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ABSTRACT
@

In the software industry, a reliable development effort estimation model remains to be the
missing piece of the puzzle. Existing estimation models provide one-size-fits-all

solutions that fail to produce accurate estimates in most environments.

Research has shown that the accomplishment of accurate effort estimates is a long-term
process that, above all, requires the extensive collection of effort estimation data by each
organization. An effort estimation data point is generally characterized by a set of
attributes that are believed to most affect the development effort in the organization.
These attributes can then be used as inputs to the effort estimation model. The attributes
that most affect development effort vary widely depending on the type of product being
developed and the environment in which it is being developed. Thus, any new estimation
model must offer the flexibility of customizable inputs. Finally, because software is
virtual and therefore intangible, the most important software metrics are notorious for
being subjective according to the experience of the estimator. Consequently, a
measurement and inference system that is robust to subjectivity and uncertainty must be

in place.

The Neuro-Fuzzy Estimation Model (NFEM) presented in this thesis has been designed
with the above requirements in mind. It is accompanied with four preparation process
steps that allow for any organization implementing it to establish an estimation process.
This estimation process facilitates data collection, a defined measurement system for
qualitative attributes that suffer from subjectivity and uncertainty, model customization to
the organization’s needs, model calibration with the organization’s data, and the
capability of continual improvement. The proposed model described in this thesis was

validated in a real software development organization.
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CHAPTER 1
INTRODUCTION

ﬁ

1.1 Research Motivation

In the years 1968 and 1969, the NATO Science Committee sponsored two conferences
on software engineering. Many believe that those two conferences instigated the
beginning of the profession of software engineering [1]. The idea of applying a structure
and a process, together with quality, schedule, and cost constraints to the field of
“software development was a new concept, but over the years it proved to be a necessary
one. As the field of software engineering exploded with growth, many management and
control problems were realized. Attempts of resolving them introduced new processes,

new methodologies, and new models.

One of the critical problems that emerged early on in the field of software engineering
and continues to haunt the field today is the problem of development effort estimation.
Accurate estimates are as essential in the software industry as they are in any other
industry. Based on estimates, key project decisions are made, feasible performance
objectives are defined and schedules are set up. Overestimation leads to lost bids for
projects, while underestimation leads to runaway projects and unsatisfied customers.
Existing estimation models are frequently unreliable and ineffective. Yet, as the
software industry continues to expand in wide-ranging and far-reaching directions, its
products becoming vital components of every other industry in the world, it is important
that accurate estimates no longer be perceived as luxuries but as essential information to
the business of software development. Thus, there exists a need for a reliable software

development effort estimation model.



1.2 Problem Statement

In attempts to obtain accurate estimates, different software development effort
estimation models have been developed. Some are as simple as product and domain
experts estimating the effort of new projects based on past experiences; others are more
elaborate and involve the definition of a new system based on a common group of
factors that are believed to have a significant effect on effort. But none of the existing
effort estimation models have accomplished the goal of consistently providing accurate
estimates. The reasons are numerous: they generally assume a one-size-fits-all solution,
presenting one set of factors to be measured for all the different software products and
development processes in existence; they rely on estimating effort based on size metrics
that are to date widely argued; they mostly ignore the importance of data collection and
model calibration; and they apply algorithms that generally do not account for the
“uncertainty and subjectivity within software development metrics. Thus, while accurate
effort estimates are still keenly sought out by software organizations, existing estimation

models come short of providing this essential information.

In [11], Fenton and Neil develop a list of the desired characteristics that a software

development effort estimation model must have. The characteristics they list are:

e The ability to handle diverse process and product variables

e The ability to incorporate empirical evidence and expert judgment
e The ability to determine genuine cause and effect relationships

e The ability to handle uncertainty

e The ability to handle incomplete information

The purpose of this thesis is to research and develop a software development effort

estimation model that contains these desirable characteristics.



1.3 Proposed Solution

This thesis proposes a new software development effort estimation model, entitled the
Neuro-Fuzzy Estimation Model (NFEM). The NFEM makes use of intelligent
algorithms to provide accurate estimates and establish an estimation process. The
proposed model overcomes many of the problems faced by existing effort estimation

models.

The NFEM is accompanied by a four step preparation process that allows any
organization implementing it to establish an estimation process. The preparation process
consists of selecting a set of attributes that highly effect effort and collecting effort
estimation data profiled with these attributes. The relationship between effort and the
selected attributes is then modeled using the collected data and intelligent algorithms;
fuzzy logic is also incorporated in the NFEM to account for the subjective and uncertain

nature of the collected data.

1.4 Research Methodology

The proposed software development effort estimation model combines several
computational intelligence paradigms, such as neural networks and fuzzy logic.
Moreover, it makes use of insights gained from decades of research and experience in
the field of software engineering to develop a comprehensive and customizable

estimation model.

The model is validated in a real-world setting, with data from a large corporation. This
provides a realistic view of the problem and the proposed solution. While the full
implementation of the NFEM would require several years of data collection, the initial

steps of the preparation process are validated in this thesis.



1.5 Thesis Organization

This thesis is organized as follows: Chapter 2 introduces paradigms of computational
intelligence used in the development of the NFEM. This includes fuzzy logic, multilayer
feedforward neural networks, the adaptive neuro-fuzzy inference system (ANFIS), and
algorithms used to extract rules from trained neural networks. Chapter 3 discusses
existing estimation models and their shortcomings. It also covers some research studies
that apply computationally intelligent algorithms to the task of effort estimation.
Chapter 4 describes the Neuro-Fuzzy Estimation Model in detail, including all four
preparation steps involved. Chapter 5 introduces the industrial partner and describes the
validation dataset obtained from them. Chapter 6 contains the evaluation of the initial
preparation steps of the NFEM on the validation data obtained from the industrial
partner. And finally, Chapter 7 concludes with a summary of the contributions of this

research and directions for future work.



CHAPTER1I
SOFT COMPUTING

%

Soft computing is a branch of computing that tries to mimic the human mind in order to
exploit tolerance for imprecision and uncertainty [55]. This thesis applies a combination
of two soft computing techniques, fuzzy logic and neural computing, to more accurately
calculate software development task etfort estimation. Multilayer feedforward neural
networks are used to model the relationship between development effort and the factors
that affect it, while fuzzy logic is incorporated to deal with the uncertainty and
subjectivity present in these factors. And finally, a rule-extracting technique is used to

- extract rules from a trained neural network which are then embedded into the Adaptive
Neuro-Fuzzy Inference System (ANFIS). In this chapter, these soft computing

techniques are described in detail.

Section 2.1 explores fuzzy logic and the zero-order Sugeno fuzzy inference system.
Section 2.2 examines multilayer feedforward neural networks and the backpropagation
learning algorithm. In section 2.3, the adaptive neuro-fuzzy inference system developed
by Jang [21] is described. And finally, Section 2.4 examines some of the different
methods used to extract rules from trained multilayer neural networks, and describes in
detail the one method that is applied in the preparation process of the Neuro-Fuzzy

Estimation Model.
2.1 Fuzzy Logic

Conventional logic (also known as Boolean, classic, or crisp logic) only allows for truth
or falsehood. An element either belongs to a set or it doesn’t. Such black and white logic
satisfies the classes and sets of our world that have well-defined boundaries, such as the
set of all integers, the set of living things, the set of liquids, and so on. However,

classical logic lacks the ability to satisfy sets with ill-defined boundaries. For example,



“the set of warm temperatures,” “the set of young people,” or “the set of cheap cars,” do
not constitute sets in the usual mathematical sense. These sets are imprecise and there is
a degree of uncertainty associated with each element that falls into one of the above sets,

in terms of how well the element fits in.

In solution to this problem, in 1965, Zadeh published his seminal paper titled “Fuzzy
Sets” [54]. In it, he proposed a new type of logic that addressed the problem of
quantifying these imprecise sets: fuzzy logic. The principal idea behind fuzzy logic is the
idea of a fuzzy set where the transition from “belongs to a set” to “does not belong to a
set” is gradual. This gradual transition is characterized by a membership function that is
associated with the fuzzy set [22]. A more formal definition follows in the succeeding

subsection.
2.1.1 Fuzzy Set Definition

Let X be a classical set of points with a generic element of X denoted by x. A fuzzy set A
in X is characterized by a membership function, x4 which associates each point x in X
with a real number in the interval [0,1]. The value of u4(x) at x represents the “grade of
membership of x in A” [55]. The closer the value of u4(x)to 1, the higher the
membership grade of x into fuzzy set A. In other words, the membership grade is the

truth value of the statement “x is an element of A.”

Example: Let X =R, be the set of all possible weather temperatures. Usually, X is
referred to as the universe of discourse, or simply as the universe. Figure 2.1 illustrates
the fuzzy set of warm weather temperatures. The set is associated with a bell shaped
membership function whose domain extends from 3° Celsius to 30° Celsius and whose

range extends from O to 1.






0, x<a ‘ :
g ! A :
X—a © E .\',‘ :
b_a a<x<bh 508 ‘ 1
- —a o ,' \
triangle(x; a, b,c) = 5 08 | \
c-X £ 04
, b<x<c § |
c-b 02 Y
\
0, c<x o L
b

a C

Figure 2.2 — Triangular membership function [33].

The triangular membership function is often used in industrial applications of fuzzy
systems due to its simple formula, computational efficiency, and ability to create non-
symmetric functions [13]. However, its biggest disadvantage rests in its lack of nonlinear

smoothness which is sometimes required.
-2.1.2.2 Bell Membership Function

A bell membership function is specified by parameters a, b,and ¢ where a determines
the width of the function, b determines the slopes of the sides of the bell function, and
c represents the centre of the function [33]. Figure 2.3 illustrates how each parameter
affects the shape of the curve. Also, it should be noted that 5 is usually positive. If & is

negative, the shape of the function is an upside down bell.

bell(x;a,b,c)=

The bell membership function is computationally inefficient compared to the triangular
membership function. However it is nonlinearly smooth, a property required in the
adaptive neuro-fuzzy inference system described in Section 2.3 and used in the Neuro-

Fuzzy Estimation Model.



























2.2.3 The Backpropagation Algorithm

A learning algorithm outlines how a neural network can learn to model the input-output
relationship. The backpropagation algorithm allows the neural network to model the
input-output relationship by using a training dataset that consists of inputs for which the
desired outputs are known. For each data point within the training set, the network
output is determined and compared with the desired output. The networks’ performance
is measured as the discrepancy between the desired output and the network’s actual
output under the same input [22]. This discrepancy, called the error measure, is usually
the mean or the sum of the squared differences between the desired outputs and actual
outputs of the training set. The algorithm improves the network’s performance by
adjusting the weights of the connections between the neurons so that the error measure is
minimized. The learning rule is essentially an optimization technique that strives to

‘minimize the error measure. The backpropagation algorithm is based on the gradient
descent optimization technique [13]. The gradient descent method takes advantage of the
fact that moving in the opposite direction of the derivative of a function leads to a
descent. Thus, when the gradient descent method is applied to the error function obtained
by comparing desired and actual outputs, the weights of the network are moved in the

direction of the descending error.

At the start of the training procedure of a multilayer backpropagation neural network, the
initial weights and thresholds are set to small random numbers [13]. A tolerable
maximum network error ¢ is chosen to be a positive, real value close to or equal to zero
[13]. The training pair index, £, is set to one. This index keeps track of which input-
output pair is being processed. When each training pair has been processed once by the
network applying the learning algorithm, then an epoch is completed. A variable E keeps
track of the cumulative error during an epoch. At the end of the epoch, E is compared
toe, and if it is less than ¢ , then training is stopped. Otherwise, E is set to zero again and
a new epoch begins. The number of epochs used to train the network can also be used as
a criterion for stopping the training because often times, after one thousand epochs, the

improvement is negligible [9].
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2.3 Neuro-Fuzzy Systems

Neuro-fuzzy systems combine fuzzy inference and neural computing to provide a
mechanism that learns from data, is robust to uncertainty and incomplete data, and uses

reasoning that is transparent to the user.

In this section, the adaptive neuro-fuzzy inference system (ANFIS) developed by Jang
[21] is described, as applied to the zero-order Sugeno fuzzy inference. The system
combines the Sugeno fuzzy inference with a multilayered neural network. The rule base
of a zero-order Sugeno ANFIS system must be known in advance, while the parameters
of the membership functions used for the fuzzy sets of the inputs are adjusted through the
training of the ANFIS system. The reason why ANFIS was the neuro-fuzzy system of
choice for this thesis was its computational efficiency and availability on the software

rpackage MATLAB.
2.3.1 ANFIS Architecture

A generic ANFIS system has five layers (the input layer is not counted as a layer by Jang
[21]). Each layer deals with a specific step of the fuzzy inference process such as
fuzzification, rule evaluation, firing strength normalization, weighted consequent
determination, and weighted consequent summation. Below is a detailed description of
each layer. For simplicity, an ANFIS system with only two inputs and one output (shown
in Figure 2.13) will be used. The system’s inputs are x and y, where x is described by the
linguistic values A and A, and y is described by linguistic values B; and B,. The
membership functions of the fuzzy sets that represent the linguistic values of each input
variable are in the shape of the bell function. The output of the system, z, takes on a
different value in each rule, corresponding to the constant in the consequent of the rule.

Therefore, the rules of the system are:

Rule 1: Ifxis Ajand yis By thenzis Z;
Rule 2: If xis A; and yis B, then z is Z;
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grades of the system inputs into the fuzzy sets of the antecedents of the rule. For
example, the rule represented by the first node in the second layer of Figure 2.13 takes in
as input the membership grades of x into A1 and y into B1. Thus, its antecedents are “If x
is A1 AND yis B1”. The outputs of this layer’s neurons are the firing strengths of the

rules, denoted by w;, where i indexes the neurons of the layer.
2.3.1.3 Layer 3: Firing Strength Normalization
Once again, the nodes of this layer are fixed nodes. The i node of this third layer

corresponds to the rule represented by node i in the second layer. Each node computes

the ratio of its corresponding rule’s firing strength to the sum of all rules’ firing strengths:

The resulting outputs of this layer’s neurons are called the normalized firing strengths

[22] and each output is denoted with w, where 7 indexes the nodes of the layer. Thus, in

Figure 2.13, the first node computes the normalized firing strength of the rule represented
by the first node in the second layer. The input of each node i in this layer is the output
of every node in the previous layer, so that the sum of all rules’ firing strength can be

computed.
2.3.1.4 Layer 4: Weighted Consequent Determination

The neurons of this layer are fixed neurons, and each neuron i of this layer corresponds to
the consequent of the rule represented by the " neuron in layer two. The input of neuron
i in this layer is the normalized firing strength of the rule it represents. Its output is the
product of the normalized firing strength and the constant value that is contained in the
consequent of the rule, resulting in a weighted consequent. Thus, in Figure 2.13, the
output of the first neuron in the fourth layer is the product of the normalized firing

strength of the first rule, w,, and the constant Z;.
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2.3.1.5 Layer S: Weighted Consequent Summation

There is one node in this layer for each output of the system. For the example system of
Figure 2.13, there is only one node, and therefore only one system output. The output of

the node is the system output and is computed as the summation of the node’s inputs:

2.4 Extracting Rules from Neural Networks

Because the rule base of an ANFIS system must be known in advance, it is impossible to
apply ANFIS unless a rule base exists. In cases where expert knowledge is unavailable,
-it is possible to extract rules from a trained neural network and implement them into an
ANFIS. Rule-extracting algorithms fall into three categories: Decompositional,
pedagogical, or eclectic [2]. Due to time constraints, only the decompositional class of
algorithms was examined during the development of this thesis. Section 2.4.1 describes
the decompositional approach for extracting rules from trained neural networks. In
Section 2.4.2 different techniques that have been proposed to do this are reviewed. And
Section 2.4.3 describes in detail the rule-extraction technique that is chosen as the most

suitable one for the purpose of this thesis.
2.4.1 The Rule Extraction Problem

In a multilayer feedforward neural network, the output of each neuron is calculated as:
0 = Act[ijwjj, Xo=lLw,=-60 (1)
J=0

where

1
Act(n) =—— . 2)
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For example, Figure 2.14 shows a neural network with three inputs I, to I3, two hidden
neurons, H; to Hp, and 2 outputs, O; to O,. The thresholds of each neuron are also
shown. The threshold of hidden neuron H1 is 1.5. Node H; is only activated when inputs
I, and I, are one, because the sum of their weights equals 1.6. The rest of the weight
combinations do not yield a sum equal to or greater than 1.5. Thus the successful weight

combination is written as a rule “IF I; AND I, THEN H,”.

Next, for each output neuron, combinations of incoming weights whose sum exceed the
threshold of the neuron are determined [2]. Each incoming weight is associated with a
hidden neuron, enabling each output to be associated with the set of inputs that activated
the hidden neuron. For example, in Figure 2.14 the link between H; and O, has a weight
of 1.8, whereas the threshold of output neuron O2 is 1.7. Thus the incoming link of H; is
sufficient to activate output neuron, O, resulting in the rule “IF H1 THEN O2.” By
‘combining the rule extracted from the hidden layer with that extracted from the output
layer, the following rule is created: “IF I1 AND I2 THEN O2.” This resulting rule

models an aspect of the relationship between the inputs and the output.
2.4.2 Review of Existing Decompositional Rule-Extracting Algorithms

In the past two decades, many different decompositional rule-extracting algorithms have
been proposed. Some attempt to reduce the search space for combinational weights,

while others attempt to allow the use of continuous inputs.

Fu proposed the KT algorithm, where, for each hidden and output neuron, it searches for
a single link with a large enough weight to exceed the threshold of the neuron [14]. If
such a link is found, a rule is written. Next, the algorithm searches for subsets of two
links that exceed the threshold, followed by a subset of three, and so on.

The search space is constrained by limiting the number of antecedents in a rule and using
three heuristics [14]. However, in spite of all this, the algorithm is still of exponential
complexity and therefore very inefficient [14]. In addition, imposing a maximum number

of antecedents in a rule can significantly affect the quality of the rule set [2].
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Towell and Shavlik present another rule extracting algorithm in [51]. It is implemented
on a special multilayer network developed by them in [52], called the knowledge-based
neural network (KBNN). The existing knowledge about the domain is first inserted into
the architecture of the network and the network is trained with the backpropagation
algorithm. Then links with similar weights are combined into clusters and the average of
the cluster’s weights is used as the weight of each link belonging to that cluster. Clusters
with low link weights and few members are then eliminated as they are assumed to have
little influence on the outcome of the network. The weights of the links are then fixed
and the network is retrained with the backpropagation algorithm to adapt the thresholds
of the network. Finally, a rule is written for each hidden unit and output unit where each
antecedent of the rule is associated with a weight and the rule is associated with the

threshold of the neuron. The rules take the form:
If M of N antecedents are TRUE then C

The primary goal of the M-of-N algorithm is to refine rules contained in the initial rule
base. This limits its use to domains where the input-output relationship knowledge

exists. Also, it does not allow for new and unexpected knowledge to be discovered [2].

While the above algorithms extract crisp rules and only deal with Boolean inputs, other
researchers have proposed algorithms for extracting fuzzy rules or systems that deal with
fuzzy inputs. Hayashi and Imura proposed a fuzzy neural expert system with automated
extraction of fuzzy rules that can handle fuzzy and crisp inputs [18]. In addition, each
extracted rule is associated with a fuzzy truth value such as Very True or Possibly True,
and each antecedent in a rule is associated with a fuzzy importance value such as Very
Important or Moderately Important. However these truth values and importance values

make the algorithm difficult to implement.

Kasabov’s REFuNN algorithm [25],[26], applied to the specially constructed fuzzy

neural network (FuNN) also has the ability to extract fuzzy weighted rules as well as

24



simple fuzzy rules; however, the number of rules extracted for a fairly simple problem

such as the Iris classification data [42] is very large.

NEFCLASS (Neuro Fuzzy CLASSification) is a neuro-fuzzy system for the classification
of data and is presented by Nauck and Kruse in [39], [40]. The goal of the system is to
learn fuzzy rules from the training data patterns as it classifies each pattern into crisp
classes. However, a ceiling is placed on the maximum number of rules extractable, a

constraint that could seriously hinder the quality of the rule set [2].
2.4.3 The Selected Algorithm

Krishnan et al. provide a simple and efficient technique for extracting rules from feed-
forward neural network in [31]. They start by applying the method presented by Sethi
7and Yoo [48] to convert any negative weights in the network into positive ones. Then the
weights of a given neuron of the hidden or output layer, are sorted in descending order
and combinations of all possible sizes are created. Subsequently, the combinations of
any particular size are ordered in descending order of the sum of the weights in the
combination. Then a combination tree is created where all combinations of size i are
placed at the i level of the tree, while maintaining the descending order [31]. For
example, given a node with four weights of values 4, 3, 2, 1 when sorted in a descending

order, Figure 2.15 shows the combination tree.

When searching for combinations of weights that exceed the threshold of the neuron, the
search space is reduced in two ways. First, if a combination at any level fails, the rest of
the combinations in that level can be ignored, because they will also fail [31]. For
example, suppose the neuron whose combination tree is shown in Figure 2.15, has a
threshold of three. Once weight 2 fails to exceed the threshold in Layer 1, there is no
need to check weight 1. Since the weights were sorted in a descending order, it is given

that weight 1 will also fail.

25






CHAPTER 111
LITERATURE REVIEW

%

The problem of estimating software development effort is as old as the field itself. Over
the decades many effort estimation models and techniques have been proposed, but the
estimates they produce are often inaccurate. A common weakness that most models and
techniques share is that they concentrate on profiling the project at a high level, leaving

out any details that add valuable information.

‘Among the many software development effort estimation models and techniques that
have been proposed, some have become very popular and are widely used by the
industry. Sections 3.1 to 3.5 describe and discuss the Expert Delphi technique, the Peer
Evaluation and Review Technique (PERT), the Software Life-cycle Model (SLIM),
COCOMO II, and Function Point Analysis, respectively. In addition, in recent years,
many effort estimation techniques using soft computing have been proposed, though not
many have been put to use by industry in everyday practice. Section 3.6 presents some of
the software estimation techniques proposed that make use of soft computing. Finally,
Section 3.7 discusses three factors that have been found to strongly affect software

development effort, throughout many research studies conducted.

3.1 The Expert Delphi Technique

One of the very first estimation techniques arose in the late 1950’s from the RAND
Corporation and became known as the Expert Delphi technique [50]. The technique is
iterative in nature, consisting of a set of rounds. In each round, several developers
estimate the value of one or more items anonymously and independently. An item is a
software development task and can vary from being a function, an object, a full system

feature, or any other unit into which the software system being estimated is decomposed.
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At the end of a round the estimators are only shown the maximum, minimum, and
average estimated values for each item for that round. The idea behind this technique is

that eventually a convergence value for each item being estimated will be reached.

Today, most organizations which confirm to use this technique do not follow the formal
process described above [24]. Instead, usually each item being estimated is discussed by

the team until an effort estimate is agreed upon.

The problem with this technique is that it is subjective to the individual experience of the
estimator, his or her incomplete recall and bias, and as such, the estimates are no better
than the participants involved [50]. But perhaps the greatest challenge that is present in
the use of this technique is that studies continually show most estimators tend to
underestimate [24]. Jorgensen cites 8 studies that are consistent in concluding that
“experts can be strongly biased and misled by irrelevant information towards over-
optimism” while estimation models are not [24]. In addition, Laranjeria cites a study
done by Yourdon Inc., where experienced managers were asked to estimate the size of 16
projects [32]. Over half of the projects were severely under-estimated with an MRE of
100% or more, and many of them had an MRE of over 200%. The study found that the
reasons for the underestimation tendency include the desire to please management,
incomplete recall of previous experience, lack of familiarity with the entire software job,

and the lack of sufficient knowledge of the particular project being estimated.

3.2 Program Evaluation and Review Technique (PERT)

Originally developed by Lockheed and the U.S Navy in the late 1960°s, the Program
Evaluation and Review Technique (PERT) is an easy and simple technique which, to

some extent, takes into account the estimator’s uncertainty in determining the estimate

[50].

The technique requires the estimator to provide three estimation values, the pessimistic

value, the most likely value, and the optimistic value. Assuming that the optimistic and
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pessimistic values correspond to minus and plus the three-sigma limits of the distribution,

respectively, the expected value is calculated as:
E=(O+4*M+ P)/6

where O represents the optimistic value, M represents the most likely value, and P
represents the pessimistic value. The value obtained by dividing the standard deviation
by the estimated effort value indicates the degree of uncertainty in the estimator’s part
[50]:

Uncertainty Degree = o/E

where

o = (P-0)/6.

In comparison to the expert technique, PERT offers the benefit of quantifying the
estimator’s degree of uncertainty. However, PERT also suffers from the same
underestimation tendency that the expert estimates suffer: People’s “most likely”

estimates tend to cluster toward the optimistic estimates [7], [50].

3.3 Software Lifecycle Model (SLIM)

In 1978, Lawrence Putnam published a paper, [46], in which he described a new way of
estimating the software lifecycle effort. Putnam’s SLIM model is based on the Norden-
Rayleigh distribution and builds on the ideas of the PERT technique. As shown in Figure
3.1, the Rayleigh curve shows a build up at the start, peaks when the product is delivered

to the customer, and then tails off.
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Figure 3.1 — The Norden-Rayleigh distribution.

Based on the findings of the Norden-Rayleigh Distribution, Putnam developed the the
general equation of the SLIM model [46]:

9

Size \7 4
E=|—| MBI’
P

where P is the productivity process parameter, E is the total software lifetime effort
measured in person years, Size is measured in lines of code or function points, and

constant MBI is the manpower buildup index.

Putnam’s technique is modeled by the SLIM tool, which is developed by Quantitative
Software Management (QSM), a company established by Putnam [47]. The tool allows
the inputs to be for the pessimistic, most likely, and optimistic scenarios. The manpower
buildup index and the productivity process parameter are best determined from historical
data. If no such data exists, then the user of the SLIM tool must answer a series of 22
questions from which the tool determines the two parameters based on data collected
from over 6,300 industry projects [37]. The productivity process parameter entails such
factors as tools being used, languages being used, process methodologies being followed,
and so on [49]. The manpower buildup index is based on factors such as management
constraints (e.g. maximum allowable schedule), accounting (e.g. labor rates), personnel
skill and qualifications, and other such factors [37]. While in the original model, size
could only be measured in lines of code (LOC), today, QSM’s SLIM tool allows several

other options such as function points, objects, etc. [37].
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Despite the use of 6300 industrial project data, studies have found that SLIM performs
poorly when used in an environment for which it is not calibrated [45], [24]. Yet, because
SLIM is designed to estimate effort at a high level, it takes a long time to collect enough
calibration data, and as a result most companies do not invest the time in collecting the
data. In addition the model relies on the assumption that the size parameter which is
measured in terms of lines of code or function points is correct. The problem with this
assumption is that while the LOC metric is easy to measure and it is an “artifact” of all
software development projects [45], it also has a lot of disadvantages. First of all, it is
programming language dependent, so when used, the productivity appears to decrease as
the level of the programming language increases. Also, well-designed but shorter
programs are penalized [50]. In addition, the LOC metric is less suitable for non-
procedural languages and to estimate the lines of code, one requires a level of detail that
may be difficult to achieve [45]. Due to these disadvantages, studies have found that
-LOC is not a reliable metric [32], and that in fact, it is easier to estimate effort terms of
hours than lines of code [15]. The disadvantages of using function points are discussed in

Section 3.5 of this chapter.
3.4 COCOMO1II

In 1981, Barry Boehm published his famous book titled Software Engineering
Economics, [7], where he first described the Constructive Cost Model (COCOMO). The
second version of this model, COCOMO II, was introduced in 2000 as a result of the
major changes that had taken place in the software development field between 1981 and
2000 [8]. Thus only COCOMO II is described in this thesis, since its prequel,
COCOMO, has become outdated.

The COCOMO II model consists of three level models that are used at different stages of
the development process: Application Composition, Early Design, and Post Architecture
[8]. The Post Architecture model is the most frequently used model version today [50],

and is explained in detail.
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In the Post Architecture model, effort is determined based on the size of the product
(measured in LOC or function points), a set of 17 cost drivers (CD), and variables 4 and
B. The cost drivers quantify the effect that different product, hardware, personnel, and
project factors (shown in Table 3.1) have on the effort. Each cost driver is rated on a
scale of Very Low up to Extra High. Variables 4 and B account for the linear and the
non-linear effect that increasing project size has on the effort estimate [8], respectively.
They are determined based on the five scale factors summarized in Table 3.2. The effort

estimation equation used in COCOMO Il is:

17 5
E=]]CD, x AxSize” where B=1.01+0.01)_SF,

i=1 i=1

Product Cost Drivers Hardware Cost Personnel Cost Project Cost
’ Drivers Drivers Drivers
Required software Execution time Personnel continuity | Use of software
reliability constraints tools
Complexity of the Platform volatility | Programmer Multisite
product capability development
Size of application Main storage Programming Required
database constraints language and tool development
experience schedule
Required reusability Analyst capability
Documentation match to Applications
lifecycle needs experience
Platform experience

Table 3.1 — Post-Architecture COCOMO II cost drivers.

1. Precedentedness 4. Team cohesion

2. Development flexibility 5. Process maturity

3. Architecture/risk resolution

Table 3.2 — Post-Architecture COCOMO 11 scale factors.

COCOMO II suffers from the same shortcomings that SLIM does. Studies have found
that it must be calibrated to the environment using it in order to be used with some
success [45], [24]. Furthermore, it is also based on the assumption that the lines of code
estimate or function point estimate 1s accurate, which, as discussed in Sections 3.3 and

3.5, is often an incorrect assumption.
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3.5 Function Point Analysis

Unsatisfied with the often erroneous estimates that the lines of code metric produced,
Allen Albrecht designed his own size metric in the late 1970s, while working at IBM
[50]. The new metric, called function point, was designed to deliver functionality in
terms that users could understand, be independent of process, technology, or
programming language, and give a reliable indication of software size in the early design

stages [50].

The function point analysis process quantifies product functionality based on the
following system elements which Albrecht called function types: external inputs, external
outputs, external inquiries, internal logical files, and external interface files [50]. Once
all instances of each function type are identified, they are associated with a numerical
rcomplexity value representing low, average, or high complexity, and then summed. This
sum is the unadjusted function point (UFP) count of the system [50]. Next, the fourteen
general system characteristics (GSC) shown in Table 3.3 are rated on their degree of
influence, 0 being no influence and 5 being strong influence throughout. The rotal degree
of influence (TDI) is calculated by summing the degree of influence values of all the
GSCs. Finally, the value adjustment factor (VAF) is calculated (1), followed by the
adjusted function point count (AFP) as shown in (2):

VAF = 0.65+0.01*TDI (1)

AFP = VAF*UFP (2)

Data Heavily used End-user
communications | configuration efficiency
Distributed data | Transaction rate On-line update
processing
Performance On-line data entry | Complex
processing
Reusability Operational ease | Facilitate change
Installation ease | Multiple sites

Table 3.3 — The fourteen general system characteristics.
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The function point metric consists of a process that forces the estimator to perform a
careful analysis of the system or component being implemented, which generally leads to
a more accurate estimate [50]. Also, in general, if performed by a trained and
experienced estimator, it is much more accurate than the LOC metric [50]. However,
many of the entities counted in the FP process are still very much debated by experts
[15]. Furthermore, the FP metric is designed to perform well for data processing
applications. But in the past two decades, the software development industry has seen a
boom in logic-complex applications, for which the function point model is not well suited
[50], [45], [15]. Finally, the FP metric is often used with an effort estimation model such
as SLIM or COCOMO II to convert the function point count into effort. As a result, the
disadvantages of the effort estimation model used to perform the conversion are

inherited.
3.6 Software Development Effort Estimation and Soft Computing

In the past two decades, many researchers have studied the idea of applying soft
computing techniques to the problem of effort estimation, and some of these are
discussed in this section. The estimation techniques described show that much potential
lies in the use of soft computing in software development effort estimation. However
none of the proposed techniques have been able to fully encompass the advantages of
neural networks while offsetting the disadvantages by fuzzy logic and neuro-fuzzy

systems.

In [16], Gray and MacDonell examine the implications of using non-traditional
estimation methods, such as neural networks, fuzzy logic, case-based reasoning systems,
and regression trees, versus the traditional regression analysis methods. These methods
were examined in terms of their ability to model the problem, their reasoning
transparency, and their generalisability. It was found that fuzzy and neuro-fuzzy systems
performed best in all areas examined. Furthermore, an empirical study that compared

neural networks to regression analysis found that the mean absolute relative error
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generated by neural networks was half of what the regression techniques generated. The

data consisted of 81 projects.

Another study was conducted by Boettichier in [9], where the author used data derived
from 104 different programs to train multilayer backpropagation neural networks and
predict actual effort in hours. The metrics tested consisted of the programs size,
vocabulary, objects, and complexity. Each metric was further broken down into one or
more quantitative measures, totaling 10 inputs. Different input combinations and
network architectures were tested, totaling over 33,000 experiments. The testing showed
that using all inputs or the combination of size, object, and vocabulary inputs yielded the
best results while individual metrics did not fare well. When the trained model was
tested with data from a completely different corporation, on average, the validation
results produced estimates within 30% of the actuals, 73.26% of the time. No
Vexperimentation results were given that compared the success of various network
architectures used. While Boettichier’s approach consisted of some novel ideas, the
quantitative inputs used require knowledge at a level of detail that is most often not

known at the time estimates are created.

Furthermore, in [10], Boettichier conducted further tests, where software projects were
estimated using a bottom-up technique and a neural network. Data from two different
corporations were used and the only input to the network was size in terms of LOC.
Individually, an average of only 9% of the development tasks was predicted with 25%
accuracy. But when summed up as total for the project, the project was predicted with
25% accuracy 90% of the time. This study showed that decomposing a project into
smaller tasks and using neural networks to generate estimates yields a high accuracy of

project effort estimation, even though the tasks are not always accurately predicted.

Finnie and Wittig also conducted experiments using neural networks with the ASMA
project data [12]. When only function point count was used as input, only 56% of the
data were estimated within 25% accuracy. However, when other attributes such as

language and complexity were used, over 77% of the data were estimated within 25%
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accuracy. This study, like [9], showed that using more than the estimated size attribute as

input, when estimating using neural networks, yields more accurate results.

In an attempt to use the success of neural networks, while avoiding the reasoning opacity
that accompanies the use of neural networks, Huang used neuro-fuzzy logic to estimate
software development effort [20]. He did so by fuzzifying the inputs of the COCOMO
model and using them together with data to train a neuro-fuzzy system [20]. While the
resulting neuro-fuzzy model outperforms COCOMO, its further improvement is
questionable because the model uses the COCOMO regression equation instead of rules
to infer estimates. By doing so, the model inherits the limitations of the COCOMO

regression technique, revealed by Gray and MacDonell in [16].
3.7 Factors that Affect Software Development Effort Estimation

The effort estimation models and techniques presented thus far differ in the number and
the type of factors they consider to be influential on software development effort
estimation. In practice, such factors vary greatly depending on the development
environment and type of system being built. However, during the development of the
Neuro-Fuzzy Estimation Model, the research conducted led to the conclusion that there
are three particular attributes that tend to affect software development effort regardless of
all other circumstances. Expert effort estimation, task implementer capability, and
complexity were found to have the highest effect on software development effort, by
most academic and industrial experts, as well as studies. These effects are discussed in

subsections 3.7.1 to 3.7.3.

3.7.1 Expert Effort Estimation

In [24] Jorgensen summarizes a vast number of studies done on expert estimation
including how often it is used in the software development industry, why it is used, and

how well it performs compared to other estimation models. Many of the studies reveal

that informal expert estimation is the most widely used estimation technique in
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companies all over the world [24]. The results of these studies are summarized in Table
3.4. Furthermore, Jorgensen states that they “were not able to find any study reporting

that most estimates were based on formal estimation models” [24].

Organization(s) Providing the Data | % of Time Expert
Through Experimental Studies or Estimation is Used
Questionnaires

Jet Propulsion Laboratory 83

Dutch Companies 62

New Zealand Companies 86

International Financial Company — | 100

Information Systems Development

Department

Telecom Company 84

Software Development Companies | 72

Table 3.4 — Results of studies conducted on Expert Estimation {24].

A number of studies that compare expert estimation to model-based estimation
techniques are also cited in [24]. Of the 15 studies cited, 5 concluded in favor of the
expert technique, another 5 found that there was no difference in the estimated accuracy
between the expert estimation technique and model-based techniques, and 5 concluded in
favor of model-based techniques. The studies were conducted between 1990 and 2002,

and the number of participants in each study varied from 1 to 597.

While such results show that no existing effort estimation model is very accurate, they
also show that experts are useful resources when it comes to estimation. In fact, most
industry and academic researchers agree that an expert’s opinion is not only useful but
often necessary when making estimations [15], [45], [50], [24]. Furthermore, software
development is not the only field that uses expert estimation, many other domains such as
medicine, business, and psychology, recognize it as an important and often decisive tool
in planning [24]. Hence, it is strongly recommended that expert effort estimation be

included as an input to any effort estimation model.
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3.7.2 Implementer Capability

Almost everyone in the software development field will agree that when estimating effort
for a development task, one of the most important factors that influences the effort
estimate is the quality and capability of the task implementer [15], [28], [45] [7].
Therefore, it is important that any estimation model include implementer capability as
one of the inputs to the model. This can be easily done when the effort estimate of an
entire project is being determined. But when the effort estimate of a more granular task
1s being determined, and it is known who the task implementer is, organizations are
reluctant to evaluate the capability of that implementer in order to incorporate it into the
estimation model. The reluctance is due to the existing confidentiality contract, between
employer and employee, such evaluations can breach and also due to the decrease in
morale that low evaluations would yield. To have the implementers evaluate themselves
poses the problem of bias, how biased the values are. The reason being, that no one
would consistently rate him/herself as being a “low quality task implementer” even if that
were true. That is, while other attributes would contain some error due to the
unconscious bias of the estimator’s past experience, the implementer capability attribute
could contain error even when the estimator was conscious of it. Therefore, in some
organizations, it may be impossible to include implementer capability as one of the inputs
to an effort estimation model. In this case, other inputs can be included that evaluate the
implementer’s familiarity level with the technology, functionality, language, and domain
associated with the task. By doing so, the knowledge and capability of the implementer
are transformed into task characteristics, and the implementer does not feel it is as

personal, yet his or her capability in completing the task is well evaluated.

3.7.3 Complexity

Complexity is another attribute that is considered to have among the highest effect on
software development effort [45], [28], [50]. Glass notes that for every 25% increase in

problem complexity, there is a 100% increase in the complexity of the software solution

[15]. Also, Keyes cites a study done by Lederer and Prasad that found that managers
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consider complexity to be the most significant factor of a project estimate [28]. While it
is argued to be subjective to the developer’s experience [15], it is nonetheless important
to measure. Therefore, it is strongly recommended that complexity is used as an input to

any software development effort estimation model.
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CHAPTER 1V
THE NEURO-FUZZY ESTIMATION MODEL

ﬁ

This chapter presents the Neuro-Fuzzy Estimation Model (NFEM). The NFEM is a new
software development effort estimation model that was designed to encompass several
desired characteristics lacking in existing estimation models. It is accompanied by a
preparation process that consists of four steps. This preparation process allows the model
to be customized according to the specific environment of the organization using it. The
NFEM uses historical data from the specific environment implementing it, in conjunction
‘with intelligent algorithms to best model the organization’s needs and cope with
uncertainty and qualitative data. It is these combined characteristics that render the
NFEM usable in many different environments and for the development of many different

types of software systems.

Figure 4.1 depicts the NFEM preparation process. As shown, there are four preparation
steps that must be completed before the NFEM is closely customized to the
organization’s environment and ready for use:
1. Attribute selection
2. Data set separation for
a. Qualitative attributes
b. Quantitative attributes
3. Neural network training

4. Rule extraction and ANFIS implementation.
In the first step, qualitative and quantitative profiling attributes that are believed to most

influence software development task effort are selected by the organization implementing

the NFEM.
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calibrated to the organization’s environment and ready to be used to estimate future

software development tasks.

Sections 4.1 to 4.4 of this chapter provide detailed descriptions of the four preparation

steps of the Neuro-Fuzzy Estimation Model, shown in Figure 4.1.
4.1 Step 1: Profiling Attribute Selection

A profiling attribute is a measurable system characteristic or personal skill that can have
an effect on the amount of effort required to complete a software development task. In
the first step of the NFEM preparation process, a set of profiling attributes is selected and
used to profile software development tasks. The profiling attributes may be qualitative or
quantitative in nature and are used as inputs to the Neuro-Fuzzy Estimation Model.
‘Therefore, each organization implementing the NFEM is able to select the factors that it
believes most influence development effort, given the product and environment in which
they develop. By profiling each software development task with this common set of
profiling attributes and recording the actual effort required to complete each task, a
historical data point is created. A collection of such historical data points can then be
used to more accurately estimate future development tasks. That is, the effort of new
development tasks can be estimated based on the amount of effort historical tasks with

similar profiles required. How effort is measured is left to each organization’s discretion.

Research has shown that of the hundreds of parameters which can affect software
development effort, only a few of these may affect the productivity in a given
environment [34]. In order for each organization using the NFEM to be able to select the
few attributes that most affect productivity, it is recommended that many attributes are
initially selected to be measured and recorded. The ones that turn out to be irrelevant
during the neural network training stage (step 3 of the NFEM preparation process) can be
discarded and the most predictive ones can be kept. Ideally, the final number of profiling
attributes selected as inputs to the NFEM should be low. The reason for this is that the

NFEM uses a neural network to learn the input-output relationship from the historical
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data and the higher the number of input attributes, the higher the volume of data needed
to train the neural network successfully. In fact, the number of data points needed to train

a neural network grows exponentially with each input [13].

The attribute selection process can also be done on a per-product basis if the organization
is large and is involved in software development for several different domains. In
addition, different attributes should be selected for different phases of the software
development lifecycle. The selected common set of profiling attributes will vary greatly,
depending on the development environment and type of system being built. However,
most organizations should include the attributes expert effort estimation, implementer

capability, and complexity, for the reasons discussed in Section 3.7.
4.1.1 Defining and Applying the Measuring System

In the first step of the NFEM preparation process, not only must the profiling attributes
be selected, they must also be clearly defined, to indicate what is being measured by each
attribute. In addition, a measuring system must be implemented for each qualitative
attribute so that they can be measured. This need not be done for the quantitative

attributes, as they can be simply entered as numbers.

The NFEM qualitative attribute measuring system was designed to allow the use of
qualitative attributes where each such attribute is measured according to the needs of the
organization using it. The measuring system requires that each qualitative attribute be
defined and be further decomposed into sub-attributes. Each sub-attribute should be a
factor that affects the evaluation of the profiling attribute. Once the user evaluates the
sub-attributes, their values can be averaged and used as the overall profiling attribute’s
measurement. To facilitate this process, Tables 4.1 and 4.2 were designed and should be
completed for each selected qualitative profiling attribute. Table 4.1 should also be used

to define the quantitative attributes.
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Name The name of the attribute and any short names used for it.

Definition A clear and concise definition that indicates what is being
measured by the attribute. All attributes should be defined in
terms of how they affect effort.

Rationale The rationale used to select the attribute. One or more
examples may be given to clarify the rationale.

Implementation | A way of combining all the sub-attributes into a single unit of
measurement (usually the arithmetic mean). Also, any
clarification notes on how the attribute should be perceived or
evaluated.

Table 4.1 — The format to be used to define the selected profiling attributes.

Sub-Attribute Name
Definition | A clear and concise definition of the sub-attribute
Scale Low The definition of the “Low” scale An arrow depicting
Values’ value for this particular sub-attribute. | the direction in
Definitions | Medium-Low | No definition required. which the effort
Medium The definition of the “Medium” scale | estimate increases
value for this particular sub-attribute. | due to the sub-
Medium-High | No definition required. attribut.e’s
High The definition of the “High” scale evaluation.
value for this particular sub-attribute.

Table 4.2 — The format to be used to define the sub-attributes.

The definitions of the scale values required in Table 4.2 serve as guidelines for the
estimator. The scale values “Medium-Low” and “Medium-High” need not be defined
because they are to be interpolated by the estimator. Each scale value corresponds to a
number between one and five, with one corresponding to the Low set and five
corresponding to the High set. The overall profiling attribute valuation is the arithmetic

mean of its sub-attributes’ values.

It should be noted that while breaking down a profiling attribute into sub-attributes does
lengthen the preparation process, it is more beneficial in the long term because it allows
the collection of more accurate data. Qualitative attributes that affect software
development effort usually encompass several aspects of the quality they describe. For
example, when defining the required reliability of a software system, one thinks of how a
system failure would affect the environment and users of the system (i.e. a mere
inconvenience versus endangerment of human life), the acceptable frequency of failures

(mean time to failure, MTTF), and the acceptable repair time (mean time to repair,
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MTTR). While all three of these factors affect the reliability of a system, they do so in
different ways, and they would often result in different evaluations from one another.
Therefore, clustering the three factors and measuring them as one would introduce a lot
of uncertainty and inaccuracy into the measurement. On the other hand, decomposing the

attribute into sub-attributes allows for more accurate data to be collected.

Table 4.3 shows the application of Table 4.1 to the Reliability profiling attribute and
Table 4.4 shows application of Table 4.2 to its sub-attributes. The definitions provided

are according to a fictional organization that creates business-critical applications.

Name Reliability

Definition The degree of reliability required from the component or
functionality implemented in the task.

Rationale A task that involves the development of a highly reliable

component or functionality generally requires more effort.

Implementation | Each sub-attribute is evaluated as Low, Medium-Low,
Medium, Medium-High, or High, corresponding to the values
between 1 and 5, respectively. The average of the sub-
attribute evaluations is the overall attribute value.

Table 4.3 — Example definition of the Reliability profiling attribute.

Criticality

Definition | The problem created if the component or functionality implemented in
this task fails.

Scale Low No critical data will be lost.
Values’
Definitions  ['Medium Some business data may be lost
causing a day’s work set back.
High Business data will be lost causing
a major set back

Mean Time to Failure, MTTF

Definition | The degree of importance for the particular component/functionality
being implemented to rarely fail.

Scale Low It may fail often (once every few
Values’ days).
Definitions  ["Medjum It may fail between once a month
to once in 3 months.
High It should not fail more than once
in six months.

Mean Time to Repair, MTTR

Definition | The degree of importance that the particular component/functionality
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being implemented in the task has a short repair time.
Scale Low It is not a significant problem if it
Values’ is down for a week or less.
Definitions  ['Medium [t is important that it is not down
for more than a day.
High It is very important that it is not
down for more than an hour.

Table 4.4 — Example definition of the Reliability sub-attributes.

4.1.2 Data Collection

Upon the completion of the first step, data collection can begin. Step 2 of the NFEM
preparation process cannot commence until sufficient data has been collected. However,
the question becomes what a sufficient number of data points is. In [6], the authors
show that the number of training data points required for a neural network that contains

- W weighted connections is given by:

m>—
£

where m is the number of training data points and ¢ is the allowed fraction of error on the
training set. If ¢ is assumed to be less than 0.125 then approximately ten training data
points are required for each weighted connection in the neural network. Therefore, given
that an organization knows the largest network architecture to be used in step 3 of the
preparation process, it must collect at least ten times the amount of weighted connections

within it.

4.2 Step 2: Data Set Separation

The second step of the NFEM preparation process is the data set separation. To be able
to extract rules from a trained neural network using the rule-extraction technique
described in Section 2.4.3, the data with which the neural network is trained must be
Boolean as opposed to continuous. Subsection 4.2.1 describes how the range of values
for the qualitative attributes should be separated into fuzzy sets, and then Boolean sets.

Subsection 4.2.2 describes how the range of values for the quantitative attributes should
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be separated into Boolean sets, and then fuzzy sets. It should be noted that the data set

separation process must also be applied to the output attribute, effort.

4.2.1 Data Set Separation for the Qualitative Profiling Attributes

Section 4.1.4 described that the sub-attribute values, ranging from one for Low to five for
High, should be averaged to obtain an overall value for the profiling attribute. Thus, each
qualitative profiling attribute can have a value between one and five and when these
values are normalized, the range of values becomes 0.2 to one. The normalization occurs
because neural networks and ANFIS training functions implemented by MATLAB only
use normalized data [33]. Table 4.5 depicts an example data point profiled by two

profiling attributes with normalized values.

Qualitative Profiling | Qualitative Attribute | Data Point
Attribute 1 Value 2 Value

0.633 0.25 [0.633 0.25]
Table 4.5 — A sample data point.

4.2.1.1 Determining the Boundaries of the Fuzzy Sets

Each qualitative attribute is separated into three fuzzy set, Low, Medium, and High, as
shown in Figure 4.2. The membership function of each fuzzy set is a generalized bell
function. The generalized bell function was selected as the membership function of
choice for two reasons: It is nonlinearly smooth and it offers three adaptable parameters
with which the shape of the function is customized during the ANFIS training [22]. Most
other nonlinearly smooth functions offer only two variable parameters [22]. The
boundaries of the fuzzy sets Low and Medium are determined such that the cross-over
point for each set is at the Medium-Low value two, or 0.4 when normalized. Likewise,
the boundaries of the fuzzy sets Medium and High are determined such that the cross-
over point for each set is at the Medium-High value four, or 0.8 when normalized. The
cross-over point of a fuzzy set A is any point where u4(x) =0.5. The rationale for locating
the fuzzy set cross-over points at these values is simple and straightforward: The points

Medium-Low and Medium-High are designed to be the point halfway between one set
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4.2.2 Data Set Separation for Quantitative Attributes

Because the range of values used for quantitative attributes is organization-dependent, it
is impossible to define a common process for separating the quantitative attribute values
into sets. However, some guidelines are provided in this subsection that should be

followed when determining these sets.
4.2.2.1 Determining the Boundaries of the Boolean Sets

First and foremost, each Boolean set must contain a sufficient number of data points
within it so that the neural network is able to associate certain input values with that
particular set. Section 4.5.2 discussed what a sufficient number of data points is overall.
~ It only the minimum amount is collected (i.e. ten times the amount of weighted
connections in the largest neural network architecture to be used), the quantitative
attribute Boolean sets can be separated such that each set has an approximately equal
amount of data. If the amount of collected data greatly exceeds the minimum required
amount, then a criterion other than equal amount of data can be used to separate the sets.
For example, self-organized maps [30] or clustering algorithms [5] can be used to

determine the sets. These topics however are outside the scope of this thesis.

In most cases, due to the fact that it takes a long time to collect data, most companies will
start implementing the second step of the preparation process once they have gathered
what is considered sufficient data. Therefore, the Boolean sets would need to be
separated based on an equal-data amount criterion. Due to this, the boundaries of the
Boolean sets must be determined first, so as to ensure that each set with which the neural

network is trained contains enough data for the neural network to learn with.
4.2.2.2 Determining the Boundaries of the Fuzzy Sets

Once the Boolean sets’ boundaries are determined, the fuzzy set membership functions

can be determined for the quantitative profiling attributes’ sets. The generalized bell is
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maintained as the membership function of choice for the advantages it provides. The
width of each bell membership function, which is controlled by the parameter a, should
be equal to the width of the Boolean set that corresponds to it. Additionally, the centre of
the generalized membership function of each fuzzy set, controlled by the parameter c,
should be located at the median value of the set it represents. For example, to determine
where the centre of the generalized bell membership function of the fuzzy set Low should
be located, the median of the data values contained in the Boolean set Low should be
used. The reason why the median was chosen as the centre of the generalized bell
membership functions, as opposed to the mean, was because the finite breakdown point
of the median is much higher than that of the mean [53]. The finite breakdown point is
the smallest proportion of outliers that can result in the mean or the median being
arbitrarily large or small for a given set of observations [53]. Given a set of n
observations, the finite breakdown point of the mean is 1/# whereas the finite breakdown
» point of the median is n/2 [53]. Therefore, for a set containing 50 data points, only 1/50,
or 1 of the data points need to be outliers, in order to produce an arbitrarily large or small
mean. Conversely, the proportion of outliers required to bias the median, for the same set

of data points, would be 50/2, or 25 data points.

Finally, for the quantitative output attribute, Effort, no fuzzy sets are required because the
zero-order Sugeno inference system implemented in the ANFIS does not require fuzzy
sets for the output attribute. Instead, one constant value must be selected to represent
each output set. For the same reasons discussed above, the median should be the choice

representative value for each output attribute set.
4.3 Step 3: Neural Network Training

Once a sufficient amount of data has been collected and the set separations have been
accomplished, a neural network can be trained with the Boolean data. This third step of
the NFEM preparation process consists of some trial and error due to the many different
factors that can determine how successfully a neural network is trained. In this section

some of the most important factors are discussed.
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4.3.1 Varying the Inputs

The most important factors are the inputs and outputs used: The stronger the relationship
between the inputs and the outputs, the easier it is for the neural network to learn the
relationship [41]. In order to determine the combination of profiling attributes that have
the greatest affect on development effort, different combinations of the inputs must be
tested. The number of profiling attributes collected and the number of sets defined for
each attribute determine the number of inputs to the network. For example, if three
profiling attributes are selected and the values of each one are separated into three sets,

Low, Medium, and High, then the neural network will have 9 inputs.

4.3.2 Varying the Number of Hidden Nodes

The next factor that affects the neural network training phase is the number of nodes used
in the middle layer of the network, often referred to as the hidden nodes. As the number
of nodes increases in the hidden layer, so does the accuracy of a neural network to predict
the output of the training data [36]. However, if the number of hidden nodes is too high,
the network loses its ability to generalize, and models itself too closely to the training
data. Consequently, the network performs well when the training data is used, but it
performs poorly when new data is entered. This phenomenon is often called “over-
fitting” [36]. While several methods and parameters have been proposed to determine the
number of hidden layer nodes [17], [35], [36], this problem lies beyond the scope of this
thesis. It is suggested that a trial and error process is followed to determine the number
of hidden neural nodes. It is also best to separate the historical dataset into a training data
set and a testing data set. Training several different networks with varying numbers of
hidden nodes, and then testing them, will show which architecture yields the best results

in accurately predicting training as well as testing data.
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The rule extraction technique described in Section 2.4.3 is used to extract rules from the
neural network that was most successfully trained in Section 4.3. More specifically, the
most general rules are extracted from its hidden layer neurons and its output layer
neurons, and then combined to create rules modeling the relationship between the
profiling attributes and the effort output. These rules are then embedded into an ANFIS
system. For example, suppose the following five rules were extracted from the neural

network shown in Figure 4.4:

1. IF Attribute 1 is Low AND Attribute 2 is Medium THEN Output is M.
2. IF Attribute 1 is High THEN Output is My,.

3. IF Attribute 2 is Low THEN Output is M.

4. IF Attribute 1 is Medium AND Attribute 2 is Low THEN Output is M.
5. IF Attribute 1 is Medium AND Attribute 2 is High THEN Output is Myp.

M stands for the median of the set Med-Low, My stands for the median of the set
High, and so on. The medians of the Output’s sets are determined in Step 2 of the NFEM
preparation process. Figure 4.5 shows the ANFIS system into which the rules would be

embedded.

In the first layer, each node function is a bell membership function that corresponds to a
fuzzy set of one of the input attributes. For example, the first node in the first layer is
associated with the fuzzy set Low; that corresponds to Attribute 1. Its output is the
membership grade of Attribute 1 into its fuzzy set Low;. The fuzzy sets determined in
Step 2 of the NFEM preparation process are used as the node functions of the first layer
neurons. Each neuron in the second layer corresponds to the antecedent of one of the
rules. For example, the first neuron of the second layer corresponds to the antecedent of
the first rule, Ag;. Its inputs are the membership grade of Attribute 1 into its fuzzy set
Low; and the membership grade of Attribute 2 into its fuzzy set Medium,. The output is

the firing strength of the first rule, as described in Section 2.3.
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CHAPTER Y
THE INDUSTRIAL PARTNER

%

To validate the Neuro-Fuzzy Estimation Model, industrial project data was obtained from
a major international corporation that produces a variety of products and services. This
company will be referred to as the Industrial Partner within this thesis due to the signed
Non-Disclosure Agreement between the author and the Industrial Partner. The agreement
prevents the publication of the name of the Industrial Partner and any details that identify
it in order to safeguard the interests of the Industrial Partner and to ensure that the data is

- used strictly for research and academic purposes.

The purpose of this chapter is to introduce the Industrial Partner and the dataset obtained
from them. Section 5.1 describes the Industrial Partner and Section 5.2 describes their
current process of software development effort estimation. Section 5.3 presents their
future goals in the area of effort estimation. Section 5.4 contains the use case developed
to improve the Industrial Partner’s estimation capabilities by integrating the NFEM into
their estimation process. Section 5.5 describes the dataset provided by the Industrial

Partner and used to validate the NFEM in Chapter 6.
5.1 The Industrial Partner and Their Current Effort Estimation Process

The Industrial Partner is a Fortune 500 company with a workforce of over 100,000
people world-wide and annual revenue of over $30 billion dollars. It is involved in the
production of products and services that cater to a wide variety of customers ranging
from private consumers to major Industrial Partners. The company is known for its
aggressive implementation and daily practice of the six sigma methodology which is

focused on reducing errors and costs.
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5.2 The Industrial Partner’s Future Effort Estimation Goals

While the Estimation Tool developed by the Industrial Partner is a great start towards
improving their software effort estimation process, it is only a tool that allows for the
easy collection of estimation data. The estimation models incorporated into the tool may
improve the accuracy of the estimates to some extent, but neither of these models makes
use of the historical data collected. And yet the data collected is very valuable as it is
fine tuned to the particular development group and environment collecting the data. The
Industrial Partner believes that there is great value within this collection of data, value

which could be used to more accurately estimate future development tasks.

In order to use the historical data to improve future estimates, the Industrial Partner
recognized that storing the estimate effort value and actual effort value was not enough.
| The assumptions made when creating an estimate had to also be stored within the data
point. These assumptions would need to follow a specific and consistent format,
allowing each task to be characterized by the same parameters. This would enable future
tasks to be related to historical tasks. In fact, this idea was what inspired the development
team of the Estimation Tool to include the GUI implementation of the profiling technique
into the tool. However, no further research was conducted as to which attributes should
be used to profile the estimation tasks and no algorithm was implemented to make use of
the historical data. The need for this common profile and the existing collection of
estimation data made the Industrial Partner an ideal partner for the validation of the
NFEM. A use case was developed to summarize NFEM’s outcome as desired by the

Industrial Partner and is shown in the following section.
5.3 Use Case for Generating an Effort Estimate Based on Historical Data
This use case describes the scenario, where given a profile, an effort estimate value is

computed by the Estimation Tool based on the actual effort values of historical tasks with

similar profiles, using the NFEM.
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Scope: Generation of a software development task effort estimate using the Profiling

Section on the Estimation Tool of the Industrial Partner (refer to Figure 5.3)

Primary Actor: Software Estimator

Preconditions: An estimate node has been created in the Estimation Tool and the

estimate tab is open for editing.

Scenario:

1.

Software Estimator selects the appropriate person for the following fields: Owner,
Estimator, and Implementer.

Software Estimator enters details, concerning the task being estimated, into the
notes field.

Software Estimator creates an estimate in the Expert Estimate section of the
Estimation Tool. The Expert Estimate can be based on values generated by the
Function Point Analysis and/or PERT methods.

Software Estimator selects values for each of the attributes in the Profiling section
of the Estimation Tool.

Software Estimator presses the “Compute” button in the Profiling section and a
calculated effort estimation value is displayed in the “Value” field of the Profiling
section.

Software Estimator analyses the values generated by any or all of the PERT,
Function Point, Expert and Profiling models.

Software Estimator selects one of the models as the source in the Final Estimate
section.

Software Estimator either uses the value auto-generated by selecting the source or
enters a number in the Final Estimate section of the Estimation Tool that takes

into account the values generated by each of the four estimation methods.

5.4 The Industrial Partner’s Dataset

The data obtained from the Industrial Partner was collected by a software development

team in charge of developing software for a corporate client. The data was collected

during the development of three different products, and two releases of each, totaling six
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projects. The development team consisted of an average of six people, and the team was
located on two different continents. Due to the need to deliver high quality software

products on time, the Estimation Tool was an integral part of the development process.

Originally, the Industrial Partner estimated to have approximately 2000 historical data
points. No concrete value was known because estimates and actual values of historical
tasks completed before the development of the Estimation Tool were scattered in
different spreadsheet files. Therefore, the data had to be centralized before knowing the
true value of the number of data points. Once the data was centralized into one common
database, it was discovered than only about 1400 data points existed. Subsequently, data
points that contained estimates but no actual values (i.e. bad data), and data points of
tasks that did not belong to the implementation phase were also filtered out. Non-
implementation tasks were filtered out because finding a common set of attributes for
| tasks of all phases of the software development cycle would be difficult if not impossible.
On the other hand, time limitations made finding a common set of attributes for each

phase unfeasible.

Furthermore, all implementation tasks with estimated or actual effort size of over 100
hours or magnitude of relative error greater than 50% were filtered out, leaving only 313
data points. The reason for filtering out tasks with a MRE greater than 50 was that
allowing a large range of MRE values required a very high volume of data points to train
the neural network. Due to the fact that a high volume of data was not available, the
MRE range was limited. Finally, tasks with estimated or actual effort size over 100 hours
were filtered out because they were quite rare, and therefore the few data points that did
exist would bias the neural network into creating an input-output relationship that was

incorrect.
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CHAPTER VI
CASE STUDY

ﬁ

In this chapter, the Industrial Partner’s historical data is applied to validate the Neuro-
Fuzzy Estimation Model. Due to the long term process involved in collecting large
amounts of software development effort estimation data, time constraints did not allow
for the full validation of the NFEM. However, because some existing historical data was

available, the steps that were applied presented a promising outcome.

- In Section 6.1, the first step of the NFEM preparation process, the selection and
definition of the profiling attributes, is completed followed by a discussion on the
selected attributes. Next, Section 6.2 describes the second step of the NFEM preparation
process, the data set separation step. In Section 6.3, step 3 of the NFEM preparation
process, the neural network training with the Industrial Partner’s dataset, is completed
and the training results are analyzed. Finally, Section 6.4 describes the implementation
of the last step of the NFEM preparation process of extracting the rules from the trained

neural networks and implementing them in the ANFIS.
6.1 Step 1: Profiling Attribute Selection

As described in Chapter 4, the first step to the NFEM preparation process is determining
the set of profiling attributes. These attributes would be used to characterize the
Industrial Partner’s dataset. It was decided that a set of attributes would be determined
that would be used to profile only implementation tasks for the reasons discussed in

Section 5.4.
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These attributes were selected for their usefulness, measurability, and significance. They
were determined after careful analysis of hundreds of metrics used in existing estimation
models or researched internally by the Industrial Partner. In this section they are
exemplified and characterized by a measuring scheme. Each selected profiling attribute
is defined and described through the sub-attributes into which it was decomposed. While
only the definitions of the attributes and sub-attributes are provided in this section,
Appendix A contains the full descriptions of each attribute, including the scale value

definitions, using the table format shown in Section 4.1.

6.1.1 Skill Level of Implementer

Name Skill Level of Implementer

Definition The degree to which the skill level of the task implementer
influences the effort estimate.

SUB-ATTRIBUTES

Analyst The ability to investigate new strategies or defects, as well as the
Capability overall quality, reliability, and robustness of work items previously
completed by the task implementer.

Learning Ability | The task implementer’s ability to learn new concepts and acquire

new skills quickly.
Efficiency The ability to complete a task accurately and on time (i.e. without
over-analyzing the problem and the possible solutions).
Teamwork The ability to communicate in a timely manner with other team

members and management and the ability to co-operate in terms of
choosing the best possible solution for the task, while still adhering
to time and quality constraints.

Table 6.1 — Description of the Skill Level of Implementer attribute.

6.1.2 Familiarity with Technology

Name Familiarity with Technology, Technology

Definition The degree to which the implementer’s familiarity with the
technology, used to complete the task, influences the estimate.

SUB-ATTRIBUTES

Familiarity with | The degree of the task implementer’s knowledge /understanding of
Documentation | the technology’s documentation: Has the implementer skimmed
the documentation or thoroughly read it. Documentation includes:
help files, user guides, online tutorials, and books dedicated to the

technology.
Usage of How well the task implementer feels that he/she knows how to
Technology implement solutions using the technology. This is a measure of the
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|

| level of comfort he/she has in using the technology.

Table 6.2 — Description of the Familiarity with Technology attribute.

6.1.3 Familiarity with Programming Language

Name Familiarity with Programming Language, Familiarity with
Language, Language
Definition The degree to which the implementer’s familiarity with the

software language, to be employed when completing the task,
influences the estimate.

SUB-ATTRIBUTES

Familiarity with | The degree of the task implementer’s knowledge/understanding of

Documentation | the language’s support documentation. The documentation
includes: help files, user guides, online knowledge databases, and
books dedicated to the use of the language.

Usage of How well the task implementer feels that he/she knows how to

Language implement solutions using the chosen language. This is a measure

of the level of comfort he/she has in developing solutions with the
language.

" Table 6.3 — Description of the Familiarity with Programming Language attribute.

6.1.4 User Interface

Name

User Interface, Ul

Definition

The degree to which the level of complexity of the user interface
influences the estimate.

SUB-ATTRIBTUES

Amount of Ul A linguistic approximation of the amount of user interface controls

Controls needed by the functionality. User interface controls include: text
boxes, list boxes, radio buttons, command buttons, menus, combo
boxes, etc.

Required Level | A qualitative measure of the amount of input validation required by

of Validation the user interface of the task’s functionality.

Underlying The overall complexity of the underlying architecture. For

Architecture example, a simple registry access function will likely have a low

Complexity architectural complexity whereas functionality providing the ability

to insert 3rd party ActiveX controls would likely have a high
architectural complexity.

Table 6.4 — Description of the User Interface attribute.

6.1.5 Complexity

Name

Complexity

Definition

The degree to which the complexity of the task influences the
estimate.

SUB-ATTRIBUTES
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Difficulty of The degree of difficulty involved in defining the solution such as

Definition the algorithmic complexity of the solution in terms of
computational complexity (e.g. nested loops, analysis of
differential equations), time computational complexity (e.g. real-
time systems), space computational complexity (e.g. distributed
database coordination), and information-based complexity (e.g.
simple arrays in main memory vs. highly coupled dynamic
relational and object structures).

Interdependence | The amount of other functions/features the current task impacts

with other and/or the amount of functions/features the current task is impacted

Features by.

Table 6.5 — Description of the Complexity attribute.

6.1.6 Familiarity with Functionality

Name

Familiarity with Functionality, Functionality

Definition

The degree to which the implementer’s familiarity with the
functionality influences the estimate.

SUB-ATTRIBUTES

Similarity The degree to which the current task resembles something that the
implementer has previously implemented.

Product How familiar the implementer is with the application/product being

Knowledge developed. This will give a measure of how well the implementer
understands how the component/functionality will affect the
existing components/functionality.

Component How familiar the implementer is with the component the current

Knowledge task involves.

Table 6.6 — Description of the Familiarity with Functionality attribute.

6.1.7 Familiarity with Domain

Name

Familiarity with Domain

Definition

The degree to which familiarity with the application domain
influences the estimate.

SUB-ATTRIBUTES

Product Domain

The level of familiarity the implementer has with the application

Familiarity domain (i.e. functions within the industry that the product will be
used).

Software The level of familiarity the implementer has with the task’s related

Domain software domain (e.g. database, GUI, server, web, etc.).

Familiarity

Table 6.7 — Description of the Familiarity with Domain attribute.
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insufficient data to correctly evaluate the significance of this attribute. Therefore, the

User Interface attribute was eliminated.

In addition, several attributes were found to have equal values for a suspiciously large
amount of data points. It was suspected that the members of the development team who
profiled the data perceived some of the “Familiarity with” attributes to be very similar
and therefore, consistently evaluated these attributes the same. Tests were conducted to
evaluate the amount of similarity between the following attributes: Familiarity with
Functionality, Familiarity with Technology, Familiarity with Domain, Familiarity with
Programming Language, and Complexity. The Complexity attribute was only included

to serve as a comparison measure.

Table 6.9 shows the results produced by tests that compared the Technology profiling
attribute with the other attributes and Table 6.10 shows the results produced by tests that
compared the Language profiling attribute with the other attributes.

Attribute 1 Attribute 2 % of Data Containing
the Same Values for

Attributes 1 and 2

Familiarity with Technology Familiarity with Language 55.7%
Familiarity with Technology Familiarity with Domain 34.7%
Familiarity with Technology Familiarity with Functionality 22.3%
Familiarity with Technology Complexity 10.8%

Table 6.9 — Similarity between Technology and other attributes.

Attribute 1

Attribute 2

% of Data Containing
the Same Values for
Attributes 1 and 2

Familiarity with Language Familiarity with Technology 55.7%
Familiarity with Language Familiarity with Domain 31.5%
Familiarity with Language Familiarity with Functionality 16.9%
Familiarity with Language Complexity 10.8%

Table 6.10 — Similarity between Language and other attributes.

Both tables show that over 55% of the dataset contained the same values for the attributes

Familiarity with Technology and Familiarity with Language. This was definitely an

abnormal amount of similarity between the two attributes, and therefore one of them had
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to be eliminated. It was determined that the attribute which showed the highest similarity

with other attributes would be eliminated.

At 34.7%, the similarity between the Technology and the Domain attributes was higher
than the similarity between the Language and Domain attributes, which was 31.5%.
Furthermore, at 22.3%, the similarity between the Technology and Functionality
attributes was also higher than the similarity between the Language and Functionality
attributes, which was 16.9%. Therefore, the Technology attribute was more often
perceived to be the same as the Domain and Functionality attributes, when compared to

the Language attribute. As a result, the Familiarity with Technology attribute was

eliminated.

Attribute 1 Attribute 2 % of Data Containing the
Same Values for Attributes
1 and 2

Familiarity with Domain Familiarity with Language 31.5%

Familiarity with Domain Familiarity with Functionality 25.8%

Familiarity with Domain Complexity 15%

Table 6.11 — Similarity between Domain and other attributes.

Additionally, the Familiarity with Domain attribute showed to be the same as the
Familiarity with Language attribute for over 30% of the data. Likewise, the Domain
attribute was evaluated the same as the Familiarity with Functionality attribute for over
25% of the data (as shown in Table 6.11). This showed that the Domain attribute was
also often perceived to be the same as the Functionality and Language attributes, and it

was therefore also eliminated.

The remaining attributes of Functionality and Language had a low degree of similarity
between them, at 16.9% (shown in Table 6.10), and were therefore retained. Thus, the
Functionality, Language, Estimated Size, and Complexity attributes were used as inputs

in the training of the neural networks.
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6.2 Step 2: Data Set Separation

The next step in the NFEM preparation process was to separate the profiling attributes
into sets so that rules could be extracted from the trained neural networks and be
implemented into an ANFIS. As described in Chapter 4, the NFEM was designed in such
a way that it facilitates the data set separation for qualitative and quantitative profiling

attributes.

This section describes the properties of the profiled data before applying the data set
separation process described in Section 4.2 to the qualitative profiling attributes, and

subsequently, to the quantitative attributes.
6.2.1 Experimental Data

Each data point consisted of four profiling attributes (Complexity, Functionality,
Language, and Estimated Size) and the output attribute, Effort, in hours. The qualitative
profiling attributes Functionality, Language, and Complexity could take on any value
between one and five, and when normalized, this became a range between 0.2 and one
(the value zero was reserved to indicate the term “not applicable™). The attribute value
depended on how the sub-attributes were evaluated. The Estimated Size attribute as well
as the Effort attribute could take any positive value between zero and one hundred. All
the attribute values were normalized to be between 0 and 1. Table 6.12 illustrates three

sample data points.

Complexity | Estimated Familiarity Familiarity Effort (in
Size (in with with hours)
hours) Functionality | Language

0.4 0.22 0.2 0.2 0.15

0.9 0.6533 0.4 0.8 0.98

0.2 0.1 0.87 0.7 0.2

Table 6.12 — Sample data points obtained from the Industrial Partner.
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6.2.2 Data Set Separation for the Qualitative Profiling Attributes
6.2.2.1 Determining the Boundaries of the Fuzzy Sets

The procedure described in Chapter 4 was followed to separate the possible range of
values into three fuzzy sets, Low, Medium, and High, which could then be transformed
into Boolean sets. As described in Section 4.2, the values Medium-Low and Medium-

High were used as references to locate the crossover points of each fuzzy set.
6.2.2.2 Determining the Boundaries of the Boolean Sets

Once the fuzzy sets were determined, boundaries of the Boolean sets were located at the
crossover points of each fuzzy set. The Low set contained any values greater than or

| equal to 0.2 and less than or equal to 0.4 and was represented with the vector [1 0 0]; the
Medium set contained any values greater than 0.4 and less than 0.8 and was represented
with the vector [0 1 0]; and the High set contained any values greater than or equal to 0.8
and was represented with the vector [0 0 1]. Table 6.13 reflects the Boolean
transformation of the qualitative profiling attributes of the sample data shown in Table

6.12.

Complexity Functionality Language

Continuous | Boolean | Continuous | Boolean | Continuous | Boolean
04 [100] 0.2 [100] 0.2 [100]
0.9 [001] 0.4 [100] 0.8 [001]
0.2 [100] 0.866667 [001] 0.7 [010]

Table 6.13 — Sample qualitative attributes transformed into Boolean form.

6.2.3 Data Set Separation for the Quantitative Attributes

6.2.3.1 Determining the Boundaries of the Boolean Sets

The remaining profiling attribute, Estimated Size, and the output attribute, Effort, were

not by default separated into sets as they were quantitative in nature. Due to the lack of
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abundance in data points, the equal data amount criterion was used to first determine the

Boolean sets and then the fuzzy sets.

For the Estimated Size profiling attribute, the sets into which the data was separated into

are shown in Table 6.14. To illustrate the equal data principle that guided the boundaries

of the sets, the percentage of data points within each set is also shown in Table 6.14.

Set Name Range of Values included | % of Data Points | Median Boolean
in set (in hours) within the Set Vector
Low O<Estimated Size<4 18.2% 1.83 [100000]
Medium-Low | 4<= Estimated Size <8 17.9% 4.83 [010000]
Medium 8<= Estimated Size <11 17.9% 8 [001000]
Medium-High | 11<= Estimated Size <17 16.0% 16 [000100]
High 17<= Estimated Size <30 | 15.0% 24 [000010]
Very High Estimated Size >=30 16.6% 42 (00000 1]

Table 6.14 — The Estimated Size Boolean sets.

" Next, the Boolean sets of the output attribute were determined. The Effort values were
separated into six sets, where each set was defined by a range of hours. Once again, the
equal-data-amount criterion was used to determine the sets. Table 6.15 shows the
boundaries of each set and the percentage of data points that fall within each set. Table

6.16 contains the full Boolean transformation of a sample data point.

Set Name Range of Values included % of Data Median Boolean
in set (in hours) Points within Vector
the Set
Low 0< Effort<4 16.0% 2 [100000]
Medium-Low | 4<= Effort <8 16.9% 5 [010000]
Medium 8<= Effort <11 14.1% 8 [001000]
Medium-High | 11<= Effort <17 17.9% 15 [000100]
High 17<= Effort <30 16.0% 22 [000010]
Very High Effort >=30 19.2% 41 [00000 1]
Table 6.15 — The Boolean sets of the output attribute Effort
Attribute Continuous | Boolean
Format Format
Complexity 0.4 [100]
Estimated Size 0.22 [000010]
Functionality 0.2 [100]
Language 0.2 [100]
Effort 0.15 [000100]

Table 6.16 — Data point transformed from continuous to Boolean format.
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achieved the most accurate classification results. These rules could then be implemented

into the ANFIS.
6.3.1 Parameters Varied

In order to determine the network architecture, and the combination of inputs that would
most accurately describe the factors that affect software implementation task effort,

several different parameters were varied during the training of the networks.
6.3.1.1 Varying the Inputs

First and foremost, the number and combinations of profiling attributes used as input to
the neural networks was varied. This was done in an attempt to find out if there was a

| certain combination of one or more profiling attributes that best predicted the output of

the neural network. The four profiling attributes used as inputs created fifteen different

combinations, ranging from only one attribute being included in the combination to all

four. Therefore, for every other parameter varied during training phase, fifteen different

input combinations had to be tested, resulting in fifteen experiments for each test case.
6.3.1.2 Varying the Number of Hidden Nodes

The number of hidden nodes was the second testing parameter varied to determine if
there was a specific network architecture under which the neural network was best
trained. To determine the ideal number of hidden nodes, three different neural network
architectures were used: One with fifteen nodes in the hidden layer, another one with
thirty-five, and a final one with fifty nodes. These values were determined through trial
and error. Once again, in each test case, for each input combination, all three network

architectures were tested.
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6.3.1.3 Varying the Number of Training Epochs

The final parameter varied was the number of epochs used to train the neural networks.
This would test to see if increasing the number of epochs would compensate for the low
volume of data. In Test Case 1 the number of epochs was limited to 1000 and in Test
Case 2, the same experiments were repeated but the number of epochs used to train the

neural networks was increased to 5000.

6.3.2 Testing Setup

The output of each neural network was Effort, in hours. Therefore, each neural network
trained in these two test cases consisted of six output neurons in the third layer, each one

corresponding to one of the sets of the Effort attribute determined in Section 6.2.3.

To automate each test case, an algorithm was designed and implemented to automatically
create a three-layer backpropagation neural network, train it with the data presented,
count the number of correct classifications and write it in a comma separated values
(CSV) file. A correct classification was considered to be a point that is classified into the
right output set. The mean squared error (MSE) of the last epoch of each trained neural
network was also recorded within the CSV file, in order to keep track of the how
successful the network training was. For each parameter variance, thirty networks were
trained and an average was obtained to determine the overall affect of that particular
parameter’s value change. Due to the scarcity of the number of data points, all 313 data

points were used in training the neural networks.

The results of each test case are displayed in a bar graph that contains the experiment
number and the names of the input attributes on the x-axis. The names of the inputs are
shortened to only the first letter of the attributes’ names as shown in Table 6.17. The y-
axis shows the average percentage of correctly classified data points. Three bars are
shown for each experiment, one representing the networks with fifteen hidden neurons in

the middle layer, another representing the networks with thirty-five hidden neurons, and a

75



final one representing the networks with fifty hidden neurons. The last 3 bars represent
the overall averages of all the experiments for each test case. For each test case, a second

chart is also shown comparing the average MSE of the last training epochs for each

experiment.
. Short Name Used on the X-
Experiment No. Inputs axis of Figures 6.4 to 6.11

1 Complexity 1-C

2 Estimated Size 2-E

3 Functionality 3-F

4 Language 4-L

5 Complexity & Estimated Size 5-C&E

6 Complexity & Functionality 6 - C&F

7 Complexity & Language 7-C&L

8 Estimated Size & Functionality 8 - E&F

9 Estimated Size & Language 9-E&L

10 Functionality & Language 10 - F&L

Complexity & Estimated Size & 11 - C&E&F
11 . .
Functionality

12 Complexity & Estimated Size & 12 - C&E&L
Language

13 Complexity & Functionality & 13 - C&F&L
Language

14 Estimated Size & Functionality 14 - E&XF&L

& Language
15 Complexity & Estimated Size & 15 - C&E&F&L
Functionality & Language

Table 6.17 — The input abbreviations used on the figures displaying the results.

6.3.2 Test Results

6.3.2.1 Test Case 1: Training with 1000 Epochs

Figure 6.4 shows the results of testing all fifteen input combinations and all three network
architectures when each of the networks was trained with 1000 epochs. Overall, the
trained networks performed poorly. The average percentage of correctly classified data
points varies from 5.29%, produced in Experiment 4, when the network architecture with
fifty hidden nodes was used, to 33.42%, produced when Estimated Size was the input to
the network architecture with fifty hidden nodes. The networks with only Estimated Size

as input perform significantly better than the rest of the input combinations regardless of
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low MSE values could be explained by the fact that the mean of a population is easily
biased by outliers: “Regardless of how many observations we might have, it takes only 1

outlier to make the sample mean arbitrarily large or small.” [53].

Overall, while the network was more successfully trained with the data when the
quantitative attributes were not separated into sets, the classification accuracy dropped.
This shows that the main problem was not due to the set boundaries determined in the

second step of the NFEM preparation process, as assumed in the first hypothesis.

The second hypothesis was that the poor results were caused by the low amount of data.
As stated before, originally, the Industrial Partner believed to have 2000 historical data
points, but due to several reasons, the data set available to conduct the experiments
contained just over 300 data points. This posed a much unexpected problem because in

7 general, large amounts of data are required to train neural networks successfully. Since
there were no more data points available however, as all networks were trained with all
313 data points, there was no practical way of determining if more data would yield
better results. But theoretically, the findings of [6], which were summarized in Section
4.1.2, could be used to test this second hypothesis. Assuming a fraction of error of 0.125
within the training data, for every weighted connection of a multilayer neural network,
there need to be approximately ten training data points. In the best case scenario, in Test
Cases 1 through 4, the networks with the lowest amount of weighed connection weights
consisted of three nodes in the first layer, corresponding to the sets of the one profiling
attribute used as an input, fifteen hidden nodes in the middle layer, and six output nodes
in the third layer. Therefore there were forty-five weighted connections from the first
layer to the middle one (obtained by multiplying the number of nodes in the first and
second layer) and ninety weighted connections in the second layer (obtained by
multiplying the number of nodes in the middle and third layer), totaling 135 weighted
connections in the neural network. As a result, theoretically, a minimum of 1350 data
points would be required to train the neural network. This proves that insufficient data

was the cause of the poor network classification results.
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The third hypothesis, which stated that the quality of the training data may be low,
leading to poor classification results cannot be proved true or false, due to the lack of
data: If sufficient data was available to train the neural networks, and the classification

accuracy continued to be low, then the quality of data could be further investigated.

Overall, there was insufficient data to successfully complete the third step of the Neuro-
Fuzzy Estimation Model. However, given that only 313 data points were available, when
at minimum, 1350 data points were needed, the resuits turned out to be promising. When
only a fifth of the required data points were used to train the neural networks, 48%
classification accuracy was achieved. Thus, although the Industrial Partner’s data was
insufficient to fully implement the third step of the NFEM preparation process, the results

are promising.
| 6.4 Step 4: Rule Extraction and ANFIS Implementation

Step 4 of the NFEM preparation process could not be implemented due to the long term
process involved in collecting sufficient data. Therefore, time constraints did not allow
for the full validation of the Neuro-Fuzzy Process. Nevertheless, Chapter 4 describes in
detail how the full implementation of the NFEM would be completed once sufficient data

was available.
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CHAPTER VII

CONCLUSION

W

7.1 Summary of Contributions

The ability to produce accurate software development effort estimates is essential to the
software industry. Based on them project scope is determined, quality standards are set
in place, and cost and schedule constraints are defined. Yet, software development effort
estimates are often plagued by omissions, uncertainty, and bias [50]. Existing estimation

-models continue to frequently produce inaccurate estimates, instigating research studies
that attempt to determine the properties they lack. After decades of such studies and
practical experience, a number of deficiencies have been found that hinder existing
estimation models from producing accurate estimates. This thesis focused on developing
a new effort estimation model that amends those deficiencies by incorporating within it

the following characteristics:

The ability to handle diverse process and product variables.
The ability to incorporate empirical evidence and expert judgment.
The ability to determine genuine cause and effect relationships.

The ability to handle uncertainty.

A e

The ability to handle incomplete information.

The Neuro-Fuzzy Estimation Model presented in this thesis was designed with all of
these characteristics in mind. This section discusses how the NFEM accomplishes each
of the above characteristics as well as other characteristics that greatly benefit the process

of estimation.
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7.1.1 Input Customizability

As a universal software estimation model, the NFEM offers full customizability of the
inputs it uses. Each organization or team within an organization implementing the
NFEM is able to choose the attributes that are believed to most influence the
development effort. This is very important because depending on the development
environment and type of system being built, the factors that affect development effort can
greatly vary. In addition, the definitions of the scale values for each attribute are
determined independently by each organization. This is an advantage that no existing
effort estimation model has as it significantly expands the flexibility of the NFEM. After
all, what is considered “High Reliability” by a team that develops safety critical systems
is different from what a team that develops video games considers it to be. And while the
NFEM does not require that Expert Effort Estimate be a mandatory profiling attribute, the
rinclusion of it is strongly recommended and its implementation is facilitated by the
NFEM’s ability to integrate quantitative attributes. Finally, the output of the NFEM is
effort, but how effort is measured is left to the discretion of each organization
implementing the NFEM. This NFEM characteristic offers additional freedom of

customizability.
7.1.2 Incorporating Neural Networks

The use of multilayer feedforward neural networks in the preparation process of the
NFEM accomplishes several feats. First and foremost, feedforward multilayer neural
networks have been proven to have the ability to model any input-output relationship
[19]. Therefore, training a neural network with the effort estimation data of a given
environment, allows the relationships between the profiling attributes and the
classification attribute to be modeled. In addition, it automatically calibrates the model
with the given environment’s data. Studies have shown that calibrating an effort
estimation model with a given environment’s data significantly increases the model’s
estimation accuracy [23], [27], [34]. Furthermore, using neural networks to model input-

output relationships automatically filters out profiling attributes that do not have a
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significant effect on effort. By extracting rules from the most successfully trained neural
network, those attributes that were not used as inputs to that particular network are
eliminated. Finally, multilayer neural networks are robust to incomplete information,
rendering the NFEM to be robust to incomplete information as well, specifically because

the NFEM is implemented as a neuro-fuzzy system.

7.1.3 Incorporating Fuzzy Logic

The fuzzy logic side of the NFEM also delivers several benefits. Estimations, by their
very nature contain a degree of uncertainty within them. Therefore, applying a
mathematical algorithm such as fuzzy inference, that is intended to take into account the
inherent uncertainty of the data allows for more accurate estimations. In addition to
dealing with uncertainty, the incorporation of fuzzy logic within the NFEM allows the
integration of qualitative and quantitative attributes. The nature of fuzzy logic also
allows the NFEM to be able to deal with imprecise information due to the subjectivity
present in the values of the profiling attributes. By nature, most factors that strongly
affect software development effort are subjective. Therefore, instead of developing
another model that tries to avoid subjectivity of the metrics (an impossible task), the
NFEM uses fuzzy logic to take into account the imprecision present in the data. Finally,
the extraction and implementation of rules into the ANFIS system allows for the Neuro-
Fuzzy Estimation Mode] to be transparent and allows for the rules to be validated by
experts. This avoids the negative aspects of using neural networks to model the input-

output relationships, a structure that is often considered to be a “black-box” [44].

7.1.4 Implementing the NFEM as an ANFIS

The implementation of the NFEM as an adaptive neuro-fuzzy inference system allows for
the fuzzy membership functions to be further fine-tuned to a given organization’s
environment. Furthermore, it facilitates a continuous process of improvement. For
example, a large number of profiling attributes can be selected to be measured, but

initially the NFEM can be implemented with only a fraction of those, so that a very large
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amount of data is not necessary. Over time however, as more data is collected, the
NFEM can be re-implemented to include more profiling attributes. Also, even if new
attributes are not introduced into the NFEM, as the volume of historical data increases,
the NFEM can be retrained with the new available data for some improvement, or the
preparation process steps can be repeated, starting from Step 2, for a more extensive

improvement of the system.
7.1.5 Estimating Effort at the Task Level

The final advantage that the NFEM has over existing estimation models is that it
facilitates automatic data collection at a lower level. While theoretically, the NFEM can
be used as a model to estimate high-level software development effort, in practice this is
not feasible due to the long period of time that it would take to collect the required
training data. Therefore, the NFEM was developed as an estimation model for
collecting data at the software development task level. One advantage to this is that it
makes the collection of calibration data mandatory, and as discussed previously in this
section, model calibration is necessary if the estimation model is to be expected to
perform with some accuracy. In addition, the smaller the task size, the easier it is to
accurately profile it and estimate it using expert estimation. Generally speaking, the
larger a software development task is, the more difficult it is to estimate it [15], [28],
[45], [50] because as the size of the task increases, so does the interdependency among
various elements of the software [45]. As a result, estimating becomes harder because
there is more uncertainty in the estimate. Therefore, the Neuro-Fuzzy Estimation System
is able to avoid a degree of data uncertainty and imprecision, simply by dealing with

more granular software development tasks.
7.2 Future Work
The Neuro-Fuzzy Estimation Model presented in this thesis provides a great foundation

and much potential for producing accurate estimates. However, due to time constraints,

the scope of the thesis had to be limited, hindering further research into some of the areas
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that could be perceived as weaknesses within the NFEM. These potential weaknesses

provide future directions for this research.

First and foremost, Section 3.7 discussed the great effect the task implementer’s
capability has on effort, regardless of the development environment or product being
developed. Yet, in the real world, evaluating individuals and making such evaluations
usable in a public tool presents several major problems, from confidentiality breach to
workplace morale decrease. Further research must be conducted in how to overcome

these obstacles and allow the inclusion of the profiling attribute implementer capability.

In step 2 of the NFEM preparation process, the boundaries of quantitative attributes were
determined based on the equal-amount of data criterion. Perhaps a better approach would
be to determine the boundaries by using self-organized maps [30] or clustering
algorithms [5]. These algorithms would be able to find the natural boundaries that occur

within the dataset.

In step 3 of the Neuro-Fuzzy Estimation Model, different neural network architectures
had to be tested to reveal the most suitable number of hidden nodes in the middle layer.

A better alternative would be to use algorithms such as those proposed in [17], [35], or
[36] to determine the number of hidden nodes in the middle layer. Additionally, the
dataset used in the neural network training step should be separated into a training set and
a testing set. This would ensure that the neural network is not too closely modeled to the

training set resulting in poor performance when new inputs are entered.

For the fourth and final step of the NFEM preparation process, further research could be
conducted in a couple of areas. Firstly, only decompositional rule-extraction algorithms
were considered during the development of this thesis. Consequently, pedagogical and
eclectic rule extraction algorithms could be explored in the future to see if they yield
better results. The second area that could be explored in the future is to allow certain
profiling attributes to have a greater effect on the effort estimate than others, in hopes that

more accurate estimates are produced. This could be accomplished by assigning greater
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weights to rules whose antecedents include attributes that are believed to have a more

significant effect on effort.

Finally, the Neuro-Fuzzy Estimation Model is designed to estimate software development
effort estimation at a stage when some details are known about the project. This is
beneficial for the later stages of estimation, when the requirement specifications or design
phases have been completed. But in the early phases of project conception, many of the
development tasks that the project will consist of are not known. Thus, a formal process
of associating the task-level estimates generated by the NFEM with high-level project
estimates produced at the commencement of a project would yield many benefits.

Further research must be conducted to bridge these two different levels of estimation.
In conclusion, the Neuro-Fuzzy Estimation Model proposed in this thesis provides a

successful foundation for overcoming many of the obstacles faced by existing software

development effort estimation models.
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Appendix A
m

Attribute Skill Level of Implementer

Name Skill Level of Implementer

Definition The degree to which the skill level of the task implementer
influences the effort estimate.

Rationale A particularly complex feature may require someone with a lot

of skill and /or experience. The person who is assigned with
implementing the task should influence the size of the
estimate.

Implementation | Each of the sub-attributes of this attribute will be rated on a
scale of Low, Medium-Low, Medium, Medium-High, and
High, which will correspond to a scale of 1 to 5. Then, all the
sub-attributes will be averaged to obtain a single value for the
Skill Level of Implementer attribute. To avoid inaccurate data
due to personal bias, it would be best if each team member is
rated by his/her technical lead and the values be saved in a
separate table and updated periodically by the technical leads.
In addition, a generic profile should be available for cases
when the task implementer is not known but a task estimate is
needed.

Sub-Attributes for Attribute Skill Level of Implementer

Analyst Capability
Definition | The ability to investigate new strategies or defects, as well as the
overall quality, reliability, and robustness of work items previously
completed by the task implementer.
Scale Low The implementer produces low quality work.
Values’ Medium | In general, the quality of the work produced by
Definitions the implementer is adequate. ﬁ
High The implementer produces high quality work.
Learning Ability
Definition The task implementer’s ability to learn new concepts and acquire new
skills quickly.
Scale Low The implementer takes much more time than what
Values’ is considered reasonable before being able to
Definitions apply new concepts/skills.
Medium | In general, the implementer takes, what is ﬁ
considered, a reasonable amount of time before
being able to apply new concepts/skills.
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High The implementer takes a minimal amount of time
before being able to apply new concepts/skills.

Efficiency
Definition The ability to complete a task accurately and on time (i.e. without
over-analyzing the problem and the possible solutions).
Scale Low The implementer takes much longer than what
Values’ is considered reasonable to complete most tasks.
Definitions | Medium | The implementer completes most tasks, in what
is considered a reasonable amount of time.
High The implementer completes most tasks ahead of
time.
Teamwork
Definition The ability to communicate in a timely manner with other team
members and management and the ability to co-operate in terms of
choosing the best possible solution for the task, while still adhering to
time and quality constraints.
Scale Low The implementer needs improvement in his/her
Values’ communication and cooperation skills and does
| Definitions not adhere to team decisions.

Medium | The implementer has sufficient communication
and cooperation skills and usually adheres to
team decisions.

High The implementer has excellent communication
and cooperation skills and always adheres to
team decisions.

Attribute Familiarity with Technology

Name Familiarity with Technology, Technology

Definition The degree to which the implementer’s familiarity with the
technology, used to complete the task, influences the estimate.

Rationale Uncertainties in employing new technology (e.g. .NET

framework.) or integration with a 3™ party tool (e.g. Crystal
Reports) could require the implementer to spend time
installing and/or becoming familiar with them. Any tasks
using new technology should be increased in effort to account
for this overhead.

Implementation | Each of the sub-attributes of this attribute will be rated on a

scale of Low, Medium-Low, Medium, Medium-High, and
High, which will correspond to a scale of 1 to 5. The sub-
attributes will then be averaged to obtain a single value for the
Familiarity with Technology attribute.

Note: At the time of estimation, the implementer may not be
identified. Since this attribute is implementer dependent and
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the implementer’s familiarity will not be known, the estimator
must use his/her best judgement with respect to the overall
team’s familiarity with the technology.

Sub-Attributes for Attribute Familiarity with Technology

Familiarity with Documentation

Definition | The degree of the task implementer’s knowledge /understanding of
the technology’s documentation: Has the implementer skimmed the
documentation or thoroughly read it. Documentation includes: help
files, user guides, online tutorials, and books dedicated to the
technology.

Scale Low The implementer has never looked at any of the

Values’ documentation before.

Definitions | Medium | The implementer has read and understands about

half of the help files, user guides and other ﬁ
resources concerning the technology.
High The implementer has read and understands almost
all the content of the help files, user guides and
other resources concerning the technology.

Usage of Technology

Definition How well the task implementer feels that he/she knows how to
implement solutions using the technology. This is a measure of the
level of comfort he/she has in using the technology.

Scale Low The implementer is not comfortable with using

Values’ the technology.

Definitions | Medium | The implementer is sufficiently comfortable with

using the technology.
High The implementer is very comfortable with using
the technology.

Attribute Familiarity with Programming Language

Name

Familiarity with Programming Language, Familiarity with
Language, Language

Definition

The degree to which the implementer’s familiarity with the
software language, to be employed when completing the task,
influences the estimate.

Rationale

Some learning time may be included in using a new
programming language.

Implementation

Each of the sub-attributes of this attribute will be rated on a
scale of Low, Medium-Low, Medium, Medium-High, and
High, which will correspond to a scale of 1 to 5. The sub-
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attributes will then be averaged to obtain a single value for the
Familiarity with Language attribute.

Note: At the time of estimation, the implementer may not be
identified. Since this attribute is implementer dependent and
the implementer’s familiarity will not be known, the estimator
must use his/her best judgement with respect to the overall
team’s familiarity with the language.

Sub-Attributes for Attribute Familiarity with Language

Familiarity with Documentation

Definition | The degree of the task implementer’s knowledge/understanding of the
language’s support documentation. The documentation includes: help
files, user guides, online knowledge databases, and books dedicated
to the use of the language.

Scale Low The implementer has never read any of the help

Values’ files or user guides.

Definitions | Medium | The implementer has read and understands about

half of the topics in the help files and user guides.
High The implementer has read and understands almost
all of the content of the help files and user guides.

Usage of Language

Definition How well the task implementer feels that he/she knows how to
implement solutions using the chosen language. This is a measure of
the level of comfort he/she has in developing solutions with the
language.

Scale Low The implementer is not comfortable developing

Values’ with the language.

Definitions | Medium | The implementer is sufficiently comfortable

developing with the language.
High The implementer is very comfortable developing
with the language.

Attribute User Interface

Name

User Interface, Ul

Definition

The degree to which the level of complexity of the user
interface influences the estimate.

Rationale

As the level of Ul complexity increases, the amount of time
required to incorporate input validation and to manage
resource/error strings increases.

Implementation

Each of the sub-attributes of this attribute will be rated on a
scale of Low, Medium-Low, Medium, Medium-High, and
High, which will correspond to a scale of 1 to 5. The sub-
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attributes will then be averaged to obtain a single value for the
User Interface attribute. If all sub-attributes are set to NA,

then User Interface attribute will not affect the effort
estimation at all. However if any one of the sub-attributes is
set anything other than NA, then the rest of the sub-attributes
should also be set to something other than NA.

Sub-Attributes for Attribute User Interface

Amount of UI Controls

Definition | A linguistic approximation of the amount of user interface controls
needed by the functionality. User interface controls include: text
boxes, list boxes, radio buttons, command buttons, menus, combo
boxes, etc.

Scale Low Upto5

Values’ Medium S5to 15

Definitions | High More than 15
NA Not applicable

Required Level of Validation

Definition | A qualitative measure of the amount of input validation required by
the user interface of the task’s functionality.

Scale Low The UI controls are self-validating in nature

Values’ such as radio buttons and combo boxes or the

Definitions user input is just for commenting purposes and

will not cause program errors.
Medium Some validation is required as invalid input can ﬂ
cause program failures.
High The user input data is critical to the application
and invalid input will definitely cause program
failures.
NA Not applicable.

Underlying Architecture Complexity

Definition | The overall complexity of the underlying architecture. For example,
a simple registry access function will likely have a low architectural
complexity whereas functionality providing the ability to insert 3rd
party ActiveX controls would likely have a high architectural
complexity.

Scale Low The underlying functionality is very simple.

Values’ Medium The underlying functionality is of average

Definitions complexity.

High The underlying architecture is very complex.
NA Not applicable.
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Attribute Complexity

Name

Complexity

Definition

estimate.

The degree to which the complexity of the task influences the

Rationale

Adding a piece of data (e.g. a new attribute to an existing

than in a simple one.

object class) would require more effort in a complex system

Implementation

scale of Low, Medium-Low, Medium, Medium-High, and
High, which will correspond to a scale of 1 to 5. The sub-

Complexity attribute.

Each of the sub-attributes of this attribute will be rated on a

attributes will then be averaged to obtain a single value for the

Sub-Attributes for Attribute Complexity

Difficulty of Definition

Definition

The degree of difficulty involved in defining the solution such as the

algorithmic complexity of the solution in terms of computational

complexity (e.g. nested loops, analysis of differential equations), time

computational complexity (e.g. real-time systems), space

computational complexity (e.g. distributed database coordination),

and information-based complexity (e.g. simple arrays in main

memory vs. highly coupled dynamic relational and object structures).

Scale
Values’
Definitions

Low The solution is very easy to define. The
implementation of its functionality and constraints
is straightforward and easy to express.

Medium | The solution is somewhat easy to define. The
implementation of its functionality and constraints
is of average difficulty.

High The solution is very difficult to define. The
implementation of its functionality and constraints
is not straightforward.

I

Interdependence with other Features

Definition The amount of other functions/features the current task impacts
and/or the amount of functions/features the current task is impacted
by.

Scale Low The task 1s mostly independent of other

Values’ functionality.

Definitions | Medium | Some of the other functionality is dependent on

how this task is implemented and/or the
implementation of this task is dependent on how
some of the other functionality is implemented.

High A lot of other functionality is dependent on this
task and/or this task is dependent on a lot of other
functionality.

I
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Attribute Familiarity with Functionality

Name Familiarity with Functionality, Functionality

Definition The degree to which the implementer’s familiarity with the
functionality influences the estimate.

Rationale If the task is different from anything that has been

implemented by the development team in the past, then some
extra effort will be required for research and learning.

Implementation | Each of the sub-attributes of this attribute will be rated on a
scale of Low, Medium-Low, Medium, Medium-High, and
High, which will correspond to a scale of 1 to 5. The sub-
attributes will then be averaged to obtain a single value for the
Familiarity with Functionality attribute.

Note: At the time of estimation, the implementer may not be
identified. Since this attribute is implementer dependent and
the implementer’s familiarity will not be known, the estimator
must use his/her best judgement with respect to the overall
team’s familiarity with the functionality.

Sub-Attributes for Attribute Familiarity with Functionality

Similarity

Definition | The degree to which the current task resembles something that the
implementer has previously implemented.

Scale Low The implementer has never before implemented
Values’ similar functionality. ﬁ
Definitions | Medium | The implementer has previously implemented
functionality that is somewhat similar.
High The implementer has implemented very similar
functionality.
Product Knowledge

Definition | How familiar the implementer is with the application/product being
developed. This will give a measure of how well the implementer
understands how the component/functionality will affect the existing
components/functionality.

Scale Low The implementer has never before worked on the
Values’ product and knows very little about it.

Definitions | Medium | The implementer knows some of the key things
about how the product is built but not all of the ﬁ

details.
High The implementer is very familiar with the product
and how it is implemented.

Component Knowledge

Definition | How familiar the implementer is with the component the current task
involves.
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Scale
Values’
Definitions

Low The implementer has very little knowledge
about the component involved in the current

task.
Medium | The implementer has implemented some parts
of the component involved in the current task.
High The implementer is very familiar with the

component involved in the current task, and has
been one of the main people involved in
implementing it.

Attribute Familiarity with Domain

Name Familiarity with Domain

Definition The degree to which familiarity with the application domain
influences the estimate.

Rationale If the task implementer has no understanding of the product

objectives or the customer’s/domain’s goals, more effort
would be required for the task, because some research and
learning will be necessary before the implementation of the
task can begin.

If the task implementer has recently switched from the data
domain (i.e. working with databases) to the HMI (Human
Machine Interaction) domain (i.e. working with user
interfaces), more effort will be required for the task
implementer to complete UI tasks due to the lack of
experience with the domain.

Implementation | Each of the sub-attributes of this attribute will be rated on a

scale of Low, Medium-Low, Medium, Medium-High, and
High, which will correspond to a scale of 1 to 5. The sub-
attributes will then be averaged to obtain a single value for the
Familiarity with Domain attribute.

Note: At the time of estimation, the implementer may not be
identified. Since this attribute is implementer dependent and
the implementer’s familiarity will not be known, the estimator
must use his/her best judgement with respect to the overall
team’s familiarity with the domain.

Sub-Attributes for Attribute Familiarity with Domain

Product Domain Familiarity

Definition

The level of familiarity the implementer has with the application
domain (i.e. functions within the industry that the product will be
used).
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Scale
Values’
Definitions

Low

The implementer has very little knowledge about
the product’s domain.

Medium

The implementer has general knowledge about the
product’s domain (e.g. key goals, key problems,
organizational structure, etc.) but does not know
details.

High

The implementer knows a lot of details about the
product’s domain.

i

Software Domain Familiarity

Definition | The level of familiarity the implementer has with the task’s related
software domain (e.g. database, GUI, server, web, etc.).
Scale Low This 1s one of the first times the implementer is
Values’ completing tasks in this particular software
Definitions domain and does not feel comfortable with it.
Medium | The implementer has previously worked on the
task’s software domain and feels somewhat
comfortable with it.
High The implementer is very comfortable with the

task’s software domain.

Attribute Estimated Size

Name

Estimated Size

Definition

The degree to which the size of the task influences the
estimate.

Rationale

The task implementer generally has an idea of the amount of
time the task should take. This is based on past experience
and is generally somewhat accurate.

Implementation

Size is equivalent to the number of hours estimated to

complete the task. By selecting one of the PERT, Function
Point or Expert techniques a value previously estimated will
be used.
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