 to 176,000 Employees

Figure 12 Demographic data of respondents - Organization size

801 to 176,0∞
Employees

25%

26 to 150
Employees

25%

151 to 800
Employees

25%

1 to 25 Employees
25%

62

Attribute 4: Number of IT Employees of the Organizations for which the system

administrators worked

□ 1 to 2 IT Employees
■ 3 to 7 IT Employees
□ 8 to 100 IT Employees
□ 101 to 50,000 IT Employees

101 to 50,000 IT
Employees

20%

8 to 100 IA
Employees

25%

Figure 13 Demographic data of respondents - IT department size

3 to 7 IT Employees
22%

1 to 2 IT Employees
33%

Attribute 5: Experience level of Respondents

□ 2 to 11 years
■ 12 to 14 years
□ 15 to 20 years
□ 21 to 40 years

2 to 11 years
26%

15 to 20 years
30%

12 to 14 years
22%

21 to 40 years
22%

Figure 14 Demographic data of respondents - Experience level

5.2.2.5 Results and Interpretation

This case study was done to achieve research objectives Q5 to Q24 mentioned in

section 5.1.2. The responses to questionnaire mentioned in section 5.2.2.1.2 (see

63

Appendix A) were collected from system administrators who work for an organization

which provides system administration services to various other organizations. The

responses collected from the 100 system administrators are presented here. The

interpretations made from the responses with respect to the various ‘causes for

rediscoveries’ are presented after the various graphs.

5.2.2.5.1 Awareness - cause 2.2.1

Q6: Please indicate your agreement with the following statement.
In general, your organization's software vendors provide you with
timely notices about new defects and patch releases.

4

6

5

3

0

----- 13

5 10 15

15

20 25

27

30 35

Num ber of Responses

7 - Strongly Agree
6 - Agree
5 - Somewhat Agree
4 - Neutral
3 - Somewhat Disagree
2 - Disagree
1 - Strongly Disgaree

Average level of
agreement = 4.56

Figure 15 Results - Research Objective Q6

64

Q7: Please indicate your agreement with the following statement.
In general, your organization’s software vendors provide you with
relevant information regarding new defects to help you analyze
whether your systems are under risk.

3133

2

20 25 3015

Number of Responses

2
dr
O
g

7 - Strongly Agree
6 - Agree
5 - Somewhat Agree
4 - Neutral
3 - Somewhat Disagree
2 - Disagree
1 - Strongly Disgaree

Average level of
agreement = 4.28

Figure 16 Results - Research Objective Q7

As can be seen from Figure 15 and Figure 16 the average levels of agreement for Q6

and Q7, 4.56 and 4.28, are just above the neutral point, i.e. 4. This shows that there is

some effort from the software provider to keep the users aware of the new defects

identified in the software product and the relevant patches. However, there is still scope

for improvement. The feedback obtained from the system administrators who

participated in the research sheds more light on these aspects. According to these

participants, most software providers, generally, just post the information about new

defects and patches on their support website. However, very few of the software

providers personally notify the system administrators about this information. Also, the

65

information provided to the system administrators, to assess the risk their systems are

under, is not user-friendly. It requires interpretation and extensive searching of this

information on the part of the system administrators to extract the information they need

to do the risk assessment.

5.2.2.5.2 Skepticism - cause 2.2.2

Q8: How important was the following factor to your
organization's IT department's decision to delay a patch
installation?
There was a delay in testing the patch before installation on
production systems.

O
g
(

7

6

118

2

3020 25

4
10 15 :

Number of Responses

E5
o
E 4

7 - Extremely Important
6 - Very Important
5 - Important
4 - Moderately Important
3 - Somewhat Important
2 - Slightly Important
1 - Not Important

Average level of
Importance = 3.86

Figure 17 Results - Research Objective - Q8

66

Q9: What was the average delay in patch installation on production
systems at your organization in the last 24 months due to the
following factor?
Testing the patch before installation.

More than 6 months

More than 3 months but less than 6
months

More than 1 month but less than 3
months

• More than 1 week but less than 1 month
Q

More than 1 day but less than 1 week

More than 1 hour but less than 1 day

Less than 1 hour

0 5 10 15 20 25 30

Number of Responses

Figure 18 Results - Research Objective Q9

67

Q10: How important was the following factor to your organization's
IT department's decision to cancel a patch installation?
We keep the changes made to our systems minimal.

Le
ve

l o
f I

m
po

rt
an

ce

Number of Responses

Average level of
Importance = 2.25

7 - Extremely Important
6 - Very Important
5 - Important
4 - Moderately Important
3 - Somewhat Important
2 - Slightly Important
1 - Not Important

0 10 20 30 40 50 60

3 63

70

7

6

5

4

3

2

1

115

=====13

—8

Figure 19 Results - Research Objective QlO

According to data in Figure 17 it can be observed that 87% of the system administrators

attach some level of importance to testing the patches before installation on production

systems, although knowing that it might cause a delay in the installation of patches on

production systems. This shows that most system administrators were skeptical that

sometimes patches can cause issues with their systems unless handled carefully. The

delay due to testing depends on the actual process followed by the system administrator.

It can be seen from the data in Figure 18 that 84% of the system administrators believed

that the delay due to testing is less than a month and 58% of the system administrators

believed that the delay due to testing is less than a week. The data in Figure 19 shows

that 63% of the system administrators say that they are not reluctant to make changes to

their systems just to avoid issues that might arise due to these changes. Patching the

systems is one such change which is known to sometimes cause issues with the

68

functionality and performance of the systems. In general, from the above analysis we

can infer that most system administrators are not reluctant to install new patches but are

definitely skeptical about them. To overcome this skepticism they do invest

considerable resource in terms of time to test the patches before installation on

production systems.

5.2.2.5.3 Pro-activeness - cause 2.2.3

Q11: Please indicate your agreement with the following statement.
In practice, your organization would install a software patch even if

0 5

17

you
fix.

7

6

5

' 4

6
$
2

6
g 3

2

1

30 35 4010 15 20 25

Num ber of Responses

7 - Strongly Agree
6 - Agree
5 - Somewhat Agree
4 - Neutral
3 - Somewhat Disagree
2 - Disagree
1 - Strongly Disgaree

Average level of
agreement = 4,8

Figure 20 Results - Research Objective Q11

69

Q12: How important was the following factor to your organization's
IT department's decision to delay a patch installation?
The systems were functioning normally and we had not experienced
any defect which the patch was known to fix.

0 5 10 15 20 25 30

-----—*
y*s9016

Number of Responses

7 - Extremely Important
6 - Very Important
5 - Important
4 - Moderately Important
3 - Somewhat Important
2 - Slightly Important
1 - Not Important

Average level of
Importance = 3.97

Figure 21 Results - Research Objective Q12

70

Q13: How important was the following factor to your organization's
IT department's decision to cancel a patch installation?
The systems were functioning normally and we had not experienced
any defect that the cancelled patch was known to fix.

O
g

0 10 20 30 40 50 60 70

Num ber of Responses

3

2

353

(C E
I 5
o A.
ε 4

7 - Extremely Important
6 - Very Important
5 - Important
4 - Moderately Important
3 - Somewhat Important
2 - Slightly Important
1 - Not Important

Average level of
Importance = 2.42

Figure 22 Results - Research Objective Q13

According to data in Figure 20 it can be observed that 65% of the system administrators

attach some level of agreement to the fact that they install patches pro-actively. From

the feedback from the system administrators, this is especially true in case of security

patches. The data in Figure 21 shows that 89% of system administrators attach some

level of importance to the fact that they would delay the installation of a patch if the

systems are currently functioning normally. Although this may seem to be in conflict

with the previous inference from Figure 20, a detailed analysis from the feedback

obtained from system administrators shows that system administrators, generally, would

not do an unscheduled maintenance for installing the patch if the systems are

functioning normally, security patches being an exception. However, they would

definitely install the patch during the next scheduled maintenance opportunity even if

71

the systems are functioning normally. Hence, the ‘delay’ which the system

administrators refer to here is actually the delay due to non-availability of system

downtime. The inference made from Figure 20 is further supported by the data in Figure

22 which shows that 58% of the system administrators believe that ‘systems functioning

normally’ is no excuse to cancel a patch installation and hence establishing that most

system administrators are pro-active when it comes to patch installation on their

systems.

5.2.2.5.4 Downtime availability - cause 2.2.4

Q14: How important was the following factor to your organization's IT
department's decision to delay a patch installation?
There was a delay due to lack of available system downtime.

E
o
g

4

3

2

(

7

6

5

3337

10

10119

25

27

3010 15 20

Number of Responses

⅜<J 14

7 - Extremely Important
6 - Very Important
5 - Important
4 - Moderately Important
3 - Somewhat Important
2 - Slightly Important
1 - Not Important

Average level of
Importance = 3.98

Figure 23 Results - Research Objective Q14

72

Q15: What was the average delay in patch installation on production
systems at your organization in the last 24 months due to the following
factor?
Lack of available system downtime.

More than 6 months

More than 3 months but less than 6
months

More than 1 month but less than 3
months

More than 1 week but less than 1 month

More than 1 day but less than 1 week

More than 1 hour but less than 1 day

Less than 1 hour

0 5 10 15 20 25 30 35

29

Number of Responses

Figure 24 Results - Research Objective Q15

73

Q16: How important was the following factor to your organization's
IT department's decision to cancel a patch installation?
The lack of available system downtime limited the number of patch
installations.

O
g
(

6 5

10

3

2

7010 40 60

Num be r of Responses

50

CB 5
o
E 4

7 - Extremely Important
6 - Very Important
5 - Important
4 - Moderately Important
3 - Somewhat Important
2 - Slightly Important
1 - Not Important

Average level of
Importance = 2.25

Figure 25 Results - Research Objective Q16

According to data in Figure 23 it can be observed that 86% of the system administrators

attached some level of importance to availability of system downtime or the lack of it as

a factor in their decision to delay the installation of a patch on production systems. 75%

of the system administrators who responded said that they have redundant systems on

standby. In spite of this it is still difficult to find downtime because of the fact that these

redundant systems are mainly used for high availability and they can not be taken out of

service for installing patches even if they are on standby. The data in Figure 24 shows

that 89% of the system administrators believe that the delay in installing a patch on their

production systems due to non-availability of downtime is less than one month and 60%

of them believe that it is less than a week. The data in Figure 25 shows that 60% of the

system administrators believe that non-availability of adequate system downtime did

74

not limit the number of patch installations made on their systems. To summarize the

data in Figure 23, Figure 24 and Figure 25 we can say that availability of adequate

system downtime continues to be an issue with respect to installation of patches in spite

of availability of redundant systems. However, most system administrators do not

cancel a patch installation due to non-availability of downtime although they delay the

patch installation.

5.2.2.5.5 IT staff availability - cause 2.2.5

Q17: Please indicate your agreement with the following
statement.
Your organization has adequate IT staff resource to timely
address all potential patch installations.

2 C.
4

g
(

5

6

21

3

2

3020 25155 100

56

36

Level of Importance

Average level of
agreement = 4.57 - Strongly Agree

6 - Agree
5 - Somewhat Agree
4 - Neutral
3 - Somewhat Disagree
2 - Disagree
1 - Strongly Disgaree

Figure 26 Results - Research Objective Q17

75

Q18: How important was the following factor to your organization's IT
department's decision to delay a patch installation?
There was a delay due to lack of available IT staff to handle the patch
installation process.

7

5

0

Num ber of Responses

ZZΞZ

3≡3⅛1

g 3
—2

7 - Extremely Important
6 - Very Important
5 - Important
4 - Moderately Important
3 - Somewhat Important
2 - Slightly Important
1 - Not Important

Average level of
Importance = 3.48

25

Figure 27 Results - Research Objective Q18

76

Q19: What was the average delay in patch installation on
production systems at your organization in the last 24 months
due to the following factors?
Lack of available IT staff to install the patch.

More than 6 months

More than 3 months but less than 6
months

More than 1 month but less than 3
months

D
el

ay More than 1 week but less than 1 month

More than 1 day but less than 1 week

More than 1 hour but less than 1 day

Less than 1 hour

≡3

*5816

FF 20

27

0 5 10 15 20 25 30

Number of Responses

Figure 28 Results - Research Objective Q19

77

Q20: How important was the following factor to your organization's
IT department's decision to cancel a patch installation?
The lack of available IT staff limited the number of patch
installations.

O
g
(

0 10 20 30 40 50 60 70 80

Num ber of Responses

6

15

3

2

()
U
C
25
O
E 4

7 - Extremely Important
6 - Very Important
5 - Important
4 - Moderately Important
3 - Somewhat Important
2 - Slightly Important
1 - Not Important

Average level of
Importance = 1.99

Figure 29 Results - Research Objective Q20

According to the data in Figure 26 it can be observed that 54% of the system

administrators agreed to some level that they have adequate IT staff to timely address

potential patch installations, whereas 24% of them disagreed to some level for the same

and the remaining 22% were undecided. Also, from the data in Figure 27, the average

level of importance for the Tack of IT staff’ as a factor in the decision to delay a patch

installation is 3.48, which is less than the average level of importance for any factor in

this decision, which is 3.702. Also, from the data in Figure 28, 70% of the system

administrators believed that the delay in patch installation due to Tack of IT staff is

less than a week. Also, from the data in Figure 29, 67% of system administrators

believed that Tack of IT staff had no importance at all when it came to the decision of

cancelling a patch installation. Also, the average level of importance for this factor in

78

the system administrators’ decision to cancel a patch installation is 1.99, which is less

than the average level of importance for any factor, i.e., 2.174. From the data in Figure

26, Figure 27, Figure 28 and Figure 29 we can summarize that a majority of system

administrators agreed more than they disagreed that their organization had the necessary

IT staff resource to address potential patch installations in a timely manner. Also, Tack

of IT staff has an average level of importance which is lesser than the average level of

importance for any factor in both the decisions - decision to delay a patch installation

and decision to cancel a patch installation.

5.2.2.5.6 Complexity of patch installation process - cause 2.2.6

Q21: Please indicate your agreement with the following statement.
Your organization has adequate automation to make patch
installation a straightforward task.

O

?
Φ

1

7

0

2

5

1 17

20 25

3 32

35

3

2

6

5

Number of Responses

? 4

souses” 7

7 - Strongly Agree
6 - Agree
5 - Somewhat Agree
4 - Neutral
3 - Somewhat Disagree
2 - Disagree
1 - Strongly Disgaree

Average level of
agreement = 4.69

Figure 30 Results - Research Objective Q21

79

Q22: How important was the following factor to your organization's
IT department's decision to delay a patch installation?
There was a delay due to lack of adequate automation or
non-usage of patch management tools, to handle the patch
installation

4

7

6

5

Le
ve

l o
f i

m
po

rt
an

ce

3

1

0 5 10

10

15 20

EZΞ⅛127

25

26

30

21

Number of Responses
—
7 - Extremely Important Average level of

Importance = 3.226 - Very Important
5 - Important
4 - Moderately Important
3 - Somewhat Important
2 - Slightly Important
1 - Not Important

Figure 31 Results - Research Objective Q22

80

Q23: What was the average delay in patch installation on production
systems at your organization in the last 24 months due to the following
factor?
Lack of adequate automation of the patch installation process.

More than 6 months

More than 3 months but less than 6
months

More than 1 month but less than 3
months

-
• More than 1 week but less than 1 month

Q

More than 1 day but less than 1 week

More than 1 hour but less than 1 day

Less than 1 hour

5

0 5 10 15 20 25 30

Number of Responses

Figure 32 Results - Research Objective Q23

81

Q24: How important was the following factor to your organization's IT
department's decision to cancel a patch installation?
The lack of adequate automation of the patch installation process or
non-usage of patch management tools, limited the number of patch
installations.

E
O

Num ber of Responses

7 - Extremely Important
6 - Very Important
5 - Important
4 - Moderately Important
3 - Somewhat Important
2 - Slightly Important
1 - Not Important

Average level of
Importance = 1.96

4

6

7

7

10

10

20 40 60 70

2

(

0

Figure 33 Results - Research Objective Q24

According to data in Figure 30 it can be observed that 63% of the system administrators

agreed to some level that they have adequate automation to handle patch installations,

whereas 20% of them disagreed to some level for the same and the remaining 17% were

undecided. From the data in Figure 31, the average level of importance for the ‘lack of

adequate automation of the patch installation process’ as a factor in the decision to

delay a patch installation is 3.22, which is less than the average level of importance for

any factor in this decision, i.e., 3.702. From the data in Figure 32, 69% of the system

administrators believed that the delay in patch installation due to Tack of adequate

automation of the patch installation process’ is less than a week. From the data in Figure

33, 65% of system administrators believed that Tack of adequate automation of the

patch installation process’ had no importance at all when it came to the decision of

82

cancelling a patch installation. The average level of importance for this factor (1.94) is

less than the average level of importance for any factor in the decision to cancel a patch

installation (2.174). From the data in Figure 30, Figure 32, Figure 33 and Figure 34 we

can summarize that system administrators agreed more than they disagreed that their

organization had the adequate automation of the patch installation process to handle

patch installations. The Tack of adequate automation of the patch installation process’

has an average level of importance which is lesser than the average level of importance

for any factor in both the decisions - decision to delay a patch installation and decision

to cancel a patch installation.

5.2.2.5.7 Relative importance of causes (2.2.2 - 2.2.6)

In this section, we discuss the relative significance of each of the causes for

rediscoveries.

5.2.2.5.7.1 Relative importance with respect to delaying a patch installation

Φ
o

O

E

%

w
%

Relative importance of causes (2.2.2 - 2.2.6) with respect
to the decision to delay a patch installation

3.5 3.22

3

2.5

2

0.5

Avg. level of
Importance
over all causes■

Skepticism
2.2.2

Pro-activeness
2.2.3

Downtim e
availabil ity

2.2.4

IT staff
availability

2.2.5

Com plexity of
patch

installation
proc ess
2.2.6Causes for Rediscoveries

Figure 34 Relative importance of causes (2.2.2 - 2.2.6) w.r.t. the decision to delay a patch
installation

83

Table 19 Relative delays in patch installation due to various causes for rediscoveries

Cause--------- Responses which said
"There was a delav'

Responses which said
‘Delay more than ! week'

Skepticism -
cause 2.2.2

87% 42 %

Pro-activeness -
cause 2.2.3

42 % -

Downtime availability -
cause 2.2.4

86 % 40 %

IT staff availability -
cause 2.2.5

77 % 30 %

Complexity of patch
installation process -
cause 2.2.6

73 % 31 %

According to data in Figure 34 it can be observed that ‘Skepticism’, ‘Pro-activeness’

and ‘Downtime availability’ were given above average importance whereas ‘IT staff

availability’ and ‘Complexity of patch installation process’ were given below average

importance by system administrators when it comes to delaying the installation of a

patch. Also, the data in Table 19 shows that more system administrators reported that

there was a delay due to ‘Skepticism’ and ‘Downtime Availability’ when compared to

the number of system administrators who reported that there was a delay due to ‘Pro

activeness’, ‘IT Staff availability’ and ‘Complexity of patch installation process’. Also,

Table 19 shows that more system administrators reported that the delay due to

‘Skepticism’ and ‘Downtime Availability’ was more than a week when compared to the

number of system administrators who reported that there was a delay due to TT Staff

availability’ and ‘Complexity of patch installation process’.

84

5.2.2.5.7.2 Relative importance with respect to cancelling a patch installation
A

ve
ra

ge
 le

ve
l o

f I
m

 p
or

ta
nc

e

3

Relative importance of causes (2.2.2 - 2.2.6) with respect to the
decision to cancel a patch installation

2.2.2 2.2.3 availability availability patch
2.2.4 2.2.5 installation

0.5

1.5

2.5

0

2.25
2.42

IT staff

1.99

Com plexity of

196

Skeptici sm Pro-activeness Downtime

2.25
newer

Avg. level of
Importance
over all causes

proc ess
Causes for Rediscoveries 2.2.6

Figure 35 Relative importance of causes (2.2.2 - 2.2.6) w.r.t. the decision to cancel a patch
installation

According to data in Figure 35 it can be observed that ‘Skepticism’, 'Pro-activeness'

and ‘Downtime availability’ were given above average importance whereas cIT staff

availability’ and ‘Complexity of patch installation process’ were given below average

importance by system administrators when it comes to cancelling the installation of a

patch. Also, from the feedback from the system administrators who participated in the

study, it was apparent that the most important reason for cancelling the installation of a

patch was when there was enough evidence to believe that their systems were not under

any risk due to a defect in the software product which the patch was designed to fix.

85

5.2.2.5.8 Summary of results

In this section, we present the summary of the results of the case study done on software

user.

• In overall, system administrators agreed more than they disagreed that their

software providers provide them with timely notices about new defects and

relevant patches.

• 58% of the system administrators said that they were pro-active in their

patch management policy.

• 70% or more system administrators agreed that there was a delay in the

patch installation on their production systems due to ‘Skepticism’,

‘Downtime availability’, ‘IT staff availability’ and ‘Complexity of patch

installation process’.

• More system administrators reported that there was a delay in the patch

installation on their production systems due to ‘Skepticism’ and ‘Downtime

availability’ when compared to the number of system administrators who

reported that there was a delay due to ‘IT staff availability’ and ‘Complexity

of patch installation process’.

• More system administrators reported that the delay due to ‘Skepticism’ and

‘Downtime Availability’ was more than a week when compared to the

number of system administrators who reported that there was a delay due to

‘IT Staff availability’ and ‘Complexity of patch installation process’.

86

Chapter 6: Implications, Future work and Summary

In this chapter we conclude the thesis by discussing the implications of research

findings, suggest some future work in this area, and lastly give a conclusion to the

thesis.

6.1 Implications of Research Findings

The findings of our study can have potentially significant implications in the following

areas of Software Engineering:

• Maintenance processes in the software industry.

• Customer Technical Support processes in the software industry.

• Development of framework for measuring the impact of rediscovery causes.

• Patch management policies of software users.

We now discuss each of these points in this order.

6.1.1 Maintenance processes in the software industry

The findings presented in section 5.2.1.7 show that 48% of the rediscoveries occur due

to the delay on the part of the software provider to provide the patch to the software

user. Also, delay in defect diagnosis causes 1.1%3 of the rediscoveries and delay in fix

release causes 7.1%4 of them. However, the majority of rediscoveries, i.e., 39.8%5, are

caused due to delay in defect fixing. Hence, although diagnosis technologies and

preventive maintenance policy have the potential to reduce some of the rediscoveries,

i.e., 8.2% in total, to bring down the number of rediscoveries significantly the delay in

defect fixing needs to be reduced by a considerable amount. This can be achieved by

various measures like employing more developers, training, adopting better

development processes, etc.

3 2.3% of rediscoveries caused due to delay on the software providers’ side to provide the patch.
4 14.8% of rediscoveries caused due to delay on the software providers’ side to provide the patch.
5 82.9% of rediscoveries caused due to delay on the software providers’ side to provide the patch.

87

6.1.2 Customer Technical Support processes in the software industry

The findings presented in section 5.2.2.5.8 show that ‘Skepticism’ and ‘Downtime

availability’ are the causes which are more significant than others on the software users’

side which cause rediscoveries. These causes need to be addressed to reduce the delay

on the software users’ side in installing the software patch once it is made available by

the software provider. Some of the potential solutions to address ‘Skepticism’ have

been mentioned in chapter 2.

6.1.3 Development of framework for measuring the impact of rediscovery causes

The measurement of the impact of various rediscovery causes can be helpful to cost-

effectively address the rediscovery causes to reduce the overall cost due to

rediscoveries. The rediscovery cause taxonomy presented in chapter 4 together with

research methodology GQM presented in section 5.1.2 can be used as a basic

framework to measure the impact of various rediscovery causes. Although, this basic

framework has been successfully used by us in our case studies, it is necessary to

enhance the framework to make it more usable by appropriate tool support.

6.1.4 Patch management policies of software users

The findings presented in section 5.2.1.7 show that 52% of the rediscoveries occur due

to the delay on the part of the software user to install the patch once it is made available

by the software provider. This information can be useful to the software users to

evaluate the impact of their patch management policies on the overall rediscovery cost.

This evaluation will help them further to cost-effectively address the problem due to

rediscoveries by making appropriate changes in their patch management policies.

6.2 Future Work

There are several suggestions listed below for future work that arose while conducting

the study, they are:

• The replication of the case studies. The case study to achieve research

objectives on the software provider’s side was done on a single software

product. However, currently we have a very diverse population of software

88

products in existence and hence drawing long reaching conclusions from a

single case study may not be prudent. Hence, more case studies in this

regard can be beneficial. Also, the case study to achieve objectives on the

software user’s side involved 100 system administrators whereas the actual

population of system administrators in the IT industry is much larger. Also,

the patch management policies of the system administrators may vary with

the characteristics of the software product. An extended study involving

more number of system administrators working with more diverse software

products can be beneficial in this regard.

• The mentioned in section 6.1.2, the information provided to the system

administrators by the software providers is not provided in a user-friendly

way. The software users have to manually delve to extract the information

relevant to them. If this process can be automated to some extent wherever

possible it could prove to be very beneficial to the software users. More

research in this direction is necessary.

• A generic framework with appropriate tool support to measure the impact of

various causes for rediscoveries needs to be developed. This will very

helpful to replicate the case studies like the ones presented in this thesis.

6.3 Conclusion

In this work, our research goal was to identify the various causes for software

rediscoveries, create the taxonomy of these rediscovery causes and establish the

significance of these causes. We identified the various causes for software rediscoveries

from the literature and created taxonomy of these causes. To establish the significance

of each of these causes for rediscoveries we undertook two case studies. Each step in

our research process was inspected and validated, leading to results that we feel are

sincere and valid.

Our findings suggest that the delay on the software providers’ side to provide the

software users the patch to fix a defect in the software product contributes to

approximately 50% of the rediscoveries; whereas, the delay on the software users’ side

89

to install that patch contributes to approximately 50% of the rediscoveries. On the

software providers’ side, the delay in diagnosis of the defect and the delay in packaging

and releasing of the defect contribute to approximately 1% and 7% of the total

rediscoveries respectively. The delay due to the design of the fix alone contributes to

about approximately 40% of the rediscoveries (see section 5.2.1.7). On the software

users’ side skepticism about the patch causing issues with fiinctionality and/or

performance, and non-availability of system downtime were identified to be the causes

with relatively higher significance than other causes, for software users to delay the

installation of a patch which causes rediscoveries (see section 5.2.2.5.7).

These findings have potential significance in industry and research. Maintenance and

customer technical support processes in the software industry and development of

framework to measure impact of rediscovery causes can all potentially benefit from the

results presented.

We suggested further research in related areas, and also that replication of this study be

done to further strengthen the findings.

90

Glossary

Defect diagnosis: The process of analyzing of a failure to identify the defect [Lee Iyer
2000].

Issue Tracking System: An issue tracking system (also called trouble ticket system or
incident ticket system) is a computer software package that manages and maintains lists
of issues, as needed by an organization. Issue tracking systems are commonly used in an
organization's customer support call center to create, update, and resolve reported
customer issues, or even issues reported by that organization's other employees. An
issue tracking system often also contains a knowledge base containing information on
each customer, resolutions to common problems, and other such data. An issue tracking
system is similar to a “bugtracker”, and often, a software company will sell both, and
some bugtrackers are capable of being used as an issue tracking system, and vice versa
[Wiki].

Patch: A patch is a small piece of software designed to update or fix problems with a
computer program or its supporting data. This includes fixing bugs, replacing graphics
and improving the usability or performance [Wiki].

Patch Management: The process of controlling the deployment and maintenance of
interim software releases into operational environments [NISCC 2006].

Security Patch: Ifa patch is a piece of data used to update a software product, then a
security patch is a change applied to an asset to correct the weakness described by a
vulnerability. This corrective action will prevent successful exploitation and remove or
mitigate a threat’s capability to exploit a specific vulnerability in an asset [Wiki].

Software Defect: A type of change request that identifies an anomaly or flaw in a work
product [IBMT]; Any flaw or imperfection in a software work product [Florac 1992]. A
software work product is any artefact created as part of the software process including
computer programs, plans procedures, and associated document and data [CMU∕SEI
1991].

Software Failure: The inability of a system or component to perform its required
functions within specified performance requirements [IBMT]; Deviation of the
delivered service from compliance with the specification [Laprie 1992].

Software defect discovery: A single software defect can cause multiple software
failures. The very first failure due to a defect is called a software defect discovery
[Adams 1982].

Software defect rediscovery: A single software defect can cause multiple software
failures. The very first failure due to a defect is called a software defect discovery. All
subsequent failures due to the defect are called software defect rediscoveries [Adams
1982].

91

Exploratory case study: A case study where we do not begin the study with a theory
but instead conduct the study to develop a theory which may be tested by another study
[Yin 1993].

92

Bibliography

[Adams 1984] Adams, E., “Optimizing Preventive Service of the Software Products”,
IBM J. Research and Development, vol. 28, no. 1, pp. 2-14, January 1984

[Altekar 2005] Altekar, G.; Bagrak, I.; Burstein, P.; Schultz, A., “OPUS: Online
patches and updates for security”, Proceedings of 14th Conference on USENIX Security
Symposium 2005, pp. 19-19, August 2005

[Ballintin 2005] Ballintijn, G., “A case study report on the development, release and
deployment processes of chipsoft”, Technical Report SEN-E0506, Centrum voor
Wiskunde en Informatica (CWI), Amsterdam, The Netherlands, April 2005

[Basili 1994] Basili, V.; Caldiera, G.; Rombach, H., “The goal question metric
approach”, Encyclopedia of Software Engineering. John Wiley: New York 1994; pp.
528-532, 1994

[Baumann 2004] Baumann, A.; Appavoo, J.; Da Silva, D.; Krieger, O.; Wisniewski,
R., “Improving operating system availability with dynamic update”, Proceedings of the
1st Workshop on Operating System and Architectural Supportfor the On-Demand IT
Infrastructure 2004 (OASIS 2004), pp. 21-27, October 2004

[Baumann 2005] Baumann, A.; Heiser, G.; Appavoo, J.; Da Silva, D.; Krieger, O.;
Wisniewski, R. W.; Kerr, J.; “Providing dynamic update in an operating system”,
Proceedings of the Annual Conference on USENIXAnnual Technical Conference 2005,
pp. 32-32, April 2005

[Beattie 2002] Beattie, S.; Arnold, S.; Cowan, C.; Wagle, P.; Wright, C. “Timing the
application of security patches for optimal uptime”, Proceedings of LISA '02:16th
Systems Administration Conference 2002, pp. 233-242, 2002

[Brodie 2005] Brodie, M.; Sheng Ma; Lohman, G.; Mignet, L.; Modani, N.; Wilding,
M.; Champlin, J.; Sohn, P., “Quickly Finding Known Software Problems via
Automated Symptom Matching”, Proceedings of Second International Conference on
Autonomie Computing, 2005(ICAC 2005), pp. 101-110, June 2005

[Campbell 1975] Campbell, D.; “Degrees of freedom and the case study”, Comparative
Political Studies, vol. 8, pp. 178-193

[Carmines 1991] Carmines, E. G. & Zeller, R.A. “Reliability and validity assessment”.
Newbury Park: Sage Publications, 1991

[CMU∕SEI 1991] Paulk, Mark C.; Curtis, Bill; Chrissis, Mary Beth; Capability
Maturity Modelfor Software (CMU∕SEI-91-TR-24, ADA 240603), Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1991

93

[Cobb 1992] Cobb, P.; Lennon, C.; Long, K., “System and Method for Software Early
Error Detection and Data Capture”, U.S. Patent no. 51193 77, 1992

[Cooke 1979] Cook, T. D., & Campbell, D. T. (1979). Quasi-experimentation: Design
and analysis issues for field settings. Boston: Houghton Mifflin.

[Crameri 2007] Crameri, O.; Knezevic, N.; Kostic, D.; Bianchini, R.; Zwaenepoel, W.,
“Staged deployment in mirage, an integrated software upgrade testing and distribution
system”, SIGOPS Operating Systems Review, vol. 41, no.6 ,pp. 221-236, October 2007

[CSU] Colorado State University’s: “Writing@CSU: Writing Guide”,
http://writing.colostate.edu/guides/research/content/

[Dungan 2004] Dunagan, J.; Roussev, R.; Daniels, B.; Johnson, A.; Verbowski, C.;
Wang, Y., “Towards a self-managing software patching process using black-box
persistent-state manifests”, Proceedings of International Conference on Autonomie
Computing, 2004, pp. 106-113, May 2004

[Florac 1992] Florac W.A., “Software quality measurement: a framework for counting
problems and defects”, CMU/SEI-92-TR-22, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, 1992

[Gerace 2005] Gerace, T.; Cavusoglu, H., “The critical elements of patch
management”, Proceedings of the 33rd Annual ACM SIGUCCS Conference on User
Services (SIGUCCS 2005), pp. 98-101, November 2005

[Gkantsidis 2006] Gkantsidis, C.; Karagiannis, T.; Vojnovic, M., “Planet scale
software updates”, SIGCOMM Computer Communication Review, vol. 36, no. 4 ,pp.
423-434, August 2006

[IBMT] IBM Terminology
http://www-306.ibm.com/software/globalization/terminology/index.jsp

[Jansen 2005] Jansen, S., “Alleviating the release and deployment effort of product
software by explicitly managing component knowledge”, Proceedings of the Workshop
on Development and Deployment of Product Software. US Education Service 2005, pp.
21-30, 2005

[Laprie 1992] Laprie J.C.; Avizienis A.; Kopetz H.; Kopetz H., ^Dependability: Basic
Concepts and Terminology”, Springer-Verlag New York, Inc., 1992

[Lee Iyer 2000] Lee, I.; Iyer, R., “Diagnosing Rediscovered Problems Using
Symptoms”, IEEE Transactions on Software Engineering, vol. 26, no. 2, pp. 113-127,
February 2000

94

http://writing.colostate.edu/guides/research/content/
http://www-306.ibm.com/software/globalization/terminology/index.jsp

[Lee McRee Bartlett 1996] Lee, I.; McRee, R.; Bartlett, W., “On-line recovery for
rediscovered software problems”, Proceedings of IEEE International Computer
Performance and Dependability Symposium 1996, pp. 78-87, September 1996

[Lee Pitt Iyer 1996] Lee, I.; Pitt, G.; Iyer, R., “Efficient service of rediscovered
software problems”, Proceedings of Annual Symposium on Fault Tolerant Computing
I996, pp. 348-352, June 1996

[MBSA] Microsoft Baseline Security Analyzer,
www.microsoft.com/technet/security/tools/mbsahome.mspx.

[Mullen Gokhale 2005] Mullen, R.; Gokhale, S., “Software defect rediscoveries: a
discrete lognormal model”, Proceedings of 15th International Symposium on Software
Reliability Engineering, pp. 203-212, November 2005

[NISCC 2006] “Good Practice Guide - Patch Management”, National Infrastructure
Security Co-ordination Centre, October 2006
http://www.cpni.gov.uk/Docs/re-20061024-00719.pdf

[Pasala 2006] Pasala, A.; Rao, S.; Gunturu, S; Sinha, P., "An Approach Based on
Modeling Dynamic Behavior of the System to Assess the Impact of COTS Upgrades",
Proceedings of 13th Asia Pacific Software Engineering Conference 2006. (APSEC
2006), pp. 19-26, December 2006

[Pasala 2008] Pasala, A.; Lew Yaw Fung, Y.L.H.; Akladios, F.; Appala Raju, G.;
Gorthi, R., "Selection of Regression Test Suite to Validate Software Applications upon
Deployment of Upgrades", 19th Australian Conference on Software Engineering, 2008
(ASWEC 2008), pp. 130-138, March 2008

[Rumsey] Rumsey D., “Intermediate Statistics for Dummies”, ISBN 0470045205,
Wiley Publishing, 2007.

[SME] European Commission (2003-05-06), Recommendation 2003/361/EC: SME
Definition

[SMS] Microsoft SMS, www.microsoft.com/smserver

[TechSupport] PLM Technical Support Process -Ata Glance,
http://www-l .ibm.com/suDport/docview.wss?uid=swg27005882&aid=l

[Thornton Quema 2005] Thornton J.; Quema V., “Evaluating Patch Safety:
Configuration Sharing for Problem Avoidance”, TR-05-2, Palo Alto Research Center,
February 2005

[Tiv] Tivoli, http://www.tivoli.com

95

http://www.microsoft.com/technet/security/tools/mbsahome.mspx
http://www.cpni.gov.uk/Docs/re-20061024-00719.pdf
http://www.microsoft.com/smserver
http://www-l_.ibm.com/suDport/docview.wss?uid=swg27005882&aid=l
http://www.tivoli.com

[Wiki] Wikipedia, http://en.wikipedia.org

[Wood 2003] Wood A., “Software reliability from the customer view”, Computer, vol.
3 6, no. 8, pp. 37-42, August 2003

[WU] Microsoft Windows Update http://windowsupdate.microsoft.com

[Yin 1993] Yin R., “Applications of Case Study Research”, 1st edition, Sage
Publications, 1993.

[Yin 2003] Yin R., “Case Study Research: Design and Methods”, 3rd edition, Applied
social research methods series, vol. 5, Sage Publications, 2003.

96

http://en.wikipedia.org
http://windowsupdate.microsoft.com

Appendices
Appendix A

Questionnaire: Case Study - Software User

aSCREENERl: Which title best describes your position?

1. Owner / president / CEO
2. C-Level officer
3. VP-level
4. Director-level
5. Manager
6. Team lead / supervisor
7. Team member
8. Contractor
9. Consultant
10. Intern or Co-op student
11. Student

aSCREENER2: What percentage of your time at work is spent in system
administration tasks (installing/upgrading software, etc)?

1. None - Myjob does not include system administration tasks
2. 1-10%
3. ll-25%
4. 26-50%
5. 51-100 %

aSCREENER3: How would you best describe your job function?

1. IT focused
2. IT and business focused, but more IT focused
3. IT and business focused, but more business focused
4. Business focused

aSCREENER4: What best describes the scope of the organization for which you are
answering this questionnaire? Please answer all questions in the questionnaire for this
organization.

1. Department
2. Business Unit
3. Enterprise

97

aDMl: What kind of software systems does your organization generally administer, or
has administered in the past 24 month?

aDMl_Al: Middleware (Eg. Application servers - Websphere, Sun Java Application
Server, WebLogic, JBOSS, etc) - Yes / No

aDMl_A2: Web servers (Eg. Apache, Microsoft IIS, etc) - Yes / No

aDM1_A3: Database Management Systems (Eg, DB2, MySQL, Oracle, etc) - Yes /
No

aDMl_A4: Email servers (Eg. Microsoft Exchange Server, IBM Lotus Domino, etc) -
Yes / No

aDMl_A5: CRM/ERP softwares (Eg. SAP, Oracle, etc)-Yes/No

aDMl_A6: Content / Data Management Applications (Eg. Alfresco, Apache Lenya,
Joomla, etc) -Yes / No

aDMl_A7: System software (Eg. Operating systems, etc) -Yes / No

aDMl_A8: Other - Please mention here

cDM2: What best describes your organization’s industry?

1. Education
2. Healthcare
3. Wholesale / Retail
4. Transport / Utilities / Communication
5. Manufacturing
6. Government
7. Financial Services
8. Business Services
9. Other-Please mention here

bDM3: What is your organization’s requirements regarding availability of systems?

bDM3_1: Days per week - 1 to 7

bDM3_2: Hours per day- 1 to 24

bDM4: How many full-time equivalent employees work in your organization?

1. 1-25
2. 26-150
3. 151-800

98

4. 801 -176,000

bDM5: How many full-time equivalent IT employees work in your organization?

1. 1-2
2. 3-7
3. 8-100
4. 101 -50,000

bDM6: How many years of work-experience do you have in an IT related role?

1. 2-11 years
2. 12-14 years
3. 15-20 years
4. 21 -40 years

aSPla: Please indicate your agreement with the following statements on the following
scale.

1. Strongly Disagree
2. Disagree
3. Somewhat Disagree
4. Neutral
5. Somewhat Agree
6. Agree
7. Strongly Agree

aSPla_1: In general, your organization’s software vendors provide you with timely
notices about new defects and patch releases.
aSPla_2: In general, your organization’s software vendors provide you with relevant
information regarding new defects to help you analyze whether your systems are under
risk.
aSPla_3: In practice, your organization would install a software patch even if you have
not experienced a defect, which the patch is purported to fix.
aSPla_4: Your organization has adequate automation to make patch installation a
straightforward task.
aSPla_5: In practice, your organization installs all the patches released by your
software vendors.
aSPla_6: Your organization has adequate IT staff resource to timely address all
potential patch installations.

aSPlb: Do you have any comments or rationale about the previous statements?

aSP2a: What was the average delay in the installation of a patch on your systems in the
last 24 months?

1. Less than 1 hour

99

2. More than 1 hour but less than 1 day
3. More than 1 day but less than 1 week
4. More than 1 week but less than 1 month
5. More than 1 month but less than 3 months
6. More than 3 months but less than 6 months
7. More than 6 months

aSP2b: Do you have any comments or rationale about the previous statement?

aSP3a: How important were the following factors to your organization's IT
department's decision to delay a patch installation on the following scale?

1. Not Important
2. Slightly Important
3. Somewhat Important
4. Moderately Important
5. Important
6. Very Important
7. Extremely Important

aSP3a_l: There was a delay in testing the patch before installation on production
systems.
aSP3a_2: The systems were functioning normally and we had not experienced any
defect which the patch was known to fix.
aSP3a_3: There was a delay due to lack of available system downtime.
aSP3a_4: There was a delay due to lack of available IT staff to handle the patch
installation process.
aSP3a_5: There was a delay due to lack of adequate automation or non-usage of patch
management tools, to handle the patch installation.

aSP3b: Do you have any comments about the factors listed above that influence patch
installation delay?

aSP4a: What was the average delay in patch installation on production systems at your
organization in the last 24 months due to the following factors?
Options:

1. Less than 1 hour
2. More than 1 hour but less than 1 day
3. More than 1 day but less than 1 week
4. More than 1 week but less than 1 month
5. More than 1 month but less than 3 months
6. More than 3 months but less than 6 months
7. More than 6 months

aSP4a_l: Testing the patch before installation.
aSP4a_2: Lack of available system downtime.
aSP4a_3: Lack of available IT staff to install the patch.

100

aSP4a_4: Lack of adequate automation of the patch installation process.

aSP4b: Do you have any comments or rationale about the patch installation delay due
to various factors?

aSP5a: What was the percentage of patches from your software vendors that your
organization’s IT department decided not to install, in the last 24 months?

1. None - We installed all patches from our software vendor
2. 1-10%
3. 11-25%
4. 26-50%
5. 51-100%

aSP5b: Do you have any comments or rationale about the previous statement?

aSP6a: Has your organization cancelled the installation of a patch from a software
vendor in the last 24 months? - Yes / No

aSP6b: Do you have any comments or rationale about the previous statement?

aSP7a: How important were the following factors to your organization's IT
department's decision to cancel a patch installation on the following scale?

1. Not Important
2. Slightly Important
3. Somewhat Important
4. Moderately Important
5. Important
6. Very Important
7. Extremely Important

aSP7a_l: We keep the changes made to our systems minimal.
aSP7a_2: The systems were functioning normally and we had not experienced any
defect that the cancelled patch was known to fix.
aSP7a_3: The lack of available system downtime limited the number of patch
installations.
aSP7a_4: The lack of available IT staff limited the number of patch installations.
aSP7a_5: The lack of adequate automation of the patch installation process or
non-usage of patch management tools, limited the number of patch installations.

aSP7b: Do you have any comments or rationale about the previous statements?

101

	SOFTWARE DEFECT REDISCOVERIES: CAUSES, TAXONOMY AND SIGNIFICANCE
	Recommended Citation

	CERTIFICATE OF EXAMINATION

	Shyamsundar Kulkarni

	Software Defect Rediscoveries: Causes, Taxonomy and Significance

	Abstract

	Acknowledgements

	List of Tables

	List of Figures

	1.1	Motivation

	1.2	Purpose of the Study

	1.3	Significance and Originality of the Study

	1.4	Thesis Organization

	Chapter 2:	Background

	2.1	Preventive Maintenance Policy

	2.2	Diagnosis Technologies

	2.3	Patch Risk Evaluation

	Clearin ghouse

	Risk

	2.4	Patch Management Tools

	Chapter 3:	Literature analysis and Research Problem definition

	Chapter 4:	Rediscovery causes and their Inter-relationships

	Chapter 5:	Significance of Rediscovery causes

	5.1	The Research Methodology

	5.1.1	The Goal Question Metric Approach

	5.1.1.1	GQM Measurement Model

	5.1.2	Formulation of Research Objectives at the GQM Operational Level

	5.1.3	Motivation for choosing the Case Study approach as the research method

	5.2	The Case Studies

	5.2.1	The Case Study - Software Provider

	5.2.1.1	Components of Research Design

	5.2.1.1.1	Questions

	5.2.1.1.2	Propositions

	5.2.1.1.3	Unit of Analysis

	5.2.1.1.4	Logic linking data to propositions

	5.2.1.1.5	Criteria for interpreting the findings

	5.2.1.2	Quality of Research Design

	5.2.1.2.1	Construct Validity

	5.2.1.2.2	Internal Validity

	5.2.1.2.3	External Validity

	5.2.1.2.4	Reliability

	5.2.1.2.5	Conclusion Validity

	5.2.1.3	The Customer Technical Support Process

	5.2.1.4	Bookkeeping across the Customer Technical Support Process

	< REFERS

	<Add_Date) End_Date

	5.2.1.5	Dataset profile

	5.2.1.6	Analysis of Failure and Defect data

	5.2.1.6.1	Metric M1

	Number of rediscoveries which

	occur before defect is diagnosed

		 X 100

	Total number of rediscoveries

	5.2.1.6.2	Metric M2

	5.2.1.6.3	Metric M3

	5.2.1.6.4	Metric M4

	5.2.1.6.5	Metric M5

	5.2.1.7	Results and Interpretation

	5.2.2 The Case Study - Software User

	5.2.2.1	Components of Research Design

	5.2.2.1.1	Questions

	5.2.2.1.2	Propositions

	5.2.2.1.3	Unit of Analysis

	5.2.2.1.4	Logic linking the data to the propositions

	5.2.2.1.5	Criteria for interpreting the findings

	5.2.2.2	Quality of Research Design

	5.2.2.2.1	Construct Validity

	5.2.2.2.2	Internal Validity

	5.2.2.2.3	External Validity

	5.2.2.2.4	Reliability

	5.2.2.2.5	Conclusion Validity

	5.2.2.3	Data Collection

	5.2.2.4	Dataset profile

	2

	I

	6 &

	Attribute 2: Industries of Organizations for which the system administrators worked

	Attribute 3: Number of Employees of the Organizations for which the system administrators worked

	Attribute 4: Number of IT Employees of the Organizations for which the system administrators worked

	Attribute 5: Experience level of Respondents

	5.2.2.5 Results and Interpretation

	5.2.2.5.1 Awareness - cause 2.2.1

	Q6: Please indicate your agreement with the following statement. In general, your organization's software vendors provide you with timely notices about new defects and patch releases.

	5.2.2.5.2 Skepticism - cause 2.2.2

	5.2.2.5.3 Pro-activeness - cause 2.2.3

	5.2.2.5.4 Downtime availability - cause 2.2.4

	5.2.2.5.5 IT staff availability - cause 2.2.5

	5.2.2.5.6 Complexity of patch installation process - cause 2.2.6

	5.2.2.5.7	Relative importance of causes (2.2.2 - 2.2.6)

	5.2.2.5.7.1	Relative importance with respect to delaying a patch installation

	5.2.2.5.7.2	Relative importance with respect to cancelling a patch installation

	5.2.2.5.8	Summary of results

	Chapter 6: Implications, Future work and Summary

	6.1	Implications of Research Findings

	6.1.1	Maintenance processes in the software industry

	6.1.2	Customer Technical Support processes in the software industry

	6.1.3	Development of framework for measuring the impact of rediscovery causes

	6.1.4	Patch management policies of software users

	6.2 Future Work

	6.3 Conclusion

	Glossary

	Bibliography

	http://www-306.ibm.com/software/globalization/terminology/index.jsp

	[SMS] Microsoft SMS, www.microsoft.com/smserver

	Questionnaire: Case Study - Software User

