
Western University Western University

Scholarship@Western Scholarship@Western

Digitized Theses Digitized Special Collections

2007

A NEURO-FUZZY MODEL FOR SOFTWARE DEVELOPMENT A NEURO-FUZZY MODEL FOR SOFTWARE DEVELOPMENT

EFFORT ESTIMATION EFFORT ESTIMATION

Besa Muslimi
Western University

Follow this and additional works at: https://ir.lib.uwo.ca/digitizedtheses

Recommended Citation Recommended Citation
Muslimi, Besa, "A NEURO-FUZZY MODEL FOR SOFTWARE DEVELOPMENT EFFORT ESTIMATION" (2007).
Digitized Theses. 4476.
https://ir.lib.uwo.ca/digitizedtheses/4476

This Thesis is brought to you for free and open access by the Digitized Special Collections at
Scholarship@Western. It has been accepted for inclusion in Digitized Theses by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/digitizedtheses
https://ir.lib.uwo.ca/disc
https://ir.lib.uwo.ca/digitizedtheses?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4476&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/digitizedtheses/4476?utm_source=ir.lib.uwo.ca%2Fdigitizedtheses%2F4476&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

A NEURO-FUZZY MODEL FOR SOFTWARE DEVELOPMENT EFFORT
ESTIMATION

(Spine title: Model for Software Development Effort Estimation)

(Thesis format: Monograph)

by

Besa Muslimi

Graduate Program in Engineering Science
Department of Electrical and Computer Engineering

A thesis submitted in partial fulfillment
of the requirements for the degree of

Master of Engineering Science

Faculty of Graduate Studies
The University of Western Ontario

London, Ontario, Canada

© Besa Muslimi 2007

Abstract

In the software industry, a reliable development effort estimation model remains to be the

missing piece of the puzzle. Existing estimation models provide one-size-fits-all

solutions that fail to produce accurate estimates in most environments.

Research has shown that the accomplishment of accurate effort estimates is a long-term

process that, above all, requires the extensive collection of effort estimation data by each

organization. An effort estimation data point is generally characterized by a set of

attributes that are believed to most affect the development effort in the organization.

These attributes can then be used as inputs to the effort estimation model. The attributes

that most affect development effort vary widely depending on the type of product being

developed and the environment in which it is being developed. Thus, any new estimation

model must offer the flexibility of customizable inputs. Finally, because software is

virtual and therefore intangible, the most important software metrics are notorious for

being subjective according to the experience of the estimator. Consequently, a

measurement and inference system that is robust to subjectivity and uncertainty must be

in place.

The Neuro-Fuzzy Estimation Model (NFEM) presented in this thesis has been designed

with the above requirements in mind. It is accompanied with four preparation process

steps that allow for any organization implementing it to establish an estimation process.

This estimation process facilitates data collection, a defined measurement system for

qualitative attributes that suffer from subjectivity and uncertainty, model customization to

the organization’s needs, model calibration with the organization’s data, and the

capability of continual improvement. The proposed model described in this thesis was

validated in a real software development organization.

iii

ACKNOWLEDGMENTS

It’s been almost two years since I embarked on this journey of growth and education. As

I see it wind down, I cannot help but think of Isaak Walton’s wise words:

“Good company in a journey makes the way seem shorter. ”

For making my journey seem much shorter, I have many people to thank. First and

foremost, I would like to thank my supervisor and mentor, Dr. Miriam Capretz. Her

invaluable guidance and support, not only in matters of research, but in matters of life

itself, will stay with me for many years to come. I would also like to thank Dr. Jagath

Samarabandu for pointing me in the right directions and helping me find my way in my

research area of soft computing whenever I lost it. Furthermore, I am very grateful to my

industrial partner for enabling me to develop and test my research in a real-world

environment. I am especially indebted to those who worked with me on this project:

Mark Benko for his unwavering commitment, vital contributions, insightful discussions,

and critical analysis; Les Fekete for having the vision to instigate this project and fully

support it; Dennis Belletti for continuing to support the project; Tom Mesic and Dave

Helmer for their indispensable critiques and suggestions; all the developers who took

their time to profile the data; and Carole Gorman for her delightful friendship.

Finally, I would like to thank those closest around me whose support and encouragement

helped make this endeavor a success. I thank my good friends for turning even the

toughest days into joyous ones; my sisters and my brother, Medija, Vlora, and Gramoz,

for their eternal friendship, nourishing love, and for always being there for me; and I

dedicate this thesis to my parents, Mitat and Zarife Muslimi, for instilling in me the love

for education, among many other values, and for devoting their lives to mine and my

siblings’ happiness.

Table of Contents

Certificate OF ExAMINATION...ii

Abstract.. iii

ACKNOWLEDGMENTS... iv

TABLE OF CONTENTS..V

List Of Tables..viii

List Of Figures... ix

CHAPTER I: Introduction..1
1.1 Research MOTIVATION...1
1.2 PROBLEM STATEMENT...2
1.3 PROPOSED SOLUTION..3
1.4 RESEARCH METHODOLOGY... 3
1.5 THESIS ORGANIZATION..4

CHAPTER II: Soft Computing... 5
2.1 FUZZY LOGIC...5

2.1.1 Fuzzy Set Definition.. 6
2.1.2 Types of Membership Functions.. 7

2.1.2.1 Triangular Membership Function...7
2.1.2.2 Bell Membership Function... 8

2.1.3 Fuzzy Operations...9
2.1.3.1 Union (Logical OR)..9
2.1.3.2 Intersection (Logical AND)...10

2.1.4 Application of Fuzzy Set Theory: Zero-Order Sugeno Fuzzy Inference..................................10
2.1.4.1 Example Problem ... 11
2.1.4.2 Fuzzification.. 12
2.1.4.3 Rule Evaluation .. 13
2.1.4.1 Output Determination.. 14

2.2 NEURAL NETWORKS.. 14
2.2.1 TheArtificialNeuron... 14
2.2.2 The Multilayered Feedforward Neural Network.. 16
2.2.3 The Backpropagation Algorithm...17

2.3 NEURO-FUZZY Systems.. 18
2.3.I ANFIS Architecture.. 18

2.3.1.1 Layer 1: Fuzzification 19
2.3.1.2 Layer 2: Rule Evaluation.. 19
2.3.1.3 Layer 3: Firing Strength Normalization.. 20
2.3.1.4 Layer 4: Weighted Consequent Determination...20
2.3.1.5 Layer 5: Weighted Consequent Summation... 21

2.4 EXTRACTING RULES FROM NEURAL NETWORKS...21
2.4.1 The Rule Extraction Problem... 21
2.4.2 Review of Existing Decompositional Rule-Extracting Algorithms.. 23
2.4.3 The Selected Algorithm... 25

v

CHAPTER III: Literature Review..27
3.1 The Expert DELPHI TECHNIQUE..27
3.2 PROGRAM EVALUATION AND REVIEW TECHNIQUE (PERT).. 28
3.3 SOFTWARE LIFECYCLE MODEL (SLIM)...29
3.4 COCOMO II...31
3.5 FUNCTION POINT ANALYSIS...33
3.6 Software DEVELOPMENT EFFORT ESTIMATION AND Soft COMPUTING...34
3.7 FACTORS THAT AFFECT SOFTWARE DEVELOPMENT EFFORT ESTIMATION... 36

3.7.1 Expert Effort Estimation... 36
3.7.2 Implementer Capability..38
3.7.3 Complexity..38

CHAPTER IV: The NEURO-FUZZY Estimation Model.. 40
4.1 STEP 1 : PROFILING ATTRIBUTE SELECTION ... 42

4.1.1 Defining and Applying the Measuring System... 43
4.1.2 Data Collection... 46

4.2 SτEP 2: Data Set Separation..46
4.2.1 Data Set Separation for the Qualitative Profiling Attributes..47

4.2.1.1 Determining the Boundaries of the Fuzzy Sets..47
4.2.1.2 Determining the Boundaries of the Boolean Sets... 48

4.2.2 Data Set Separation for Quantitative Attributes.. 50
4.2.2.1 Determining the Boundaries of the Boolean Sets... 50
4.2.2.2 Determining the Boundaries of the Fuzzy Sets..50

4.3 STEP3: Neural NETWORK TRAINING... 51
4.3.1 Varying the Inputs.. 52
4.3.2 Varying the Number of Hidden Nodes..52
4.3.3 Varying the Number of Training Epochs.. 53

4.4 Step 4: RULE Extraction AND ANFIS IMPLEMENTATION.. 53

CHAPTER V: The Industrial Partner.. 56
5.1 THE INDUSTRIAL PARTNER AND THEIR CURRENT EFFORT ESTIMATION PROCESS............................ 56
5.2 THE INDUSTRIAL PARTNER’S FUTURE EFFORT ESTIMATION GOALS.. 60
5.3 USE CASE FOR Generating AN EFFORT ESTIMATE BASED ON HISTORICAL DATA...........................60
5.4 THE INDUSTRIAL PARTNER’S DATASET.. 61

CHAPTER VI: Case Study..63
6.1 STEP 1: Profiling ATTRIBUTE SELECTION..63

6.1.1 Skill Level of Implementer.. 64
6.1,2 Familiarity with Technology.. 64
6.1,3 Familiarity with Programming Language...65
6.1.4 User Interface..65
6.1.5 Complexity.. 65
6.1.6 Familiarity with Functionality..66
6.1.7 Familiarity with Domain.. 66
6.1.8 Estimated Size..67
6.1,9 Altered Estimation Tool.. 67
6,1,10 Profiling Attribute Analysis and Discussion... 67

6.2 SτEP 2: Data Set Separation.. 70
6,2,1 Experimental Data.. 70
6,2,2 Data Set Separation for the Qualitative Profiling Attributes.. 71

6.2.2.1 Determining the Boundaries of the Fuzzy Sets...71
6.2.2.2 Determining the Boundaries of the Boolean Sets..71

6.2,3 Data Set Separation for the QuantitativeAttributes... 71
6.2.3.1 Determining the Boundaries of the Boolean Sets..71
6.2.3.2 Determining the Boundaries of the Fuzzys Sets..73

vi

6.3 Step 3: NEURAL Network Training... 73
6.3.1 Parameters Varied.. 74

6.3.1.1 Varying the Inputs.. 74
6.3.1.2 Varying the Number of Hidden Nodes... 74
6.3.1.3 Varying the Number of Training Epochs.. 75

6.3.2 Testing Setup75
6.3.2 Test Results... 76

6.3.2.1 Test Case 1: Training with 1000 Epochs... 76
6.3.2.2 Test Case 2: Training with 5000 Epochs... 78

6.3.3 Analysis & Discussion.. 80
6.4 Step 4: RULE EXTRACTION AND ANFIS IMPLEMENTATION.. 85

CHAPTER VII: CONCLUSION... 86
7.1 SUMMARY OF CONTRIBUTIONS... 86

7.1.1 Input Customizability..87
7.1.2 Incorporating Neural Networks..87
7.1.3 Incorporating Fuzzy Logic.. 88
7.1.4 Implementing the NFEM as an ANFIS...88
7.1.5 Estimating Effort at the Task Level... 89

7.2 FUTURE WORK..89

REFERENCES..92

Appendix A.. 97

VITA... 106

vii

List Of Tables

Table 2.1 - Sample inputs to the book pricing fuzzy inference system..............................11

Table 3.1 - Post-Architecture COCOMO II cost drivers...32

Table 3.2 - Post-Architecture COCOMO II scale factors... 32

Table 3.3 - The fourteen general system characteristics..33

Table 3.4 - Results of studies conducted on Expert Estimation [24].................................37

Table 4.1 - The format to be used to define the selected profiling attributes....................44

Table 4.2 - The format to be used to define the sub-attributes... 44

Table 4.3 - Example definition of the Reliability profiling attribute................................. 45

Table 4.4 - Example definition of the Reliability sub-attributes.. 46

Table 4.5 - A sample data point...47

Table 4.6 - Conversion of a continuous data point into Boolean format...........................49

Table 6.1 - Description of the Skill Level of Implementer attribute..................................64

Table 6.2 - Description of the Familiarity with Technology attribute............................... 65

Table 6.3 - Description of the Familiarity with Programming Language attribute.......... 65

Table 6.4 - Description of the User Interface attribute..65

Table 6.5 - Description of the Complexity attribute..66

Table 6.6 - Description of the Familiarity with Functionality attribute.............................66

Table 6.7 - Description of the Familiarity with Domain attribute......................................66

Table 6.8 - Description of the Size attribute...67

Table 6.9 - Similarity between Technology and other attributes..68

Table 6.10 - Similarity between Language and other attributes..68

Table 6.11 - Similarity between Domain and other attributes...69

Table 6.12 - Sample data points obtained from the Industrial Partner..............................70

Table 6.13 - Sample qualitative attributes transformed into Boolean form..................... 71

Table 6.14 - The Estimated Size Boolean sets..72

Table 6.15 - The Boolean sets of the output attribute Effort... 72

Table 6.16 - Data point transformed from continuous to Boolean format.........................72

Table 6.17 - The input abbreviations used on the figures displaying the results...............76

viii

List Of Figures

Figure 2.1 - The fuzzy set of warm weather temperatures.. 7

Figure 2.3 - Bell membership function [33]... 9

Figure 2.4 - The Zahedian union of fuzzy sets A and B [33]... 9

Figure 2.5 - The Zahedian intersection of fuzzy sets A and B [33]....................................10

Figure 2.6 - Fuzzy sets Poor, Good, Excellent... 11

Figure 2.7 - Fuzzy sets Old, Dated, Recent.. 11

Figure 2.8 - Fuzzification of Condition...12

Figure 2.9 - Fuzzification of Year_Of_Pub.. 12

Figure 2.10-The artificial neuron with n inputs..11

Figure 2.11 - The step function and the sigmoid function...11

Figure 2.12 - A three-layer feedforward neural network.. 11

Figure 2.13 -A two-input, one-output ANFIS architecture..11

Figure 2.14 - Example neural network used for extracting rules.......................................22

Figure 2.15 - Example combination tree ...11

Figure 3.1 -The Norden-Rayleigh distribution...30

Figure 4.1 - The NFEM preparation process..41

Figure 4.2 - The fuzzy sets of qualitative profiling attributes...48

Figure 4.3 - The Boolean sets of qualitative profiling attributes..49

Figure 4.4 - Example architecture of a neural network used in Step 3.............................. 53

Figure 4.5 - An ANFIS system upon which the NFEM is implemented........................... 55

Figure 5.1 - The Estimation Tool developed by the Industrial Partner..............................57

Figure 5.2 - The hierarchical organization of the development tasks................................ 58

Figure 5.3 - The GUI area used to estimate software development task effort.................59

Figure 6.1 - Overall profile tab..67

Figure 6.2 - UI profiling attribute tab..67

Figure 6.3 - The fuzzy sets of the Estimated Size profiling attribute.................................73

Figure 6.4 - Average classification accuracy results for Test Case 1.............................. 77

Figure 6.5 - Average mean squared error results for Test Case 1.....................................78

ix

Figure 6.6 - Average classification accuracy results for Test Case 2.............................. 79

Figure 6.7 - Average mean squared error results for Test Case 2...................................... 80

Figure 6.8 - Average classification accuracy results for Test Case 3................................81

Figure 6.9- Average mean squared error results for Test Case 3...................................... 82

Figure 6.10 - Average classification accuracy results for Test Case 4..............................82

Figure 6.11 - Average mean squared error results for Test Case 4................................... 83

X

CHAPTER I
INTRODUCTION

1.1 Research Motivation

In the years 1968 and 1969, the NATO Science Committee sponsored two conferences

on software engineering. Many believe that those two conferences instigated the

beginning of the profession of software engineering [1]. The idea of applying a structure

and a process, together with quality, schedule, and cost constraints to the field of

software development was a new concept, but over the years it proved to be a necessary

one. As the field of software engineering exploded with growth, many management and

control problems were realized. Attempts of resolving them introduced new processes,

new methodologies, and new models.

One of the critical problems that emerged early on in the field of software engineering

and continues to haunt the field today is the problem of development effort estimation.

Accurate estimates are as essential in the software industry as they are in any other

industry. Based on estimates, key project decisions are made, feasible performance

objectives are defined and schedules are set up. Overestimation leads to lost bids for

projects, while underestimation leads to runaway projects and unsatisfied customers.

Existing estimation models are frequently unreliable and ineffective. Yet, as the

software industry continues to expand in wide-ranging and far-reaching directions, its

products becoming vital components of every other industry in the world, it is important

that accurate estimates no longer be perceived as luxuries but as essential information to

the business of software development. Thus, there exists a need for a reliable software

development effort estimation model.

1

1.2 Problem Statement

In attempts to obtain accurate estimates, different software development effort

estimation models have been developed. Some are as simple as product and domain

experts estimating the effort of new projects based on past experiences; others are more

elaborate and involve the definition of a new system based on a common group of

factors that are believed to have a significant effect on effort. But none of the existing

effort estimation models have accomplished the goal of consistently providing accurate

estimates. The reasons are numerous: they generally assume a one-size-fits-all solution,

presenting one set of factors to be measured for all the different software products and

development processes in existence; they rely on estimating effort based on size metrics

that are to date widely argued; they mostly ignore the importance of data collection and

model calibration; and they apply algorithms that generally do not account for the

uncertainty and subjectivity within software development metrics. Thus, while accurate

effort estimates are still keenly sought out by software organizations, existing estimation

models come short of providing this essential information.

In [11], Fenton and Neil develop a list of the desired characteristics that a software

development effort estimation model must have. The characteristics they list are:

• The ability to handle diverse process and product variables

• The ability to incorporate empirical evidence and expert judgment

• The ability to determine genuine cause and effect relationships

• The ability to handle uncertainty

• The ability to handle incomplete information

The purpose of this thesis is to research and develop a software development effort

estimation model that contains these desirable characteristics.

2

1.3 Proposed Solution

This thesis proposes a new software development effort estimation model, entitled the

Neuro-Fuzzy Estimation Model (NFEM). The NFEM makes use of intelligent

algorithms to provide accurate estimates and establish an estimation process. The

proposed model overcomes many of the problems faced by existing effort estimation

models.

The NFEM is accompanied by a four step preparation process that allows any

organization implementing it to establish an estimation process. The preparation process

consists of selecting a set of attributes that highly effect effort and collecting effort

estimation data profiled with these attributes. The relationship between effort and the

selected attributes is then modeled using the collected data and intelligent algorithms;

fuzzy logic is also incorporated in the NFEM to account for the subjective and uncertain

nature of the collected data.

1.4 Research Methodology

The proposed software development effort estimation model combines several

computational intelligence paradigms, such as neural networks and fuzzy logic.

Moreover, it makes use of insights gained from decades of research and experience in

the field of software engineering to develop a comprehensive and customizable

estimation model.

The model is validated in a real-world setting, with data from a large corporation. This

provides a realistic view of the problem and the proposed solution. While the full

implementation of the NFEM would require several years of data collection, the initial

steps of the preparation process are validated in this thesis.

3

1.5 Thesis Organization

This thesis is organized as follows: Chapter 2 introduces paradigms of computational

intelligence used in the development of the NFEM. This includes fuzzy logic, multilayer

feedforward neural networks, the adaptive neuro-fuzzy inference system (ANFIS), and

algorithms used to extract rules from trained neural networks. Chapter 3 discusses

existing estimation models and their shortcomings. It also covers some research studies

that apply computationally intelligent algorithms to the task of effort estimation.

Chapter 4 describes the Neuro-Fuzzy Estimation Model in detail, including all four

preparation steps involved. Chapter 5 introduces the industrial partner and describes the

validation dataset obtained from them. Chapter 6 contains the evaluation of the initial

preparation steps of the NFEM on the validation data obtained from the industrial

partner. And finally, Chapter 7 concludes with a summary of the contributions of this

research and directions for future work.

4

CHAPTER II
Soft Computing

Soft computing is a branch of computing that tries to mimic the human mind in order to

exploit tolerance for imprecision and uncertainty [55]. This thesis applies a combination

of two soft computing techniques, fuzzy logic and neural computing, to more accurately

calculate software development task effort estimation. Multilayer feedforward neural

networks are used to model the relationship between development effort and the factors

that affect it, while fuzzy logic is incorporated to deal with the uncertainty and

subjectivity present in these factors. And finally, a rule-extracting technique is used to

extract rules from a trained neural network which are then embedded into the Adaptive

Neuro-Fuzzy Inference System (ANFIS). In this chapter, these soft computing

techniques are described in detail.

Section 2.1 explores fuzzy logic and the zero-order Sugeno fuzzy inference system.

Section 2.2 examines multilayer feedforward neural networks and the backpropagation

learning algorithm. In section 2.3, the adaptive neuro-fuzzy inference system developed

by Jang [21] is described. And finally, Section 2.4 examines some of the different

methods used to extract rules from trained multilayer neural networks, and describes in

detail the one method that is applied in the preparation process of the Neuro-Fuzzy

Estimation Model.

2.1 Fuzzy Logic

Conventional logic (also known as Boolean, classic, or crisp logic) only allows for truth

or falsehood. An element either belongs to a set or it doesn’t. Such black and white logic

satisfies the classes and sets of our world that have well-defined boundaries, such as the

set of all integers, the set of living things, the set of liquids, and so on. However,

classical logic lacks the ability to satisfy sets with ill-defined boundaries. For example,

5

“the set of warm temperatures,” “the set of young people,” or “the set of cheap cars,” do

not constitute sets in the usual mathematical sense. These sets are imprecise and there is

a degree of uncertainty associated with each element that falls into one of the above sets,

in terms of how well the element fits in.

In solution to this problem, in 1965, Zadeh published his seminal paper titled “Fuzzy

Sets” [54]. In it, he proposed a new type of logic that addressed the problem of

quantifying these imprecise sets: fuzzy logic. The principal idea behind fuzzy logic is the

idea of a fuzzy set where the transition from “belongs to a set” to “does not belong to a

set” is gradual. This gradual transition is characterized by a membership function that is

associated with the fuzzy set [22]. A more formal definition follows in the succeeding

subsection.

2.1.1 Fuzzy Set Definition

Let X be a classical set of points with a generic element of X denoted by x. A fuzzy set A

in X is characterized by a membership function, UA, which associates each point x in X

with a real number in the interval [0,l]. The value of UA (x) at x represents the “grade of

membership of x in A” [55]. The closer the value of uA(x) to 1, the higher the

membership grade of x into fuzzy set A. In other words, the membership grade is the

truth value of the statement "x is an element of A.”

Example: Let X =R , be the set of all possible weather temperatures. Usually, X is

referred to as the universe of discourse, or simply as the universe. Figure 2.1 illustrates

the fuzzy set of warm weather temperatures. The set is associated with a bell shaped

membership function whose domain extends from 3° Celsius to 30° Celsius and whose

range extends from 0 to 1.

6

Figure 2.1 - The fuzzy set of warm weather temperatures.

00 0.5 ■

S 0.85

0 _________ I_________ 1 1 I1I_________ I_________

-50 -40 -30 -20 -10 0 10 20 30 40 50

Weather Temperatures

For each temperature value, x, we can determine its membership grade by evaluating the

membership function, Uwarm_weather(x), at x. Graphically, this is done by extending a

vertical line from x. The y-coordinate of the point of intersection between the vertical

line and the membership function curve provides the membership grade. Ifthe line never

intersects the curve, then the membership grade is 0. Figure 2.1 shows that the

membership value for the temperature 10° Celsius is 0.25 and the membership grade for

20° Celsius is 0.85.

2.1.2 Types of Membership Functions

This sub-section defines two commonly used membership functions and discusses their

advantages and disadvantages.

2.1.2.1 Triangular Membership Function

A triangular membership function is specified by three parameters, a, b, and c where

a <b <c. Togethertheydeterminethexcoordinatesofthethreecornersofthe

triangular membership function [33], as illustrated in Figure 2.2.

7

0, x<a

triangle(x; a, b, c) =

x -a
b-a’
c-x
c - b,
0, c<x

Figure 2.2 - Triangular membership function ∣33∣.

The triangular membership function is often used in industrial applications of fuzzy

systems due to its simple formula, computational efficiency, and ability to create non-

symmetric functions [13]. However, its biggest disadvantage rests in its lack of nonlinear

smoothness which is sometimes required.

2.1.2.2 Bell Membership Function

A bell membership function is specified by parameters a, b, and c where a determines

the width of the function, b determines the slopes of the sides of the bell function, and

c represents the centre of the function [33]. Figure 2.3 illustrates how each parameter

affects the shape of the curve. Also, it should be noted that b is usually positive. If b is

negative, the shape of the function is an upside down bell.

bell(x; a,b,c)=

The bell membership function is computationally inefficient compared to the triangular

membership function. However it is nonlinearly smooth, a property required in the

adaptive neuro-fuzzy inference system described in Section 2.3 and used in the Neuro-

Fuzzy Estimation Model.

8

Figure 2.3 - Bell membership function [33].

2.1.3 Fuzzy Operations

This section summarizes two operations through which different fuzzy sets can interact.

Many definitions have been developed for each of the operations defined here; however,

this section only contains the Zadehian and probabilistic definitions, as they are the most

popular [41].

2.1.3.1 Union (Logical OR)

The union of two fuzzy sets A and B is a fuzzy set C, where C = AuB (see Figure 2.4).

The membership function of C is most commonly determined by:

Zahedian Union: Probabilistic Union:

uc(x)= max(u,(x), up(x)) ue(x)= u,(x)+ up(x)-u,(x)* up(x)

(a) Fuzzy Sets A and B (b) Fuzzy Set "A OR B'

Figure 2.4 - The Zahedian union of fuzzy sets A and B [33].

9

2.1.3.2 Intersection (Logical AND)

The intersection of two fuzzy sets A and B is a fuzzy set C, where C = AnB (see Figure

2.5). The membership function of C is most commonly determined by:

Zahedian Intersection:

⅛(x) = min(u,(x), up(x))

Probabilistic Intersection:

uc(x)= u (x)* ug(x)

0.S

(a) Fuzzy Sets A and B

0.8

(b) Fuzzy Set “A AND B"

0.2

Figure 2.5 - The Zahedian intersection of fuzzy sets A and B [33].

2.1.4 Application of Fuzzy Set Theory: Zero-Order Sugeno Fuzzy Inference

This subsection examines how a fuzzy inference system (FIS) calculates an output from a

set of inputs. There are several different variations of the fuzzy inference process. Here,

only the zero-order Sugeno-style inference is examined as it is the type of inference

system used in the adaptive neuro-fuzzy inference system outlined in Section 2.3 and

applied in this thesis.

The zero-order Sugeno inference process is performed in three steps: Fuzzification, rule

evaluation, and output determination. The inference system contains rules of the

following format:

IF x is A ANDy is B THEN z is c

10

The inputs x and y are linguistic input variables and A and B are fuzzy sets on the

universes X and Y, respectively [41]. The output of the system is z and it is assigned the

value of the constant c. A simple example is used to depict the inference process.

2.1.4.1 Example Problem

Let us suppose that we have a zero-order Sugeno fuzzy inference system that determines

used computer books’ prices based on the condition of the book and the year the book

was published. So the inputs are Condition and Year Of Publication and the output is

Price. The linguistic variable Condition is described by the linguistic values Poor, Good,

and Excellent. The linguistic values for Year Of Publication are Old, Dated, and

Recent. Figures 2.6 and 2.7 show the membership functions associated with each

linguistic variable’s terms.

Poor

3 6

Figure 2.6 - Fuzzy sets Poor, Good, Excellent.

0.5

Dated Recent

Figure 2.7 - Fuzzy sets Old, Dated, Recent.

0 -r=τ∑Ξ∑7ττΞ∑=~τ∑∑∑z=fττ=τ∑-=r=r∑∑7L-
1930 1985 1990 1995 2000 2005

For the condition of the book, an integer between 0 and 10 is entered as input, 0 denoting

very bad condition, 10 denoting excellent condition. The year of publication is entered

for the second input (for simplicity’s sake, it is assumed that there are no books to be sold

that were published before 1980) and a price between $5 and $60 is generated as the

output. The example will be illustrated using the inputs outlined in Table 2.1.

Table 2.1 - Sample inputs to the book pricing fuzzy inference system.

Linguistic Variable Input
Condition 4
Year of publication 2000

The rules for the zero-ordered Sugeno fuzzy system described are:

11

Rule 1: IF Condition is Poor OR Year Of Publication is Old THEN Price is $10

Rule 2: IF Condition is Good AND N ear_Of_Publication is Dated THEN Price is $28

Rule 3: IF Condition is Excellent AND Year Of Publication is Recent

THEN Price is $55

Rule 4: IF Condition is Excellent AND Year Of Publication is Dated

THEN Price is $35

Rule 5: IF Condition is Good AND Year Of Publication is Recent THEN Price is $48

To keep the example straightforward, we will assign each rule the weight of 1. It should

be noted however, that any weight between 0 and 1 can be associated with each rule, so

that some rules affect the output more than others [22].

2.1.4.2 Fuzzification

This step involves taking the crisp inputs, 4 and 2000, and determining their membership

grade within each corresponding fuzzy set. Figures 2.8 and 2.9 show the graphical

interpretation of the fuzzification process. The membership grades are obtained by

applying the triangular membership function formula depicted in Section 2.1.2.1.

Poor

3

Figure 2.8 - Fuzzification of Condition.

05

Old Dated Recent

1930 1985 1990 1995 2000 2005

Figure 2.9 - Fuzzification of Year Of Pub.

Thus:

LCondition=Good (4) 0.75

Mraar.or.Publcmom=D-(2000) = 0.30
Lyearor. Publication-Recent (2000) = 0.50

12

2.1.4.3 Rule Evaluation

The second step of the Sugeno fuzzy inference process is evaluating each rule. This is

done by applying the truth value of the antecedent part of the rule to the consequent part

of the rule. The antecedents of the rule are the input variables and fuzzy sets that make

up the IF part of the rule [41]. The consequent ofthe rule is the THEN part of the rule

[41]. as shown below.

Antecedents Consequent

IF Condition is Poor OR Year Of Publication is Old THEN Price is $10

Antecedent 1 Antecedent 2

If there are two antecedents in the rule, then the Zahedian definition of the operation that

connects the two parts is applied to determine the consequent truth value. For example:

Rule 1: IF Condition is Poor OR YearOfPublication is Old THEN Price is $10

The truth value of Condition being Poor is 0, and the truth value of Year Of Publication

being Old is 0. The two antecedents are connected by OR (union), so the maximum of

the two values is the truth value ofthe consequent, Price is $10. Since, both antecedents

have truth values of 0, the consequent, Price is $10, also has a consequent of 0. It is said

that Rule 1 did not fire.

Rule 2: IF Condition is Good AND Year_Of_Publication is Dated THEN Price $28

The truth value of Condition is Good is 0.75 and the truth value of Year_Of_Publication

is Dated is 0.3. The two antecedents are connected by AND (intersection), so the

minimum ofthe two values is applied as the truth value ofthe consequent. Thus, Price is

$28 by a truth value of 0.3.

13

Similar analysis of the remaining three rules yield that Rules 3 and 4 do not fire, while

Rule 5 fires with a truth value of 0.5.

2.1 .4.1 Output Determination

Rules 2 and 5 fired, stating that Price is $28 and Price is $48 by truth values of 0.3 and

0.5 respectively. The weighted average (WA) of the firing rules’ consequents is used to

obtain a crisp price:

Price = 28× 0.3 + 48× 0.5 .
---------------------- = 40.50

0.3+ 0.5

So the zero-order Sugeno fuzzy model yields a Price of $40.50 when the Condition of the

book is rated at 4 and the YearOf Publication for the book is 2000.

2.2 Neural Networks

The artificial neuron was first introduced in 1943 by McCulloch and Pitts [38]. Today,

many different types of artificial neural networks are in existence. In this section, only

the model ofthe multilayered feedforward neural network will be examined. This is the

most widely applied neural network due to its ability to emulate any input-output

relationship [19]. First, the properties ofthe artificial neuron are explained, followed by

the properties of the multilayer feedforward network, and finally the backpropagation

algorithm is described.

2.2.1 The Artificial Neuron

The artificial neuron used in today’s neural networks is very similar to that developed by

Pitts and McCulloch in 1943 [38]. It has a set of input links, where each link is

14

associated with a numerical weight (W1,... W), usually between [0, 1] or [-1. 1] (see

Figure 2.10).

θ

O
-----------•

Figure 2.10 -The artificial neuron with n inputs.

The neuron has an activation function, which determines the activity level of the neuron.

In the multilayered feedforward neural network, this function is usually modeled as the

weighted sum of all the neuron’s inputs [44]:

n

X =2XW,
where xj is the jth input to the neuron, Wj is the weight of the link supplying the j'h input to

the neuron, and n is the number of inputs that the neuron has.

Each neuron is also associated with an output function, O, which is usually modeled as

the step function or the sigmoid function [44] (Figure 2.11). The sigmoid function

approximates the step function but is nonlinearly smooth.

08

06

04

02
if X 20
if X <0

Figure 2.11 - The step function and the sigmoid function.

Furthermore, each neuron is also associated with a threshold value, 0. If the output of the

activation function is equal to or above the neuron’s threshold value, then the output

function is evaluated to be one and the neuron is said to “fire” [44]. Otherwise, the

15

output function is zero and the neuron is said to be “inactive” or “not fire”. The node

function is the composition of the activation function and the output function, where the

threshold of the neuron is considered as the 0 weight of the neuron. Thus, the neuron’s

firing output is decided by the following equation:
n

1 if 2x,w,2 0 _
0 = ∖ 1^a V

n -ZXjWj

0 if LX W, <0 1+e 0
. j=0

2.2.2 The Multilayered Feedforward Neural Network

Figure 2.12 shows the architecture of a three-layered feedforward neural network. It

consists of three or more distinct layers of nodes, where there are no links between the

nodes of the same layer. The outputs of the nodes in the input or a hidden layer are

always connected to nodes in the succeeding layers as inputs. The middle layer is called

the hidden layer because its inputs and outputs are not observable. Generally, a

multilayer feedforward neural network can have more than one hidden layer, but for

simplicity, the three-layer neural network is exemplified in Figure 2.12. The nodes ofa

multilayered network have the same properties as that of the single neuron. Usually, the

same node function is used for all the nodes of the network or for all the nodes ofa

specific layer.

W

WLj

Input Layer/ Hidden Layer j Output Layer/

Figure 2.12 - A three-layer feedforward neural network.

16

2.2.3 The Backpropagation Algorithm

A learning algorithm outlines how a neural network can learn to model the input-output

relationship. The backpropagation algorithm allows the neural network to model the

input-output relationship by using a training dataset that consists of inputs for which the

desired outputs are known. For each data point within the training set, the network

output is determined and compared with the desired output. The networks’ performance

is measured as the discrepancy between the desired output and the network’s actual

output under the same input [22]. This discrepancy, called the error measure, is usually

the mean or the sum of the squared differences between the desired outputs and actual

outputs of the training set. The algorithm improves the network’s performance by

adjusting the weights of the connections between the neurons so that the error measure is

minimized. The learning rule is essentially an optimization technique that strives to

minimize the error measure. The backpropagation algorithm is based on the gradient

descent optimization technique [13]. The gradient descent method takes advantage of the

fact that moving in the opposite direction of the derivative of a function leads to a

descent. Thus, when the gradient descent method is applied to the error function obtained

by comparing desired and actual outputs, the weights of the network are moved in the

direction of the descending error.

At the start of the training procedure of a multilayer backpropagation neural network, the

initial weights and thresholds are set to small random numbers [13]. A tolerable

maximum network error 8 is chosen to be a positive, real value close to or equal to zero

[13]. The training pair index, k, is set to one. This index keeps track of which input

output pair is being processed. When each training pair has been processed once by the

network applying the learning algorithm, then an epoch is completed. A variable E keeps

track of the cumulative error during an epoch. At the end of the epoch, E is compared

to 8, and if it is less than s, then training is stopped. Otherwise, E is set to zero again and

a new epoch begins. The number of epochs used to train the network can also be used as

a criterion for stopping the training because often times, after one thousand epochs, the

improvement is negligible [9].

17

2.3 Neuro-Fuzzy Systems

Neuro-fuzzy systems combine fuzzy inference and neural computing to provide a

mechanism that learns from data, is robust to uncertainty and incomplete data, and uses

reasoning that is transparent to the user.

In this section, the adaptive neuro-fuzzy inference system (ANFIS) developed by Jang

[21] is described, as applied to the zero-order Sugeno fuzzy inference. The system

combines the Sugeno fuzzy inference with a multilayered neural network. The rule base

of a zero-order Sugeno ANFIS system must be known in advance, while the parameters

of the membership functions used for the fuzzy sets of the inputs are adjusted through the

training of the ANFIS system. The reason why ANFIS was the neuro-fuzzy system of

choice for this thesis was its computational efficiency and availability on the software

package MATLAB.

2.3.1 ANFIS Architecture

A generic ANFIS system has five layers (the input layer is not counted as a layer by Jang

[21]). Each layer deals with a specific step of the fuzzy inference process such as

fuzzification, rule evaluation, firing strength normalization, weighted consequent

determination, and weighted consequent summation. Below is a detailed description of

each layer. For simplicity, an ANFIS system with only two inputs and one output (shown

in Figure 2.13) will be used. The system’s inputs are x and y, where x is described by the

linguistic values Aι and A2, and y is described by linguistic values Bi and B2. The

membership functions of the fuzzy sets that represent the linguistic values of each input

variable are in the shape of the bell function. The output of the system, z, takes on a

different value in each rule, corresponding to the constant in the consequent of the rule.

Therefore, the rules of the system are:

Rule 1: If x is Aι and y is Bi then z is Zi

Rule 2: If x is A2 and y is B2 then z is Z2

18

Layer 5

W1 W1

W2

Figure 2.13 - A two-input one-output ANFIS architecture.

2.3.1.1 Layer 1: Fuzzification

Each node in this layer is an adaptable node, represented by a square in Figure 2.13,

indicating that the node function’s parameters are adjusted during training. Each node

function in this layer corresponds to one of the membership functions used for one of the

inputs. Consequently, the output of the node is the membership grade of the input within

that membership function [21]. Thus, in Figure 2.13, the outputs of the first and second

neurons in the first layer are the membership grades of input x into fuzzy sets Ai and A2,

respectively.

The membership functions are usually generalized bell functions. Therefore, the bell

membership function parameters a, b, and c are adjusted by the learning algorithm during

training. The resulting shapes ofthe membership function are fine tuned to the training

data. The backpropagation algorithm is used as the learning algorithm [22].

2.3.1.2 Layer 2: Rule Evaluation

Each neuron of the second layer is a fixed node, represented by a circle in Figure 2.13,

indicating that the node function’s parameters are not adjusted during training. Each

node represents a fuzzy rule ofthe system. The inputs of a node are the membership

19

grades ofthe system inputs into the fuzzy sets ofthe antecedents ofthe rule. For

example, the rule represented by the first node in the second layer of Figure 2.13 takes in

as input the membership grades of x into Al and y into B1. Thus, its antecedents are “If x

is Al AND y is Bl”. The outputs of this layer’s neurons are the firing strengths of the

rules, denoted by Wi, where i indexes the neurons of the layer.

2.3.1.3 Layer 3: Firing Strength Normalization

Once again, the nodes of this layer are fixed nodes. The t'h node of this third layer

corresponds to the rule represented by node i in the second layer. Each node computes

the ratio of its corresponding rule’s firing strength to the sum of all rules’ firing strengths:

Wi

i=0

The resulting outputs of this layer’s neurons are called the normalized firing strengths

[22] and each output is denoted with W, where i indexes the nodes of the layer. Thus, in

Figure 2.13, the first node computes the normalized firing strength of the rule represented

by the first node in the second layer. The input of each node i in this layer is the output

of every node in the previous layer, so that the sum of all rules’ firing strength can be

computed.

2.3.1.4 Layer 4: Weighted Consequent Determination

The neurons of this layer are fixed neurons, and each neuron i of this layer corresponds to

the consequent of the rule represented by the ilh neuron in layer two. The input of neuron

i in this layer is the normalized firing strength of the rule it represents. Its output is the

product of the normalized firing strength and the constant value that is contained in the

consequent of the rule, resulting in a weighted consequent. Thus, in Figure 2.13, the

output of the first neuron in the fourth layer is the product of the normalized firing

strength of the first rule, wi , and the constant Z].

20

2.3.1.5 Layer 5: Weighted Consequent Summation

There is one node in this layer for each output of the system. For the example system of

Figure 2.13, there is only one node, and therefore only one system output. The output of

the node is the system output and is computed as the summation of the node’s inputs:

2
Z = V

i=l

2.4 Extracting Rules from Neural Networks

Because the rule base of an ANFIS system must be known in advance, it is impossible to

apply ANFIS unless a rule base exists. In cases where expert knowledge is unavailable,

it is possible to extract rules from a trained neural network and implement them into an

ANFIS. Rule-extracting algorithms fall into three categories: Decompositional,

pedagogical, or eclectic [2]. Due to time constraints, only the decompositional class of

algorithms was examined during the development of this thesis. Section 2.4.1 describes

the decompositional approach for extracting rules from trained neural networks. In

Section 2.4.2 different techniques that have been proposed to do this are reviewed. And

Section 2.4.3 describes in detail the rule-extraction technique that is chosen as the most

suitable one for the purpose of this thesis.

2.4.1 The Rule Extraction Problem

In a multilayer feedforward neural network, the output of each neuron is calculated as:

0, = Act Lx,w, > xo =1,W =-0 (1)
j=0 J

where

Ac(n,)=-1 (2)
1 + e

21

In (1), Oi is the output of neuron i, wj is the weight on the j incoming link to neuron i, xj

is the input of the j" incoming link to neuron i, and Wo is the negative of the neuron’s

threshold. The activation function Act(ni) is modeled as the sigmoid function, as shown in

(2). The α parameter controls the steepness of the sigmoid function.

The most important characteristic of the decompositional approach is that all neurons in

the neural network have inputs of approximately zero or one [2]. In the hidden layer

neurons, binary inputs in the input layer allow for this to happen. In the output layer

neurons, this is made possible by increasing the α parameter of the hidden neurons (to

approximately ten), to ensure that the hidden neurons’ outputs approximate Boolean

behavior [31]. Having Boolean inputs ensures that the links that are incoming to a

neuron carry a signal that is equal to the size of the weight or zero. Thus, rules are

extracted from each hidden neuron by finding combinations of incoming weights whose

sum exceeds the threshold ofthe neuron [2]. Since each incoming weight, Wj, is

associated with an input, Xj, each combination of weights that results in exceeding the

threshold ofthe hidden neuron can be written as a combination of inputs. By doing so, a

rule is created where each input is an antecedent of the rule, and the antecedents are

connected by the logical operator AND.

Figure 2.14 - Example neural network used for extracting rules.

0.5
2.0

H2

22

For example, Figure 2.14 shows a neural network with three inputs Iι to I3, two hidden

neurons, Hi to H2, and 2 outputs, Oj to O2. The thresholds of each neuron are also

shown. The threshold of hidden neuron Hl is 1.5. Node Hi is only activated when inputs

Iι and I2 are one, because the sum of their weights equals 1.6. The rest of the weight

combinations do not yield a sum equal to or greater than 1.5. Thus the successful weight

combination is written as a rule “IF I1 AND I2 THEN H1”.

Next, for each output neuron, combinations of incoming weights whose sum exceed the

threshold ofthe neuron are determined [2]. Each incoming weight is associated with a

hidden neuron, enabling each output to be associated with the set of inputs that activated

the hidden neuron. For example, in Figure 2.14 the link between Hι and O2 has a weight

of 1.8, whereas the threshold of output neuron 02 is 1.7. Thus the incoming link of Hi is

sufficient to activate output neuron, O2, resulting in the rule “IF H1 THEN 02.” By

combining the rule extracted from the hidden layer with that extracted from the output

layer, the following rule is created: “IF H AND I2 THEN 02.” This resulting rule

models an aspect of the relationship between the inputs and the output.

2.4.2 Review of Existing Decompositional Rule-Extracting Algorithms

In the past two decades, many different decompositional rule-extracting algorithms have

been proposed. Some attempt to reduce the search space for combinational weights,

while others attempt to allow the use of continuous inputs.

Fu proposed the KT algorithm, where, for each hidden and output neuron, it searches for

a single link with a large enough weight to exceed the threshold of the neuron [14]. If

such a link is found, a rule is written. Next, the algorithm searches for subsets of two

links that exceed the threshold, followed by a subset of three, and so on.

The search space is constrained by limiting the number of antecedents in a rule and using

three heuristics [14]. However, in spite of all this, the algorithm is still of exponential

complexity and therefore very inefficient [14]. In addition, imposing a maximum number

of antecedents in a rule can significantly affect the quality of the rule set [2].

23

Towell and Shavlik present another rule extracting algorithm in [51]. It is implemented

on a special multilayer network developed by them in [52], called the knowledge-based

neural network (KBNN). The existing knowledge about the domain is first inserted into

the architecture of the network and the network is trained with the backpropagation

algorithm. Then links with similar weights are combined into clusters and the average of

the cluster’s weights is used as the weight of each link belonging to that cluster. Clusters

with low link weights and few members are then eliminated as they are assumed to have

little influence on the outcome of the network. The weights of the links are then fixed

and the network is retrained with the backpropagation algorithm to adapt the thresholds

of the network. Finally, a rule is written for each hidden unit and output unit where each

antecedent of the rule is associated with a weight and the rule is associated with the

threshold of the neuron. The rules take the form:

IfM of N antecedents are TRUE then C

The primary goal of the M-of-N algorithm is to refine rules contained in the initial rule

base. This limits its use to domains where the input-output relationship knowledge

exists. Also, it does not allow for new and unexpected knowledge to be discovered [2].

While the above algorithms extract crisp rules and only deal with Boolean inputs, other

researchers have proposed algorithms for extracting fuzzy rules or systems that deal with

fuzzy inputs. Hayashi and Imura proposed a fuzzy neural expert system with automated

extraction of fuzzy rules that can handle fuzzy and crisp inputs [18]. In addition, each

extracted rule is associated with a fuzzy truth value such as Very True or Possibly True,

and each antecedent in a rule is associated with a fuzzy importance value such as Very

Important or Moderately Important. However these truth values and importance values

make the algorithm difficult to implement.

Kasabov’s REFuNN algorithm [25],[26], applied to the specially constructed fuzzy

neural network (FuNN) also has the ability to extract fuzzy weighted rules as well as

24

simple fuzzy rules; however, the number of rules extracted for a fairly simple problem

such as the Iris classification data [42] is very large.

NEFCLASS (Neuro Fuzzy CLASSification) is a neuro-fuzzy system for the classification

of data and is presented by Nauck and Kruse in [39], [40]. The goal of the system is to

learn fuzzy rules from the training data patterns as it classifies each pattern into crisp

classes. However, a ceiling is placed on the maximum number of rules extractable, a

constraint that could seriously hinder the quality of the rule set [2].

2.4.3 The Selected Algorithm

Krishnan et al. provide a simple and efficient technique for extracting rules from feed

forward neural network in [31]. They start by applying the method presented by Sethi

and Yoo [48] to convert any negative weights in the network into positive ones. Then the

weights of a given neuron of the hidden or output layer, are sorted in descending order

and combinations of all possible sizes are created. Subsequently, the combinations of

any particular size are ordered in descending order of the sum of the weights in the

combination. Then a combination tree is created where all combinations of size i are

placed at the ilh level of the tree, while maintaining the descending order [31]. For

example, given a node with four weights of values 4, 3, 2, 1 when sorted in a descending

order, Figure 2.15 shows the combination tree.

When searching for combinations of weights that exceed the threshold of the neuron, the

search space is reduced in two ways. First, if a combination at any level fails, the rest of

the combinations in that level can be ignored, because they will also fail [31]. For

example, suppose the neuron whose combination tree is shown in Figure 2.15, has a

threshold of three. Once weight 2 fails to exceed the threshold in Layer 1, there is no

need to check weight 1. Since the weights were sorted in a descending order, it is given

that weight 1 will also fail.

25

The second way to reduce the search space is by eliminating combinations at a lower

level of the tree that subsume a combination at a higher level that was successful in

forming a rule [31]. For example, in Figure 2.15, weight 4 of Level 1 is successful in

activating the neuron. Therefore, all combinations in the lower levels of the tree (shown

in italicized red print) that subsume weight 4, will form less general rules and thus can be

ignored.

Level 1

Level 4

4+1=5

4+2+l=7

4+2=6

4+3+l=8

4+3=7

4+3+2=9

4+3+2+l
=10

Figure 2.15 - Example combination tree.

Level 3

3+1=4

3+2+1=6

3+2=5

Root

2+1=3
Level 2

This algorithm is selected to be applied in the NFEM preparation process due to its

simplicity and efficiency. It is able to extract all significant rules while reducing the

search space significantly without introducing complex heuristics or constraints that

could hinder the accuracy and comprehensiveness of the extracted rule set.

26

CHAPTER III
Literature REVIEW

The problem of estimating software development effort is as old as the field itself. Over

the decades many effort estimation models and techniques have been proposed, but the

estimates they produce are often inaccurate. A common weakness that most models and

techniques share is that they concentrate on profiling the project at a high level, leaving

out any details that add valuable information.

Among the many software development effort estimation models and techniques that

have been proposed, some have become very popular and are widely used by the

industry. Sections 3.1 to 3.5 describe and discuss the Expert Delphi technique, the Peer

Evaluation and Review Technique (PERT), the Software Life-cycle Model (SLIM),

COCOMO II, and Function Point Analysis, respectively. In addition, in recent years,

many effort estimation techniques using soft computing have been proposed, though not

many have been put to use by industry in everyday practice. Section 3.6 presents some of

the software estimation techniques proposed that make use of soft computing. Finally,

Section 3.7 discusses three factors that have been found to strongly affect software

development effort, throughout many research studies conducted.

3.1 The Expert Delphi Technique

One of the very first estimation techniques arose in the late 1950’s from the RAND

Corporation and became known as the Expert Delphi technique [50]. The technique is

iterative in nature, consisting of a set of rounds. In each round, several developers

estimate the value of one or more items anonymously and independently. An item is a

software development task and can vary from being a function, an object, a full system

feature, or any other unit into which the software system being estimated is decomposed.

27

At the end of a round the estimators are only shown the maximum, minimum, and

average estimated values for each item for that round. The idea behind this technique is

that eventually a convergence value for each item being estimated will be reached.

Today, most organizations which confirm to use this technique do not follow the formal

process described above [24]. Instead, usually each item being estimated is discussed by

the team until an effort estimate is agreed upon.

The problem with this technique is that it is subjective to the individual experience of the

estimator, his or her incomplete recall and bias, and as such, the estimates are no better

than the participants involved [50]. But perhaps the greatest challenge that is present in

the use of this technique is that studies continually show most estimators tend to

underestimate [24]. Jorgensen cites 8 studies that are consistent in concluding that

“experts can be strongly biased and misled by irrelevant information towards over

optimism” while estimation models are not [24]. In addition, Laranjeria cites a study

done by Yourdon Inc., where experienced managers were asked to estimate the size of 16

projects [32]. Over half of the projects were severely under-estimated with an MRE of

100% or more, and many of them had an MRE of over 200%. The study found that the

reasons for the underestimation tendency include the desire to please management,

incomplete recall of previous experience, lack of familiarity with the entire software job,

and the lack of sufficient knowledge of the particular project being estimated.

3.2 Program Evaluation and Review Technique (PERT)

Originally developed by Lockheed and the U.S Navy in the late 1960’s, the Program

Evaluation and Review Technique (PERT) is an easy and simple technique which, to

some extent, takes into account the estimator’s uncertainty in determining the estimate

[50].

The technique requires the estimator to provide three estimation values, the pessimistic

value, the most likely value, and the optimistic value. Assuming that the optimistic and

28

pessimistic values correspond to minus and plus the three-sigma limits of the distribution,

respectively, the expected value is calculated as:

E=(0+ 4*M + P)/6

where O represents the optimistic value, M represents the most likely value, and P

represents the pessimistic value. The value obtained by dividing the standard deviation

by the estimated effort value indicates the degree of uncertainty in the estimator’s part

[50]:

Uncertainty Degree = σ∕E

where

σ = (P-O)/6.

In comparison to the expert technique, PERT offers the benefit of quantifying the

estimator’s degree of uncertainty. However, PERT also suffers from the same

underestimation tendency that the expert estimates suffer: People’s “most likely”

estimates tend to cluster toward the optimistic estimates [7], [50].

3.3 Software Lifecycle Model (SLIM)

In 1978, Lawrence Putnam published a paper, [46], in which he described a new way of

estimating the software lifecycle effort. Putnam’s SLIM model is based on the Norden-

Rayleigh distribution and builds on the ideas of the PERT technique. As shown in Figure

3.1, the Rayleigh curve shows a build up at the start, peaks when the product is delivered

to the customer, and then tails off.

29

S

Figure3.1 -The Norden-Rayleigh distribution.

Based on the findings of the Norden-Rayleigh Distribution, Putnam developed the the

general equation of the SLIM model [46]:
9

(Size)7 y
E= ----- MBI7

P)

where P is the productivity process parameter, E is the total software lifetime effort

measured in person years, Size is measured in lines of code or function points, and

constant MBI is the manpower buildup index.

Putnam’s technique is modeled by the SLIM tool, which is developed by Quantitative

Software Management (QSM), a company established by Putnam [47]. The tool allows

the inputs to be for the pessimistic, most likely, and optimistic scenarios. The manpower

buildup index and the productivity process parameter are best determined from historical

data. If no such data exists, then the user of the SLIM tool must answer a series of 22

questions from which the tool determines the two parameters based on data collected

from over 6,300 industry projects [37]. The productivity process parameter entails such

factors as tools being used, languages being used, process methodologies being followed,

and so on [49]. The manpower buildup index is based on factors such as management

constraints (e.g. maximum allowable schedule), accounting (e.g. labor rates), personnel

skill and qualifications, and other such factors [37]. While in the original model, size

could only be measured in lines of code (LOC), today, QSM’s SLIM tool allows several

other options such as function points, objects, etc. [37].

30

Despite the use of 6300 industrial project data, studies have found that SLIM performs

poorly when used in an environment for which it is not calibrated [45], [24]. Yet, because

SLIM is designed to estimate effort at a high level, it takes a long time to collect enough

calibration data, and as a result most companies do not invest the time in collecting the

data. In addition the model relies on the assumption that the size parameter which is

measured in terms of lines of code or function points is correct. The problem with this

assumption is that while the LOC metric is easy to measure and it is an “artifact” of all

software development projects [45], it also has a lot of disadvantages. First of all, it is

programming language dependent, so when used, the productivity appears to decrease as

the level of the programming language increases. Also, well-designed but shorter

programs are penalized [50]. In addition, the LOC metric is less suitable for non

procedural languages and to estimate the lines of code, one requires a level of detail that

may be difficult to achieve [45]. Due to these disadvantages, studies have found that

LOC is not a reliable metric [32], and that in fact, it is easier to estimate effort terms of

hours than lines of code [15]. The disadvantages of using function points are discussed in

Section 3.5 of this chapter.

3.4 COCOMO II

In 1981, Barry Boehm published his famous book titled Software Engineering

Economies, [7], where he first described the Constructive Cost Model (COCOMO). The

second version of this model, COCOMO II, was introduced in 2000 as a result of the

major changes that had taken place in the software development field between 1981 and

2000 [8]. Thus only COCOMO II is described in this thesis, since its prequel,

COCOMO, has become outdated.

The COCOMO II model consists of three level models that are used at different stages of

the development process: Application Composition, Early Design, and Post Architecture

[8]. The Post Architecture model is the most frequently used model version today [50],

and is explained in detail.

31

In the Post Architecture model, effort is determined based on the size of the product

(measured in LOC or function points), a set of 17 cost drivers (CD), and variables A and

B. The cost drivers quantify the effect that different product, hardware, personnel, and

project factors (shown in Table 3.1) have on the effort. Each cost driver is rated on a

scale of Very Low up to Extra High. Variables A and B account for the linear and the

non-linear effect that increasing project size has on the effort estimate [8], respectively.

They are determined based on the five scale factors summarized in Table 3.2. The effort

estimation equation used in COCOMO II is:

17 5

E=TI CD1 ×A×Sizeβ where B =1.01+0.012 SF
i=l I=I

Table 3.1 - Post-Architecture COCOMO II cost drivers.

Product Cost Drivers Hardware Cost
Drivers

Personnel Cost
Drivers

Project Cost
Drivers

Required software
reliability

Execution time
constraints

Personnel continuity Use of software
tools

Complexity of the
product

Platform volatility Programmer
capability

Multisite
development

Size of application
database

Main storage
constraints

Programming
language and tool
experience

Required
development
schedule

Required reusability Analyst capability
Documentation match to
lifecycle needs

Applications
experience
Platform experience

Table 3.2 - Post-Architecture COCOMO II scale factors.

1. Precedentedness 4. Team cohesion
2. Development flexibility 5. Process maturity
3. Architecture/risk resolution

COCOMO II suffers from the same shortcomings that SLIM does. Studies have found

that it must be calibrated to the environment using it in order to be used with some

success [45], [24]. Furthermore, it is also based on the assumption that the lines of code

estimate or function point estimate is accurate, which, as discussed in Sections 3.3 and

3.5, is often an incorrect assumption.

32

3.5 Function Point Analysis

Unsatisfied with the often erroneous estimates that the lines of code metric produced,

Allen Albrecht designed his own size metric in the late 1970s, while working at IBM

[50]. The new metric, called function point, was designed to deliver functionality in

terms that users could understand, be independent of process, technology, or

programming language, and give a reliable indication of software size in the early design

stages [50].

The function point analysis process quantifies product functionality based on the

following system elements which Albrecht called function types: external inputs, external

outputs, external inquiries, internal logical files, and external interface files [50]. Once

all instances of each function type are identified, they are associated with a numerical

complexity value representing low, average, or high complexity, and then summed. This

sum is the unadjusted function point (UFP) count of the system [50]. Next, the fourteen

general system characteristics (GSC) shown in Table 3.3 are rated on their degree of

influence, 0 being no influence and 5 being strong influence throughout. The total degree

of influence (TDT) is calculated by summing the degree of influence values of all the

GSCs. Finally, the value adjustment factor (VAF) is calculated (1), followed by the

adjusted function point count (AFP) as shown in (2):

VAF - 0.65+0.01 *TDI (1)

AFP = VAF*UFP (2)

Table 3.3 - The fourteen general system characteristics.

Data
communications

Heavily used
configuration

End-user
efficiency

Distributed data
processing

Transaction rate On-line update

Performance On-line data entry Complex
processing

Reusability Operational ease Facilitate change
Installation ease Multiple sites

33

The function point metric consists of a process that forces the estimator to perform a

careful analysis of the system or component being implemented, which generally leads to

a more accurate estimate [50]. Also, in general, if performed by a trained and

experienced estimator, it is much more accurate than the LOC metric [50]. However,

many of the entities counted in the FP process are still very much debated by experts

[15]. Furthermore, the FP metric is designed to perform well for data processing

applications. But in the past two decades, the software development industry has seen a

boom in logic-complex applications, for which the function point model is not well suited

[50], [45], [15]. Finally, the FP metric is often used with an effort estimation model such

as SLIM or COCOMO II to convert the function point count into effort. As a result, the

disadvantages of the effort estimation model used to perform the conversion are

inherited.

3.6 Software Development Effort Estimation and Soft Computing

In the past two decades, many researchers have studied the idea of applying soft

computing techniques to the problem of effort estimation, and some of these are

discussed in this section. The estimation techniques described show that much potential

lies in the use of soft computing in software development effort estimation. However

none of the proposed techniques have been able to fully encompass the advantages of

neural networks while offsetting the disadvantages by fuzzy logic and neuro-fuzzy

systems.

In [16], Gray and MacDonell examine the implications of using non-traditional

estimation methods, such as neural networks, fuzzy logic, case-based reasoning systems,

and regression trees, versus the traditional regression analysis methods. These methods

were examined in terms of their ability to model the problem, their reasoning

transparency, and their generalisability. It was found that fuzzy and neuro-fuzzy systems

performed best in all areas examined. Furthermore, an empirical study that compared

neural networks to regression analysis found that the mean absolute relative error

34

generated by neural networks was half of what the regression techniques generated. The

data consisted of 81 projects.

Another study was conducted by Boettichier in [9], where the author used data derived

from 104 different programs to train multilayer backpropagation neural networks and

predict actual effort in hours. The metrics tested consisted of the programs size,

vocabulary, objects, and complexity. Each metric was further broken down into one or

more quantitative measures, totaling 10 inputs. Different input combinations and

network architectures were tested, totaling over 33,000 experiments. The testing showed

that using all inputs or the combination of size, object, and vocabulary inputs yielded the

best results while individual metrics did not fare well. When the trained model was

tested with data from a completely different corporation, on average, the validation

results produced estimates within 30% of the actuals, 73.26% of the time. No

experimentation results were given that compared the success of various network

architectures used. While Boettichier’s approach consisted of some novel ideas, the

quantitative inputs used require knowledge at a level of detail that is most often not

known at the time estimates are created.

Furthermore, in [10], Boettichier conducted further tests, where software projects were

estimated using a bottom-up technique and a neural network. Data from two different

corporations were used and the only input to the network was size in terms of LOC.

Individually, an average of only 9% of the development tasks was predicted with 25%

accuracy. But when summed up as total for the project, the project was predicted with

25% accuracy 90% of the time. This study showed that decomposing a project into

smaller tasks and using neural networks to generate estimates yields a high accuracy of

project effort estimation, even though the tasks are not always accurately predicted.

Finnie and Wittig also conducted experiments using neural networks with the ASMA

project data [12]. When only function point count was used as input, only 56% of the

data were estimated within 25% accuracy. However, when other attributes such as

language and complexity were used, over 77% of the data were estimated within 25%

35

accuracy. This study, like [9], showed that using more than the estimated size attribute as

input, when estimating using neural networks, yields more accurate results.

In an attempt to use the success of neural networks, while avoiding the reasoning opacity

that accompanies the use of neural networks, Huang used neuro-fuzzy logic to estimate

software development effort [20]. He did so by fuzzifying the inputs of the COCOMO

model and using them together with data to train a neuro-fuzzy system [20]. While the

resulting neuro-fuzzy model outperforms COCOMO, its further improvement is

questionable because the model uses the COCOMO regression equation instead of rules

to infer estimates. By doing so, the model inherits the limitations of the COCOMO

regression technique, revealed by Gray and MacDonell in [16].

3.7 Factors that Affect Software Development Effort Estimation

The effort estimation models and techniques presented thus far differ in the number and

the type of factors they consider to be influential on software development effort

estimation. In practice, such factors vary greatly depending on the development

environment and type of system being built. However, during the development of the

Neuro-Fuzzy Estimation Model, the research conducted led to the conclusion that there

are three particular attributes that tend to affect software development effort regardless of

all other circumstances. Expert effort estimation, task implementer capability, and

complexity were found to have the highest effect on software development effort, by

most academic and industrial experts, as well as studies. These effects are discussed in

subsections 3.7.1 to 3.7.3.

3.7.1 Expert Effort Estimation

In [24] Jorgensen summarizes a vast number of studies done on expert estimation

including how often it is used in the software development industry, why it is used, and

how well it performs compared to other estimation models. Many of the studies reveal

that informal expert estimation is the most widely used estimation technique in

36

companies all over the world [24]. The results of these studies are summarized in Table

3.4. Furthermore, Jorgensen states that they “were not able to find any study reporting

that most estimates were based on formal estimation models” [24].

Table 3.4 - Results of studies conducted on Expert Estimation [24∣.

Organization(s) Providing the Data
Through Experimental Studies or
Questionnaires

% of Time Expert
Estimation is Used

Jet Propulsion Laboratory 83
Dutch Companies 62
New Zealand Companies 86
International Financial Company -
Information Systems Development
Department

100

Telecom Company 84
Software Development Companies 72

A number of studies that compare expert estimation to model-based estimation

techniques are also cited in [24]. Ofthe 15 studies cited, 5 concluded in favor of the

expert technique, another 5 found that there was no difference in the estimated accuracy

between the expert estimation technique and model-based techniques, and 5 concluded in

favor of model-based techniques. The studies were conducted between 1990 and 2002,

and the number of participants in each study varied from 1 to 597.

While such results show that no existing effort estimation model is very accurate, they

also show that experts are useful resources when it comes to estimation. In fact, most

industry and academic researchers agree that an expert’s opinion is not only useful but

often necessary when making estimations [15], [45], [50], [24]. Furthermore, software

development is not the only field that uses expert estimation, many other domains such as

medicine, business, and psychology, recognize it as an important and often decisive tool

in planning [24]. Hence, it is strongly recommended that expert effort estimation be

included as an input to any effort estimation model.

37

3.7.2 Implementer Capability

Almost everyone in the software development field will agree that when estimating effort

for a development task, one of the most important factors that influences the effort

estimate is the quality and capability of the task implementer [15], [28], [45] [7].

Therefore, it is important that any estimation model include implementer capability as

one of the inputs to the model. This can be easily done when the effort estimate of an

entire project is being determined. But when the effort estimate of a more granular task

is being determined, and it is known who the task implementer is, organizations are

reluctant to evaluate the capability of that implementer in order to incorporate it into the

estimation model. The reluctance is due to the existing confidentiality contract, between

employer and employee, such evaluations can breach and also due to the decrease in

morale that low evaluations would yield. To have the implementers evaluate themselves

poses the problem of bias, how biased the values are. The reason being, that no one

would consistently rate him/herself as being a “low quality task implementer” even if that

were true. That is, while other attributes would contain some error due to the

unconscious bias of the estimator’s past experience, the implementer capability attribute

could contain error even when the estimator was conscious of it. Therefore, in some

organizations, it may be impossible to include implementer capability as one of the inputs

to an effort estimation model. In this case, other inputs can be included that evaluate the

implementer’s familiarity level with the technology, functionality, language, and domain

associated with the task. By doing so, the knowledge and capability of the implementer

are transformed into task characteristics, and the implementer does not feel it is as

personal, yet his or her capability in completing the task is well evaluated.

3.7.3 Complexity

Complexity is another attribute that is considered to have among the highest effect on

software development effort [45], [28], [50]. Glass notes that for every 25% increase in

problem complexity, there is a 100% increase in the complexity of the software solution

[15]. Also, Keyes cites a study done by Lederer and Prasad that found that managers

38

consider complexity to be the most significant factor of a project estimate [28]. While it

is argued to be subjective to the developer’s experience [15], it is nonetheless important

to measure. Therefore, it is strongly recommended that complexity is used as an input to

any software development effort estimation model.

39

CHAPTER IV
The Neuro-Fuzzy Estimation Model

This chapter presents the Neuro-Fuzzy Estimation Model (NFEM). The NFEM is a new

software development effort estimation model that was designed to encompass several

desired characteristics lacking in existing estimation models. It is accompanied by a

preparation process that consists of four steps. This preparation process allows the model

to be customized according to the specific environment of the organization using it. The

NFEM uses historical data from the specific environment implementing it, in conjunction

with intelligent algorithms to best model the organization’s needs and cope with

uncertainty and qualitative data. It is these combined characteristics that render the

NFEM usable in many different environments and for the development of many different

types of software systems.

Figure 4.1 depicts the NFEM preparation process. As shown, there are four preparation

steps that must be completed before the NFEM is closely customized to the

organization’s environment and ready for use:

1. Attribute selection

2. Data set separation for

a. Qualitative attributes

b. Quantitative attributes

3. Neural network training

4. Rule extraction and ANFIS implementation.

In the first step, qualitative and quantitative profiling attributes that are believed to most

influence software development task effort are selected by the organization implementing

the NFEM.

40

Quantitative
Attributes

Determine
Fuzzy Sets

Analyze
Candidate
Attributes

Qualitative
Attributes

Determine
Boolean Sets

Determine
Boolean Sets

Select
Profiling

Attributes

Collect Data

Determine
Fuzzy Sets

Define &
Apply

Measuring
System

2. Data Set
Separation

1. Attribute
Selection

3. Neural
Network
Training

Vary Input
Combinations

v
Vary Number

of Hidden
Nodes
v
Vary Number
of Training

Epochs

. Rule Extraction
& ANFIS

Implementation

Extract Rules

-
Embed Rules
into ANFIS

-
Embed

Fuzzy Sets
into ANFIS

Train ANFIS

Figure 4.1 -The NFEM preparation process.

These attributes are defined and a measuring system is applied to each of them, allowing

them to function as metrics. These attributes then serve as inputs to the NFEM and each

software development task is profiled with them. The profile, together with the actual

effort required to complete the task (known once the task has been completed) are

considered as one data point. When a sufficient amount of data points have been

collected, the second step ofthe preparation process begins: The values of each attribute

are separated into fuzzy and Boolean sets. The Boolean sets allow the attribute values to

be transformed into Boolean data. The fuzzy sets are not used until Step 4 ofthe

preparation process. The third step consists of using the Boolean data to train neural

networks where the output ofthe neural network is estimated effort. In the fourth and

final step, rules that model the relationship between the profiling attributes and

development effort are extracted from the most successfully trained neural network of

Step 3. They are then embedded into an adaptive neuro-fuzzy inference system, as are

the fuzzy sets determined in Step 2. Finally, the historical data collected is used, once

again, to train the ANFIS and fine-tune the fuzzy sets. At this point, the NFEM is

41

calibrated to the organization’s environment and ready to be used to estimate future

software development tasks.

Sections 4.1 to 4.4 of this chapter provide detailed descriptions of the four preparation

steps of the Neuro-Fuzzy Estimation Model, shown in Figure 4.1.

4.1 Step 1: Profiling Attribute Selection

A profiling attribute is a measurable system characteristic or personal skill that can have

an effect on the amount of effort required to complete a software development task. In

the first step of the NFEM preparation process, a set of profiling attributes is selected and

used to profile software development tasks. The profiling attributes may be qualitative or

quantitative in nature and are used as inputs to the Neuro-Fuzzy Estimation Model.

Therefore, each organization implementing the NFEM is able to select the factors that it

believes most influence development effort, given the product and environment in which

they develop. By profiling each software development task with this common set of

profiling attributes and recording the actual effort required to complete each task, a

historical data point is created. A collection of such historical data points can then be

used to more accurately estimate future development tasks. That is, the effort of new

development tasks can be estimated based on the amount of effort historical tasks with

similar profiles required. How effort is measured is left to each organization’s discretion.

Research has shown that of the hundreds of parameters which can affect software

development effort, only a few of these may affect the productivity in a given

environment [34]. In order for each organization using the NFEM to be able to select the

few attributes that most affect productivity, it is recommended that many attributes are

initially selected to be measured and recorded. The ones that turn out to be irrelevant

during the neural network training stage (step 3 of the NFEM preparation process) can be

discarded and the most predictive ones can be kept. Ideally, the final number of profiling

attributes selected as inputs to the NFEM should be low. The reason for this is that the

NFEM uses a neural network to learn the input-output relationship from the historical

42

data and the higher the number of input attributes, the higher the volume of data needed

to train the neural network successfully. In fact, the number of data points needed to train

a neural network grows exponentially with each input [13].

The attribute selection process can also be done on a per-product basis if the organization

is large and is involved in software development for several different domains. In

addition, different attributes should be selected for different phases of the software

development lifecycle. The selected common set of profiling attributes will vary greatly,

depending on the development environment and type of system being built. However,

most organizations should include the attributes expert effort estimation, implementer

capability, and complexity, for the reasons discussed in Section 3.7.

4.1.1 Defining and Applying the Measuring System

In the first step of the NFEM preparation process, not only must the profiling attributes

be selected, they must also be clearly defined, to indicate what is being measured by each

attribute. In addition, a measuring system must be implemented for each qualitative

attribute so that they can be measured. This need not be done for the quantitative

attributes, as they can be simply entered as numbers.

The NFEM qualitative attribute measuring system was designed to allow the use of

qualitative attributes where each such attribute is measured according to the needs of the

organization using it. The measuring system requires that each qualitative attribute be

defined and be further decomposed into sub-attributes. Each sub-attribute should be a

factor that affects the evaluation of the profiling attribute. Once the user evaluates the

sub-attributes, their values can be averaged and used as the overall profiling attribute’s

measurement. To facilitate this process, Tables 4.1 and 4.2 were designed and should be

completed for each selected qualitative profiling attribute. Table 4.1 should also be used

to define the quantitative attributes.

43

Table 4.1 - The format to be used to define the selected profiling attributes.

Name The name of the attribute and any short names used for it.
Definition A clear and concise definition that indicates what is being

measured by the attribute. All attributes should be defined in
terms of how they affect effort.

Rationale The rationale used to select the attribute. One or more
examples may be given to clarify the rationale.

Implementation A way of combining all the sub-attributes into a single unit of
measurement (usually the arithmetic mean). Also, any
clarification notes on how the attribute should be perceived or
evaluated.

Table 4.2 - The format to be used to define the sub-attributes.

Sub-Attribute Name
Definition A clear and concise definition of the sub-attribute
Scale
Values’
Definitions

Low The definition of the “Low” scale
value for this particular sub-attribute.

An arrow depicting
the direction in
which the effort
estimate increases
due to the sub
attribute’s
evaluation.

Medium-Low No definition required.
Medium The definition of the “Medium” scale

value for this particular sub-attribute.
Medium-High No definition required.
High The definition of the “High” scale

value for this particular sub-attribute.

The definitions of the scale values required in Table 4.2 serve as guidelines for the

estimator. The scale values “Medium-Low” and “Medium-High” need not be defined

because they are to be interpolated by the estimator. Each scale value corresponds to a

number between one and five, with one corresponding to the Low set and five

corresponding to the High set. The overall profiling attribute valuation is the arithmetic

mean of its sub-attributes’ values.

It should be noted that while breaking down a profiling attribute into sub-attributes does

lengthen the preparation process, it is more beneficial in the long term because it allows

the collection of more accurate data. Qualitative attributes that affect software

development effort usually encompass several aspects of the quality they describe. For

example, when defining the required reliability of a software system, one thinks of how a

system failure would affect the environment and users of the system (i.e. a mere

inconvenience versus endangerment of human life), the acceptable frequency of failures

(mean time to failure, MTTF), and the acceptable repair time (mean time to repair,

44

MTTR). While all three of these factors affect the reliability of a system, they do so in

different ways, and they would often result in different evaluations from one another.

Therefore, clustering the three factors and measuring them as one would introduce a lot

of uncertainty and inaccuracy into the measurement. On the other hand, decomposing the

attribute into sub-attributes allows for more accurate data to be collected.

Table 4.3 shows the application of Table 4.1 to the Reliability profiling attribute and

Table 4.4 shows application of Table 4.2 to its sub-attributes. The definitions provided

are according to a fictional organization that creates business-critical applications.

Table 4.3 - Example definition of the Reliability profiling attribute.

Name Reliability
Definition The degree of reliability required from the component or

functionality implemented in the task.
Rationale A task that involves the development of a highly reliable

component or functionality generally requires more effort.
Implementation Each sub-attribute is evaluated as Low, Medium-Low,

Medium, Medium-High, or High, corresponding to the values
between 1 and 5, respectively. The average of the sub
attribute evaluations is the overall attribute value.

Criticality
Definition The problem created if the component or functionality implemented in

this task fails.
Scale
Values’
Definitions

Low No critical data will be lost.

Medium Some business data may be lost
causing a day’s work set back.

High Business data will be lost causing
a major set back

Mean Time to Failure9 MTTF
Definition The degree of importance for the particular component/functionality

being implemented to rarely fail.
Scale
Values’
Definitions

Low It may fail often (once every few
days).

Medium It may fail between once a month
to once in 3 months.

High It should not fail more than once
in six months.

Mean Time to Repair, MTTF
Definition The degree of importance that the particular component/functionality

45

Table 4.4 - Example definition of the Reliability sub-attributes.

being implemented in the task has a short repair time.
Scale
Values’
Definitions

Low It is not a significant problem if it
is down for a week or less.

Medium It is important that it is not down
for more than a day.

High It is very important that it is not
down for more than an hour.

4.1.2 Data Collection

Upon the completion of the first step, data collection can begin. Step 2 of the NFEM

preparation process cannot commence until sufficient data has been collected. However,

the question becomes what a sufficient number of data points is. In [6], the authors

show that the number of training data points required for a neural network that contains

W weighted connections is given by:

W m> —
ε

where m is the number of training data points and ε is the allowed fraction of error on the

training set. If ε is assumed to be less than 0.125 then approximately ten training data

points are required for each weighted connection in the neural network. Therefore, given

that an organization knows the largest network architecture to be used in step 3 of the

preparation process, it must collect at least ten times the amount of weighted connections

within it.

4.2 Step 2: Data Set Separation

The second step of the NFEM preparation process is the data set separation. To be able

to extract rules from a trained neural network using the rule-extraction technique

described in Section 2.4.3, the data with which the neural network is trained must be

Boolean as opposed to continuous. Subsection 4.2.1 describes how the range of values

for the qualitative attributes should be separated into fuzzy sets, and then Boolean sets.

Subsection 4.2.2 describes how the range of values for the quantitative attributes should

46

be separated into Boolean sets, and then fuzzy sets. It should be noted that the data set

separation process must also be applied to the output attribute, effort.

4.2.1 Data Set Separation for the Qualitative Profiling Attributes

Section 4.1.4 described that the sub-attribute values, ranging from one for Low to five for

High, should be averaged to obtain an overall value for the profiling attribute. Thus, each

qualitative profiling attribute can have a value between one and five and when these

values are normalized, the range of values becomes 0.2 to one. The normalization occurs

because neural networks and ANFIS training functions implemented by MATLAB only

use normalized data [33]. Table 4.5 depicts an example data point profiled by two

profiling attributes with normalized values.

Table 4.5 - A sample data point

Qualitative Profiling
Attribute 1 Value

Qualitative Attribute
2 Value

Data Point

0.633 0.25 [0.633 0.25]

4.2.1.1 Determining the Boundaries of the Fuzzy Sets

Each qualitative attribute is separated into three fuzzy set, Low, Medium, and High, as

shown in Figure 4.2. The membership function of each fuzzy set is a generalized bell

function. The generalized bell function was selected as the membership function of

choice for two reasons: It is nonlinearly smooth and it offers three adaptable parameters

with which the shape of the function is customized during the ANFIS training [22]. Most

other nonlinearly smooth functions offer only two variable parameters [22]. The

boundaries of the fuzzy sets Low and Medium are determined such that the cross-over

point for each set is at the Medium-Low value two, or 0.4 when normalized. Likewise,

the boundaries of the fuzzy sets Medium and High are determined such that the cross

over point for each set is at the Medium-High value four, or 0.8 when normalized. The

cross-over point of a fuzzy set A is any point where UA(x) =0.5. The rationale for locating

the fuzzy set cross-over points at these values is simple and straightforward: The points

Medium-Low and Medium-High are designed to be the point halfway between one set

47

and the next one. Therefore it is only logical that they would be used as the cross-over

points of the fuzzy sets. Figure 4.2 illustrates this concept by showing that the cross-over

points of the fuzzy sets meet at the Medium-Low and Medium-High values. This

condition determines the values for parameters a and b of the generalized bell function

(described in Section 2.1.2.2). In addition, the centre of each of the membership function

(i.e. parameter c of the generalized bell function) is located at the corresponding value

which it represents (illustrated by the dashed lines). For example, the centre of the

generalized bell function representing fuzzy set Low is at 0.2 (or one when not

normalized).

0.5

Figure 4.2 - The fuzzy sets of qualitative profiling attributes.

3.3

Medium-Low

0.5

Medium

0.7

Medium-High

08 09

High

04 0602

4.2.1.2 Determining the Boundaries of the Boolean Sets

After determining the fuzzy sets, the Boolean sets can also be determined. The

boundaries of the Boolean sets should be located at the cross-over points of each fuzzy

set. Figure 4.3 illustrates the Boolean sets determine by the crossover points of the fuzzy

sets. The points at the boundaries should be included in the set that has the smaller range

of values included. Therefore, data points with qualitative attribute values of 0.4 should

be included in the Low set because the Low Boolean set only includes points between 0.2

and 0.4, whereas the Medium Boolean set includes data points between 0.4 and 0.8. For

the same reasons, the data points with qualitative values of 0.8 should be included in the

High Boolean set.

48

0.5

08
-L
0.5

Figure 4.3 - The Boolean sets of qualitative profiling attributes.

Once the boundaries of the Boolean sets are determined, the data value transformation

from continuous to Boolean follows. Each continuous value is transformed into a three-

element Boolean vector, where one signifies the set that the value belongs to and zero

signifies the two sets that the data point does not belong to. The Boolean vector’s first

element represents the Low set, its second element represents the Medium set, and its

third vector represents the High set (i.e. [Low Medium High]). Only one of the three sets

must be set to one, and the other two must be set to zero. For example, Table 4.6 shows a

fictional data point profiled by two qualitative attributes: The first row contains the

attribute values, 0.633 for Attribute 1 and 0.25 for Attribute 2, and the overall data point

in continuous vector format ([0.633 0.25]). The second row contains the Boolean

transformation of the data point shown in the first row. The Attribute 1 value has been

transformed into [0 1 0] because the value 0.633 falls within the bounds of the Medium

set. The Attribute 2 value has been transformed into [1 0 0] because the value 0.25

belongs to the Low set.

Table 4.6 - Conversion of a continuous data point into Boolean format.

Format Qualitative Profiling
Attribute 1 Value

Qualitative Attribute
2 Value

Data Point

Continuous 0.633 0.25 [0.633 0.25]
Boolean [0 1 0] [100] [[0 1 0] [1 00]

49

4.2.2 Data Set Separation for Quantitative Attributes

Because the range of values used for quantitative attributes is organization-dependent, it

is impossible to define a common process for separating the quantitative attribute values

into sets. However, some guidelines are provided in this subsection that should be

followed when determining these sets.

4.2.2.1 Determining the Boundaries of the Boolean Sets

First and foremost, each Boolean set must contain a sufficient number of data points

within it so that the neural network is able to associate certain input values with that

particular set. Section 4.5.2 discussed what a sufficient number of data points is overall.

If only the minimum amount is collected (i.e. ten times the amount of weighted

connections in the largest neural network architecture to be used), the quantitative

attribute Boolean sets can be separated such that each set has an approximately equal

amount of data. If the amount of collected data greatly exceeds the minimum required

amount, then a criterion other than equal amount of data can be used to separate the sets.

For example, self-organized maps [30] or clustering algorithms [5] can be used to

determine the sets. These topics however are outside the scope ofthis thesis.

In most cases, due to the fact that it takes a long time to collect data, most companies will

start implementing the second step of the preparation process once they have gathered

what is considered sufficient data. Therefore, the Boolean sets would need to be

separated based on an equal-data amount criterion. Due to this, the boundaries of the

Boolean sets must be determined first, so as to ensure that each set with which the neural

network is trained contains enough data for the neural network to learn with.

4.2.2.2 Determining the Boundaries of the Fuzzy Sets

Once the Boolean sets’ boundaries are determined, the fuzzy set membership functions

can be determined for the quantitative profiling attributes’ sets. The generalized bell is

50

maintained as the membership function of choice for the advantages it provides. The

width of each bell membership function, which is controlled by the parameter a, should

be equal to the width of the Boolean set that corresponds to it. Additionally, the centre of

the generalized membership function of each fuzzy set, controlled by the parameter c,

should be located at the median value of the set it represents. For example, to determine

where the centre of the generalized bell membership function of the fuzzy set Low should

be located, the median of the data values contained in the Boolean set Low should be

used. The reason why the median was chosen as the centre of the generalized bell

membership functions, as opposed to the mean, was because the finite breakdown point

of the median is much higher than that of the mean [53]. The finite breakdown point is

the smallest proportion of outliers that can result in the mean or the median being

arbitrarily large or small for a given set of observations [53]. Given a set of n

observations, the finite breakdown point of the mean is 1/n whereas the finite breakdown

point of the median is n∕2 [53]. Therefore, for a set containing 50 data points, only 1/50,

or 1 of the data points need to be outliers, in order to produce an arbitrarily large or small

mean. Conversely, the proportion of outliers required to bias the median, for the same set

of data points, would be 50∕2, or 25 data points.

Finally, for the quantitative output attribute, Effort, no fuzzy sets are required because the

zero-order Sugeno inference system implemented in the ANFIS does not require fuzzy

sets for the output attribute. Instead, one constant value must be selected to represent

each output set. For the same reasons discussed above, the median should be the choice

representative value for each output attribute set.

4.3 Step 3: Neural Network Training

Once a sufficient amount of data has been collected and the set separations have been

accomplished, a neural network can be trained with the Boolean data. This third step of

the NFEM preparation process consists of some trial and error due to the many different

factors that can determine how successfully a neural network is trained. In this section

some of the most important factors are discussed.

51

4.3.1 Varying the Inputs

The most important factors are the inputs and outputs used: The stronger the relationship

between the inputs and the outputs, the easier it is for the neural network to learn the

relationship [41]. In order to determine the combination of profiling attributes that have

the greatest affect on development effort, different combinations of the inputs must be

tested. The number of profiling attributes collected and the number of sets defined for

each attribute determine the number of inputs to the network. For example, if three

profiling attributes are selected and the values of each one are separated into three sets,

Low, Medium, and High, then the neural network will have 9 inputs.

4.3.2 Varying the Number of Hidden Nodes

The next factor that affects the neural network training phase is the number of nodes used

in the middle layer of the network, often referred to as the hidden nodes. As the number

of nodes increases in the hidden layer, so does the accuracy of a neural network to predict

the output of the training data [36]. However, if the number of hidden nodes is too high,

the network loses its ability to generalize, and models itself too closely to the training

data. Consequently, the network performs well when the training data is used, but it

performs poorly when new data is entered. This phenomenon is often called “over

fitting” [36]. While several methods and parameters have been proposed to determine the

number of hidden layer nodes [17], [35], [36], this problem lies beyond the scope of this

thesis. It is suggested that a trial and error process is followed to determine the number

of hidden neural nodes. It is also best to separate the historical dataset into a training data

set and a testing data set. Training several different networks with varying numbers of

hidden nodes, and then testing them, will show which architecture yields the best results

in accurately predicting training as well as testing data.

52

4.3.3 Varying the Number of Training Epochs

Finally, the number of training epochs can also be varied to see if training the neural

networks with more epochs yields significantly more accurate results. Although it has

been shown that most networks are successfully trained with 1000 epochs, this number

can sometimes vary [9].

Figure 4.4 illustrates an example network architecture where two profiling attributes are

used as inputs, each one consisting of three sets, and the classification attribute is

separated into five sets. Eight hidden nodes are used in the middle layer, where the value

eight was chosen arbitrarily.

Output

Output

Output

Output

—Output

Figure 4.4 - Example architecture of a neural network used in Step 3.

4.4 Step 4: Rule Extraction and ANFIS Implementation

The fourth and final step of the NFEM preparation process is the rule extraction and

ANFIS implementation. Upon its completion, the NFEM can be used as a neuro-fuzzy

effort estimator for software development tasks.

53

Attribute 1- Low

Attribute 1 - Medium

Attribute 1- High

Attribute 2- Low

Attribute 2 - Medium

Attribute 2- High

The rule extraction technique described in Section 2.4.3 is used to extract rules from the

neural network that was most successfully trained in Section 4.3. More specifically, the

most general rules are extracted from its hidden layer neurons and its output layer

neurons, and then combined to create rules modeling the relationship between the

profiling attributes and the effort output. These rules are then embedded into an ANFIS

system. For example, suppose the following five rules were extracted from the neural

network shown in Figure 4.4:

1. IF Attribute 1 is Low AND Attribute 2 is Medium THEN Output is Mml∙

2. IF Attribute 1 is High THEN Output is M∏.

3. IF Attribute 2 is Low THEN Output is Ml.

4. IF Attribute 1 is Medium AND Attribute 2 is Low THEN Output is MM.

5. IF Attribute 1 is Medium AND Attribute 2 is High THEN Output is MMH.

MML stands for the median of the set Med-Low, MH stands for the median of the set

High, and so on. The medians of the Output’s sets are determined in Step 2 of the NFEM

preparation process. Figure 4.5 shows the ANFIS system into which the rules would be

embedded.

In the first layer, each node function is a bell membership function that corresponds to a

fuzzy set of one of the input attributes. For example, the first node in the first layer is

associated with the fuzzy set Lowι that corresponds to Attribute 1. Its output is the

membership grade of Attribute 1 into its fuzzy set Lowι. The fuzzy sets determined in

Step 2 of the NFEM preparation process are used as the node functions of the first layer

neurons. Each neuron in the second layer corresponds to the antecedent of one of the

rules. For example, the first neuron of the second layer corresponds to the antecedent of

the first rule, Ari. Its inputs are the membership grade of Attribute 1 into its fuzzy set

Lowι and the membership grade of Attribute 2 into its fuzzy set Medium2. The output is

the firing strength of the first rule, as described in Section 2.3.

54

Low
Attribute 1

High

Attribute 2

High2

Low2

MMH

Mh

MM

MML

Medium2

Ml

Medium]

Figure 4.5 - An ANFIS system upon which the NFEM is implemented.

In the third layer, each neuron i calculates and outputs the normalized firing strength of

the rule represented by neuron i in the second layer. Likewise, each neuron i in the fourth

layer corresponds to the consequent of the rule represented by node i in the second layer.

The output of each neuron in the fourth layer is the product of the consequent of the rule

it represents with the rule’s firing strength. In the fifth layer, the outputs of the fourth

layer’s neurons are summed and output as the effort estimate.

Once the fuzzy sets, medians, and rules are embedded into the ANFIS, the historical data

collected after step 1 ofthe preparation process is used to train the ANFIS. By training

the ANFIS with the historical data, the bell shaped fuzzy sets of the input profiling

attributes are fine-tuned by having their a, b, and c parameters, representing the width,

slope of the bell’s sides and centre location, change according to the historical data.

Upon the completion of the training, the ANFIS, now representing the Neuro-Fuzzy

Estimation Model is ready to be used.

55

CHAPTER V
The Industrial Partner

k. — -. »

To validate the Neuro-Fuzzy Estimation Model, industrial project data was obtained from

a major international corporation that produces a variety of products and services. This

company will be referred to as the Industrial Partner within this thesis due to the signed

Non-Disclosure Agreement between the author and the Industrial Partner. The agreement

prevents the publication of the name of the Industrial Partner and any details that identify

it in order to safeguard the interests of the Industrial Partner and to ensure that the data is

used strictly for research and academic purposes.

The purpose of this chapter is to introduce the Industrial Partner and the dataset obtained

from them. Section 5.1 describes the Industrial Partner and Section 5.2 describes their

current process of software development effort estimation. Section 5.3 presents their

future goals in the area of effort estimation. Section 5.4 contains the use case developed

to improve the Industrial Partner’s estimation capabilities by integrating the NFEM into

their estimation process. Section 5.5 describes the dataset provided by the Industrial

Partner and used to validate the NFEM in Chapter 6.

5.1 The Industrial Partner and Their Current Effort Estimation Process

The Industrial Partner is a Fortune 500 company with a workforce of over 100,000

people world-wide and annual revenue of over $30 billion dollars. It is involved in the

production of products and services that cater to a wide variety of customers ranging

from private consumers to major Industrial Partners. The company is known for its

aggressive implementation and daily practice of the six sigma methodology which is

focused on reducing errors and costs.

56

In the area of software development, the six sigma effort has translated into the

development of a custom and comprehensive estimation application (Figure 5.1) by one

of the software development teams of the Industrial Partner, hereon referred to as the

Estimation Tool. The Estimation Tool allows for the development tasks associated with a

project to be displayed in a hierarchical tree structure. For each project, there are three

different views of the tree structure available: The functional tree, the component tree,

and the estimation tree (refer to Figure 5.2). The functional tree provides a hierarchical

decomposition of the functionality within a software application being developed, and the

development tasks associated with each of those functionalities. The component tree

provides a hierarchical decomposition of software components that are part of a software

application in development, and the development tasks associated with each component.

And finally, the estimation tree references both the functional and component trees, to

provide the complete list of development tasks that map to the software development

lifecycle.

PERT

000

1-1EBUDM

SMD1

10.33.45 AM

SMD1

DFS

Ratform
G Desktop

Figure 5.1 - The Estimation Tool developed by the Industrial Partner.

Figure 5.2 illustrates the estimation tree view. In it, each release is identified as a new

node on the tree, representing a new project and corresponds to the Project Node in

57

Figure 5.2. After every completed deliverable phase of the project, the team re-estimates

the development tasks of the future phases. Therefore, each project is broken down into

these re-estimation units, which are called sources and are represented as source nodes in

the hierarchical tree shown in Figure 5.2. The source nodes are then broken down into

future deliverable phase nodes, and furthermore, each deliverable phase node is

decomposed into function nodes. Function nodes can either be decomposed into other

function and component nodes or can be leaf nodes. Leaf function nodes and component

nodes represent development tasks that must be estimated.

Project Node

Source Node

Deliverable Phase Node

Function Node

Component Node

The Selected Function Being Estimated

+ 0 Product 1 Release 1
+ 0 Product 2 Release 1
+ 0 Product 3 Release 1
+ Q Product 1 Release 2
+ 0 Product 2 Release 2

----- 0 Product 1 Release 3

• PA2

+ • PA3
+ • Budgetary Estimates
+ ® FWS2

--------• FWS3
+ ■ SMD1

* • DFS
+ • Detailed Design - Servers

----------------£ Coding
+ € Installation

-------------------G Platform
- G Desktop Standard

+ € Data Directory
- € Application Data

-------------------------------------- ⅜ Get Results
n hies

+ @ 1-1EBUDM
+ $ Expert Integration

+ til DFS
• SMD1
• Coding
® Detailed Design • Clients
O Detailed Design ■ Database
* Detailed Design - Servers
• Unit Test Plan - Write
• Unit Test Plan - Execute
rm for n...:....

The Selected View of the Hierarchical
Tree (e g. Functional, Component, or
Estimate)

----------Estimates Components Functions FP Summary

Estimate successfully loaded.

+
+

<

Figure 5.2 - The hierarchical organization of the development tasks.

Each development task entered in the Estimation Tool can be estimated using one of the

three estimation models incorporated into the tool: PERT, Expert Estimation, or Function

Point Analysis. The Tool is also comprised of a fourth section, for a profiling technique;

however, at the time of the Estimation Tool development, only the graphical user

interface (GUI) of this technique was implemented, rendering the section useless. Figure

5.3 depicts the GUI section of the Estimation Tool that provides the functionality for

estimating a task.

58

The Selected Estimation ----------Estimate | Details Actual Estimated Cost
View

Node Owner, Estimator &
Implemerter Identification
Section

Owner
PERT

PERT Section

Function Point Analysis
Section

Expert Estimate Section

Final Estimate Section

User Interaction

Value 0 00

Notes

E Stimate

Value: 0

Skil Level of Developers

New Technology

New Language

New Functionality/DomainHigh
0

Variance
000

Pessimistic: 0

Most Likely: 0

Optimistic: 0

Low
0

Std Deviation
000

- Implementer: |

Profile

- Estimator

Profiling Section

Notes Section

Last Updated 6/7/2005 10:33:45 AM

HighLow

Value 0

-

hours

----- Prediction Interval

Function Point
Court: 0

“Constants. A= 0 B = 0

Value 0.00
Expert
- Value 0

Source: PERT

Figure 5.3 - The GUI area used to estimate software development task effort.

When entering a new estimate, the estimator must specify the implementer of the task,

him/herself as the estimator, and describe any special circumstances or assumptions in

the notes section shown in Figure 5.3. Next, he or she must consider one or more of the

available models to estimate the amount of effort the task should take, in hours. Ifthe

effort estimate value generated by PERT or Function Point Analysis is chosen as the

effort estimate of the task, then that particular model must be chosen as the source in the

Final Estimate section of the GUL Otherwise, Expert Estimate is chosen as the source,

and the value entered in the Expert Estimate Section is recorded as the effort estimate for

the task. When the task is completed, the actual time the task took must also be recorded.

This value is referred to as the actual effort value. An estimation task that contains all of

the above information represents one data point. All such data points are stored and

maintained in a centralized database, which allows easy access to the team through the

client application, without easily risking data corruption.

59

5.2 The Industrial Partner’s Future Effort Estimation Goals

While the Estimation Tool developed by the Industrial Partner is a great start towards

improving their software effort estimation process, it is only a tool that allows for the

easy collection of estimation data. The estimation models incorporated into the tool may

improve the accuracy of the estimates to some extent, but neither of these models makes

use of the historical data collected. And yet the data collected is very valuable as it is

fine tuned to the particular development group and environment collecting the data. The

Industrial Partner believes that there is great value within this collection of data, value

which could be used to more accurately estimate future development tasks.

In order to use the historical data to improve future estimates, the Industrial Partner

recognized that storing the estimate effort value and actual effort value was not enough.

The assumptions made when creating an estimate had to also be stored within the data

point. These assumptions would need to follow a specific and consistent format,

allowing each task to be characterized by the same parameters. This would enable future

tasks to be related to historical tasks. In fact, this idea was what inspired the development

team of the Estimation Tool to include the GUI implementation of the profiling technique

into the tool. However, no further research was conducted as to which attributes should

be used to profile the estimation tasks and no algorithm was implemented to make use of

the historical data. The need for this common profile and the existing collection of

estimation data made the Industrial Partner an ideal partner for the validation of the

NFEM. A use case was developed to summarize NFEM’s outcome as desired by the

Industrial Partner and is shown in the following section.

5.3 Use Case for Generating an Effort Estimate Based on Historical Data

This use case describes the scenario, where given a profile, an effort estimate value is

computed by the Estimation Tool based on the actual effort values of historical tasks with

similar profiles, using the NFEM.

60

Scope: Generation of a software development task effort estimate using the Profiling

Section on the Estimation Tool of the Industrial Partner (refer to Figure 5.3)

Primary Actor: Software Estimator

Preconditions: An estimate node has been created in the Estimation Tool and the

estimate tab is open for editing.

Scenario:

1. Software Estimator selects the appropriate person for the following fields: Owner,

Estimator, and Implementer.

2. Software Estimator enters details, concerning the task being estimated, into the

notes field.

3. Software Estimator creates an estimate in the Expert Estimate section of the

Estimation Tool. The Expert Estimate can be based on values generated by the

Function Point Analysis and/or PERT methods.

4. Software Estimator selects values for each of the attributes in the Profiling section

of the Estimation Tool.

5. Software Estimator presses the “Compute” button in the Profiling section and a

calculated effort estimation value is displayed in the “Value” field of the Profiling

section.

6. Software Estimator analyses the values generated by any or all of the PERT,

Function Point, Expert and Profiling models.

7. Software Estimator selects one of the models as the source in the Final Estimate

section.

8. Software Estimator either uses the value auto-generated by selecting the source or

enters a number in the Final Estimate section of the Estimation Tool that takes

into account the values generated by each of the four estimation methods.

5.4 The Industrial Partner’s Dataset

The data obtained from the Industrial Partner was collected by a software development

team in charge of developing software for a corporate client. The data was collected

during the development of three different products, and two releases of each, totaling six

61

projects. The development team consisted of an average of six people, and the team was

located on two different continents. Due to the need to deliver high quality software

products on time, the Estimation Tool was an integral part of the development process.

Originally, the Industrial Partner estimated to have approximately 2000 historical data

points. No concrete value was known because estimates and actual values of historical

tasks completed before the development of the Estimation Tool were scattered in

different spreadsheet files. Therefore, the data had to be centralized before knowing the

true value of the number of data points. Once the data was centralized into one common

database, it was discovered than only about 1400 data points existed. Subsequently, data

points that contained estimates but no actual values (i.e. bad data), and data points of

tasks that did not belong to the implementation phase were also filtered out. Non

implementation tasks were filtered out because finding a common set of attributes for

tasks of all phases of the software development cycle would be difficult if not impossible.

On the other hand, time limitations made finding a common set of attributes for each

phase unfeasible.

Furthermore, all implementation tasks with estimated or actual effort size of over 100

hours or magnitude of relative error greater than 50% were filtered out, leaving only 313

data points. The reason for filtering out tasks with a MRE greater than 50 was that

allowing a large range of MRE values required a very high volume of data points to train

the neural network. Due to the fact that a high volume of data was not available, the

MRE range was limited. Finally, tasks with estimated or actual effort size over 100 hours

were filtered out because they were quite rare, and therefore the few data points that did

exist would bias the neural network into creating an input-output relationship that was

incorrect.

62

CHAPTER VI
Case Study

In this chapter, the Industrial Partner’s historical data is applied to validate the Neuro-

Fuzzy Estimation Model. Due to the long term process involved in collecting large

amounts of software development effort estimation data, time constraints did not allow

for the full validation of the NFEM. However, because some existing historical data was

available, the steps that were applied presented a promising outcome.

In Section 6.1, the first step of the NFEM preparation process, the selection and

definition of the profiling attributes, is completed followed by a discussion on the

selected attributes. Next, Section 6.2 describes the second step of the NFEM preparation

process, the data set separation step. In Section 6.3, step 3 of the NFEM preparation

process, the neural network training with the Industrial Partner’s dataset, is completed

and the training results are analyzed. Finally, Section 6.4 describes the implementation

of the last step of the NFEM preparation process of extracting the rules from the trained

neural networks and implementing them in the ANFIS.

6.1 Step 1: Profiling Attribute Selection

As described in Chapter 4, the first step to the NFEM preparation process is determining

the set of profiling attributes. These attributes would be used to characterize the

Industrial Partner’s dataset. It was decided that a set of attributes would be determined

that would be used to profile only implementation tasks for the reasons discussed in

Section 5.4.

63

These attributes were selected for their usefulness, measurability, and significance. They

were determined after careful analysis of hundreds of metrics used in existing estimation

models or researched internally by the Industrial Partner. In this section they are

exemplified and characterized by a measuring scheme. Each selected profiling attribute

is defined and described through the sub-attributes into which it was decomposed. While

only the definitions of the attributes and sub-attributes are provided in this section,

Appendix A contains the full descriptions of each attribute, including the scale value

definitions, using the table format shown in Section 4.1.

6.1.1 Skill Level of Implementer

Name Skill Level of Implementer
Definition The degree to which the skill level of the task implementer

influences the effort estimate.
SUB-ATTRIBUTES
Analyst
Capability

The ability to investigate new strategies or defects, as well as the
overall quality, reliability, and robustness of work items previously
completed by the task implementer.

Learning Ability The task implementer’s ability to learn new concepts and acquire
new skills quickly.

Efficiency The ability to complete a task accurately and on time (i.e. without
over-analyzing the problem and the possible solutions).

Teamwork The ability to communicate in a timely manner with other team
members and management and the ability to co-operate in terms of
choosing the best possible solution for the task, while still adhering
to time and quality constraints.

Table 6.1 - Description of the Skill Level of Implementer attribute.

6.1.2 Familiarity with Technology

Name Familiarity with Technology, Technology
Definition The degree to which the implementer’s familiarity with the

technology, used to complete the task, influences the estimate.
SUB-ATTRIBUTES
Familiarity with
Documentation

The degree of the task implementer’s knowledge /understanding of
the technology’s documentation: Has the implementer skimmed
the documentation or thoroughly read it. Documentation includes:
help files, user guides, online tutorials, and books dedicated to the
technology.

Usage of
Technology

How well the task implementer feels that he/she knows how to
implement solutions using the technology. This is a measure of the

64

Table 6.2 - Description of the Familiarity with Technology attribute.
level of comfort he/she has in using the technology.

6.1.3 Familiarity with Programming Language

Name Familiarity with Programming Language, Familiarity with
Language, Language

Definition The degree to which the implementer’s familiarity with the
software language, to be employed when completing the task,
influences the estimate.

SUB-ATTRIBUTES
Familiarity with
Documentation

The degree of the task implementer’s knowledge/understanding of
the language’s support documentation. The documentation
includes: help files, user guides, online knowledge databases, and
books dedicated to the use of the language.

Usage of
Language

How well the task implementer feels that he/she knows how to
implement solutions using the chosen language. This is a measure
of the level of comfort he/she has in developing solutions with the
language.

Table 6.3 - Description of the Familiarity with Programming Language attribute.

6.1.4 User Interface

Name User Interface, UI
Definition The degree to which the level of complexity of the user interface

influences the estimate.
SUB-ATTRIBTUES
Amount of UI
Controls

A linguistic approximation of the amount of user interface controls
needed by the functionality. User interface controls include: text
boxes, list boxes, radio buttons, command buttons, menus, combo
boxes, etc.

Required Level
of Validation

A qualitative measure of the amount of input validation required by
the user interface of the task’s functionality.

Underlying
Architecture
Complexity

The overall complexity ofthe underlying architecture. For
example, a simple registry access function will likely have a low
architectural complexity whereas functionality providing the ability
to insert 3rd party ActiveX controls would likely have a high
architectural complexity.

Table 6.4 - Description of the User Interface attribute.

6.1.5 Complexity

Name Complexity
Definition The degree to which the complexity of the task influences the

estimate.
SUB-ATTRIBUTES

65

Table 6.5 - Description of the Complexity attribute.

Difficulty of
Definition

The degree of difficulty involved in defining the solution such as
the algorithmic complexity of the solution in terms of
computational complexity (e.g. nested loops, analysis of
differential equations), time computational complexity (e.g. real
time systems), space computational complexity (e.g. distributed
database coordination), and information-based complexity (e.g.
simple arrays in main memory vs. highly coupled dynamic
relational and object structures).

Interdependence
with other
Features

The amount of other functions/features the current task impacts
and/or the amount of functions/features the current task is impacted
by.

6.1.6 Familiarity with Functionality

Name Familiarity with Functionality, Functionality
Definition The degree to which the implementer’s familiarity with the

functionality influences the estimate.
SUB-ATTRIBUTES
Similarity The degree to which the current task resembles something that the

implementer has previously implemented.
Product
Knowledge

How familiar the implementer is with the application/product being
developed. This will give a measure of how well the implementer
understands how the component/functionality will affect the
existing components/functionality.

Component
Knowledge

How familiar the implementer is with the component the current
task involves.

Table 6.6 - Description of the Familiarity with Functionality attribute.

6.1.7 Familiarity with Domain

Name Familiarity with Domain
Definition The degree to which familiarity with the application domain

influences the estimate.
SUB-ATTRIBUTES
Product Domain
Familiarity

The level of familiarity the implementer has with the application
domain (i.e. functions within the industry that the product will be
used).

Software
Domain
Familiarity

The level of familiarity the implementer has with the task’s related
software domain (e.g. database, GUI, server, web, etc.).

Table 6.7 - Description of the Familiarity with Domain attribute.

66

6.1.8 Estimated Size

Name Estimated Size
Definition The degree to which the size of the task, in hours, influences the

estimate.
Table 6.8 - Description of the Size attribute.

6.1.9 Altered Estimation Tool

Figures 6.1 and 6.2 show the altered Profiling Section of the Estimation Tool. Each

profiling attribute was implemented as a tab, as shown in Figure 6.2. The first tab

contained the overall, read-only profile of a given task being estimated (Figure 6.1).

[Profile Technology Language Ul Complexity 4 •

NA Low Med High
Technology incomplete profile

Language --------------------

UI J-

Complexity

Functionality ----

Domain j

Size PERT

Profile Technology Language [UT___ ; Complexity <•

NA Low Med High

Amount of Controls: -------------------------------- j

Level of Validation: --------------------------------------- J

Architecture: --------------- 1..

Total

Figure 6.2 - UI profiling attribute tab.Figure 6.1 - Overall profile tab.

6.1.10 Profiling Attribute Analysis and Discussion

After the profiling attributes were determined, clearly defined, and characterized by the

measuring system, they were used to profile the historical implementation tasks of the

Industrial Partner. During the profiling process, it became apparent that the attribute

Skill Level of Implementer would be difficult to use for the reasons discussed in Chapter

3. As a result, that particular attribute was removed from the profiling set.

Due to low volume of data available to train the neural networks, it was beneficial to

have as few inputs as possible. Therefore, after all the historical tasks were profiled,

several tests were conducted to see if any of the profiling attributes could be eliminated.

Because the User Interface attribute was only applicable to some implementation tasks, it

was found that only forty percent of the data made use of it. It was decided that there was

67

insufficient data to correctly evaluate the significance of this attribute. Therefore, the

User Interface attribute was eliminated.

In addition, several attributes were found to have equal values for a suspiciously large

amount of data points. It was suspected that the members of the development team who

profiled the data perceived some of the “Familiarity with” attributes to be very similar

and therefore, consistently evaluated these attributes the same. Tests were conducted to

evaluate the amount of similarity between the following attributes: Familiarity with

Functionality, Familiarity with Technology, Familiarity with Domain, Familiarity with

Programming Language, and Complexity. The Complexity attribute was only included

to serve as a comparison measure.

Table 6.9 shows the results produced by tests that compared the Technology profiling

attribute with the other attributes and Table 6.10 shows the results produced by tests that

compared the Language profiling attribute with the other attributes.

Table 6.9 - Similarity between Technology and other attributes.

Attribute 1 Attribute 2 % of Data Containing
the Same Values for
Attributes 1 and 2

Familiarity with Technology Familiarity with Language 55.7%
Familiarity with Technology Familiarity with Domain 34.7%
Familiarity with Technology Familiarity with Functionality 22.3%
Familiarity with Technology Complexity 10.8%

Table 6.10 - Similarity between Language and other attributes.

Attribute 1 Attribute 2 % of Data Containing
the Same Values for
Attributes 1 and 2

Familiarity with Language Familiarity with Technology 5 5.7%
Familiarity with Language Familiarity with Domain 31.5%
Familiarity with Language Familiarity with Functionality 16.9%
Familiarity with Language Complexity 10.8%

Both tables show that over 55% of the dataset contained the same values for the attributes

Familiarity with Technology and Familiarity with Language. This was definitely an

abnormal amount of similarity between the two attributes, and therefore one of them had

68

to be eliminated. It was determined that the attribute which showed the highest similarity

with other attributes would be eliminated.

At 34.7%, the similarity between the Technology and the Domain attributes was higher

than the similarity between the Language and Domain attributes, which was 31.5%.

Furthermore, at 22.3%, the similarity between the Technology and Functionality

attributes was also higher than the similarity between the Language and Functionality

attributes, which was 16.9%. Therefore, the Technology attribute was more often

perceived to be the same as the Domain and Functionality attributes, when compared to

the Language attribute. As a result, the Familiarity with Technology attribute was

eliminated.

Table 6.11 - Similarity between Domain and other attributes.

Attribute 1 Attribute 2 % of Data Containing the
Same Values for Attributes
1 and 2

Familiarity with Domain Familiarity with Language 31.5%
Familiarity with Domain Familiarity with Functionality 25.8%
Familiarity with Domain Complexity 15%

Additionally, the Familiarity with Domain attribute showed to be the same as the

Familiarity with Language attribute for over 30% of the data. Likewise, the Domain

attribute was evaluated the same as the Familiarity with Functionality attribute for over

25% of the data (as shown in Table 6.11). This showed that the Domain attribute was

also often perceived to be the same as the Functionality and Language attributes, and it

was therefore also eliminated.

The remaining attributes of Functionality and Language had a low degree of similarity

between them, at 16.9% (shown in Table 6.10), and were therefore retained. Thus, the

Functionality, Language, Estimated Size, and Complexity attributes were used as inputs

in the training of the neural networks.

69

6.2 Step 2: Data Set Separation

The next step in the NFEM preparation process was to separate the profiling attributes

into sets so that rules could be extracted from the trained neural networks and be

implemented into an ANFIS. As described in Chapter 4, the NFEM was designed in such

a way that it facilitates the data set separation for qualitative and quantitative profiling

attributes.

This section describes the properties of the profiled data before applying the data set

separation process described in Section 4.2 to the qualitative profiling attributes, and

subsequently, to the quantitative attributes.

6.2.1 Experimental Data

Each data point consisted of four profiling attributes (Complexity, Functionality,

Language, and Estimated Size) and the output attribute, Effort, in hours. The qualitative

profiling attributes Functionality, Language, and Complexity could take on any value

between one and five, and when normalized, this became a range between 0.2 and one

(the value zero was reserved to indicate the term “not applicable”). The attribute value

depended on how the sub-attributes were evaluated. The Estimated Size attribute as well

as the Effort attribute could take any positive value between zero and one hundred. All

the attribute values were normalized to be between 0 and 1. Table 6.12 illustrates three

sample data points.

Table 6.12 - Sample data points obtained from the Industrial Partner.

Complexity Estimated
Size (in
hours)

Familiarity
with
Functionality

Familiarity
with
Language

Effort (in
hours)

0.4 0.22 0.2 0.2 0.15
0.9 0.6533 0.4 0.8 0.98
0.2 0.1 0.87 0.7 0.2

70

6.2.2 Data Set Separation for the Qualitative Profiling Attributes

6.2.2.1 Determining the Boundaries of the Fuzzy Sets

The procedure described in Chapter 4 was followed to separate the possible range of

values into three fuzzy sets, Low, Medium, and High, which could then be transformed

into Boolean sets. As described in Section 4.2, the values Medium-Low and Medium-

High were used as references to locate the crossover points of each fuzzy set.

6.2.2.2 Determining the Boundaries of the Boolean Sets

Once the fuzzy sets were determined, boundaries of the Boolean sets were located at the

crossover points of each fuzzy set. The Low set contained any values greater than or

equal to 0.2 and less than or equal to 0.4 and was represented with the vector [1 0 0]; the

Medium set contained any values greater than 0.4 and less than 0.8 and was represented

with the vector [0 1 0]; and the High set contained any values greater than or equal to 0.8

and was represented with the vector [0 0 1]. Table 6.13 reflects the Boolean

transformation of the qualitative profiling attributes of the sample data shown in Table

6.12.

Table 6.13 - Sample qualitative attributes transformed into Boolean form.

Complexity Functionality Language
Continuous Boolean Continuous Boolean Continuous Boolean
0.4 [10 0] 0.2 [1 0 0] 0.2 [10 0]
0.9 [0 0 1] 0.4 [10 0] 0.8 [0 0 1]
0.2 [1 0 0] 0.866667 [0 0 1] 0.7 [0 1 0]

6.2.3 Data Set Separation for the Quantitative Attributes

6.2.3.1 Determining the Boundaries of the Boolean Sets

The remaining profiling attribute, Estimated Size, and the output attribute, Effort, were

not by default separated into sets as they were quantitative in nature. Due to the lack of

71

abundance in data points, the equal data amount criterion was used to first determine the

Boolean sets and then the fuzzy sets.

For the Estimated Size profiling attribute, the sets into which the data was separated into

are shown in Table 6.14. To illustrate the equal data principle that guided the boundaries

of the sets, the percentage of data points within each set is also shown in Table 6.14.

Table 6.14 - The Estimated Size Boolean sets.

Set Name Range of Values included
in set (in hours)

% of Data Points
within the Set

Median Boolean
Vector

Low O<Estimated Size<4 18.2% 1.83 [1 00 00 0]
Medium-Low 4<= Estimated Size <8 17.9% 4.83 [0 1 0 0 0 0]
Medium 8<= Estimated Size <11 17.9% 8 [0 0 1 0 0 0]
Medium-High 11<= Estimated Size <17 16.0% 16 [0 0 0 1 0 0]
High 17<= Estimated Size <30 15.0% 24 [0 0 0 0 1 0]
Very High Estimated Size >=30 16.6% 42 [000 00 1]

Next, the Boolean sets of the output attribute were determined. The Effort values were

separated into six sets, where each set was defined by a range of hours. Once again, the

equal-data-amount criterion was used to determine the sets. Table 6.15 shows the

boundaries of each set and the percentage of data points that fall within each set. Table

6.16 contains the full Boolean transformation of a sample data point.

Table 6.15 - The Boolean sets of the output attribute Effort

Set Name Range of Values included
in set (in hours)

% of Data
Points within
the Set

Median Boolean
Vector

Low 0< Effort<4 16.0% 2 [1 0 0 0 0 0]
Medium-Low 4<= Effort <8 16.9% 5 [0 1 0 0 0 0]
Medium 8<= Effort <11 14.1% 8 [0 0 1 0 0 0]
Medium-High 11<= Effort <17 17.9% 15 [0 0 0 1 0 0]
High 17<= Effort <30 16.0% 22 [0 0 0 0 1 0]
Very High Effort >=30 19.2% 41 [00000 1]

Table 6.16 - Data point transformed from continuous to Boolean format.

Attribute Continuous
Format

Boolean
Format

Complexity 0.4 [10 0]
Estimated Size 0.22 [0 0 0 0 1 0]
Functionality 0.2 [1 0 0]
Language 0.2 [1 0 0]
Effort 0.15 [0 0 0 1 0 0]

72

6.2.3.2 Determining the Boundaries of the Fuzzy Sets

Once the Boolean sets were determined, the fuzzy sets could be determined for the

profiling attribute Estimated Size. Again, the procedure described in Section 4.2.2 was

followed to do so. For each set of Table 6.14, the median shown was used as the centre

of the generalized bell membership function and the width of the membership function

was based on the width of the Boolean set. The slope of the sides of each generalized

bell function, controlled by the parameter b as described in Chapter 2, was set to two, for

all the sets. During the ANFIS training stage in Step 4, this parameter would be varied

for best results. Figure 6.3 shows the fuzzy sets of the Estimated Size profiling attribute.

Medium-High HighLow Medium-Low Medium

0 5 50

Figure 6.3 - The fuzzy sets of the Estimated Size profiling attribute.

For the zero-order ANFIS implementation in Step 4 of the NFEM preparation process,

the output sets needed to be represented by a single constant. As the output of the

ANFIS, each Effort set shown in Table 6.15 was to be represented by the median of its

data points, also shown in Table 6.15.

6. 3 Step 3: Neural Network Training

Once all the profiling attributes and the classification attribute were separated into sets,

and the data was transformed into Boolean form, step 3 of the NFEM preparation process

could be applied to the Industrial Partner’s dataset. The third step consisted of training

neural networks with the Boolean data and extracting rules from the network that

73

achieved the most accurate classification results. These rules could then be implemented

into the ANFIS.

6.3.1 Parameters Varied

In order to determine the network architecture, and the combination of inputs that would

most accurately describe the factors that affect software implementation task effort,

several different parameters were varied during the training of the networks.

6.3.1.1 Varying the Inputs

First and foremost, the number and combinations of profiling attributes used as input to

the neural networks was varied. This was done in an attempt to find out if there was a

certain combination of one or more profiling attributes that best predicted the output of

the neural network. The four profiling attributes used as inputs created fifteen different

combinations, ranging from only one attribute being included in the combination to all

four. Therefore, for every other parameter varied during training phase, fifteen different

input combinations had to be tested, resulting in fifteen experiments for each test case.

6.3.1.2 Varying the Number of Hidden Nodes

The number of hidden nodes was the second testing parameter varied to determine if

there was a specific network architecture under which the neural network was best

trained. To determine the ideal number of hidden nodes, three different neural network

architectures were used: One with fifteen nodes in the hidden layer, another one with

thirty-five, and a final one with fifty nodes. These values were determined through trial

and error. Once again, in each test case, for each input combination, all three network

architectures were tested.

74

6.3.1.3 Varying the Number of Training Epochs

The final parameter varied was the number of epochs used to train the neural networks.

This would test to see if increasing the number of epochs would compensate for the low

volume of data. In Test Case 1 the number of epochs was limited to 1000 and in Test

Case 2, the same experiments were repeated but the number of epochs used to train the

neural networks was increased to 5000.

6.3.2 Testing Setup

The output of each neural network was Effort, in hours. Therefore, each neural network

trained in these two test cases consisted of six output neurons in the third layer, each one

corresponding to one of the sets of the Effort attribute determined in Section 6.2.3.

To automate each test case, an algorithm was designed and implemented to automatically

create a three-layer backpropagation neural network, train it with the data presented,

count the number of correct classifications and write it in a comma separated values

(CSV) file. A correct classification was considered to be a point that is classified into the

right output set. The mean squared error (MSE) of the last epoch of each trained neural

network was also recorded within the CSV file, in order to keep track of the how

successful the network training was. For each parameter variance, thirty networks were

trained and an average was obtained to determine the overall affect of that particular

parameter’s value change. Due to the scarcity of the number of data points, all 313 data

points were used in training the neural networks.

The results of each test case are displayed in a bar graph that contains the experiment

number and the names of the input attributes on the x-axis. The names of the inputs are

shortened to only the first letter of the attributes’ names as shown in Table 6.17. The y-

axis shows the average percentage of correctly classified data points. Three bars are

shown for each experiment, one representing the networks with fifteen hidden neurons in

the middle layer, another representing the networks with thirty-five hidden neurons, and a

75

final one representing the networks with fifty hidden neurons. The last 3 bars represent

the overall averages of all the experiments for each test case. For each test case, a second

chart is also shown comparing the average MSE of the last training epochs for each

experiment.

Table 6.17 - The input abbreviations used on the figures displaying the results.

Experiment No. Inputs Short Name Used on the X-
axis of Figures 6.4 to 6.11

1 Complexity 1 -C
2 Estimated Size 2 - E
3 Functionality 3 -F
4 Language 4-L
5 Complexity & Estimated Size 5 -C&E
6 Complexity & Functionality 6 - C&F
7 Complexity & Language 7 - C&L
8 Estimated Size & Functionality 8-E&F
9 Estimated Size & Language 9 - E&L
10 Functionality & Language 10-F&L

11 Complexity & Estimated Size &
Functionality

11 -C&E&F

12 Complexity & Estimated Size &
Language

12-C&E&L

13 Complexity & Functionality &
Language

13 -C&F&L

14 Estimated Size & Functionality
& Language

14-E&F&L

15 Complexity & Estimated Size &
Functionality & Language

15-C&E&F&L

6.3.2 Test Results

6.3.2.1 Test Case 1: Training with 1000 Epochs

Figure 6.4 shows the results of testing all fifteen input combinations and all three network

architectures when each of the networks was trained with 1000 epochs. Overall, the

trained networks performed poorly. The average percentage of correctly classified data

points varies from 5.29%, produced in Experiment 4, when the network architecture with

fifty hidden nodes was used, to 33.42%, produced when Estimated Size was the input to

the network architecture with fifty hidden nodes. The networks with only Estimated Size

as input perform significantly better than the rest of the input combinations regardless of

76

the network architecture used. However, even at the highest data classification

performance of 33.42%, the results are too low to allow accurate rules to be extracted

from the network.

In terms of network architecture, it can be observed from Figure 6.4, and specifically, the

last three bars showing the overall experiments’ average, that changing the number of

nodes in the hidden layer from thirty-five to fifty does not significantly improve the

performance of the networks. The average classification accuracy increase is only one

percent between the two different network architectures. In fact, in experiments 3, 4, 7,

10, and 13, the network classification accuracy actually decreases. On the other hand, the

network architecture of thirty-five hidden nodes does outperform the network with fifteen

hidden nodes, especially in experiments 2, 5, 9, and 12 where the classification accuracy

nearly doubles.

35—

30-

25-

15-

10-

5-

G

Q □ 15 Hidden Nodes

Q

□ 35 Hidden Nodes

A

□ 50 Hidden Nodes

Average
% of

accurately 20 -
classified

data
points

%" O

Experiment number & input names

Figure 6.4 - Average classification accuracy results for Test Case 1.

The poor classification performance of the experiments is not very surprising given the

high average MSE values shown in Figure 6.5. The highest average mean squared error

77

observable is 0.34. produced when Language is the input and there are fifteen hidden

nodes in the network architecture. This indicates that the average error for a given output

of the network with the Language profiling attribute as input was 0.583, or 58.3%

(obtained by taking the square root of the MSE). In Test Case 2, the number of training

epochs was increased to 5000, to see if the MSE would decrease, resulting in an increase

in the classification accuracy.

0.35

□ 15 Hidden Nodes 035 Hidden Nodes 050 Hidden Nodes

0.25

0.05

0

Experiment number & input names

Average 0.2
MSE of
trained
neural

network 0.15

Figure 6.5 - Average mean squared error results for Test Case 1.

6.3.2.2 Test Case 2: Training with 5000 Epochs

Figure 6.6 shows the results produced by training neural networks of all three

architectures and all fifteen input combinations with 5000 epochs. It is interesting to note

that although the average MSE of all experiments decreased significantly (Figure 6.7),

the average percentage of accurately classified data points also decreased for some of the

experiments. The classification performance of the network with fifty hidden nodes and

Estimated Size as the only input increased to 48%, and in turn, all networks that include

78

the profiling attribute of Estimated Size as an input show improved classification

performance. For example, in Figure 6.6, experiments 2, 5, 8, 9, 11, 12, 14, and 15 all

show higher classification accuracy than the same experiments in Figure 6.4, regardless

of the network architecture. However, most networks that do not include Estimated Size

as an input decreased in classification accuracy. The only exceptions to this were

experiments 6 and 13 when the network architecture with fifty hidden nodes was used.

40

25

20

45

35—1

30

10

50

15

5—

□ 15 Hidden Nodes 035 Hidden Nodes □50 Hidden Nodes

Experiment number & input names

Average
% of

accurately
classified

data points

• • • $ 4 4 $ „• „y- y- &

Figure 6.6 - Average classification accuracy results for Test Case 2

The lowest average MSE value observed in Figure 6.7 is 0.081, when only Estimated

Size is used as an input to the network architecture with fifty hidden nodes. This

indicates that the average error for a given output of that network architecture was 28.5%.

Once again, this is a significantly high error rate that would not allow accurate rules to be

extracted from the network. Further tests were conducted to test if increasing the number

of training epochs to 10,000 would significantly increase the classification accuracy of

any of the experiments, however at best, only a 3% accuracy increase was observed.

79

Average
MSE of
trained
neural

networks

0.16

0.12-

0.08

0.06

0.04

0
d & 4 • 40. . • .9

o’ A %' o’ O' O O O <
AN A A A ,

Experiment number & input names

Figure 6.7 - Average mean squared error results for Test Case 2.

6.3.3 Analysis & Discussion

It was believed that the poor results shown in Figure 6.4-6.7 could be due to several

reasons: Poor data set boundaries, lack of data for training the neural networks, and low

data quality. Following, each of these hypotheses were examined and further tests were

conducted when possible, to eliminate them and continue with the NFEM process.

The first hypothesis stated that the poor results were caused by the poorly located

boundaries of the sets into which the attributes Effort and Estimated Size were separated

That is to say, the clustering of the sets of these two attributes, which was based on the

equal-data criterion was inadequate. In order to test this hypothesis, two more test cases

were developed. In these two cases, the Estimated Size attribute was not separated into

sets, but rather, it was just normalized and entered as a value between zero and one into

the neural networks. In addition, the output attribute of Effort, was also normalized and

80

not separated into sets, such that the networks only had one output node in their third

layers. This would eliminate any error that was introduced by separating the two

quantitative attributes into sets. The algorithm determined a data point to be correctly

classified if the network’s output was with 20% of the actual effort. The idea was, to

emulate a network that estimated implementation tasks that were within 20% of the

actual value. In [50], Stutzke points out that typically, estimating within 20% of the

actual effort is adequate accuracy for project cost and schedule.

Figures 6.8 and 6.9 show the results of Test Case 3, when 1000 epochs were used to train

each network and Figures 6.10 and 6.11 show the results of Test Case 4, when 5000

epochs were used to train each network. Once again, the average MSE for all the

network architectures has decreased in both cases, when compared to the average MSE

values of Figure 6.5 and 6.7.

15

10

O-
$ w & & & « « 4 $ • * * . .

6' o' A' %' o' O <
A A' A‘ A O P

Experiment number & input names

•15 Hidden Nodes • 35 Hidden Nodes • 50 Hidden Nodes —

O

Average
% of

accurately
classified

data points

Figure 6.8 - Average classification accuracy results for Test Case 3.

81

networks

Average
MSE of
trained
neural

0.005

0.015

0.025

0.035

0.045 -

0.01

0.02

0.03

0.04

0

•15 Hidden Nodes □35 Hidden Nodes □50 Hidden Nodes _

4 O
O • 4 4 &

L V

Figure 6.9- Average mean squared error results for Test Case 3.

Experiment number & input names

Average
% of

accurately
classified

data points

35
□ 15 Hidden Nodes □ 35 Hidden Nodes □50 Hidden Nodes .

30

25

20

15

10

5

0

Experiment number & input names

‘ <0
h
<

‘

Figure 6.10 - Average classification accuracy results for Test Case 4.

82

0.035—1

0 005

0 025

0.015—

0.01-

0.02

0.03

!Xubm1umJuaJuumuumJuuuuumammmJu^JIihiumJ
O • <• o oly- √ o’ M° CCC<*XX AX <

¾' 6’ 4’ % o‘ 0’ O «

•15 Hidden Nodes • 35 Hidden Nodes •50 Hidden Nodes

<1 O

A
Experiment number & input names

Average
MSE of
trained
neural

networks

Figure 6.11 - Average mean squared error results for Test Case 4.

The lowest MSE value shown in Figure 6.9 is 0.0094, produced when Estimated Size is

the input attribute to the network architecture with fifty hidden nodes, indicating that the

average error associated with a given output was 9.7%. The highest MSE value is 0.041,

produced when Functionality and Language are the input attributes to the network

architecture with fifteen hidden nodes, indicating that the average error associated with a

given output was 20.2%.

In Figure 6.11, the lowest MSE value is 0.0046, when Estimated Size is used as the input

to the neural network architecture with fifty hidden neurons. This translates to an

average error of 6.8% for a given data point.

However, despite the lower MSE values, in comparison to Test Cases 1 and 2, the

average percentage of correctly classified data points dropped. The highest classification

accuracy decreased from 33% in Test Case 1 (Figure 6.4) to 24% in Test Case 3 (Figure

6.8) and from 48% in Test Case 2 (Figure 6.6) to 32% in Test Case 4 (Figure 6.10). The

83

low MSE values could be explained by the fact that the mean of a population is easily

biased by outliers: “Regardless of how many observations we might have, it takes only 1

outlier to make the sample mean arbitrarily large or small.” [53].

Overall, while the network was more successfully trained with the data when the

quantitative attributes were not separated into sets, the classification accuracy dropped.

This shows that the main problem was not due to the set boundaries determined in the

second step of the NFEM preparation process, as assumed in the first hypothesis.

The second hypothesis was that the poor results were caused by the low amount of data.

As stated before, originally, the Industrial Partner believed to have 2000 historical data

points, but due to several reasons, the data set available to conduct the experiments

contained just over 300 data points. This posed a much unexpected problem because in

general, large amounts of data are required to train neural networks successfully. Since

there were no more data points available however, as all networks were trained with all

313 data points, there was no practical way of determining if more data would yield

better results. But theoretically, the findings of [6], which were summarized in Section

4.1.2, could be used to test this second hypothesis. Assuming a fraction of error of 0.125

within the training data, for every weighted connection of a multilayer neural network,

there need to be approximately ten training data points. In the best case scenario, in Test

Cases 1 through 4, the networks with the lowest amount of weighed connection weights

consisted of three nodes in the first layer, corresponding to the sets of the one profiling

attribute used as an input, fifteen hidden nodes in the middle layer, and six output nodes

in the third layer. Therefore there were forty-five weighted connections from the first

layer to the middle one (obtained by multiplying the number of nodes in the first and

second layer) and ninety weighted connections in the second layer (obtained by

multiplying the number of nodes in the middle and third layer), totaling 135 weighted

connections in the neural network. As a result, theoretically, a minimum of 1350 data

points would be required to train the neural network. This proves that insufficient data

was the cause of the poor network classification results.

84

The third hypothesis, which stated that the quality of the training data may be low,

leading to poor classification results cannot be proved true or false, due to the lack of

data: If sufficient data was available to train the neural networks, and the classification

accuracy continued to be low, then the quality of data could be further investigated.

Overall, there was insufficient data to successfully complete the third step of the Neuro-

Fuzzy Estimation Model. However, given that only 313 data points were available, when

at minimum, 1350 data points were needed, the results turned out to be promising. When

only a fifth of the required data points were used to train the neural networks, 48%

classification accuracy was achieved. Thus, although the Industrial Partner’s data was

insufficient to fully implement the third step of the NFEM preparation process, the results

are promising.

6.4 Step 4: Rule Extraction and ANFIS Implementation

Step 4 of the NFEM preparation process could not be implemented due to the long term

process involved in collecting sufficient data. Therefore, time constraints did not allow

for the full validation of the Neuro-Fuzzy Process. Nevertheless, Chapter 4 describes in

detail how the full implementation of the NFEM would be completed once sufficient data

was available.

85

CHAPTER VII
Conclusion

7.1 Summary of Contributions

The ability to produce accurate software development effort estimates is essential to the

software industry. Based on them project scope is determined, quality standards are set

in place, and cost and schedule constraints are defined. Yet, software development effort

estimates are often plagued by omissions, uncertainty, and bias [50]. Existing estimation

models continue to frequently produce inaccurate estimates, instigating research studies

that attempt to determine the properties they lack. After decades of such studies and

practical experience, a number of deficiencies have been found that hinder existing

estimation models from producing accurate estimates. This thesis focused on developing

a new effort estimation model that amends those deficiencies by incorporating within it

the following characteristics:

1. The ability to handle diverse process and product variables.

2. The ability to incorporate empirical evidence and expert judgment.

3. The ability to determine genuine cause and effect relationships.

4. The ability to handle uncertainty.

5. The ability to handle incomplete information.

The Neuro-Fuzzy Estimation Model presented in this thesis was designed with all of

these characteristics in mind. This section discusses how the NFEM accomplishes each

of the above characteristics as well as other characteristics that greatly benefit the process

of estimation.

86

7.1.1 Input Customizability

As a universal software estimation model, the NFEM offers full customizability of the

inputs it uses. Each organization or team within an organization implementing the

NFEM is able to choose the attributes that are believed to most influence the

development effort. This is very important because depending on the development

environment and type of system being built, the factors that affect development effort can

greatly vary. In addition, the definitions of the scale values for each attribute are

determined independently by each organization. This is an advantage that no existing

effort estimation model has as it significantly expands the flexibility of the NFEM. After

all, what is considered “High Reliability” by a team that develops safety critical systems

is different from what a team that develops video games considers it to be. And while the

NFEM does not require that Expert Effort Estimate be a mandatory profiling attribute, the

inclusion of it is strongly recommended and its implementation is facilitated by the

NFEM’s ability to integrate quantitative attributes. Finally, the output of the NFEM is

effort, but how effort is measured is left to the discretion of each organization

implementing the NFEM. This NFEM characteristic offers additional freedom of

customizability.

7.1.2 Incorporating Neural Networks

The use of multilayer feedforward neural networks in the preparation process of the

NFEM accomplishes several feats. First and foremost, feedforward multilayer neural

networks have been proven to have the ability to model any input-output relationship

[19]. Therefore, training a neural network with the effort estimation data of a given

environment, allows the relationships between the profiling attributes and the

classification attribute to be modeled. In addition, it automatically calibrates the model

with the given environment’s data. Studies have shown that calibrating an effort

estimation model with a given environment’s data significantly increases the model’s

estimation accuracy [23], [27], [34]. Furthermore, using neural networks to model input

output relationships automatically filters out profiling attributes that do not have a

87

significant effect on effort. By extracting rules from the most successfully trained neural

network, those attributes that were not used as inputs to that particular network are

eliminated. Finally, multilayer neural networks are robust to incomplete information,

rendering the NFEM to be robust to incomplete information as well, specifically because

the NFEM is implemented as a neuro-fuzzy system.

7.1.3 Incorporating Fuzzy Logic

The fuzzy logic side of the NFEM also delivers several benefits. Estimations, by their

very nature contain a degree of uncertainty within them. Therefore, applying a

mathematical algorithm such as fuzzy inference, that is intended to take into account the

inherent uncertainty of the data allows for more accurate estimations. In addition to

dealing with uncertainty, the incorporation of fuzzy logic within the NFEM allows the

integration of qualitative and quantitative attributes. The nature of fuzzy logic also

allows the NFEM to be able to deal with imprecise information due to the subjectivity

present in the values of the profiling attributes. By nature, most factors that strongly

affect software development effort are subjective. Therefore, instead of developing

another model that tries to avoid subjectivity of the metrics (an impossible task), the

NFEM uses fuzzy logic to take into account the imprecision present in the data. Finally,

the extraction and implementation of rules into the ANFIS system allows for the Neuro-

Fuzzy Estimation Model to be transparent and allows for the rules to be validated by

experts. This avoids the negative aspects of using neural networks to model the input

output relationships, a structure that is often considered to be a “black-box” [44].

7.1.4 Implementing the NFEM as an ANFIS

The implementation of the NFEM as an adaptive neuro-fuzzy inference system allows for

the fuzzy membership functions to be further fine-tuned to a given organization’s

environment. Furthermore, it facilitates a continuous process of improvement. For

example, a large number of profiling attributes can be selected to be measured, but

initially the NFEM can be implemented with only a fraction of those, so that a very large

88

amount of data is not necessary. Over time however, as more data is collected, the

NFEM can be re-implemented to include more profiling attributes. Also, even if new

attributes are not introduced into the NFEM, as the volume of historical data increases,

the NFEM can be retrained with the new available data for some improvement, or the

preparation process steps can be repeated, starting from Step 2, for a more extensive

improvement of the system.

7.1.5 Estimating Effort at the Task Level

The final advantage that the NFEM has over existing estimation models is that it

facilitates automatic data collection at a lower level. While theoretically, the NFEM can

be used as a model to estimate high-level software development effort, in practice this is

not feasible due to the long period of time that it would take to collect the required

training data. Therefore, the NFEM was developed as an estimation model for

collecting data at the software development task level. One advantage to this is that it

makes the collection of calibration data mandatory, and as discussed previously in this

section, model calibration is necessary if the estimation model is to be expected to

perform with some accuracy. In addition, the smaller the task size, the easier it is to

accurately profile it and estimate it using expert estimation. Generally speaking, the

larger a software development task is, the more difficult it is to estimate it [15], [28],

[45], [50] because as the size of the task increases, so does the interdependency among

various elements of the software [45]. As a result, estimating becomes harder because

there is more uncertainty in the estimate. Therefore, the Neuro-Fuzzy Estimation System

is able to avoid a degree of data uncertainty and imprecision, simply by dealing with

more granular software development tasks.

7.2 Future Work

The Neuro-Fuzzy Estimation Model presented in this thesis provides a great foundation

and much potential for producing accurate estimates. However, due to time constraints,

the scope of the thesis had to be limited, hindering further research into some of the areas

89

that could be perceived as weaknesses within the NFEM. These potential weaknesses

provide future directions for this research.

First and foremost, Section 3.7 discussed the great effect the task implementer’s

capability has on effort, regardless of the development environment or product being

developed. Yet, in the real world, evaluating individuals and making such evaluations

usable in a public tool presents several major problems, from confidentiality breach to

workplace morale decrease. Further research must be conducted in how to overcome

these obstacles and allow the inclusion of the profiling attribute implementer capability.

In step 2 of the NFEM preparation process, the boundaries of quantitative attributes were

determined based on the equal-amount of data criterion. Perhaps a better approach would

be to determine the boundaries by using self-organized maps [30] or clustering

algorithms [5]. These algorithms would be able to find the natural boundaries that occur

within the dataset.

In step 3 of the Neuro-Fuzzy Estimation Model, different neural network architectures

had to be tested to reveal the most suitable number of hidden nodes in the middle layer.

A better alternative would be to use algorithms such as those proposed in [17], [35], or

[36] to determine the number of hidden nodes in the middle layer. Additionally, the

dataset used in the neural network training step should be separated into a training set and

a testing set. This would ensure that the neural network is not too closely modeled to the

training set resulting in poor performance when new inputs are entered.

For the fourth and final step of the NFEM preparation process, further research could be

conducted in a couple of areas. Firstly, only decompositional rule-extraction algorithms

were considered during the development of this thesis. Consequently, pedagogical and

eclectic rule extraction algorithms could be explored in the future to see if they yield

better results. The second area that could be explored in the future is to allow certain

profiling attributes to have a greater effect on the effort estimate than others, in hopes that

more accurate estimates are produced. This could be accomplished by assigning greater

90

weights to rules whose antecedents include attributes that are believed to have a more

significant effect on effort.

Finally, the Neuro-Fuzzy Estimation Model is designed to estimate software development

effort estimation at a stage when some details are known about the project. This is

beneficial for the later stages of estimation, when the requirement specifications or design

phases have been completed. But in the early phases of project conception, many of the

development tasks that the project will consist of are not known. Thus, a formal process

of associating the task-level estimates generated by the NFEM with high-level project

estimates produced at the commencement of a project would yield many benefits.

Further research must be conducted to bridge these two different levels of estimation.

In conclusion, the Neuro-Fuzzy Estimation Model proposed in this thesis provides a

successful foundation for overcoming many of the obstacles faced by existing software

development effort estimation models.

91

References

[1] A Brief History of Software Engineering. History of Computing. December 5,
2004. Obtained April 17, 2007.
<http://www.comphist.org/computing_history/new_page13.htm>

[2] Andrews, R. Diederich, J., Tickle, A., “Survey and Critique of Techniques for
Extracting Rules from Trained Artificial Neural Networks.” Knowledge-Based
Systems, Vol. 8, pp.373-389, 1995.

[3] Armour, P. “The Business of Software: Beware of Counting LOC.”
Communications of ACM, Vol. 47, No. 3, pp. 21-24, 2004.

[4] Armour, P. “The Business of Software: Ten Unmyths of Project Estimation.”
Communications of the ACM, Vol. 45, No. 11, pp. 15-18, 2002.

[5] Baraldi, A., Blona, P. “A Survey of Fuzzy Clustering Algorithms for Pattern
Recognition.” IEEE Transactions on System, Man, Cybernetics. Vol. 29, No. 6,
pp.786-801, 1999

[6] Baum, E. B., Haussler, E. “What Size Net Gives Valid Generalization?” Neural
Computation 1. pp. 151-160, 1989

[7] Boehm, B. Software Engineering Economics. Englewood Cliffs, New Jersey:
Prentice Hall, 1981.

[8] Boehm, B., Bradford, C., Horowitz, E., Madachy, R. Shelby, R. and C. Westland.
“The COCOMO 2.0 Software Cost Estimation Model.” International Society of
Parametric Analysts, May 1995.

[9] Boetticher, G. D. “An Assessment of Metric Contribution in the Construction of a
Neural Network-Based Effort Estimator.” Second Int. Workshop on Soft Computing
Applied to Software Engineering, 2001.

[10] Boetticher, G. D. “Using Machine Learning to Predict Project Effort: Empirical
Case Studies in Data Starved Domains.” In Proceedings of Model-Based
Requirements Workshop, 2001.

[11] Fenton, N., Martin, N. “Software Metrics: Roadmap.” ACM 2000: Future of
Software Engineering, Limerick, Ireland, 2000.

[12] Finnie, G. R., Wittig, G. E. “AI Tools for Software Development Effort
Estimation.” 1996 International Conference on Software Engineering: Education
and Practice, pp. 346-352, 1996.

92

http://www.comphist.org/computing_history/new_page13.htm

[13] Fuller, R. Introduction to Neuro-Fuzzy Systems. Hidelberg, New York: Physica-
Verlag, 2000.

[14] Fu, L. “Rule Generation from Neural Networks.” IEEE Transactions on Systems,
Man, and Cybernetics, Vol. 24, pp. 1114-1124, 1994.

[15] Glass, R. Facts and Fallacies of Soflware Engineering. Boston, MA: Pearson
Education, 2003.

[16] Gray, A. R., MacDonell, S.G. “A comparison of techniques for developing
predictive models of software metrics.” Information and Software Technology, pp.
425-437, 1997.

[17] Hansen, L.K., Salamon, P. “Neural Network Ensembles.” IEEE Transactions on
Pattern Analysis and Machine Intelligence. Vol. 12, No. 10,.1990.

[18] Hayashi, Y., Imura, A. “Fuzzy Neural Expert System with Automated Extraction
of Fuzzy If-Then Rules from a Trained Neural Network”, Proceedings of First
International Symposium on Uncertainty Modeling and Analysis, pp. 489-494,
1990.

[19] Homik, K., Stinchcombe, M., White, H., “Multilayer feedforward networks are
universal approximators.” Neural Networks Archive, Vol. 2, pp. 359-366, 1989.

[20] Huang, X. “A Neuro-Fuzzy Model for Cost Estimation.” Master’s Thesis. The
University of Western Ontario, 2003.

[21] Jang, J. -S. R. “ANFIS: Adaptive Network-based Fuzzy Inference Systems.” IEEE
Transactions on Systems, Man, and Cybernetics, Vol. 23, No. 3, pp. 665-685, May
1993.

[22] Jang, J. -S. R., Sun, C. -T., Mizutani, E. Neuro-Fuzzy And Soft Computing: A
Computational Approach to Learning and Machine Intelligence. Upper Saddle
River, NJ: Prentice Hall, 1997.

[23] Jeffery, R., Scott, L. “Has Twenty-Five Years of Empirical Software Engineering
Made a Difference?” In Proceedings of the 9th Asia-Pacific Software Engineering
Conference, pp. 539-546, 2002.

[24] Jprgensen, M. “A Review of Studies on Expert Estimation on Software
Development Effort.” Journal of Systems and Software, Vol. 70, No. 1, pp. 37-60,
2004.

93

[25] Kasabov, N., “Learning Fuzzy Rules and Approximate Reasoning in Fuzzy Neural
Networks and Hybrid Systems.” Fuzzy Sets and Systems, Vol. 82, pp. 135-149,
1996.

[26] Kasabov, N., “Learning Fuzzy Rules through Neural Networks.” Proceedings of the
P' New Zealand International Two-Stream Conference on Artificial Neural
Networks and Expert Systems, 1993.

[27] Kemerer, C. F. “An Empirical Validation of Software Cost Estimation Models.”
Communications of the ACM. Vol. 30, No. 5, pp. 416-429, 1987.

[28] Keyes, J. Software Engineering Handbook. Boca Raton, FL: CRC Press LLC,
2003

[29] Kira, K., Rendell, L. “The Feature Selection Problem: Traditional Methods and a
New Algorithm.” In Proceedings of the National Conference on Artificial
Intelligence, pp. 129-134, 1992.

[30] Kohonen, T. Self-organization and Associative Memory. New York, New York,
USA: Springer-Verlag, 1989

[31] Krishnan, R., Sivakumar, G., Bhattacharya, P. “A search technique for rule
extraction from trained neural networks.” Patterns of Recognition Letters, Elsevier
Sciences, 1999.

[32] Laranjeria, L. “Software Size Estimation of Object Oriented Systems.” IEEE
Transactions on Software Engineering, Vol. 17, No. 5, 1990.

[33] MATLAB 6.5 Help Documentation. The MathWorks Incorporated.

[34] Maxwell, K., Wassenhove, L.V., Dutta, S. “Performance Evaluation of General and
Company Specific Models in Software Development Effort Estimation.”
Management Science. Vol. 45, No. 6, pp.787-803, 1999.

[35] Moody, J. “Note on Generalization, Regularization, and Architecture Selection in
Nonlinear Learning Systems.” Proceeding of Neural Networks for Signal
Processing, 1991.

[36] Murata, N., Yoshizawa, S., Amari, S. “Network Information Criterion -
Determining the Number of Hidden Units for an Artificial Neural Network Model.”
IEEE Transactions on Neural Networks, Vol.5, No.6, pp. 865-872, 1994

[37] National Aeronautics and Space Administration (NASA). Parametric Cost
Estimating Handbook. Obtained March 03, 2006.
<http://wwwl.jsc.nasa.gov/bu2/PCEHHTML/pcch.htm>

94

http://wwwl.jsc.nasa.gov/bu2/PCEHHTML/pcch.htm

[38] Nauck, D., Klawonn, F., Kruse., R. Foundations of Neuro-Fuzzy Systems. West
Sussex, England: John Wiley & Sons, 1997.

[39] Nauck, D. Kruse, R. “NEFCLASS - A Neuro-Fuzzy Approach for the
Classification of Data.” Proceedings of the 1995 ACM Symposium on Applied
Computing, pp. 461-465, 1992.

[40] Nauck, D., Nauck, U., Kruse, R. “Generating Classification Rules with the Neuro-
Fuzzy System NEFCLASS.” Proceedings of the 1996 North American Fuzzy
Information Processing Society Conference, pp. 466-470, 1996.

[41] Negnevitsky, M. Artificial Intelligence: A Guide to Intelligent Systems. Harlow,
England: Addison-Wesley, 2005.

[42] Newman, D.J. & Hettich, S. & Blake, C.L. & Merz, C.J. UCI Repository of
Machine Learning Databases. Irvine, CA: University of California, Department of
Information and Computer Science. 1998.

<http://www.ics.uci.edu/~mlearn/MLRepository.html>

[43] Pedrycz, W. “Computational Intelligence as an Emerging Paradigm of Software
Engineering.” Proceedings of the 14th international Conference on Software
Engineering and Knowledge Engineering. Vol. 27, pp. 7-14, 2002.

[44] Picton, P. Neural Networks. New York, New York: Palgrave, 2000.

[45] Pressman, R. Sofiware Engineering: A Practitioner’s Approach, 6th Edition.
McGraw-Hill, USA: 2005.

[46] Putnam, L. H. “A General Empirical Solution to the Macro Software Sizing and
Estimating Problem.” IEEE Transactions in Software Engineering, pp. 345-361,
1978.

[47] Putnam, L. H. “Larry Putnam’s Career in Software Engineering.” Quantitative
Software Management Website. Obtained. March 15, 2006.

<http://www.qsm.com/provisions.html>

[48] Sethi, I. K., Yoo, J.H. “Symbolic mapping of neurons in feedforward neural
networks.” Pattern Recognition Letters, 17, pp. 1035-1046, 1996.

[49] Shaw, M. “Practical Software Engineering.” University of Calgary: Practical
Software Engineering Course Website (15. Jan. 1996). Obtained March 03, 2006.

< >http://ksi.cpsc.ucalgary.ca/courses/451-96/mildred/451/CostEffort.html

[50] Stutzke, R. Estimating Software-Intensive Systems. Addison Wesley, Upper Saddle
River, NJ: 2005

95

http://www.ics.uci.edu/%7Emlearn/MLRepository.html
http://www.qsm.com/provisions.html
http://ksi.cpsc.ucalgary.ca/courses/451-96/mildred/451/CostEffort.html

[51] Towell, G., Shavlik, J. “Extracting Refined Rules from Knowledge-Based Neural
Networks.” Machine Learning, Vol. 13, pp. 71-101, 1993.

[52] Towell, G., Shavlik, J., Noordewier, M.O. “Refinement of Approximately Correct
Domain Theories by Knowledge-Based Neural Networks.” Proceedings of the
Eighth National Conference on Artificial Intelligence, pp. 861-866, 1990.

[53] Wilcox, R. R. Fundamentals of Modern Statistical Methods. Springer-Verlag,
New York, 2001.

[54] Zadeh, L. A. “Fuzzy Sets.” Information and Control, pp. 338-353, 1965.

[55] Zadeh, L. A. “Soft Computing and Fuzzy Logic.” IEEE Transactions, Systems,
Man and Cybernetics, pp. 48-56, 1994.

96

Appendix A

Attribute Skill Level of Implementer

Name Skill Level of Implementer
Definition The degree to which the skill level of the task implementer

influences the effort estimate.
Rationale A particularly complex feature may require someone with a lot

of skill and ∕or experience. The person who is assigned with
implementing the task should influence the size of the
estimate.

Implementation Each of the sub-attributes of this attribute will be rated on a
scale of Low, Medium-Low, Medium, Medium-High, and
High, which will correspond to a scale of 1 to 5. Then, all the
sub-attributes will be averaged to obtain a single value for the
Skill Level of Implementer attribute. To avoid inaccurate data
due to personal bias, it would be best if each team member is
rated by his/her technical lead and the values be saved in a
separate table and updated periodically by the technical leads.
In addition, a generic profile should be available for cases
when the task implementer is not known but a task estimate is
needed.

Sub-Attributes for Attribute Skill Level of Implementer

Analyst Capability
Definition The ability to investigate new strategies or defects, as well as the

overall quality, reliability, and robustness of work items previously
completed by the task implementer.

Scale
Values’
Definitions

Low The implementer produces low quality work.
Medium In general, the quality of the work produced by

the implementer is adequate.
High The implementer produces high quality work.

Learning Ability
Definition The task implementer’s ability to learn new concepts and acquire new

skills quickly.
Scale
Values’
Definitions

Low The implementer takes much more time than what
is considered reasonable before being able to
apply new concepts/skills.

Medium In general, the implementer takes, what is
considered, a reasonable amount of time before
being able to apply new concepts/skills.

97

High The implementer takes a minimal amount of time
before being able to apply new concepts/skills.

Efficiency
Definition The ability to complete a task accurately and on time (i.e. without

over-analyzing the problem and the possible solutions).
Scale
Values’
Definitions

Low The implementer takes much longer than what
is considered reasonable to complete most tasks.

Medium The implementer completes most tasks, in what
is considered a reasonable amount of time.

High The implementer completes most tasks ahead of
time.

Teamwork
Definition The ability to communicate in a timely manner with other team

members and management and the ability to co-operate in terms of
choosing the best possible solution for the task, while still adhering to
time and quality constraints.

Scale
Values’
Definitions

Low The implementer needs improvement in his/her
communication and cooperation skills and does
not adhere to team decisions.

Medium The implementer has sufficient communication
and cooperation skills and usually adheres to
team decisions.

High The implementer has excellent communication
and cooperation skills and always adheres to
team decisions.

Attribute Familiarity with Technology

Name Familiarity with Technology, Technology
Definition The degree to which the implementer’s familiarity with the

technology, used to complete the task, influences the estimate.
Rationale Uncertainties in employing new technology (e.g. .NET

framework.) or integration with a 3rd party tool (e.g. Crystal
Reports) could require the implementer to spend time
installing and/or becoming familiar with them. Any tasks
using new technology should be increased in effort to account
for this overhead.

Implementation Each of the sub-attributes of this attribute will be rated on a
scale of Low, Medium-Low, Medium, Medium-High, and
High, which will correspond to a scale of 1 to 5. The sub
attributes will then be averaged to obtain a single value for the
Familiarity with Technology attribute.
Note: At the time of estimation, the implementer may not be
identified. Since this attribute is implementer dependent and

98

the implementer’s familiarity will not be known, the estimator
must use his/her best judgement with respect to the overall
team’s familiarity with the technology.

Sub-Attributes for Attribute Familiarity with Technology

Familiarity with Documentation
Definition The degree of the task implementer’s knowledge /understanding of

the technology’s documentation: Has the implementer skimmed the
documentation or thoroughly read it. Documentation includes: help
files, user guides, online tutorials, and books dedicated to the
technology.

Scale
Values’
Definitions

Low The implementer has never looked at any of the
documentation before.

Medium The implementer has read and understands about
half of the help files, user guides and other
resources concerning the technology.

High The implementer has read and understands almost
all the content of the help files, user guides and
other resources concerning the technology.

Usage of Technology
Definition How well the task implementer feels that he/she knows how to

implement solutions using the technology. This is a measure of the
level of comfort he/she has in using the technology.

Scale
Values’
Definitions

Low The implementer is not comfortable with using
the technology.

Medium The implementer is sufficiently comfortable with
using the technology.

High The implementer is very comfortable with using
the technology.

Attribute Familiarity with Programming Language

Name Familiarity with Programming Language, Familiarity with
Language, Language

Definition The degree to which the implementer’s familiarity with the
software language, to be employed when completing the task,
influences the estimate.

Rationale Some learning time may be included in using a new
programming language.

Implementation Each of the sub-attributes of this attribute will be rated on a
scale of Low, Medium-Low, Medium, Medium-High, and
High, which will correspond to a scale of 1 to 5. The sub-

99

attributes will then be averaged to obtain a single value for the
Familiarity with Language attribute.
Note: At the time of estimation, the implementer may not be
identified. Since this attribute is implementer dependent and
the implementer’s familiarity will not be known, the estimator
must use his/her best judgement with respect to the overall
team’s familiarity with the language.

Sub-Attributes for Attribute Familiarity with Language

Familiarity with Documentation
Definition The degree of the task implementer’s knowledge/understanding of the

language’s support documentation. The documentation includes: help
files, user guides, online knowledge databases, and books dedicated
to the use of the language.

Scale
Values’
Definitions

Low The implementer has never read any of the help
files or user guides.

Medium The implementer has read and understands about
half of the topics in the help files and user guides.

High The implementer has read and understands almost
all of the content of the help files and user guides.

Usage of Language
Definition How well the task implementer feels that he/she knows how to

implement solutions using the chosen language. This is a measure of
the level of comfort he/she has in developing solutions with the
language.

Scale
Values’
Definitions

Low The implementer is not comfortable developing
with the language.

Medium The implementer is sufficiently comfortable
developing with the language.

High The implementer is very comfortable developing
with the language.

Attribute User Interface

Name User Interface, UI
Definition The degree to which the level of complexity of the user

interface influences the estimate.
Rationale As the level of UI complexity increases, the amount of time

required to incorporate input validation and to manage
resource/error strings increases.

Implementation Each of the sub-attributes of this attribute will be rated on a
scale of Low, Medium-Low, Medium, Medium-High, and
High, which will correspond to a scale of 1 to 5. The sub-

100

attributes will then be averaged to obtain a single value for the
User Interface attribute. If all sub-attributes are set to NA,
then User Interface attribute will not affect the effort
estimation at all. However if any one of the sub-attributes is
set anything other than NA, then the rest of the sub-attributes
should also be set to something other than NA.

Sub-Attributes for Attribute User Interface

Amount of UI Controls
Definition A linguistic approximation of the amount of user interface controls

needed by the functionality. User interface controls include: text
boxes, list boxes, radio buttons, command buttons, menus, combo
boxes, etc.

Scale
Values’
Definitions

Low Up to 5
Medium 5 to 15
High More than 15
NA Not applicable

Required Level of Validation
Definition A qualitative measure of the amount of input validation required by

the user interface of the task’s functionality.
Scale
Values’
Definitions

Low The UI controls are self-validating in nature
such as radio buttons and combo boxes or the
user input is just for commenting purposes and
will not cause program errors.

Medium Some validation is required as invalid input can
cause program failures.

High The user input data is critical to the application
and invalid input will definitely cause program
failures.

NA Not applicable.

Underlying Architecture Complexity
Definition The overall complexity of the underlying architecture. For example,

a simple registry access function will likely have a low architectural
complexity whereas functionality providing the ability to insert 3rd
party ActiveX controls would likely have a high architectural
complexity.

Scale
Values’
Definitions

Low The underlying functionality is very simple.
Medium The underlying functionality is of average

complexity.
High The underlying architecture is very complex.
NA Not applicable.

101

Attribute Complexity

Name Complexity
Definition The degree to which the complexity of the task influences the

estimate.
Rationale Adding a piece of data (e.g. a new attribute to an existing

object class) would require more effort in a complex system
than in a simple one.

Implementation Each of the sub-attributes of this attribute will be rated on a
scale of Low, Medium-Low, Medium, Medium-High, and
High, which will correspond to a scale of 1 to 5. The sub
attributes will then be averaged to obtain a single value for the
Complexity attribute.

Sub-Attributes for Attribute Complexity

Difficulty of Definition
Definition The degree of difficulty involved in defining the solution such as the

algorithmic complexity of the solution in terms of computational
complexity (e.g. nested loops, analysis of differential equations), time
computational complexity (e.g. real-time systems), space
computational complexity (e.g. distributed database coordination),
and information-based complexity (e.g. simple arrays in main
memory vs. highly coupled dynamic relational and object structures).

Scale
Values’
Definitions

Low The solution is very easy to define. The
implementation of its functionality and constraints
is straightforward and easy to express.

Medium The solution is somewhat easy to define. The
implementation of its functionality and constraints
is of average difficulty.

High The solution is very difficult to define. The
implementation of its functionality and constraints
is not straightforward.

Interdependence with other Features
Definition The amount of other functions/features the current task impacts

and/or the amount of functions/features the current task is impacted
by.

Scale
Values’
Definitions

Low The task is mostly independent of other
functionality.

Medium Some of the other functionality is dependent on
how this task is implemented and/or the
implementation of this task is dependent on how
some of the other functionality is implemented.

High A lot of other functionality is dependent on this
task and/or this task is dependent on a lot of other
functionality.

102

Attribute Familiarity with Functionality

Name Familiarity with Functionality, Functionality
Definition The degree to which the implementer’s familiarity with the

functionality influences the estimate.
Rationale If the task is different from anything that has been

implemented by the development team in the past, then some
extra effort will be required for research and learning.

Implementation Each of the sub-attributes of this attribute will be rated on a
scale of Low, Medium-Low, Medium, Medium-High, and
High, which will correspond to a scale of 1 to 5. The sub
attributes will then be averaged to obtain a single value for the
Familiarity with Functionality attribute.
Note: At the time of estimation, the implementer may not be
identified. Since this attribute is implementer dependent and
the implementer’s familiarity will not be known, the estimator
must use his/her best judgement with respect to the overall
team’s familiarity with the functionality.

Sub-Attributes for Attribute Familiarity with Functionality

Similarity
Definition The degree to which the current task resembles something that the

implementer has previously implemented.
Scale
Values’
Definitions

Low The implementer has never before implemented
similar functionality.

Medium The implementer has previously implemented
functionality that is somewhat similar.

High The implementer has implemented very similar
functionality.

Product Knowledge
Definition How famil

developed,
understand
component

iar the implementer is with the application/product being
This will give a measure of how well the implementer

s how the ComponentZfunctionality will affect the existing
s/functionality.

Scale
Values’
Definitions

Low The implementer has never before worked on the
product and knows very little about it.

Medium The implementer knows some of the key things
about how the product is built but not all of the
details.

High The implementer is very familiar with the product
and how it is implemented.

Component Knowledge
Definition How familiar the implementer is with the component the current task

involves.

103

Scale
Values’
Definitions

Low The implementer has very little knowledge
about the component involved in the current
task. Û

Medium The implementer has implemented some parts
of the component involved in the current task.

High The implementer is very familiar with the
component involved in the current task, and has
been one of the main people involved in
implementing it.

Attribute Familiarity with Domain

Name Familiarity with Domain
Definition The degree to which familiarity with the application domain

influences the estimate.
Rationale If the task implementer has no understanding of the product

objectives or the customer’s/domain’s goals, more effort
would be required for the task, because some research and
learning will be necessary before the implementation of the
task can begin.
If the task implementer has recently switched from the data
domain (i.e. working with databases) to the HMI (Human
Machine Interaction) domain (i.e. working with user
interfaces), more effort will be required for the task
implementer to complete UI tasks due to the lack of
experience with the domain.

Implementation Each of the sub-attributes of this attribute will be rated on a
scale of Low, Medium-Low, Medium, Medium-High, and
High, which will correspond to a scale of 1 to 5. The sub
attributes will then be averaged to obtain a single value for the
Familiarity with Domain attribute.
Note: At the time of estimation, the implementer may not be
identified. Since this attribute is implementer dependent and
the implementer’s familiarity will not be known, the estimator
must use his/her best judgement with respect to the overall
team’s familiarity with the domain.

Sub-Attributes for Attribute Familiarity with Domain

Product Domain Familiarity
Definition The level of familiarity the implementer has with the application

domain (i.e. functions within the industry that the product will be
used).

104

Scale
Values’
Definitions

Low The implementer has very little knowledge about
the product’s domain.

Medium The implementer has general knowledge about the
product’s domain (e.g. key goals, key problems,
organizational structure, etc.) but does not know
details.

High The implementer knows a lot of details about the
product’s domain.

Software Domain Familiarity
Definition The level of familiarity the implementer has with the task’s related

software domain (e.g. database, GUI, server, web, etc.).
Scale
Values’
Definitions

Low This is one of the first times the implementer is
completing tasks in this particular software
domain and does not feel comfortable with it.

Medium The implementer has previously worked on the
task’s software domain and feels somewhat
comfortable with it.

High The implementer is very comfortable with the
task’s software domain.

Attribute Estimated Size

Name Estimated Size
Definition The degree to which the size of the task influences the

estimate.
Rationale The task implementer generally has an idea of the amount of

time the task should take. This is based on past experience
and is generally somewhat accurate.

Implementation Size is equivalent to the number of hours estimated to
complete the task. By selecting one of the PERT, Function
Point or Expert techniques a value previously estimated will
be used.

105

	A NEURO-FUZZY MODEL FOR SOFTWARE DEVELOPMENT EFFORT ESTIMATION
	Recommended Citation

	Abstract

	Table of Contents

	List Of Tables

	List Of Figures

	CHAPTER I INTRODUCTION

	1.1	Research Motivation

	1.2	Problem Statement

	1.3	Proposed Solution

	1.4	Research Methodology

	1.5	Thesis Organization

	CHAPTER II Soft Computing

	2.1	Fuzzy Logic

	2.1.1	Fuzzy Set Definition

	2.1.2	Types of Membership Functions

	2.1.2.1	Triangular Membership Function

	2.1.2.2	Bell Membership Function

	2.1.3	Fuzzy Operations

	2.1.3.1	Union (Logical OR)

	uc(x)= max(u,(x), up(x)) ue(x)= u,(x)+ up(x)-u,(x)* up(x)

	2.1.3.2	Intersection (Logical AND)

	⅛(x) = min(u,(x), up(x))

	uc(x)= u (x)* ug(x)

	2.1.4	Application of Fuzzy Set Theory: Zero-Order Sugeno Fuzzy Inference

	2.1.4.1	Example Problem

	2.1.4.2	Fuzzification

	2.1.4.3	Rule Evaluation

	Antecedents	Consequent

	2.1	.4.1 Output Determination

	2.2	Neural Networks

	2.2.1	The Artificial Neuron

	2.2.2	The Multilayered Feedforward Neural Network

	2.2.3	The Backpropagation Algorithm

	2.3	Neuro-Fuzzy Systems

	2.3.1	ANFIS Architecture

	2.3.1.1	Layer 1: Fuzzification

	2.3.1.2	Layer 2: Rule Evaluation

	2.3.1.3	Layer 3: Firing Strength Normalization

	2.3.1.4	Layer 4: Weighted Consequent Determination

	2.3.1.5	Layer 5: Weighted Consequent Summation

	2.4	Extracting Rules from Neural Networks

	2.4.1	The Rule Extraction Problem

	Ac(n,)=-1 (2)

	2.4.2	Review of Existing Decompositional Rule-Extracting Algorithms

	2.4.3	The Selected Algorithm

	3.1	The Expert Delphi Technique

	3.2	Program Evaluation and Review Technique (PERT)

	3.3	Software Lifecycle Model (SLIM)

	3.4	COCOMO II

	3.5	Function Point Analysis

	3.6	Software Development Effort Estimation and Soft Computing

	3.7	Factors that Affect Software Development Effort Estimation

	3.7.1	Expert Effort Estimation

	3.7.2	Implementer Capability

	3.7.3	Complexity

	CHAPTER IV The Neuro-Fuzzy Estimation Model

	4.1	Step 1: Profiling Attribute Selection

	4.1.1	Defining and Applying the Measuring System

	4.1.2	Data Collection

	4.2	Step 2: Data Set Separation

	4.2.1	Data Set Separation for the Qualitative Profiling Attributes

	4.2.1.1	Determining the Boundaries of the Fuzzy Sets

	4.2.1.2	Determining the Boundaries of the Boolean Sets

	4.2.2	Data Set Separation for Quantitative Attributes

	4.2.2.1	Determining the Boundaries of the Boolean Sets

	4.2.2.2	Determining the Boundaries of the Fuzzy Sets

	4.3	Step 3: Neural Network Training

	4.3.1	Varying the Inputs

	4.3.2	Varying the Number of Hidden Nodes

	4.3.3	Varying the Number of Training Epochs

	4.4	Step 4: Rule Extraction and ANFIS Implementation

	CHAPTER V The Industrial Partner

	5.1	The Industrial Partner and Their Current Effort Estimation Process

	5.2	The Industrial Partner’s Future Effort Estimation Goals

	5.3	Use Case for Generating an Effort Estimate Based on Historical Data

	Scenario:

	5.4	The Industrial Partner’s Dataset

	CHAPTER VI Case Study

	6.1	Step 1: Profiling Attribute Selection

	6.1.9	Altered Estimation Tool

	6.1.10	Profiling Attribute Analysis and Discussion

	6.2	Step 2: Data Set Separation

	6.2.1	Experimental Data

	6.2.2	Data Set Separation for the Qualitative Profiling Attributes

	6.2.2.1	Determining the Boundaries of the Fuzzy Sets

	6.2.2.2	Determining the Boundaries of the Boolean Sets

	6.2.3	Data Set Separation for the Quantitative Attributes

	6.2.3.1	Determining the Boundaries of the Boolean Sets

	6.2.3.2	Determining the Boundaries of the Fuzzy Sets

	6.	3 Step 3: Neural Network Training

	6.3.1	Parameters Varied

	6.3.1.1	Varying the Inputs

	6.3.1.2	Varying the Number of Hidden Nodes

	6.3.1.3	Varying the Number of Training Epochs

	6.3.2	Testing Setup

	6.3.2.1	Test Case 1: Training with 1000 Epochs

	6.3.2.2	Test Case 2: Training with 5000 Epochs

	6.3.3	Analysis & Discussion

	6.4 Step 4: Rule Extraction and ANFIS Implementation

	CHAPTER VII

	Conclusion

	7.1	Summary of Contributions

	7.1.1	Input Customizability

	7.1.2	Incorporating Neural Networks

	7.1.3	Incorporating Fuzzy Logic

	7.1.4	Implementing the NFEM as an ANFIS

	7.1.5	Estimating Effort at the Task Level

	7.2 Future Work

	References

	Appendix A

