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Abstract

In the software industry, a reliable development effort estimation model remains to be the 

missing piece of the puzzle. Existing estimation models provide one-size-fits-all 

solutions that fail to produce accurate estimates in most environments.

Research has shown that the accomplishment of accurate effort estimates is a long-term 

process that, above all, requires the extensive collection of effort estimation data by each 

organization. An effort estimation data point is generally characterized by a set of 

attributes that are believed to most affect the development effort in the organization.

These attributes can then be used as inputs to the effort estimation model. The attributes 

that most affect development effort vary widely depending on the type of product being 

developed and the environment in which it is being developed. Thus, any new estimation 

model must offer the flexibility of customizable inputs. Finally, because software is 

virtual and therefore intangible, the most important software metrics are notorious for 

being subjective according to the experience of the estimator. Consequently, a 

measurement and inference system that is robust to subjectivity and uncertainty must be 

in place.

The Neuro-Fuzzy Estimation Model (NFEM) presented in this thesis has been designed 

with the above requirements in mind. It is accompanied with four preparation process 

steps that allow for any organization implementing it to establish an estimation process.

This estimation process facilitates data collection, a defined measurement system for 

qualitative attributes that suffer from subjectivity and uncertainty, model customization to 

the organization’s needs, model calibration with the organization’s data, and the 

capability of continual improvement. The proposed model described in this thesis was 

validated in a real software development organization.
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CHAPTER I 
INTRODUCTION

1.1 Research Motivation

In the years 1968 and 1969, the NATO Science Committee sponsored two conferences 

on software engineering. Many believe that those two conferences instigated the 

beginning of the profession of software engineering [1]. The idea of applying a structure 

and a process, together with quality, schedule, and cost constraints to the field of 

software development was a new concept, but over the years it proved to be a necessary 

one. As the field of software engineering exploded with growth, many management and 

control problems were realized. Attempts of resolving them introduced new processes, 

new methodologies, and new models.

One of the critical problems that emerged early on in the field of software engineering 

and continues to haunt the field today is the problem of development effort estimation. 

Accurate estimates are as essential in the software industry as they are in any other 

industry. Based on estimates, key project decisions are made, feasible performance 

objectives are defined and schedules are set up. Overestimation leads to lost bids for 

projects, while underestimation leads to runaway projects and unsatisfied customers. 

Existing estimation models are frequently unreliable and ineffective. Yet, as the 

software industry continues to expand in wide-ranging and far-reaching directions, its 

products becoming vital components of every other industry in the world, it is important 

that accurate estimates no longer be perceived as luxuries but as essential information to 

the business of software development. Thus, there exists a need for a reliable software 

development effort estimation model.
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1.2 Problem Statement

In attempts to obtain accurate estimates, different software development effort 

estimation models have been developed. Some are as simple as product and domain 

experts estimating the effort of new projects based on past experiences; others are more 

elaborate and involve the definition of a new system based on a common group of 

factors that are believed to have a significant effect on effort. But none of the existing 

effort estimation models have accomplished the goal of consistently providing accurate 

estimates. The reasons are numerous: they generally assume a one-size-fits-all solution, 

presenting one set of factors to be measured for all the different software products and 

development processes in existence; they rely on estimating effort based on size metrics 

that are to date widely argued; they mostly ignore the importance of data collection and 

model calibration; and they apply algorithms that generally do not account for the 

uncertainty and subjectivity within software development metrics. Thus, while accurate 

effort estimates are still keenly sought out by software organizations, existing estimation 

models come short of providing this essential information.

In [11], Fenton and Neil develop a list of the desired characteristics that a software 

development effort estimation model must have. The characteristics they list are:

• The ability to handle diverse process and product variables

• The ability to incorporate empirical evidence and expert judgment

• The ability to determine genuine cause and effect relationships

• The ability to handle uncertainty

• The ability to handle incomplete information

The purpose of this thesis is to research and develop a software development effort 

estimation model that contains these desirable characteristics.
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1.3 Proposed Solution

This thesis proposes a new software development effort estimation model, entitled the 

Neuro-Fuzzy Estimation Model (NFEM). The NFEM makes use of intelligent 

algorithms to provide accurate estimates and establish an estimation process. The 

proposed model overcomes many of the problems faced by existing effort estimation 

models.

The NFEM is accompanied by a four step preparation process that allows any 

organization implementing it to establish an estimation process. The preparation process 

consists of selecting a set of attributes that highly effect effort and collecting effort 

estimation data profiled with these attributes. The relationship between effort and the 

selected attributes is then modeled using the collected data and intelligent algorithms; 

fuzzy logic is also incorporated in the NFEM to account for the subjective and uncertain 

nature of the collected data.

1.4 Research Methodology

The proposed software development effort estimation model combines several 

computational intelligence paradigms, such as neural networks and fuzzy logic. 

Moreover, it makes use of insights gained from decades of research and experience in 

the field of software engineering to develop a comprehensive and customizable 

estimation model.

The model is validated in a real-world setting, with data from a large corporation. This 

provides a realistic view of the problem and the proposed solution. While the full 

implementation of the NFEM would require several years of data collection, the initial 

steps of the preparation process are validated in this thesis.

3



1.5 Thesis Organization

This thesis is organized as follows: Chapter 2 introduces paradigms of computational 

intelligence used in the development of the NFEM. This includes fuzzy logic, multilayer 

feedforward neural networks, the adaptive neuro-fuzzy inference system (ANFIS), and 

algorithms used to extract rules from trained neural networks. Chapter 3 discusses 

existing estimation models and their shortcomings. It also covers some research studies 

that apply computationally intelligent algorithms to the task of effort estimation.

Chapter 4 describes the Neuro-Fuzzy Estimation Model in detail, including all four 

preparation steps involved. Chapter 5 introduces the industrial partner and describes the 

validation dataset obtained from them. Chapter 6 contains the evaluation of the initial 

preparation steps of the NFEM on the validation data obtained from the industrial 

partner. And finally, Chapter 7 concludes with a summary of the contributions of this 

research and directions for future work.
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CHAPTER II 
Soft Computing

Soft computing is a branch of computing that tries to mimic the human mind in order to 

exploit tolerance for imprecision and uncertainty [55]. This thesis applies a combination 

of two soft computing techniques, fuzzy logic and neural computing, to more accurately 

calculate software development task effort estimation. Multilayer feedforward neural 

networks are used to model the relationship between development effort and the factors 

that affect it, while fuzzy logic is incorporated to deal with the uncertainty and 

subjectivity present in these factors. And finally, a rule-extracting technique is used to 

extract rules from a trained neural network which are then embedded into the Adaptive 

Neuro-Fuzzy Inference System (ANFIS). In this chapter, these soft computing 

techniques are described in detail.

Section 2.1 explores fuzzy logic and the zero-order Sugeno fuzzy inference system. 

Section 2.2 examines multilayer feedforward neural networks and the backpropagation 

learning algorithm. In section 2.3, the adaptive neuro-fuzzy inference system developed 

by Jang [21] is described. And finally, Section 2.4 examines some of the different 

methods used to extract rules from trained multilayer neural networks, and describes in 

detail the one method that is applied in the preparation process of the Neuro-Fuzzy 

Estimation Model.

2.1 Fuzzy Logic

Conventional logic (also known as Boolean, classic, or crisp logic) only allows for truth 

or falsehood. An element either belongs to a set or it doesn’t. Such black and white logic 

satisfies the classes and sets of our world that have well-defined boundaries, such as the 

set of all integers, the set of living things, the set of liquids, and so on. However, 

classical logic lacks the ability to satisfy sets with ill-defined boundaries. For example, 
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“the set of warm temperatures,” “the set of young people,” or “the set of cheap cars,” do 

not constitute sets in the usual mathematical sense. These sets are imprecise and there is 

a degree of uncertainty associated with each element that falls into one of the above sets, 

in terms of how well the element fits in.

In solution to this problem, in 1965, Zadeh published his seminal paper titled “Fuzzy 

Sets” [54]. In it, he proposed a new type of logic that addressed the problem of 

quantifying these imprecise sets: fuzzy logic. The principal idea behind fuzzy logic is the 

idea of a fuzzy set where the transition from “belongs to a set” to “does not belong to a 

set” is gradual. This gradual transition is characterized by a membership function that is 

associated with the fuzzy set [22]. A more formal definition follows in the succeeding 

subsection.

2.1.1 Fuzzy Set Definition

Let X be a classical set of points with a generic element of X denoted by x. A fuzzy set A 

in X is characterized by a membership function, UA, which associates each point x in X 

with a real number in the interval [0,l]. The value of UA (x) at x represents the “grade of 

membership of x in A” [55]. The closer the value of uA(x) to 1, the higher the 

membership grade of x into fuzzy set A. In other words, the membership grade is the 

truth value of the statement "x is an element of A.”

Example: Let X =R , be the set of all possible weather temperatures. Usually, X is 

referred to as the universe of discourse, or simply as the universe. Figure 2.1 illustrates 

the fuzzy set of warm weather temperatures. The set is associated with a bell shaped 

membership function whose domain extends from 3° Celsius to 30° Celsius and whose 

range extends from 0 to 1.

6



Figure 2.1 - The fuzzy set of warm weather temperatures.

00 0.5 ■
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0 _________ I_________ 1 1 I1I_________ I_________

-50 -40 -30 -20 -10 0 10 20 30 40 50

Weather Temperatures

For each temperature value, x, we can determine its membership grade by evaluating the 

membership function, Uwarm_weather(x), at x. Graphically, this is done by extending a 

vertical line from x. The y-coordinate of the point of intersection between the vertical 

line and the membership function curve provides the membership grade. Ifthe line never 

intersects the curve, then the membership grade is 0. Figure 2.1 shows that the 

membership value for the temperature 10° Celsius is 0.25 and the membership grade for 

20° Celsius is 0.85.

2.1.2 Types of Membership Functions

This sub-section defines two commonly used membership functions and discusses their 

advantages and disadvantages.

2.1.2.1 Triangular Membership Function

A triangular membership function is specified by three parameters, a, b, and c where 

a <b <c. Togethertheydeterminethexcoordinatesofthethreecornersofthe 

triangular membership function [33], as illustrated in Figure 2.2.

7



0, x<a

triangle(x; a, b, c) =

x -a
b-a’
c-x 
c - b, 
0, c<x

Figure 2.2 - Triangular membership function ∣33∣.

The triangular membership function is often used in industrial applications of fuzzy 

systems due to its simple formula, computational efficiency, and ability to create non- 

symmetric functions [13]. However, its biggest disadvantage rests in its lack of nonlinear 

smoothness which is sometimes required.

2.1.2.2 Bell Membership Function

A bell membership function is specified by parameters a, b, and c where a determines 

the width of the function, b determines the slopes of the sides of the bell function, and 

c represents the centre of the function [33]. Figure 2.3 illustrates how each parameter 

affects the shape of the curve. Also, it should be noted that b is usually positive. If b is 

negative, the shape of the function is an upside down bell.

bell(x; a,b,c)=

The bell membership function is computationally inefficient compared to the triangular 

membership function. However it is nonlinearly smooth, a property required in the 

adaptive neuro-fuzzy inference system described in Section 2.3 and used in the Neuro- 

Fuzzy Estimation Model.

8



Figure 2.3 - Bell membership function [33].

2.1.3 Fuzzy Operations

This section summarizes two operations through which different fuzzy sets can interact. 

Many definitions have been developed for each of the operations defined here; however, 

this section only contains the Zadehian and probabilistic definitions, as they are the most 

popular [41].

2.1.3.1 Union (Logical OR)

The union of two fuzzy sets A and B is a fuzzy set C, where C = AuB (see Figure 2.4). 

The membership function of C is most commonly determined by:

Zahedian Union: Probabilistic Union:

uc(x)= max(u,(x), up(x)) ue(x)= u,(x)+ up(x)-u,(x)* up(x)

(a) Fuzzy Sets A and B (b) Fuzzy Set "A OR B'

Figure 2.4 - The Zahedian union of fuzzy sets A and B [33].
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2.1.3.2 Intersection (Logical AND)

The intersection of two fuzzy sets A and B is a fuzzy set C, where C = AnB (see Figure

2.5). The membership function of C is most commonly determined by:

Zahedian Intersection:

⅛(x) = min(u,(x), up(x))

Probabilistic Intersection:

uc(x)= u (x)* ug(x)

0.S

(a) Fuzzy Sets A and B

0.8

(b) Fuzzy Set “A AND B"

0.2

Figure 2.5 - The Zahedian intersection of fuzzy sets A and B [33].

2.1.4 Application of Fuzzy Set Theory: Zero-Order Sugeno Fuzzy Inference

This subsection examines how a fuzzy inference system (FIS) calculates an output from a 

set of inputs. There are several different variations of the fuzzy inference process. Here, 

only the zero-order Sugeno-style inference is examined as it is the type of inference 

system used in the adaptive neuro-fuzzy inference system outlined in Section 2.3 and 

applied in this thesis.

The zero-order Sugeno inference process is performed in three steps: Fuzzification, rule 

evaluation, and output determination. The inference system contains rules of the 

following format:

IF x is A ANDy is B THEN z is c
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The inputs x and y are linguistic input variables and A and B are fuzzy sets on the 

universes X and Y, respectively [41]. The output of the system is z and it is assigned the 

value of the constant c. A simple example is used to depict the inference process.

2.1.4.1 Example Problem

Let us suppose that we have a zero-order Sugeno fuzzy inference system that determines 

used computer books’ prices based on the condition of the book and the year the book 

was published. So the inputs are Condition and Year Of Publication and the output is 

Price. The linguistic variable Condition is described by the linguistic values Poor, Good, 

and Excellent. The linguistic values for Year Of Publication are Old, Dated, and 

Recent. Figures 2.6 and 2.7 show the membership functions associated with each 

linguistic variable’s terms.

Poor

3 6

Figure 2.6 - Fuzzy sets Poor, Good, Excellent.

0.5

Dated Recent

Figure 2.7 - Fuzzy sets Old, Dated, Recent.

0 -r=τ∑Ξ∑7ττΞ∑=~τ∑∑∑z=fττ=τ∑-=r=r∑∑7L- 
1930 1985 1990 1995 2000 2005

For the condition of the book, an integer between 0 and 10 is entered as input, 0 denoting 

very bad condition, 10 denoting excellent condition. The year of publication is entered 

for the second input (for simplicity’s sake, it is assumed that there are no books to be sold 

that were published before 1980) and a price between $5 and $60 is generated as the 

output. The example will be illustrated using the inputs outlined in Table 2.1.

Table 2.1 - Sample inputs to the book pricing fuzzy inference system.

Linguistic Variable Input
Condition 4
Year of publication 2000

The rules for the zero-ordered Sugeno fuzzy system described are:
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Rule 1: IF Condition is Poor OR Year Of Publication is Old THEN Price is $10

Rule 2: IF Condition is Good AND N ear_Of_Publication is Dated THEN Price is $28

Rule 3: IF Condition is Excellent AND Year Of Publication is Recent

THEN Price is $55

Rule 4: IF Condition is Excellent AND Year Of Publication is Dated

THEN Price is $35

Rule 5: IF Condition is Good AND Year Of Publication is Recent THEN Price is $48

To keep the example straightforward, we will assign each rule the weight of 1. It should 

be noted however, that any weight between 0 and 1 can be associated with each rule, so 

that some rules affect the output more than others [22].

2.1.4.2 Fuzzification

This step involves taking the crisp inputs, 4 and 2000, and determining their membership 

grade within each corresponding fuzzy set. Figures 2.8 and 2.9 show the graphical 

interpretation of the fuzzification process. The membership grades are obtained by 

applying the triangular membership function formula depicted in Section 2.1.2.1.

Poor

3

Figure 2.8 - Fuzzification of Condition.

05

Old Dated Recent

1930 1985 1990 1995 2000 2005

Figure 2.9 - Fuzzification of Year Of Pub.

Thus:

LCondition=Good (4) 0.75

Mraar.or.Publcmom=D-(2000) = 0.30
Lyearor. Publication-Recent (2000) = 0.50
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2.1.4.3 Rule Evaluation

The second step of the Sugeno fuzzy inference process is evaluating each rule. This is 

done by applying the truth value of the antecedent part of the rule to the consequent part 

of the rule. The antecedents of the rule are the input variables and fuzzy sets that make 

up the IF part of the rule [41]. The consequent ofthe rule is the THEN part of the rule 

[41]. as shown below.

Antecedents Consequent

IF Condition is Poor OR Year Of Publication is Old THEN Price is $10

Antecedent 1 Antecedent 2

If there are two antecedents in the rule, then the Zahedian definition of the operation that 

connects the two parts is applied to determine the consequent truth value. For example:

Rule 1: IF Condition is Poor OR YearOfPublication is Old THEN Price is $10

The truth value of Condition being Poor is 0, and the truth value of Year Of Publication 

being Old is 0. The two antecedents are connected by OR (union), so the maximum of 

the two values is the truth value ofthe consequent, Price is $10. Since, both antecedents 

have truth values of 0, the consequent, Price is $10, also has a consequent of 0. It is said 

that Rule 1 did not fire.

Rule 2: IF Condition is Good AND Year_Of_Publication is Dated THEN Price $28

The truth value of Condition is Good is 0.75 and the truth value of Year_Of_Publication 

is Dated is 0.3. The two antecedents are connected by AND (intersection), so the 

minimum ofthe two values is applied as the truth value ofthe consequent. Thus, Price is 

$28 by a truth value of 0.3.
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Similar analysis of the remaining three rules yield that Rules 3 and 4 do not fire, while 

Rule 5 fires with a truth value of 0.5.

2.1 .4.1 Output Determination

Rules 2 and 5 fired, stating that Price is $28 and Price is $48 by truth values of 0.3 and 

0.5 respectively. The weighted average (WA) of the firing rules’ consequents is used to 

obtain a crisp price:

Price = 28× 0.3 + 48× 0.5 .
---------------------- = 40.50

0.3+ 0.5

So the zero-order Sugeno fuzzy model yields a Price of $40.50 when the Condition of the 

book is rated at 4 and the YearOf Publication for the book is 2000.

2.2 Neural Networks

The artificial neuron was first introduced in 1943 by McCulloch and Pitts [38]. Today, 

many different types of artificial neural networks are in existence. In this section, only 

the model ofthe multilayered feedforward neural network will be examined. This is the 

most widely applied neural network due to its ability to emulate any input-output 

relationship [19]. First, the properties ofthe artificial neuron are explained, followed by 

the properties of the multilayer feedforward network, and finally the backpropagation 

algorithm is described.

2.2.1 The Artificial Neuron

The artificial neuron used in today’s neural networks is very similar to that developed by 

Pitts and McCulloch in 1943 [38]. It has a set of input links, where each link is
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associated with a numerical weight (W1,... W), usually between [0, 1 ] or [-1. 1] (see 

Figure 2.10).

θ

O 
-----------•

Figure 2.10 -The artificial neuron with n inputs.

The neuron has an activation function, which determines the activity level of the neuron. 

In the multilayered feedforward neural network, this function is usually modeled as the 

weighted sum of all the neuron’s inputs [44]:

n

X =2XW,
where xj is the jth input to the neuron, Wj is the weight of the link supplying the j'h input to 

the neuron, and n is the number of inputs that the neuron has.

Each neuron is also associated with an output function, O, which is usually modeled as 

the step function or the sigmoid function [44] (Figure 2.11). The sigmoid function 

approximates the step function but is nonlinearly smooth.

08

06

04

02
if X 20
if X <0

Figure 2.11 - The step function and the sigmoid function.

Furthermore, each neuron is also associated with a threshold value, 0. If the output of the 

activation function is equal to or above the neuron’s threshold value, then the output 

function is evaluated to be one and the neuron is said to “fire” [44]. Otherwise, the 
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output function is zero and the neuron is said to be “inactive” or “not fire”. The node 

function is the composition of the activation function and the output function, where the 

threshold of the neuron is considered as the 0 weight of the neuron. Thus, the neuron’s 

firing output is decided by the following equation: 
n 

1 if 2x,w,2 0 _
0 = ∖ 1^a V 

n -ZXjWj

0 if LX W, <0 1+e 0
. j=0

2.2.2 The Multilayered Feedforward Neural Network

Figure 2.12 shows the architecture of a three-layered feedforward neural network. It 

consists of three or more distinct layers of nodes, where there are no links between the 

nodes of the same layer. The outputs of the nodes in the input or a hidden layer are 

always connected to nodes in the succeeding layers as inputs. The middle layer is called 

the hidden layer because its inputs and outputs are not observable. Generally, a 

multilayer feedforward neural network can have more than one hidden layer, but for 

simplicity, the three-layer neural network is exemplified in Figure 2.12. The nodes ofa 

multilayered network have the same properties as that of the single neuron. Usually, the 

same node function is used for all the nodes of the network or for all the nodes ofa 

specific layer.

W

WLj

Input Layer/ Hidden Layer j Output Layer/

Figure 2.12 - A three-layer feedforward neural network.
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2.2.3 The Backpropagation Algorithm

A learning algorithm outlines how a neural network can learn to model the input-output 

relationship. The backpropagation algorithm allows the neural network to model the 

input-output relationship by using a training dataset that consists of inputs for which the 

desired outputs are known. For each data point within the training set, the network 

output is determined and compared with the desired output. The networks’ performance 

is measured as the discrepancy between the desired output and the network’s actual 

output under the same input [22]. This discrepancy, called the error measure, is usually 

the mean or the sum of the squared differences between the desired outputs and actual 

outputs of the training set. The algorithm improves the network’s performance by 

adjusting the weights of the connections between the neurons so that the error measure is 

minimized. The learning rule is essentially an optimization technique that strives to 

minimize the error measure. The backpropagation algorithm is based on the gradient 

descent optimization technique [13]. The gradient descent method takes advantage of the 

fact that moving in the opposite direction of the derivative of a function leads to a 

descent. Thus, when the gradient descent method is applied to the error function obtained 

by comparing desired and actual outputs, the weights of the network are moved in the 

direction of the descending error.

At the start of the training procedure of a multilayer backpropagation neural network, the 

initial weights and thresholds are set to small random numbers [13]. A tolerable 

maximum network error 8 is chosen to be a positive, real value close to or equal to zero 

[13]. The training pair index, k, is set to one. This index keeps track of which input

output pair is being processed. When each training pair has been processed once by the 

network applying the learning algorithm, then an epoch is completed. A variable E keeps 

track of the cumulative error during an epoch. At the end of the epoch, E is compared 

to 8, and if it is less than s, then training is stopped. Otherwise, E is set to zero again and 

a new epoch begins. The number of epochs used to train the network can also be used as 

a criterion for stopping the training because often times, after one thousand epochs, the 

improvement is negligible [9].
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2.3 Neuro-Fuzzy Systems

Neuro-fuzzy systems combine fuzzy inference and neural computing to provide a 

mechanism that learns from data, is robust to uncertainty and incomplete data, and uses 

reasoning that is transparent to the user.

In this section, the adaptive neuro-fuzzy inference system (ANFIS) developed by Jang 

[21] is described, as applied to the zero-order Sugeno fuzzy inference. The system 

combines the Sugeno fuzzy inference with a multilayered neural network. The rule base 

of a zero-order Sugeno ANFIS system must be known in advance, while the parameters 

of the membership functions used for the fuzzy sets of the inputs are adjusted through the 

training of the ANFIS system. The reason why ANFIS was the neuro-fuzzy system of 

choice for this thesis was its computational efficiency and availability on the software 

package MATLAB.

2.3.1 ANFIS Architecture

A generic ANFIS system has five layers (the input layer is not counted as a layer by Jang 

[21]). Each layer deals with a specific step of the fuzzy inference process such as 

fuzzification, rule evaluation, firing strength normalization, weighted consequent 

determination, and weighted consequent summation. Below is a detailed description of 

each layer. For simplicity, an ANFIS system with only two inputs and one output (shown 

in Figure 2.13) will be used. The system’s inputs are x and y, where x is described by the 

linguistic values Aι and A2, and y is described by linguistic values Bi and B2. The 

membership functions of the fuzzy sets that represent the linguistic values of each input 

variable are in the shape of the bell function. The output of the system, z, takes on a 

different value in each rule, corresponding to the constant in the consequent of the rule. 

Therefore, the rules of the system are:

Rule 1: If x is Aι and y is Bi then z is Zi 

Rule 2: If x is A2 and y is B2 then z is Z2
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Layer 5

W1 W1

W2

Figure 2.13 - A two-input one-output ANFIS architecture.

2.3.1.1 Layer 1: Fuzzification

Each node in this layer is an adaptable node, represented by a square in Figure 2.13, 

indicating that the node function’s parameters are adjusted during training. Each node 

function in this layer corresponds to one of the membership functions used for one of the 

inputs. Consequently, the output of the node is the membership grade of the input within 

that membership function [21]. Thus, in Figure 2.13, the outputs of the first and second 

neurons in the first layer are the membership grades of input x into fuzzy sets Ai and A2, 

respectively.

The membership functions are usually generalized bell functions. Therefore, the bell 

membership function parameters a, b, and c are adjusted by the learning algorithm during 

training. The resulting shapes ofthe membership function are fine tuned to the training 

data. The backpropagation algorithm is used as the learning algorithm [22].

2.3.1.2 Layer 2: Rule Evaluation

Each neuron of the second layer is a fixed node, represented by a circle in Figure 2.13, 

indicating that the node function’s parameters are not adjusted during training. Each 

node represents a fuzzy rule ofthe system. The inputs of a node are the membership 
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grades ofthe system inputs into the fuzzy sets ofthe antecedents ofthe rule. For 

example, the rule represented by the first node in the second layer of Figure 2.13 takes in 

as input the membership grades of x into Al and y into B1. Thus, its antecedents are “If x 

is Al AND y is Bl”. The outputs of this layer’s neurons are the firing strengths of the 

rules, denoted by Wi, where i indexes the neurons of the layer.

2.3.1.3 Layer 3: Firing Strength Normalization

Once again, the nodes of this layer are fixed nodes. The t'h node of this third layer 

corresponds to the rule represented by node i in the second layer. Each node computes 

the ratio of its corresponding rule’s firing strength to the sum of all rules’ firing strengths:

Wi

i=0

The resulting outputs of this layer’s neurons are called the normalized firing strengths 

[22] and each output is denoted with W, where i indexes the nodes of the layer. Thus, in 

Figure 2.13, the first node computes the normalized firing strength of the rule represented 

by the first node in the second layer. The input of each node i in this layer is the output 

of every node in the previous layer, so that the sum of all rules’ firing strength can be 

computed.

2.3.1.4 Layer 4: Weighted Consequent Determination

The neurons of this layer are fixed neurons, and each neuron i of this layer corresponds to 

the consequent of the rule represented by the ilh neuron in layer two. The input of neuron 

i in this layer is the normalized firing strength of the rule it represents. Its output is the 

product of the normalized firing strength and the constant value that is contained in the 

consequent of the rule, resulting in a weighted consequent. Thus, in Figure 2.13, the 

output of the first neuron in the fourth layer is the product of the normalized firing 

strength of the first rule, wi , and the constant Z].

20



2.3.1.5 Layer 5: Weighted Consequent Summation

There is one node in this layer for each output of the system. For the example system of 

Figure 2.13, there is only one node, and therefore only one system output. The output of 

the node is the system output and is computed as the summation of the node’s inputs:

2 
Z = V

i=l

2.4 Extracting Rules from Neural Networks

Because the rule base of an ANFIS system must be known in advance, it is impossible to 

apply ANFIS unless a rule base exists. In cases where expert knowledge is unavailable, 

it is possible to extract rules from a trained neural network and implement them into an 

ANFIS. Rule-extracting algorithms fall into three categories: Decompositional, 

pedagogical, or eclectic [2]. Due to time constraints, only the decompositional class of 

algorithms was examined during the development of this thesis. Section 2.4.1 describes 

the decompositional approach for extracting rules from trained neural networks. In 

Section 2.4.2 different techniques that have been proposed to do this are reviewed. And 

Section 2.4.3 describes in detail the rule-extraction technique that is chosen as the most 

suitable one for the purpose of this thesis.

2.4.1 The Rule Extraction Problem

In a multilayer feedforward neural network, the output of each neuron is calculated as:

0, = Act Lx,w, > xo =1,W =-0 (1) 
j=0 J

where

Ac(n,)=-1 (2)
1 + e
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In (1), Oi is the output of neuron i, wj is the weight on the j incoming link to neuron i, xj 

is the input of the j" incoming link to neuron i, and Wo is the negative of the neuron’s 

threshold. The activation function Act(ni) is modeled as the sigmoid function, as shown in 

(2). The α parameter controls the steepness of the sigmoid function.

The most important characteristic of the decompositional approach is that all neurons in 

the neural network have inputs of approximately zero or one [2]. In the hidden layer 

neurons, binary inputs in the input layer allow for this to happen. In the output layer 

neurons, this is made possible by increasing the α parameter of the hidden neurons (to 

approximately ten), to ensure that the hidden neurons’ outputs approximate Boolean 

behavior [31]. Having Boolean inputs ensures that the links that are incoming to a 

neuron carry a signal that is equal to the size of the weight or zero. Thus, rules are 

extracted from each hidden neuron by finding combinations of incoming weights whose 

sum exceeds the threshold ofthe neuron [2]. Since each incoming weight, Wj, is 

associated with an input, Xj, each combination of weights that results in exceeding the 

threshold ofthe hidden neuron can be written as a combination of inputs. By doing so, a 

rule is created where each input is an antecedent of the rule, and the antecedents are 

connected by the logical operator AND.

Figure 2.14 - Example neural network used for extracting rules.

0.5
2.0

H2
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For example, Figure 2.14 shows a neural network with three inputs Iι to I3, two hidden 

neurons, Hi to H2, and 2 outputs, Oj to O2. The thresholds of each neuron are also 

shown. The threshold of hidden neuron Hl is 1.5. Node Hi is only activated when inputs 

Iι and I2 are one, because the sum of their weights equals 1.6. The rest of the weight 

combinations do not yield a sum equal to or greater than 1.5. Thus the successful weight 

combination is written as a rule “IF I1 AND I2 THEN H1”.

Next, for each output neuron, combinations of incoming weights whose sum exceed the 

threshold ofthe neuron are determined [2]. Each incoming weight is associated with a 

hidden neuron, enabling each output to be associated with the set of inputs that activated 

the hidden neuron. For example, in Figure 2.14 the link between Hι and O2 has a weight 

of 1.8, whereas the threshold of output neuron 02 is 1.7. Thus the incoming link of Hi is 

sufficient to activate output neuron, O2, resulting in the rule “IF H1 THEN 02.” By 

combining the rule extracted from the hidden layer with that extracted from the output 

layer, the following rule is created: “IF H AND I2 THEN 02.” This resulting rule 

models an aspect of the relationship between the inputs and the output.

2.4.2 Review of Existing Decompositional Rule-Extracting Algorithms

In the past two decades, many different decompositional rule-extracting algorithms have 

been proposed. Some attempt to reduce the search space for combinational weights, 

while others attempt to allow the use of continuous inputs.

Fu proposed the KT algorithm, where, for each hidden and output neuron, it searches for 

a single link with a large enough weight to exceed the threshold of the neuron [14]. If 

such a link is found, a rule is written. Next, the algorithm searches for subsets of two 

links that exceed the threshold, followed by a subset of three, and so on.

The search space is constrained by limiting the number of antecedents in a rule and using 

three heuristics [14]. However, in spite of all this, the algorithm is still of exponential 

complexity and therefore very inefficient [14]. In addition, imposing a maximum number 

of antecedents in a rule can significantly affect the quality of the rule set [2].
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Towell and Shavlik present another rule extracting algorithm in [51]. It is implemented 

on a special multilayer network developed by them in [52], called the knowledge-based 

neural network (KBNN). The existing knowledge about the domain is first inserted into 

the architecture of the network and the network is trained with the backpropagation 

algorithm. Then links with similar weights are combined into clusters and the average of 

the cluster’s weights is used as the weight of each link belonging to that cluster. Clusters 

with low link weights and few members are then eliminated as they are assumed to have 

little influence on the outcome of the network. The weights of the links are then fixed 

and the network is retrained with the backpropagation algorithm to adapt the thresholds 

of the network. Finally, a rule is written for each hidden unit and output unit where each 

antecedent of the rule is associated with a weight and the rule is associated with the 

threshold of the neuron. The rules take the form:

IfM of N antecedents are TRUE then C

The primary goal of the M-of-N algorithm is to refine rules contained in the initial rule 

base. This limits its use to domains where the input-output relationship knowledge 

exists. Also, it does not allow for new and unexpected knowledge to be discovered [2].

While the above algorithms extract crisp rules and only deal with Boolean inputs, other 

researchers have proposed algorithms for extracting fuzzy rules or systems that deal with 

fuzzy inputs. Hayashi and Imura proposed a fuzzy neural expert system with automated 

extraction of fuzzy rules that can handle fuzzy and crisp inputs [18]. In addition, each 

extracted rule is associated with a fuzzy truth value such as Very True or Possibly True, 

and each antecedent in a rule is associated with a fuzzy importance value such as Very 

Important or Moderately Important. However these truth values and importance values 

make the algorithm difficult to implement.

Kasabov’s REFuNN algorithm [25],[26], applied to the specially constructed fuzzy 

neural network (FuNN) also has the ability to extract fuzzy weighted rules as well as 
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simple fuzzy rules; however, the number of rules extracted for a fairly simple problem 

such as the Iris classification data [42] is very large.

NEFCLASS (Neuro Fuzzy CLASSification) is a neuro-fuzzy system for the classification 

of data and is presented by Nauck and Kruse in [39], [40]. The goal of the system is to 

learn fuzzy rules from the training data patterns as it classifies each pattern into crisp 

classes. However, a ceiling is placed on the maximum number of rules extractable, a 

constraint that could seriously hinder the quality of the rule set [2].

2.4.3 The Selected Algorithm

Krishnan et al. provide a simple and efficient technique for extracting rules from feed

forward neural network in [31]. They start by applying the method presented by Sethi 

and Yoo [48] to convert any negative weights in the network into positive ones. Then the 

weights of a given neuron of the hidden or output layer, are sorted in descending order 

and combinations of all possible sizes are created. Subsequently, the combinations of 

any particular size are ordered in descending order of the sum of the weights in the 

combination. Then a combination tree is created where all combinations of size i are 

placed at the ilh level of the tree, while maintaining the descending order [31]. For 

example, given a node with four weights of values 4, 3, 2, 1 when sorted in a descending 

order, Figure 2.15 shows the combination tree.

When searching for combinations of weights that exceed the threshold of the neuron, the 

search space is reduced in two ways. First, if a combination at any level fails, the rest of 

the combinations in that level can be ignored, because they will also fail [31]. For 

example, suppose the neuron whose combination tree is shown in Figure 2.15, has a 

threshold of three. Once weight 2 fails to exceed the threshold in Layer 1, there is no 

need to check weight 1. Since the weights were sorted in a descending order, it is given 

that weight 1 will also fail.
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The second way to reduce the search space is by eliminating combinations at a lower 

level of the tree that subsume a combination at a higher level that was successful in 

forming a rule [31]. For example, in Figure 2.15, weight 4 of Level 1 is successful in 

activating the neuron. Therefore, all combinations in the lower levels of the tree (shown 

in italicized red print) that subsume weight 4, will form less general rules and thus can be 

ignored.

Level 1

Level 4

4+1=5

4+2+l=7

4+2=6

4+3+l=8

4+3=7

4+3+2=9

4+3+2+l 
=10

Figure 2.15 - Example combination tree.

Level 3

3+1=4

3+2+1=6

3+2=5

Root

2+1=3
Level 2

This algorithm is selected to be applied in the NFEM preparation process due to its 

simplicity and efficiency. It is able to extract all significant rules while reducing the 

search space significantly without introducing complex heuristics or constraints that 

could hinder the accuracy and comprehensiveness of the extracted rule set.
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CHAPTER III 
Literature REVIEW

The problem of estimating software development effort is as old as the field itself. Over 

the decades many effort estimation models and techniques have been proposed, but the 

estimates they produce are often inaccurate. A common weakness that most models and 

techniques share is that they concentrate on profiling the project at a high level, leaving 

out any details that add valuable information.

Among the many software development effort estimation models and techniques that 

have been proposed, some have become very popular and are widely used by the 

industry. Sections 3.1 to 3.5 describe and discuss the Expert Delphi technique, the Peer 

Evaluation and Review Technique (PERT), the Software Life-cycle Model (SLIM), 

COCOMO II, and Function Point Analysis, respectively. In addition, in recent years, 

many effort estimation techniques using soft computing have been proposed, though not 

many have been put to use by industry in everyday practice. Section 3.6 presents some of 

the software estimation techniques proposed that make use of soft computing. Finally, 

Section 3.7 discusses three factors that have been found to strongly affect software 

development effort, throughout many research studies conducted.

3.1 The Expert Delphi Technique

One of the very first estimation techniques arose in the late 1950’s from the RAND 

Corporation and became known as the Expert Delphi technique [50]. The technique is 

iterative in nature, consisting of a set of rounds. In each round, several developers 

estimate the value of one or more items anonymously and independently. An item is a 

software development task and can vary from being a function, an object, a full system 

feature, or any other unit into which the software system being estimated is decomposed. 
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At the end of a round the estimators are only shown the maximum, minimum, and 

average estimated values for each item for that round. The idea behind this technique is 

that eventually a convergence value for each item being estimated will be reached.

Today, most organizations which confirm to use this technique do not follow the formal 

process described above [24]. Instead, usually each item being estimated is discussed by 

the team until an effort estimate is agreed upon.

The problem with this technique is that it is subjective to the individual experience of the 

estimator, his or her incomplete recall and bias, and as such, the estimates are no better 

than the participants involved [50]. But perhaps the greatest challenge that is present in 

the use of this technique is that studies continually show most estimators tend to 

underestimate [24]. Jorgensen cites 8 studies that are consistent in concluding that 

“experts can be strongly biased and misled by irrelevant information towards over

optimism” while estimation models are not [24]. In addition, Laranjeria cites a study 

done by Yourdon Inc., where experienced managers were asked to estimate the size of 16 

projects [32]. Over half of the projects were severely under-estimated with an MRE of 

100% or more, and many of them had an MRE of over 200%. The study found that the 

reasons for the underestimation tendency include the desire to please management, 

incomplete recall of previous experience, lack of familiarity with the entire software job, 

and the lack of sufficient knowledge of the particular project being estimated.

3.2 Program Evaluation and Review Technique (PERT)

Originally developed by Lockheed and the U.S Navy in the late 1960’s, the Program 

Evaluation and Review Technique (PERT) is an easy and simple technique which, to 

some extent, takes into account the estimator’s uncertainty in determining the estimate 

[50].

The technique requires the estimator to provide three estimation values, the pessimistic 

value, the most likely value, and the optimistic value. Assuming that the optimistic and 
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pessimistic values correspond to minus and plus the three-sigma limits of the distribution, 

respectively, the expected value is calculated as:

E=(0+ 4*M + P)/6

where O represents the optimistic value, M represents the most likely value, and P 

represents the pessimistic value. The value obtained by dividing the standard deviation 

by the estimated effort value indicates the degree of uncertainty in the estimator’s part 

[50]:

Uncertainty Degree = σ∕E 

where

σ = (P-O)/6.

In comparison to the expert technique, PERT offers the benefit of quantifying the 

estimator’s degree of uncertainty. However, PERT also suffers from the same 

underestimation tendency that the expert estimates suffer: People’s “most likely” 

estimates tend to cluster toward the optimistic estimates [7], [50].

3.3 Software Lifecycle Model (SLIM)

In 1978, Lawrence Putnam published a paper, [46], in which he described a new way of 

estimating the software lifecycle effort. Putnam’s SLIM model is based on the Norden- 

Rayleigh distribution and builds on the ideas of the PERT technique. As shown in Figure 

3.1, the Rayleigh curve shows a build up at the start, peaks when the product is delivered 

to the customer, and then tails off.
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S

Figure3.1 -The Norden-Rayleigh distribution.

Based on the findings of the Norden-Rayleigh Distribution, Putnam developed the the 

general equation of the SLIM model [46]:
9 

(Size)7 y 
E= ----- MBI7

P)

where P is the productivity process parameter, E is the total software lifetime effort 

measured in person years, Size is measured in lines of code or function points, and 

constant MBI is the manpower buildup index.

Putnam’s technique is modeled by the SLIM tool, which is developed by Quantitative 

Software Management (QSM), a company established by Putnam [47]. The tool allows 

the inputs to be for the pessimistic, most likely, and optimistic scenarios. The manpower 

buildup index and the productivity process parameter are best determined from historical 

data. If no such data exists, then the user of the SLIM tool must answer a series of 22 

questions from which the tool determines the two parameters based on data collected 

from over 6,300 industry projects [37]. The productivity process parameter entails such 

factors as tools being used, languages being used, process methodologies being followed, 

and so on [49]. The manpower buildup index is based on factors such as management 

constraints (e.g. maximum allowable schedule), accounting (e.g. labor rates), personnel 

skill and qualifications, and other such factors [37]. While in the original model, size 

could only be measured in lines of code (LOC), today, QSM’s SLIM tool allows several 

other options such as function points, objects, etc. [37].
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Despite the use of 6300 industrial project data, studies have found that SLIM performs 

poorly when used in an environment for which it is not calibrated [45], [24]. Yet, because 

SLIM is designed to estimate effort at a high level, it takes a long time to collect enough 

calibration data, and as a result most companies do not invest the time in collecting the 

data. In addition the model relies on the assumption that the size parameter which is 

measured in terms of lines of code or function points is correct. The problem with this 

assumption is that while the LOC metric is easy to measure and it is an “artifact” of all 

software development projects [45], it also has a lot of disadvantages. First of all, it is 

programming language dependent, so when used, the productivity appears to decrease as 

the level of the programming language increases. Also, well-designed but shorter 

programs are penalized [50]. In addition, the LOC metric is less suitable for non

procedural languages and to estimate the lines of code, one requires a level of detail that 

may be difficult to achieve [45]. Due to these disadvantages, studies have found that 

LOC is not a reliable metric [32], and that in fact, it is easier to estimate effort terms of 

hours than lines of code [15]. The disadvantages of using function points are discussed in 

Section 3.5 of this chapter.

3.4 COCOMO II

In 1981, Barry Boehm published his famous book titled Software Engineering 

Economies, [7], where he first described the Constructive Cost Model (COCOMO). The 

second version of this model, COCOMO II, was introduced in 2000 as a result of the 

major changes that had taken place in the software development field between 1981 and 

2000 [8]. Thus only COCOMO II is described in this thesis, since its prequel, 

COCOMO, has become outdated.

The COCOMO II model consists of three level models that are used at different stages of 

the development process: Application Composition, Early Design, and Post Architecture 

[8]. The Post Architecture model is the most frequently used model version today [50], 

and is explained in detail.
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In the Post Architecture model, effort is determined based on the size of the product 

(measured in LOC or function points), a set of 17 cost drivers (CD), and variables A and 

B. The cost drivers quantify the effect that different product, hardware, personnel, and 

project factors (shown in Table 3.1) have on the effort. Each cost driver is rated on a 

scale of Very Low up to Extra High. Variables A and B account for the linear and the 

non-linear effect that increasing project size has on the effort estimate [8], respectively. 

They are determined based on the five scale factors summarized in Table 3.2. The effort 

estimation equation used in COCOMO II is:

17 5 

E=TI CD1 ×A×Sizeβ where B =1.01+0.012 SF
i=l I=I

Table 3.1 - Post-Architecture COCOMO II cost drivers.

Product Cost Drivers Hardware Cost 
Drivers

Personnel Cost 
Drivers

Project Cost 
Drivers

Required software 
reliability

Execution time 
constraints

Personnel continuity Use of software 
tools

Complexity of the 
product

Platform volatility Programmer 
capability

Multisite 
development

Size of application 
database

Main storage 
constraints

Programming 
language and tool 
experience

Required 
development 
schedule

Required reusability Analyst capability
Documentation match to 
lifecycle needs

Applications 
experience
Platform experience

Table 3.2 - Post-Architecture COCOMO II scale factors.

1. Precedentedness 4. Team cohesion
2. Development flexibility 5. Process maturity
3. Architecture/risk resolution

COCOMO II suffers from the same shortcomings that SLIM does. Studies have found 

that it must be calibrated to the environment using it in order to be used with some 

success [45], [24]. Furthermore, it is also based on the assumption that the lines of code 

estimate or function point estimate is accurate, which, as discussed in Sections 3.3 and 

3.5, is often an incorrect assumption.

32



3.5 Function Point Analysis

Unsatisfied with the often erroneous estimates that the lines of code metric produced, 

Allen Albrecht designed his own size metric in the late 1970s, while working at IBM 

[50]. The new metric, called function point, was designed to deliver functionality in 

terms that users could understand, be independent of process, technology, or 

programming language, and give a reliable indication of software size in the early design 

stages [50].

The function point analysis process quantifies product functionality based on the 

following system elements which Albrecht called function types: external inputs, external 

outputs, external inquiries, internal logical files, and external interface files [50]. Once 

all instances of each function type are identified, they are associated with a numerical 

complexity value representing low, average, or high complexity, and then summed. This 

sum is the unadjusted function point (UFP) count of the system [50]. Next, the fourteen 

general system characteristics (GSC) shown in Table 3.3 are rated on their degree of 

influence, 0 being no influence and 5 being strong influence throughout. The total degree 

of influence (TDT) is calculated by summing the degree of influence values of all the 

GSCs. Finally, the value adjustment factor (VAF) is calculated (1), followed by the 

adjusted function point count (AFP) as shown in (2):

VAF - 0.65+0.01 *TDI (1)

AFP = VAF*UFP (2)

Table 3.3 - The fourteen general system characteristics.

Data 
communications

Heavily used 
configuration

End-user 
efficiency

Distributed data 
processing

Transaction rate On-line update

Performance On-line data entry Complex 
processing

Reusability Operational ease Facilitate change
Installation ease Multiple sites
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The function point metric consists of a process that forces the estimator to perform a 

careful analysis of the system or component being implemented, which generally leads to 

a more accurate estimate [50]. Also, in general, if performed by a trained and 

experienced estimator, it is much more accurate than the LOC metric [50]. However, 

many of the entities counted in the FP process are still very much debated by experts 

[15]. Furthermore, the FP metric is designed to perform well for data processing 

applications. But in the past two decades, the software development industry has seen a 

boom in logic-complex applications, for which the function point model is not well suited 

[50], [45], [15]. Finally, the FP metric is often used with an effort estimation model such 

as SLIM or COCOMO II to convert the function point count into effort. As a result, the 

disadvantages of the effort estimation model used to perform the conversion are 

inherited.

3.6 Software Development Effort Estimation and Soft Computing

In the past two decades, many researchers have studied the idea of applying soft 

computing techniques to the problem of effort estimation, and some of these are 

discussed in this section. The estimation techniques described show that much potential 

lies in the use of soft computing in software development effort estimation. However 

none of the proposed techniques have been able to fully encompass the advantages of 

neural networks while offsetting the disadvantages by fuzzy logic and neuro-fuzzy 

systems.

In [16], Gray and MacDonell examine the implications of using non-traditional 

estimation methods, such as neural networks, fuzzy logic, case-based reasoning systems, 

and regression trees, versus the traditional regression analysis methods. These methods 

were examined in terms of their ability to model the problem, their reasoning 

transparency, and their generalisability. It was found that fuzzy and neuro-fuzzy systems 

performed best in all areas examined. Furthermore, an empirical study that compared 

neural networks to regression analysis found that the mean absolute relative error 
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generated by neural networks was half of what the regression techniques generated. The 

data consisted of 81 projects.

Another study was conducted by Boettichier in [9], where the author used data derived 

from 104 different programs to train multilayer backpropagation neural networks and 

predict actual effort in hours. The metrics tested consisted of the programs size, 

vocabulary, objects, and complexity. Each metric was further broken down into one or 

more quantitative measures, totaling 10 inputs. Different input combinations and 

network architectures were tested, totaling over 33,000 experiments. The testing showed 

that using all inputs or the combination of size, object, and vocabulary inputs yielded the 

best results while individual metrics did not fare well. When the trained model was 

tested with data from a completely different corporation, on average, the validation 

results produced estimates within 30% of the actuals, 73.26% of the time. No 

experimentation results were given that compared the success of various network 

architectures used. While Boettichier’s approach consisted of some novel ideas, the 

quantitative inputs used require knowledge at a level of detail that is most often not 

known at the time estimates are created.

Furthermore, in [10], Boettichier conducted further tests, where software projects were 

estimated using a bottom-up technique and a neural network. Data from two different 

corporations were used and the only input to the network was size in terms of LOC. 

Individually, an average of only 9% of the development tasks was predicted with 25% 

accuracy. But when summed up as total for the project, the project was predicted with 

25% accuracy 90% of the time. This study showed that decomposing a project into 

smaller tasks and using neural networks to generate estimates yields a high accuracy of 

project effort estimation, even though the tasks are not always accurately predicted.

Finnie and Wittig also conducted experiments using neural networks with the ASMA 

project data [12]. When only function point count was used as input, only 56% of the 

data were estimated within 25% accuracy. However, when other attributes such as 

language and complexity were used, over 77% of the data were estimated within 25% 

35



accuracy. This study, like [9], showed that using more than the estimated size attribute as 

input, when estimating using neural networks, yields more accurate results.

In an attempt to use the success of neural networks, while avoiding the reasoning opacity 

that accompanies the use of neural networks, Huang used neuro-fuzzy logic to estimate 

software development effort [20]. He did so by fuzzifying the inputs of the COCOMO 

model and using them together with data to train a neuro-fuzzy system [20]. While the 

resulting neuro-fuzzy model outperforms COCOMO, its further improvement is 

questionable because the model uses the COCOMO regression equation instead of rules 

to infer estimates. By doing so, the model inherits the limitations of the COCOMO 

regression technique, revealed by Gray and MacDonell in [16].

3.7 Factors that Affect Software Development Effort Estimation

The effort estimation models and techniques presented thus far differ in the number and 

the type of factors they consider to be influential on software development effort 

estimation. In practice, such factors vary greatly depending on the development 

environment and type of system being built. However, during the development of the 

Neuro-Fuzzy Estimation Model, the research conducted led to the conclusion that there 

are three particular attributes that tend to affect software development effort regardless of 

all other circumstances. Expert effort estimation, task implementer capability, and 

complexity were found to have the highest effect on software development effort, by 

most academic and industrial experts, as well as studies. These effects are discussed in 

subsections 3.7.1 to 3.7.3.

3.7.1 Expert Effort Estimation

In [24] Jorgensen summarizes a vast number of studies done on expert estimation 

including how often it is used in the software development industry, why it is used, and 

how well it performs compared to other estimation models. Many of the studies reveal 

that informal expert estimation is the most widely used estimation technique in 
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companies all over the world [24]. The results of these studies are summarized in Table 

3.4. Furthermore, Jorgensen states that they “were not able to find any study reporting 

that most estimates were based on formal estimation models” [24].

Table 3.4 - Results of studies conducted on Expert Estimation [24∣.

Organization(s) Providing the Data 
Through Experimental Studies or 
Questionnaires

% of Time Expert 
Estimation is Used

Jet Propulsion Laboratory 83
Dutch Companies 62
New Zealand Companies 86
International Financial Company - 
Information Systems Development 
Department

100

Telecom Company 84
Software Development Companies 72

A number of studies that compare expert estimation to model-based estimation 

techniques are also cited in [24]. Ofthe 15 studies cited, 5 concluded in favor of the 

expert technique, another 5 found that there was no difference in the estimated accuracy 

between the expert estimation technique and model-based techniques, and 5 concluded in 

favor of model-based techniques. The studies were conducted between 1990 and 2002, 

and the number of participants in each study varied from 1 to 597.

While such results show that no existing effort estimation model is very accurate, they 

also show that experts are useful resources when it comes to estimation. In fact, most 

industry and academic researchers agree that an expert’s opinion is not only useful but 

often necessary when making estimations [15], [45], [50], [24]. Furthermore, software 

development is not the only field that uses expert estimation, many other domains such as 

medicine, business, and psychology, recognize it as an important and often decisive tool 

in planning [24]. Hence, it is strongly recommended that expert effort estimation be 

included as an input to any effort estimation model.
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3.7.2 Implementer Capability

Almost everyone in the software development field will agree that when estimating effort 

for a development task, one of the most important factors that influences the effort 

estimate is the quality and capability of the task implementer [15], [28], [45] [7]. 

Therefore, it is important that any estimation model include implementer capability as 

one of the inputs to the model. This can be easily done when the effort estimate of an 

entire project is being determined. But when the effort estimate of a more granular task 

is being determined, and it is known who the task implementer is, organizations are 

reluctant to evaluate the capability of that implementer in order to incorporate it into the 

estimation model. The reluctance is due to the existing confidentiality contract, between 

employer and employee, such evaluations can breach and also due to the decrease in 

morale that low evaluations would yield. To have the implementers evaluate themselves 

poses the problem of bias, how biased the values are. The reason being, that no one 

would consistently rate him/herself as being a “low quality task implementer” even if that 

were true. That is, while other attributes would contain some error due to the 

unconscious bias of the estimator’s past experience, the implementer capability attribute 

could contain error even when the estimator was conscious of it. Therefore, in some 

organizations, it may be impossible to include implementer capability as one of the inputs 

to an effort estimation model. In this case, other inputs can be included that evaluate the 

implementer’s familiarity level with the technology, functionality, language, and domain 

associated with the task. By doing so, the knowledge and capability of the implementer 

are transformed into task characteristics, and the implementer does not feel it is as 

personal, yet his or her capability in completing the task is well evaluated.

3.7.3 Complexity

Complexity is another attribute that is considered to have among the highest effect on 

software development effort [45], [28], [50]. Glass notes that for every 25% increase in 

problem complexity, there is a 100% increase in the complexity of the software solution 

[15]. Also, Keyes cites a study done by Lederer and Prasad that found that managers
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consider complexity to be the most significant factor of a project estimate [28]. While it 

is argued to be subjective to the developer’s experience [15], it is nonetheless important 

to measure. Therefore, it is strongly recommended that complexity is used as an input to 

any software development effort estimation model.
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CHAPTER IV 
The Neuro-Fuzzy Estimation Model

This chapter presents the Neuro-Fuzzy Estimation Model (NFEM). The NFEM is a new 

software development effort estimation model that was designed to encompass several 

desired characteristics lacking in existing estimation models. It is accompanied by a 

preparation process that consists of four steps. This preparation process allows the model 

to be customized according to the specific environment of the organization using it. The 

NFEM uses historical data from the specific environment implementing it, in conjunction 

with intelligent algorithms to best model the organization’s needs and cope with 

uncertainty and qualitative data. It is these combined characteristics that render the 

NFEM usable in many different environments and for the development of many different 

types of software systems.

Figure 4.1 depicts the NFEM preparation process. As shown, there are four preparation 

steps that must be completed before the NFEM is closely customized to the 

organization’s environment and ready for use:

1. Attribute selection

2. Data set separation for

a. Qualitative attributes

b. Quantitative attributes

3. Neural network training

4. Rule extraction and ANFIS implementation.

In the first step, qualitative and quantitative profiling attributes that are believed to most 

influence software development task effort are selected by the organization implementing 

the NFEM.
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Figure 4.1 -The NFEM preparation process.

These attributes are defined and a measuring system is applied to each of them, allowing 

them to function as metrics. These attributes then serve as inputs to the NFEM and each 

software development task is profiled with them. The profile, together with the actual 

effort required to complete the task (known once the task has been completed) are 

considered as one data point. When a sufficient amount of data points have been 

collected, the second step ofthe preparation process begins: The values of each attribute 

are separated into fuzzy and Boolean sets. The Boolean sets allow the attribute values to 

be transformed into Boolean data. The fuzzy sets are not used until Step 4 ofthe 

preparation process. The third step consists of using the Boolean data to train neural 

networks where the output ofthe neural network is estimated effort. In the fourth and 

final step, rules that model the relationship between the profiling attributes and 

development effort are extracted from the most successfully trained neural network of 

Step 3. They are then embedded into an adaptive neuro-fuzzy inference system, as are 

the fuzzy sets determined in Step 2. Finally, the historical data collected is used, once 

again, to train the ANFIS and fine-tune the fuzzy sets. At this point, the NFEM is 

41



calibrated to the organization’s environment and ready to be used to estimate future 

software development tasks.

Sections 4.1 to 4.4 of this chapter provide detailed descriptions of the four preparation 

steps of the Neuro-Fuzzy Estimation Model, shown in Figure 4.1.

4.1 Step 1: Profiling Attribute Selection

A profiling attribute is a measurable system characteristic or personal skill that can have 

an effect on the amount of effort required to complete a software development task. In 

the first step of the NFEM preparation process, a set of profiling attributes is selected and 

used to profile software development tasks. The profiling attributes may be qualitative or 

quantitative in nature and are used as inputs to the Neuro-Fuzzy Estimation Model. 

Therefore, each organization implementing the NFEM is able to select the factors that it 

believes most influence development effort, given the product and environment in which 

they develop. By profiling each software development task with this common set of 

profiling attributes and recording the actual effort required to complete each task, a 

historical data point is created. A collection of such historical data points can then be 

used to more accurately estimate future development tasks. That is, the effort of new 

development tasks can be estimated based on the amount of effort historical tasks with 

similar profiles required. How effort is measured is left to each organization’s discretion.

Research has shown that of the hundreds of parameters which can affect software 

development effort, only a few of these may affect the productivity in a given 

environment [34]. In order for each organization using the NFEM to be able to select the 

few attributes that most affect productivity, it is recommended that many attributes are 

initially selected to be measured and recorded. The ones that turn out to be irrelevant 

during the neural network training stage (step 3 of the NFEM preparation process) can be 

discarded and the most predictive ones can be kept. Ideally, the final number of profiling 

attributes selected as inputs to the NFEM should be low. The reason for this is that the 

NFEM uses a neural network to learn the input-output relationship from the historical 
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data and the higher the number of input attributes, the higher the volume of data needed 

to train the neural network successfully. In fact, the number of data points needed to train 

a neural network grows exponentially with each input [13].

The attribute selection process can also be done on a per-product basis if the organization 

is large and is involved in software development for several different domains. In 

addition, different attributes should be selected for different phases of the software 

development lifecycle. The selected common set of profiling attributes will vary greatly, 

depending on the development environment and type of system being built. However, 

most organizations should include the attributes expert effort estimation, implementer 

capability, and complexity, for the reasons discussed in Section 3.7.

4.1.1 Defining and Applying the Measuring System

In the first step of the NFEM preparation process, not only must the profiling attributes 

be selected, they must also be clearly defined, to indicate what is being measured by each 

attribute. In addition, a measuring system must be implemented for each qualitative 

attribute so that they can be measured. This need not be done for the quantitative 

attributes, as they can be simply entered as numbers.

The NFEM qualitative attribute measuring system was designed to allow the use of 

qualitative attributes where each such attribute is measured according to the needs of the 

organization using it. The measuring system requires that each qualitative attribute be 

defined and be further decomposed into sub-attributes. Each sub-attribute should be a 

factor that affects the evaluation of the profiling attribute. Once the user evaluates the 

sub-attributes, their values can be averaged and used as the overall profiling attribute’s 

measurement. To facilitate this process, Tables 4.1 and 4.2 were designed and should be 

completed for each selected qualitative profiling attribute. Table 4.1 should also be used 

to define the quantitative attributes.
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Table 4.1 - The format to be used to define the selected profiling attributes.

Name The name of the attribute and any short names used for it.
Definition A clear and concise definition that indicates what is being 

measured by the attribute. All attributes should be defined in 
terms of how they affect effort.

Rationale The rationale used to select the attribute. One or more 
examples may be given to clarify the rationale.

Implementation A way of combining all the sub-attributes into a single unit of 
measurement (usually the arithmetic mean). Also, any 
clarification notes on how the attribute should be perceived or 
evaluated.

Table 4.2 - The format to be used to define the sub-attributes.

Sub-Attribute Name
Definition A clear and concise definition of the sub-attribute
Scale
Values’ 
Definitions

Low The definition of the “Low” scale 
value for this particular sub-attribute.

An arrow depicting 
the direction in 
which the effort 
estimate increases 
due to the sub
attribute’s 
evaluation.

Medium-Low No definition required.
Medium The definition of the “Medium” scale 

value for this particular sub-attribute.
Medium-High No definition required.
High The definition of the “High” scale 

value for this particular sub-attribute.

The definitions of the scale values required in Table 4.2 serve as guidelines for the 

estimator. The scale values “Medium-Low” and “Medium-High” need not be defined 

because they are to be interpolated by the estimator. Each scale value corresponds to a 

number between one and five, with one corresponding to the Low set and five 

corresponding to the High set. The overall profiling attribute valuation is the arithmetic 

mean of its sub-attributes’ values.

It should be noted that while breaking down a profiling attribute into sub-attributes does 

lengthen the preparation process, it is more beneficial in the long term because it allows 

the collection of more accurate data. Qualitative attributes that affect software 

development effort usually encompass several aspects of the quality they describe. For 

example, when defining the required reliability of a software system, one thinks of how a 

system failure would affect the environment and users of the system (i.e. a mere 

inconvenience versus endangerment of human life), the acceptable frequency of failures 

(mean time to failure, MTTF), and the acceptable repair time (mean time to repair, 
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MTTR). While all three of these factors affect the reliability of a system, they do so in 

different ways, and they would often result in different evaluations from one another. 

Therefore, clustering the three factors and measuring them as one would introduce a lot 

of uncertainty and inaccuracy into the measurement. On the other hand, decomposing the 

attribute into sub-attributes allows for more accurate data to be collected.

Table 4.3 shows the application of Table 4.1 to the Reliability profiling attribute and 

Table 4.4 shows application of Table 4.2 to its sub-attributes. The definitions provided 

are according to a fictional organization that creates business-critical applications.

Table 4.3 - Example definition of the Reliability profiling attribute.

Name Reliability
Definition The degree of reliability required from the component or 

functionality implemented in the task.
Rationale A task that involves the development of a highly reliable 

component or functionality generally requires more effort.
Implementation Each sub-attribute is evaluated as Low, Medium-Low, 

Medium, Medium-High, or High, corresponding to the values 
between 1 and 5, respectively. The average of the sub
attribute evaluations is the overall attribute value.

Criticality
Definition The problem created if the component or functionality implemented in 

this task fails.
Scale
Values’ 
Definitions

Low No critical data will be lost.

Medium Some business data may be lost 
causing a day’s work set back.

High Business data will be lost causing 
a major set back

Mean Time to Failure9 MTTF
Definition The degree of importance for the particular component/functionality 

being implemented to rarely fail.
Scale
Values’ 
Definitions

Low It may fail often (once every few 
days).

Medium It may fail between once a month 
to once in 3 months.

High It should not fail more than once 
in six months.

Mean Time to Repair, MTTF
Definition The degree of importance that the particular component/functionality
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Table 4.4 - Example definition of the Reliability sub-attributes.

being implemented in the task has a short repair time.
Scale
Values’ 
Definitions

Low It is not a significant problem if it 
is down for a week or less.

Medium It is important that it is not down 
for more than a day.

High It is very important that it is not 
down for more than an hour.

4.1.2 Data Collection

Upon the completion of the first step, data collection can begin. Step 2 of the NFEM 

preparation process cannot commence until sufficient data has been collected. However, 

the question becomes what a sufficient number of data points is. In [6], the authors 

show that the number of training data points required for a neural network that contains 

W weighted connections is given by:

W m> — 
ε 

where m is the number of training data points and ε is the allowed fraction of error on the 

training set. If ε is assumed to be less than 0.125 then approximately ten training data 

points are required for each weighted connection in the neural network. Therefore, given 

that an organization knows the largest network architecture to be used in step 3 of the 

preparation process, it must collect at least ten times the amount of weighted connections 

within it.

4.2 Step 2: Data Set Separation

The second step of the NFEM preparation process is the data set separation. To be able 

to extract rules from a trained neural network using the rule-extraction technique 

described in Section 2.4.3, the data with which the neural network is trained must be 

Boolean as opposed to continuous. Subsection 4.2.1 describes how the range of values 

for the qualitative attributes should be separated into fuzzy sets, and then Boolean sets. 

Subsection 4.2.2 describes how the range of values for the quantitative attributes should 
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be separated into Boolean sets, and then fuzzy sets. It should be noted that the data set 

separation process must also be applied to the output attribute, effort.

4.2.1 Data Set Separation for the Qualitative Profiling Attributes

Section 4.1.4 described that the sub-attribute values, ranging from one for Low to five for 

High, should be averaged to obtain an overall value for the profiling attribute. Thus, each 

qualitative profiling attribute can have a value between one and five and when these 

values are normalized, the range of values becomes 0.2 to one. The normalization occurs 

because neural networks and ANFIS training functions implemented by MATLAB only 

use normalized data [33]. Table 4.5 depicts an example data point profiled by two 

profiling attributes with normalized values.

Table 4.5 - A sample data point

Qualitative Profiling
Attribute 1 Value

Qualitative Attribute
2 Value

Data Point

0.633 0.25 [0.633 0.25]

4.2.1.1 Determining the Boundaries of the Fuzzy Sets

Each qualitative attribute is separated into three fuzzy set, Low, Medium, and High, as 

shown in Figure 4.2. The membership function of each fuzzy set is a generalized bell 

function. The generalized bell function was selected as the membership function of 

choice for two reasons: It is nonlinearly smooth and it offers three adaptable parameters 

with which the shape of the function is customized during the ANFIS training [22]. Most 

other nonlinearly smooth functions offer only two variable parameters [22]. The 

boundaries of the fuzzy sets Low and Medium are determined such that the cross-over 

point for each set is at the Medium-Low value two, or 0.4 when normalized. Likewise, 

the boundaries of the fuzzy sets Medium and High are determined such that the cross

over point for each set is at the Medium-High value four, or 0.8 when normalized. The 

cross-over point of a fuzzy set A is any point where UA(x) =0.5. The rationale for locating 

the fuzzy set cross-over points at these values is simple and straightforward: The points 

Medium-Low and Medium-High are designed to be the point halfway between one set 
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and the next one. Therefore it is only logical that they would be used as the cross-over 

points of the fuzzy sets. Figure 4.2 illustrates this concept by showing that the cross-over 

points of the fuzzy sets meet at the Medium-Low and Medium-High values. This 

condition determines the values for parameters a and b of the generalized bell function 

(described in Section 2.1.2.2). In addition, the centre of each of the membership function 

(i.e. parameter c of the generalized bell function) is located at the corresponding value 

which it represents (illustrated by the dashed lines). For example, the centre of the 

generalized bell function representing fuzzy set Low is at 0.2 (or one when not 

normalized).

0.5

Figure 4.2 - The fuzzy sets of qualitative profiling attributes.
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4.2.1.2 Determining the Boundaries of the Boolean Sets

After determining the fuzzy sets, the Boolean sets can also be determined. The 

boundaries of the Boolean sets should be located at the cross-over points of each fuzzy 

set. Figure 4.3 illustrates the Boolean sets determine by the crossover points of the fuzzy 

sets. The points at the boundaries should be included in the set that has the smaller range 

of values included. Therefore, data points with qualitative attribute values of 0.4 should 

be included in the Low set because the Low Boolean set only includes points between 0.2 

and 0.4, whereas the Medium Boolean set includes data points between 0.4 and 0.8. For 

the same reasons, the data points with qualitative values of 0.8 should be included in the 

High Boolean set.
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Figure 4.3 - The Boolean sets of qualitative profiling attributes.

Once the boundaries of the Boolean sets are determined, the data value transformation 

from continuous to Boolean follows. Each continuous value is transformed into a three- 

element Boolean vector, where one signifies the set that the value belongs to and zero 

signifies the two sets that the data point does not belong to. The Boolean vector’s first 

element represents the Low set, its second element represents the Medium set, and its 

third vector represents the High set (i.e. [Low Medium High]). Only one of the three sets 

must be set to one, and the other two must be set to zero. For example, Table 4.6 shows a 

fictional data point profiled by two qualitative attributes: The first row contains the 

attribute values, 0.633 for Attribute 1 and 0.25 for Attribute 2, and the overall data point 

in continuous vector format ([0.633 0.25]). The second row contains the Boolean 

transformation of the data point shown in the first row. The Attribute 1 value has been 

transformed into [0 1 0] because the value 0.633 falls within the bounds of the Medium 

set. The Attribute 2 value has been transformed into [1 0 0] because the value 0.25 

belongs to the Low set.

Table 4.6 - Conversion of a continuous data point into Boolean format.

Format Qualitative Profiling
Attribute 1 Value

Qualitative Attribute
2 Value

Data Point

Continuous 0.633 0.25 [0.633 0.25]
Boolean [0 1 0] [100] [[0 1 0] [1 00]
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4.2.2 Data Set Separation for Quantitative Attributes

Because the range of values used for quantitative attributes is organization-dependent, it 

is impossible to define a common process for separating the quantitative attribute values 

into sets. However, some guidelines are provided in this subsection that should be 

followed when determining these sets.

4.2.2.1 Determining the Boundaries of the Boolean Sets

First and foremost, each Boolean set must contain a sufficient number of data points 

within it so that the neural network is able to associate certain input values with that 

particular set. Section 4.5.2 discussed what a sufficient number of data points is overall. 

If only the minimum amount is collected (i.e. ten times the amount of weighted 

connections in the largest neural network architecture to be used), the quantitative 

attribute Boolean sets can be separated such that each set has an approximately equal 

amount of data. If the amount of collected data greatly exceeds the minimum required 

amount, then a criterion other than equal amount of data can be used to separate the sets. 

For example, self-organized maps [30] or clustering algorithms [5] can be used to 

determine the sets. These topics however are outside the scope ofthis thesis.

In most cases, due to the fact that it takes a long time to collect data, most companies will 

start implementing the second step of the preparation process once they have gathered 

what is considered sufficient data. Therefore, the Boolean sets would need to be 

separated based on an equal-data amount criterion. Due to this, the boundaries of the 

Boolean sets must be determined first, so as to ensure that each set with which the neural 

network is trained contains enough data for the neural network to learn with.

4.2.2.2 Determining the Boundaries of the Fuzzy Sets

Once the Boolean sets’ boundaries are determined, the fuzzy set membership functions 

can be determined for the quantitative profiling attributes’ sets. The generalized bell is 
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maintained as the membership function of choice for the advantages it provides. The 

width of each bell membership function, which is controlled by the parameter a, should 

be equal to the width of the Boolean set that corresponds to it. Additionally, the centre of 

the generalized membership function of each fuzzy set, controlled by the parameter c, 

should be located at the median value of the set it represents. For example, to determine 

where the centre of the generalized bell membership function of the fuzzy set Low should 

be located, the median of the data values contained in the Boolean set Low should be 

used. The reason why the median was chosen as the centre of the generalized bell 

membership functions, as opposed to the mean, was because the finite breakdown point 

of the median is much higher than that of the mean [53]. The finite breakdown point is 

the smallest proportion of outliers that can result in the mean or the median being 

arbitrarily large or small for a given set of observations [53]. Given a set of n 

observations, the finite breakdown point of the mean is 1/n whereas the finite breakdown 

point of the median is n∕2 [53]. Therefore, for a set containing 50 data points, only 1/50, 

or 1 of the data points need to be outliers, in order to produce an arbitrarily large or small 

mean. Conversely, the proportion of outliers required to bias the median, for the same set 

of data points, would be 50∕2, or 25 data points.

Finally, for the quantitative output attribute, Effort, no fuzzy sets are required because the 

zero-order Sugeno inference system implemented in the ANFIS does not require fuzzy 

sets for the output attribute. Instead, one constant value must be selected to represent 

each output set. For the same reasons discussed above, the median should be the choice 

representative value for each output attribute set.

4.3 Step 3: Neural Network Training

Once a sufficient amount of data has been collected and the set separations have been 

accomplished, a neural network can be trained with the Boolean data. This third step of 

the NFEM preparation process consists of some trial and error due to the many different 

factors that can determine how successfully a neural network is trained. In this section 

some of the most important factors are discussed.
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4.3.1 Varying the Inputs

The most important factors are the inputs and outputs used: The stronger the relationship 

between the inputs and the outputs, the easier it is for the neural network to learn the 

relationship [41]. In order to determine the combination of profiling attributes that have 

the greatest affect on development effort, different combinations of the inputs must be 

tested. The number of profiling attributes collected and the number of sets defined for 

each attribute determine the number of inputs to the network. For example, if three 

profiling attributes are selected and the values of each one are separated into three sets, 

Low, Medium, and High, then the neural network will have 9 inputs.

4.3.2 Varying the Number of Hidden Nodes

The next factor that affects the neural network training phase is the number of nodes used 

in the middle layer of the network, often referred to as the hidden nodes. As the number 

of nodes increases in the hidden layer, so does the accuracy of a neural network to predict 

the output of the training data [36]. However, if the number of hidden nodes is too high, 

the network loses its ability to generalize, and models itself too closely to the training 

data. Consequently, the network performs well when the training data is used, but it 

performs poorly when new data is entered. This phenomenon is often called “over

fitting” [36]. While several methods and parameters have been proposed to determine the 

number of hidden layer nodes [17], [35], [36], this problem lies beyond the scope of this 

thesis. It is suggested that a trial and error process is followed to determine the number 

of hidden neural nodes. It is also best to separate the historical dataset into a training data 

set and a testing data set. Training several different networks with varying numbers of 

hidden nodes, and then testing them, will show which architecture yields the best results 

in accurately predicting training as well as testing data.
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4.3.3 Varying the Number of Training Epochs

Finally, the number of training epochs can also be varied to see if training the neural 

networks with more epochs yields significantly more accurate results. Although it has 

been shown that most networks are successfully trained with 1000 epochs, this number 

can sometimes vary [9].

Figure 4.4 illustrates an example network architecture where two profiling attributes are 

used as inputs, each one consisting of three sets, and the classification attribute is 

separated into five sets. Eight hidden nodes are used in the middle layer, where the value 

eight was chosen arbitrarily.

Output

Output

Output

Output

—Output

Figure 4.4 - Example architecture of a neural network used in Step 3.

4.4 Step 4: Rule Extraction and ANFIS Implementation

The fourth and final step of the NFEM preparation process is the rule extraction and 

ANFIS implementation. Upon its completion, the NFEM can be used as a neuro-fuzzy 

effort estimator for software development tasks.
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The rule extraction technique described in Section 2.4.3 is used to extract rules from the 

neural network that was most successfully trained in Section 4.3. More specifically, the 

most general rules are extracted from its hidden layer neurons and its output layer 

neurons, and then combined to create rules modeling the relationship between the 

profiling attributes and the effort output. These rules are then embedded into an ANFIS 

system. For example, suppose the following five rules were extracted from the neural 

network shown in Figure 4.4:

1. IF Attribute 1 is Low AND Attribute 2 is Medium THEN Output is Mml∙

2. IF Attribute 1 is High THEN Output is M∏.

3. IF Attribute 2 is Low THEN Output is Ml.

4. IF Attribute 1 is Medium AND Attribute 2 is Low THEN Output is MM.

5. IF Attribute 1 is Medium AND Attribute 2 is High THEN Output is MMH.

MML stands for the median of the set Med-Low, MH stands for the median of the set 

High, and so on. The medians of the Output’s sets are determined in Step 2 of the NFEM 

preparation process. Figure 4.5 shows the ANFIS system into which the rules would be 

embedded.

In the first layer, each node function is a bell membership function that corresponds to a 

fuzzy set of one of the input attributes. For example, the first node in the first layer is 

associated with the fuzzy set Lowι that corresponds to Attribute 1. Its output is the 

membership grade of Attribute 1 into its fuzzy set Lowι. The fuzzy sets determined in 

Step 2 of the NFEM preparation process are used as the node functions of the first layer 

neurons. Each neuron in the second layer corresponds to the antecedent of one of the 

rules. For example, the first neuron of the second layer corresponds to the antecedent of 

the first rule, Ari. Its inputs are the membership grade of Attribute 1 into its fuzzy set 

Lowι and the membership grade of Attribute 2 into its fuzzy set Medium2. The output is 

the firing strength of the first rule, as described in Section 2.3.
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Figure 4.5 - An ANFIS system upon which the NFEM is implemented.

In the third layer, each neuron i calculates and outputs the normalized firing strength of 

the rule represented by neuron i in the second layer. Likewise, each neuron i in the fourth 

layer corresponds to the consequent of the rule represented by node i in the second layer. 

The output of each neuron in the fourth layer is the product of the consequent of the rule 

it represents with the rule’s firing strength. In the fifth layer, the outputs of the fourth 

layer’s neurons are summed and output as the effort estimate.

Once the fuzzy sets, medians, and rules are embedded into the ANFIS, the historical data 

collected after step 1 ofthe preparation process is used to train the ANFIS. By training 

the ANFIS with the historical data, the bell shaped fuzzy sets of the input profiling 

attributes are fine-tuned by having their a, b, and c parameters, representing the width, 

slope of the bell’s sides and centre location, change according to the historical data. 

Upon the completion of the training, the ANFIS, now representing the Neuro-Fuzzy 

Estimation Model is ready to be used.
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CHAPTER V 
The Industrial Partner

k. — -. »

To validate the Neuro-Fuzzy Estimation Model, industrial project data was obtained from 

a major international corporation that produces a variety of products and services. This 

company will be referred to as the Industrial Partner within this thesis due to the signed 

Non-Disclosure Agreement between the author and the Industrial Partner. The agreement 

prevents the publication of the name of the Industrial Partner and any details that identify 

it in order to safeguard the interests of the Industrial Partner and to ensure that the data is 

used strictly for research and academic purposes.

The purpose of this chapter is to introduce the Industrial Partner and the dataset obtained 

from them. Section 5.1 describes the Industrial Partner and Section 5.2 describes their 

current process of software development effort estimation. Section 5.3 presents their 

future goals in the area of effort estimation. Section 5.4 contains the use case developed 

to improve the Industrial Partner’s estimation capabilities by integrating the NFEM into 

their estimation process. Section 5.5 describes the dataset provided by the Industrial 

Partner and used to validate the NFEM in Chapter 6.

5.1 The Industrial Partner and Their Current Effort Estimation Process

The Industrial Partner is a Fortune 500 company with a workforce of over 100,000 

people world-wide and annual revenue of over $30 billion dollars. It is involved in the 

production of products and services that cater to a wide variety of customers ranging 

from private consumers to major Industrial Partners. The company is known for its 

aggressive implementation and daily practice of the six sigma methodology which is 

focused on reducing errors and costs.
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In the area of software development, the six sigma effort has translated into the 

development of a custom and comprehensive estimation application (Figure 5.1) by one 

of the software development teams of the Industrial Partner, hereon referred to as the 

Estimation Tool. The Estimation Tool allows for the development tasks associated with a 

project to be displayed in a hierarchical tree structure. For each project, there are three 

different views of the tree structure available: The functional tree, the component tree, 

and the estimation tree (refer to Figure 5.2). The functional tree provides a hierarchical 

decomposition of the functionality within a software application being developed, and the 

development tasks associated with each of those functionalities. The component tree 

provides a hierarchical decomposition of software components that are part of a software 

application in development, and the development tasks associated with each component. 

And finally, the estimation tree references both the functional and component trees, to 

provide the complete list of development tasks that map to the software development 

lifecycle.

PERT

000

1-1EBUDM

SMD1

10.33.45 AM

SMD1

DFS

Ratform
G Desktop

Figure 5.1 - The Estimation Tool developed by the Industrial Partner.

Figure 5.2 illustrates the estimation tree view. In it, each release is identified as a new 

node on the tree, representing a new project and corresponds to the Project Node in
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Figure 5.2. After every completed deliverable phase of the project, the team re-estimates 

the development tasks of the future phases. Therefore, each project is broken down into 

these re-estimation units, which are called sources and are represented as source nodes in 

the hierarchical tree shown in Figure 5.2. The source nodes are then broken down into 

future deliverable phase nodes, and furthermore, each deliverable phase node is 

decomposed into function nodes. Function nodes can either be decomposed into other 

function and component nodes or can be leaf nodes. Leaf function nodes and component 

nodes represent development tasks that must be estimated.

Project Node

Source Node

Deliverable Phase Node
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Component Node

The Selected Function Being Estimated

+ 0 Product 1 Release 1
+ 0 Product 2 Release 1
+ 0 Product 3 Release 1
+ Q Product 1 Release 2
+ 0 Product 2 Release 2

----- 0 Product 1 Release 3
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+ • Budgetary Estimates
+ ® FWS2

--------• FWS3
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+ • Detailed Design - Servers
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-------------------G Platform
- G Desktop Standard 

+ € Data Directory 
- € Application Data 
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+ $ Expert Integration
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rm for n...:....

The Selected View of the Hierarchical 
Tree (e g. Functional, Component, or 
Estimate)

----------Estimates Components Functions FP Summary 

Estimate successfully loaded.

+
+

<

Figure 5.2 - The hierarchical organization of the development tasks.

Each development task entered in the Estimation Tool can be estimated using one of the 

three estimation models incorporated into the tool: PERT, Expert Estimation, or Function 

Point Analysis. The Tool is also comprised of a fourth section, for a profiling technique; 

however, at the time of the Estimation Tool development, only the graphical user 

interface (GUI) of this technique was implemented, rendering the section useless. Figure 

5.3 depicts the GUI section of the Estimation Tool that provides the functionality for 

estimating a task.
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Figure 5.3 - The GUI area used to estimate software development task effort.

When entering a new estimate, the estimator must specify the implementer of the task, 

him/herself as the estimator, and describe any special circumstances or assumptions in 

the notes section shown in Figure 5.3. Next, he or she must consider one or more of the 

available models to estimate the amount of effort the task should take, in hours. Ifthe 

effort estimate value generated by PERT or Function Point Analysis is chosen as the 

effort estimate of the task, then that particular model must be chosen as the source in the 

Final Estimate section of the GUL Otherwise, Expert Estimate is chosen as the source, 

and the value entered in the Expert Estimate Section is recorded as the effort estimate for 

the task. When the task is completed, the actual time the task took must also be recorded. 

This value is referred to as the actual effort value. An estimation task that contains all of 

the above information represents one data point. All such data points are stored and 

maintained in a centralized database, which allows easy access to the team through the 

client application, without easily risking data corruption.
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5.2 The Industrial Partner’s Future Effort Estimation Goals

While the Estimation Tool developed by the Industrial Partner is a great start towards 

improving their software effort estimation process, it is only a tool that allows for the 

easy collection of estimation data. The estimation models incorporated into the tool may 

improve the accuracy of the estimates to some extent, but neither of these models makes 

use of the historical data collected. And yet the data collected is very valuable as it is 

fine tuned to the particular development group and environment collecting the data. The 

Industrial Partner believes that there is great value within this collection of data, value 

which could be used to more accurately estimate future development tasks.

In order to use the historical data to improve future estimates, the Industrial Partner 

recognized that storing the estimate effort value and actual effort value was not enough. 

The assumptions made when creating an estimate had to also be stored within the data 

point. These assumptions would need to follow a specific and consistent format, 

allowing each task to be characterized by the same parameters. This would enable future 

tasks to be related to historical tasks. In fact, this idea was what inspired the development 

team of the Estimation Tool to include the GUI implementation of the profiling technique 

into the tool. However, no further research was conducted as to which attributes should 

be used to profile the estimation tasks and no algorithm was implemented to make use of 

the historical data. The need for this common profile and the existing collection of 

estimation data made the Industrial Partner an ideal partner for the validation of the 

NFEM. A use case was developed to summarize NFEM’s outcome as desired by the 

Industrial Partner and is shown in the following section.

5.3 Use Case for Generating an Effort Estimate Based on Historical Data

This use case describes the scenario, where given a profile, an effort estimate value is 

computed by the Estimation Tool based on the actual effort values of historical tasks with 

similar profiles, using the NFEM.
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Scope: Generation of a software development task effort estimate using the Profiling 

Section on the Estimation Tool of the Industrial Partner (refer to Figure 5.3)

Primary Actor: Software Estimator

Preconditions: An estimate node has been created in the Estimation Tool and the 

estimate tab is open for editing.

Scenario:

1. Software Estimator selects the appropriate person for the following fields: Owner, 

Estimator, and Implementer.

2. Software Estimator enters details, concerning the task being estimated, into the 

notes field.

3. Software Estimator creates an estimate in the Expert Estimate section of the 

Estimation Tool. The Expert Estimate can be based on values generated by the 

Function Point Analysis and/or PERT methods.

4. Software Estimator selects values for each of the attributes in the Profiling section 

of the Estimation Tool.

5. Software Estimator presses the “Compute” button in the Profiling section and a 

calculated effort estimation value is displayed in the “Value” field of the Profiling 

section.

6. Software Estimator analyses the values generated by any or all of the PERT, 

Function Point, Expert and Profiling models.

7. Software Estimator selects one of the models as the source in the Final Estimate 

section.

8. Software Estimator either uses the value auto-generated by selecting the source or 

enters a number in the Final Estimate section of the Estimation Tool that takes 

into account the values generated by each of the four estimation methods.

5.4 The Industrial Partner’s Dataset

The data obtained from the Industrial Partner was collected by a software development 

team in charge of developing software for a corporate client. The data was collected 

during the development of three different products, and two releases of each, totaling six 
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projects. The development team consisted of an average of six people, and the team was 

located on two different continents. Due to the need to deliver high quality software 

products on time, the Estimation Tool was an integral part of the development process.

Originally, the Industrial Partner estimated to have approximately 2000 historical data 

points. No concrete value was known because estimates and actual values of historical 

tasks completed before the development of the Estimation Tool were scattered in 

different spreadsheet files. Therefore, the data had to be centralized before knowing the 

true value of the number of data points. Once the data was centralized into one common 

database, it was discovered than only about 1400 data points existed. Subsequently, data 

points that contained estimates but no actual values (i.e. bad data), and data points of 

tasks that did not belong to the implementation phase were also filtered out. Non

implementation tasks were filtered out because finding a common set of attributes for 

tasks of all phases of the software development cycle would be difficult if not impossible. 

On the other hand, time limitations made finding a common set of attributes for each 

phase unfeasible.

Furthermore, all implementation tasks with estimated or actual effort size of over 100 

hours or magnitude of relative error greater than 50% were filtered out, leaving only 313 

data points. The reason for filtering out tasks with a MRE greater than 50 was that 

allowing a large range of MRE values required a very high volume of data points to train 

the neural network. Due to the fact that a high volume of data was not available, the 

MRE range was limited. Finally, tasks with estimated or actual effort size over 100 hours 

were filtered out because they were quite rare, and therefore the few data points that did 

exist would bias the neural network into creating an input-output relationship that was 

incorrect.

62



CHAPTER VI 
Case Study

In this chapter, the Industrial Partner’s historical data is applied to validate the Neuro- 

Fuzzy Estimation Model. Due to the long term process involved in collecting large 

amounts of software development effort estimation data, time constraints did not allow 

for the full validation of the NFEM. However, because some existing historical data was 

available, the steps that were applied presented a promising outcome.

In Section 6.1, the first step of the NFEM preparation process, the selection and 

definition of the profiling attributes, is completed followed by a discussion on the 

selected attributes. Next, Section 6.2 describes the second step of the NFEM preparation 

process, the data set separation step. In Section 6.3, step 3 of the NFEM preparation 

process, the neural network training with the Industrial Partner’s dataset, is completed 

and the training results are analyzed. Finally, Section 6.4 describes the implementation 

of the last step of the NFEM preparation process of extracting the rules from the trained 

neural networks and implementing them in the ANFIS.

6.1 Step 1: Profiling Attribute Selection

As described in Chapter 4, the first step to the NFEM preparation process is determining 

the set of profiling attributes. These attributes would be used to characterize the 

Industrial Partner’s dataset. It was decided that a set of attributes would be determined 

that would be used to profile only implementation tasks for the reasons discussed in 

Section 5.4.
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These attributes were selected for their usefulness, measurability, and significance. They 

were determined after careful analysis of hundreds of metrics used in existing estimation 

models or researched internally by the Industrial Partner. In this section they are 

exemplified and characterized by a measuring scheme. Each selected profiling attribute 

is defined and described through the sub-attributes into which it was decomposed. While 

only the definitions of the attributes and sub-attributes are provided in this section, 

Appendix A contains the full descriptions of each attribute, including the scale value 

definitions, using the table format shown in Section 4.1.

6.1.1 Skill Level of Implementer

Name Skill Level of Implementer
Definition The degree to which the skill level of the task implementer 

influences the effort estimate.
SUB-ATTRIBUTES
Analyst
Capability

The ability to investigate new strategies or defects, as well as the 
overall quality, reliability, and robustness of work items previously 
completed by the task implementer.

Learning Ability The task implementer’s ability to learn new concepts and acquire 
new skills quickly.

Efficiency The ability to complete a task accurately and on time (i.e. without 
over-analyzing the problem and the possible solutions).

Teamwork The ability to communicate in a timely manner with other team 
members and management and the ability to co-operate in terms of 
choosing the best possible solution for the task, while still adhering 
to time and quality constraints.

Table 6.1 - Description of the Skill Level of Implementer attribute.

6.1.2 Familiarity with Technology

Name Familiarity with Technology, Technology
Definition The degree to which the implementer’s familiarity with the 

technology, used to complete the task, influences the estimate.
SUB-ATTRIBUTES
Familiarity with 
Documentation

The degree of the task implementer’s knowledge /understanding of 
the technology’s documentation: Has the implementer skimmed 
the documentation or thoroughly read it. Documentation includes: 
help files, user guides, online tutorials, and books dedicated to the 
technology.

Usage of
Technology

How well the task implementer feels that he/she knows how to 
implement solutions using the technology. This is a measure of the
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Table 6.2 - Description of the Familiarity with Technology attribute.
level of comfort he/she has in using the technology.

6.1.3 Familiarity with Programming Language

Name Familiarity with Programming Language, Familiarity with 
Language, Language

Definition The degree to which the implementer’s familiarity with the 
software language, to be employed when completing the task, 
influences the estimate.

SUB-ATTRIBUTES
Familiarity with 
Documentation

The degree of the task implementer’s knowledge/understanding of 
the language’s support documentation. The documentation 
includes: help files, user guides, online knowledge databases, and 
books dedicated to the use of the language.

Usage of 
Language

How well the task implementer feels that he/she knows how to 
implement solutions using the chosen language. This is a measure 
of the level of comfort he/she has in developing solutions with the 
language.

Table 6.3 - Description of the Familiarity with Programming Language attribute.

6.1.4 User Interface

Name User Interface, UI
Definition The degree to which the level of complexity of the user interface 

influences the estimate.
SUB-ATTRIBTUES
Amount of UI 
Controls

A linguistic approximation of the amount of user interface controls 
needed by the functionality. User interface controls include: text 
boxes, list boxes, radio buttons, command buttons, menus, combo 
boxes, etc.

Required Level 
of Validation

A qualitative measure of the amount of input validation required by 
the user interface of the task’s functionality.

Underlying 
Architecture 
Complexity

The overall complexity ofthe underlying architecture. For 
example, a simple registry access function will likely have a low 
architectural complexity whereas functionality providing the ability 
to insert 3rd party ActiveX controls would likely have a high 
architectural complexity.

Table 6.4 - Description of the User Interface attribute.

6.1.5 Complexity

Name Complexity
Definition The degree to which the complexity of the task influences the 

estimate.
SUB-ATTRIBUTES
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Table 6.5 - Description of the Complexity attribute.

Difficulty of 
Definition

The degree of difficulty involved in defining the solution such as 
the algorithmic complexity of the solution in terms of 
computational complexity (e.g. nested loops, analysis of 
differential equations), time computational complexity (e.g. real
time systems), space computational complexity (e.g. distributed 
database coordination), and information-based complexity (e.g. 
simple arrays in main memory vs. highly coupled dynamic 
relational and object structures).

Interdependence 
with other 
Features

The amount of other functions/features the current task impacts 
and/or the amount of functions/features the current task is impacted 
by.

6.1.6 Familiarity with Functionality

Name Familiarity with Functionality, Functionality
Definition The degree to which the implementer’s familiarity with the 

functionality influences the estimate.
SUB-ATTRIBUTES
Similarity The degree to which the current task resembles something that the 

implementer has previously implemented.
Product
Knowledge

How familiar the implementer is with the application/product being 
developed. This will give a measure of how well the implementer 
understands how the component/functionality will affect the 
existing components/functionality.

Component 
Knowledge

How familiar the implementer is with the component the current 
task involves.

Table 6.6 - Description of the Familiarity with Functionality attribute.

6.1.7 Familiarity with Domain

Name Familiarity with Domain
Definition The degree to which familiarity with the application domain 

influences the estimate.
SUB-ATTRIBUTES
Product Domain 
Familiarity

The level of familiarity the implementer has with the application 
domain (i.e. functions within the industry that the product will be 
used).

Software 
Domain 
Familiarity

The level of familiarity the implementer has with the task’s related 
software domain (e.g. database, GUI, server, web, etc.).

Table 6.7 - Description of the Familiarity with Domain attribute.
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6.1.8 Estimated Size

Name Estimated Size
Definition The degree to which the size of the task, in hours, influences the 

estimate.
Table 6.8 - Description of the Size attribute.

6.1.9 Altered Estimation Tool

Figures 6.1 and 6.2 show the altered Profiling Section of the Estimation Tool. Each 

profiling attribute was implemented as a tab, as shown in Figure 6.2. The first tab 

contained the overall, read-only profile of a given task being estimated (Figure 6.1).

[Profile Technology Language Ul Complexity 4 •

NA Low Med High
Technology incomplete profile 

Language --------------------

UI  J- 

Complexity 

Functionality   ----

Domain   j 

Size PERT

Profile Technology Language [UT___ ; Complexity <•

NA Low Med High

Amount of Controls: -------------------------------- j

Level of Validation: --------------------------------------- J

Architecture: --------------- 1.. ........

Total

Figure 6.2 - UI profiling attribute tab.Figure 6.1 - Overall profile tab.

6.1.10 Profiling Attribute Analysis and Discussion

After the profiling attributes were determined, clearly defined, and characterized by the 

measuring system, they were used to profile the historical implementation tasks of the 

Industrial Partner. During the profiling process, it became apparent that the attribute 

Skill Level of Implementer would be difficult to use for the reasons discussed in Chapter 

3. As a result, that particular attribute was removed from the profiling set.

Due to low volume of data available to train the neural networks, it was beneficial to 

have as few inputs as possible. Therefore, after all the historical tasks were profiled, 

several tests were conducted to see if any of the profiling attributes could be eliminated. 

Because the User Interface attribute was only applicable to some implementation tasks, it 

was found that only forty percent of the data made use of it. It was decided that there was 
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insufficient data to correctly evaluate the significance of this attribute. Therefore, the 

User Interface attribute was eliminated.

In addition, several attributes were found to have equal values for a suspiciously large 

amount of data points. It was suspected that the members of the development team who 

profiled the data perceived some of the “Familiarity with” attributes to be very similar 

and therefore, consistently evaluated these attributes the same. Tests were conducted to 

evaluate the amount of similarity between the following attributes: Familiarity with 

Functionality, Familiarity with Technology, Familiarity with Domain, Familiarity with 

Programming Language, and Complexity. The Complexity attribute was only included 

to serve as a comparison measure.

Table 6.9 shows the results produced by tests that compared the Technology profiling 

attribute with the other attributes and Table 6.10 shows the results produced by tests that 

compared the Language profiling attribute with the other attributes.

Table 6.9 - Similarity between Technology and other attributes.

Attribute 1 Attribute 2 % of Data Containing 
the Same Values for 
Attributes 1 and 2

Familiarity with Technology Familiarity with Language 55.7%
Familiarity with Technology Familiarity with Domain 34.7%
Familiarity with Technology Familiarity with Functionality 22.3%
Familiarity with Technology Complexity 10.8%

Table 6.10 - Similarity between Language and other attributes.

Attribute 1 Attribute 2 % of Data Containing 
the Same Values for 
Attributes 1 and 2

Familiarity with Language Familiarity with Technology 5 5.7%
Familiarity with Language Familiarity with Domain 31.5%
Familiarity with Language Familiarity with Functionality 16.9%
Familiarity with Language Complexity 10.8%

Both tables show that over 55% of the dataset contained the same values for the attributes 

Familiarity with Technology and Familiarity with Language. This was definitely an 

abnormal amount of similarity between the two attributes, and therefore one of them had 
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to be eliminated. It was determined that the attribute which showed the highest similarity 

with other attributes would be eliminated.

At 34.7%, the similarity between the Technology and the Domain attributes was higher 

than the similarity between the Language and Domain attributes, which was 31.5%. 

Furthermore, at 22.3%, the similarity between the Technology and Functionality 

attributes was also higher than the similarity between the Language and Functionality 

attributes, which was 16.9%. Therefore, the Technology attribute was more often 

perceived to be the same as the Domain and Functionality attributes, when compared to 

the Language attribute. As a result, the Familiarity with Technology attribute was 

eliminated.

Table 6.11 - Similarity between Domain and other attributes.

Attribute 1 Attribute 2 % of Data Containing the 
Same Values for Attributes 
1 and 2

Familiarity with Domain Familiarity with Language 31.5%
Familiarity with Domain Familiarity with Functionality 25.8%
Familiarity with Domain Complexity 15%

Additionally, the Familiarity with Domain attribute showed to be the same as the 

Familiarity with Language attribute for over 30% of the data. Likewise, the Domain 

attribute was evaluated the same as the Familiarity with Functionality attribute for over 

25% of the data (as shown in Table 6.11). This showed that the Domain attribute was 

also often perceived to be the same as the Functionality and Language attributes, and it 

was therefore also eliminated.

The remaining attributes of Functionality and Language had a low degree of similarity 

between them, at 16.9% (shown in Table 6.10), and were therefore retained. Thus, the 

Functionality, Language, Estimated Size, and Complexity attributes were used as inputs 

in the training of the neural networks.
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6.2 Step 2: Data Set Separation

The next step in the NFEM preparation process was to separate the profiling attributes 

into sets so that rules could be extracted from the trained neural networks and be 

implemented into an ANFIS. As described in Chapter 4, the NFEM was designed in such 

a way that it facilitates the data set separation for qualitative and quantitative profiling 

attributes.

This section describes the properties of the profiled data before applying the data set 

separation process described in Section 4.2 to the qualitative profiling attributes, and 

subsequently, to the quantitative attributes.

6.2.1 Experimental Data

Each data point consisted of four profiling attributes (Complexity, Functionality, 

Language, and Estimated Size) and the output attribute, Effort, in hours. The qualitative 

profiling attributes Functionality, Language, and Complexity could take on any value 

between one and five, and when normalized, this became a range between 0.2 and one 

(the value zero was reserved to indicate the term “not applicable”). The attribute value 

depended on how the sub-attributes were evaluated. The Estimated Size attribute as well 

as the Effort attribute could take any positive value between zero and one hundred. All 

the attribute values were normalized to be between 0 and 1. Table 6.12 illustrates three 

sample data points.

Table 6.12 - Sample data points obtained from the Industrial Partner.

Complexity Estimated 
Size (in 
hours)

Familiarity 
with 
Functionality

Familiarity 
with 
Language

Effort (in 
hours)

0.4 0.22 0.2 0.2 0.15
0.9 0.6533 0.4 0.8 0.98
0.2 0.1 0.87 0.7 0.2
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6.2.2 Data Set Separation for the Qualitative Profiling Attributes

6.2.2.1 Determining the Boundaries of the Fuzzy Sets

The procedure described in Chapter 4 was followed to separate the possible range of 

values into three fuzzy sets, Low, Medium, and High, which could then be transformed 

into Boolean sets. As described in Section 4.2, the values Medium-Low and Medium- 

High were used as references to locate the crossover points of each fuzzy set.

6.2.2.2 Determining the Boundaries of the Boolean Sets

Once the fuzzy sets were determined, boundaries of the Boolean sets were located at the 

crossover points of each fuzzy set. The Low set contained any values greater than or 

equal to 0.2 and less than or equal to 0.4 and was represented with the vector [1 0 0]; the 

Medium set contained any values greater than 0.4 and less than 0.8 and was represented 

with the vector [0 1 0]; and the High set contained any values greater than or equal to 0.8 

and was represented with the vector [0 0 1]. Table 6.13 reflects the Boolean 

transformation of the qualitative profiling attributes of the sample data shown in Table 

6.12.

Table 6.13 - Sample qualitative attributes transformed into Boolean form.

Complexity Functionality Language
Continuous Boolean Continuous Boolean Continuous Boolean
0.4 [10 0] 0.2 [1 0 0] 0.2 [10 0]
0.9 [0 0 1] 0.4 [10 0] 0.8 [0 0 1]
0.2 [1 0 0] 0.866667 [0 0 1] 0.7 [0 1 0]

6.2.3 Data Set Separation for the Quantitative Attributes

6.2.3.1 Determining the Boundaries of the Boolean Sets

The remaining profiling attribute, Estimated Size, and the output attribute, Effort, were 

not by default separated into sets as they were quantitative in nature. Due to the lack of 

71



abundance in data points, the equal data amount criterion was used to first determine the 

Boolean sets and then the fuzzy sets.

For the Estimated Size profiling attribute, the sets into which the data was separated into 

are shown in Table 6.14. To illustrate the equal data principle that guided the boundaries 

of the sets, the percentage of data points within each set is also shown in Table 6.14.

Table 6.14 - The Estimated Size Boolean sets.

Set Name Range of Values included 
in set (in hours)

% of Data Points 
within the Set

Median Boolean 
Vector

Low O<Estimated Size<4 18.2% 1.83 [1 00 00 0]
Medium-Low 4<= Estimated Size <8 17.9% 4.83 [0 1 0 0 0 0]
Medium 8<= Estimated Size <11 17.9% 8 [0 0 1 0 0 0]
Medium-High 11<= Estimated Size <17 16.0% 16 [0 0 0 1 0 0]
High 17<= Estimated Size <30 15.0% 24 [0 0 0 0 1 0]
Very High Estimated Size >=30 16.6% 42 [000 00 1]

Next, the Boolean sets of the output attribute were determined. The Effort values were 

separated into six sets, where each set was defined by a range of hours. Once again, the 

equal-data-amount criterion was used to determine the sets. Table 6.15 shows the 

boundaries of each set and the percentage of data points that fall within each set. Table 

6.16 contains the full Boolean transformation of a sample data point.

Table 6.15 - The Boolean sets of the output attribute Effort

Set Name Range of Values included 
in set (in hours)

% of Data 
Points within 
the Set

Median Boolean 
Vector

Low 0< Effort<4 16.0% 2 [1 0 0 0 0 0]
Medium-Low 4<= Effort <8 16.9% 5 [0 1 0 0 0 0]
Medium 8<= Effort <11 14.1% 8 [0 0 1 0 0 0]
Medium-High 11<= Effort <17 17.9% 15 [0 0 0 1 0 0]
High 17<= Effort <30 16.0% 22 [0 0 0 0 1 0]
Very High Effort >=30 19.2% 41 [00000 1]

Table 6.16 - Data point transformed from continuous to Boolean format.

Attribute Continuous 
Format

Boolean 
Format

Complexity 0.4 [10 0]
Estimated Size 0.22 [0 0 0 0 1 0]
Functionality 0.2 [1 0 0]
Language 0.2 [1 0 0]
Effort 0.15 [0 0 0 1 0 0]
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6.2.3.2 Determining the Boundaries of the Fuzzy Sets

Once the Boolean sets were determined, the fuzzy sets could be determined for the 

profiling attribute Estimated Size. Again, the procedure described in Section 4.2.2 was 

followed to do so. For each set of Table 6.14, the median shown was used as the centre 

of the generalized bell membership function and the width of the membership function 

was based on the width of the Boolean set. The slope of the sides of each generalized 

bell function, controlled by the parameter b as described in Chapter 2, was set to two, for 

all the sets. During the ANFIS training stage in Step 4, this parameter would be varied 

for best results. Figure 6.3 shows the fuzzy sets of the Estimated Size profiling attribute.

Medium-High HighLow Medium-Low Medium

0 5 50

Figure 6.3 - The fuzzy sets of the Estimated Size profiling attribute.

For the zero-order ANFIS implementation in Step 4 of the NFEM preparation process, 

the output sets needed to be represented by a single constant. As the output of the 

ANFIS, each Effort set shown in Table 6.15 was to be represented by the median of its 

data points, also shown in Table 6.15.

6. 3 Step 3: Neural Network Training

Once all the profiling attributes and the classification attribute were separated into sets, 

and the data was transformed into Boolean form, step 3 of the NFEM preparation process 

could be applied to the Industrial Partner’s dataset. The third step consisted of training 

neural networks with the Boolean data and extracting rules from the network that 
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achieved the most accurate classification results. These rules could then be implemented 

into the ANFIS.

6.3.1 Parameters Varied

In order to determine the network architecture, and the combination of inputs that would 

most accurately describe the factors that affect software implementation task effort, 

several different parameters were varied during the training of the networks.

6.3.1.1 Varying the Inputs

First and foremost, the number and combinations of profiling attributes used as input to 

the neural networks was varied. This was done in an attempt to find out if there was a 

certain combination of one or more profiling attributes that best predicted the output of 

the neural network. The four profiling attributes used as inputs created fifteen different 

combinations, ranging from only one attribute being included in the combination to all 

four. Therefore, for every other parameter varied during training phase, fifteen different 

input combinations had to be tested, resulting in fifteen experiments for each test case.

6.3.1.2 Varying the Number of Hidden Nodes

The number of hidden nodes was the second testing parameter varied to determine if 

there was a specific network architecture under which the neural network was best 

trained. To determine the ideal number of hidden nodes, three different neural network 

architectures were used: One with fifteen nodes in the hidden layer, another one with 

thirty-five, and a final one with fifty nodes. These values were determined through trial 

and error. Once again, in each test case, for each input combination, all three network 

architectures were tested.
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6.3.1.3 Varying the Number of Training Epochs

The final parameter varied was the number of epochs used to train the neural networks. 

This would test to see if increasing the number of epochs would compensate for the low 

volume of data. In Test Case 1 the number of epochs was limited to 1000 and in Test 

Case 2, the same experiments were repeated but the number of epochs used to train the 

neural networks was increased to 5000.

6.3.2 Testing Setup

The output of each neural network was Effort, in hours. Therefore, each neural network 

trained in these two test cases consisted of six output neurons in the third layer, each one 

corresponding to one of the sets of the Effort attribute determined in Section 6.2.3.

To automate each test case, an algorithm was designed and implemented to automatically 

create a three-layer backpropagation neural network, train it with the data presented, 

count the number of correct classifications and write it in a comma separated values 

(CSV) file. A correct classification was considered to be a point that is classified into the 

right output set. The mean squared error (MSE) of the last epoch of each trained neural 

network was also recorded within the CSV file, in order to keep track of the how 

successful the network training was. For each parameter variance, thirty networks were 

trained and an average was obtained to determine the overall affect of that particular 

parameter’s value change. Due to the scarcity of the number of data points, all 313 data 

points were used in training the neural networks.

The results of each test case are displayed in a bar graph that contains the experiment 

number and the names of the input attributes on the x-axis. The names of the inputs are 

shortened to only the first letter of the attributes’ names as shown in Table 6.17. The y- 

axis shows the average percentage of correctly classified data points. Three bars are 

shown for each experiment, one representing the networks with fifteen hidden neurons in 

the middle layer, another representing the networks with thirty-five hidden neurons, and a 
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final one representing the networks with fifty hidden neurons. The last 3 bars represent 

the overall averages of all the experiments for each test case. For each test case, a second 

chart is also shown comparing the average MSE of the last training epochs for each 

experiment.

Table 6.17 - The input abbreviations used on the figures displaying the results.

Experiment No. Inputs Short Name Used on the X- 
axis of Figures 6.4 to 6.11

1 Complexity 1 -C
2 Estimated Size 2 - E
3 Functionality 3 -F
4 Language 4-L
5 Complexity & Estimated Size 5 -C&E
6 Complexity & Functionality 6 - C&F
7 Complexity & Language 7 - C&L
8 Estimated Size & Functionality 8-E&F
9 Estimated Size & Language 9 - E&L
10 Functionality & Language 10-F&L

11 Complexity & Estimated Size & 
Functionality

11 -C&E&F

12 Complexity & Estimated Size & 
Language

12-C&E&L

13 Complexity & Functionality & 
Language

13 -C&F&L

14 Estimated Size & Functionality 
& Language

14-E&F&L

15 Complexity & Estimated Size & 
Functionality & Language

15-C&E&F&L

6.3.2 Test Results

6.3.2.1 Test Case 1: Training with 1000 Epochs

Figure 6.4 shows the results of testing all fifteen input combinations and all three network 

architectures when each of the networks was trained with 1000 epochs. Overall, the 

trained networks performed poorly. The average percentage of correctly classified data 

points varies from 5.29%, produced in Experiment 4, when the network architecture with 

fifty hidden nodes was used, to 33.42%, produced when Estimated Size was the input to 

the network architecture with fifty hidden nodes. The networks with only Estimated Size 

as input perform significantly better than the rest of the input combinations regardless of 
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the network architecture used. However, even at the highest data classification 

performance of 33.42%, the results are too low to allow accurate rules to be extracted 

from the network.

In terms of network architecture, it can be observed from Figure 6.4, and specifically, the 

last three bars showing the overall experiments’ average, that changing the number of 

nodes in the hidden layer from thirty-five to fifty does not significantly improve the 

performance of the networks. The average classification accuracy increase is only one 

percent between the two different network architectures. In fact, in experiments 3, 4, 7, 

10, and 13, the network classification accuracy actually decreases. On the other hand, the 

network architecture of thirty-five hidden nodes does outperform the network with fifteen 

hidden nodes, especially in experiments 2, 5, 9, and 12 where the classification accuracy 

nearly doubles.
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Figure 6.4 - Average classification accuracy results for Test Case 1.

The poor classification performance of the experiments is not very surprising given the 

high average MSE values shown in Figure 6.5. The highest average mean squared error 
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observable is 0.34. produced when Language is the input and there are fifteen hidden 

nodes in the network architecture. This indicates that the average error for a given output 

of the network with the Language profiling attribute as input was 0.583, or 58.3% 

(obtained by taking the square root of the MSE). In Test Case 2, the number of training 

epochs was increased to 5000, to see if the MSE would decrease, resulting in an increase 

in the classification accuracy.

0.35

□ 15 Hidden Nodes 035 Hidden Nodes 050 Hidden Nodes

0.25

0.05

0

Experiment number & input names

Average 0.2 
MSE of 
trained 
neural 

network 0.15

Figure 6.5 - Average mean squared error results for Test Case 1.

6.3.2.2 Test Case 2: Training with 5000 Epochs

Figure 6.6 shows the results produced by training neural networks of all three 

architectures and all fifteen input combinations with 5000 epochs. It is interesting to note 

that although the average MSE of all experiments decreased significantly (Figure 6.7), 

the average percentage of accurately classified data points also decreased for some of the 

experiments. The classification performance of the network with fifty hidden nodes and 

Estimated Size as the only input increased to 48%, and in turn, all networks that include 
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the profiling attribute of Estimated Size as an input show improved classification 

performance. For example, in Figure 6.6, experiments 2, 5, 8, 9, 11, 12, 14, and 15 all 

show higher classification accuracy than the same experiments in Figure 6.4, regardless 

of the network architecture. However, most networks that do not include Estimated Size 

as an input decreased in classification accuracy. The only exceptions to this were 

experiments 6 and 13 when the network architecture with fifty hidden nodes was used.
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Figure 6.6 - Average classification accuracy results for Test Case 2

The lowest average MSE value observed in Figure 6.7 is 0.081, when only Estimated 

Size is used as an input to the network architecture with fifty hidden nodes. This 

indicates that the average error for a given output of that network architecture was 28.5%. 

Once again, this is a significantly high error rate that would not allow accurate rules to be 

extracted from the network. Further tests were conducted to test if increasing the number 

of training epochs to 10,000 would significantly increase the classification accuracy of 

any of the experiments, however at best, only a 3% accuracy increase was observed.
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Figure 6.7 - Average mean squared error results for Test Case 2.

6.3.3 Analysis & Discussion

It was believed that the poor results shown in Figure 6.4-6.7 could be due to several 

reasons: Poor data set boundaries, lack of data for training the neural networks, and low 

data quality. Following, each of these hypotheses were examined and further tests were 

conducted when possible, to eliminate them and continue with the NFEM process.

The first hypothesis stated that the poor results were caused by the poorly located 

boundaries of the sets into which the attributes Effort and Estimated Size were separated 

That is to say, the clustering of the sets of these two attributes, which was based on the 

equal-data criterion was inadequate. In order to test this hypothesis, two more test cases 

were developed. In these two cases, the Estimated Size attribute was not separated into 

sets, but rather, it was just normalized and entered as a value between zero and one into 

the neural networks. In addition, the output attribute of Effort, was also normalized and 
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not separated into sets, such that the networks only had one output node in their third 

layers. This would eliminate any error that was introduced by separating the two 

quantitative attributes into sets. The algorithm determined a data point to be correctly 

classified if the network’s output was with 20% of the actual effort. The idea was, to 

emulate a network that estimated implementation tasks that were within 20% of the 

actual value. In [50], Stutzke points out that typically, estimating within 20% of the 

actual effort is adequate accuracy for project cost and schedule.

Figures 6.8 and 6.9 show the results of Test Case 3, when 1000 epochs were used to train 

each network and Figures 6.10 and 6.11 show the results of Test Case 4, when 5000 

epochs were used to train each network. Once again, the average MSE for all the 

network architectures has decreased in both cases, when compared to the average MSE 

values of Figure 6.5 and 6.7.
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Figure 6.8 - Average classification accuracy results for Test Case 3.
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Figure 6.10 - Average classification accuracy results for Test Case 4.
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Figure 6.11 - Average mean squared error results for Test Case 4.

The lowest MSE value shown in Figure 6.9 is 0.0094, produced when Estimated Size is 

the input attribute to the network architecture with fifty hidden nodes, indicating that the 

average error associated with a given output was 9.7%. The highest MSE value is 0.041, 

produced when Functionality and Language are the input attributes to the network 

architecture with fifteen hidden nodes, indicating that the average error associated with a 

given output was 20.2%.

In Figure 6.11, the lowest MSE value is 0.0046, when Estimated Size is used as the input 

to the neural network architecture with fifty hidden neurons. This translates to an 

average error of 6.8% for a given data point.

However, despite the lower MSE values, in comparison to Test Cases 1 and 2, the 

average percentage of correctly classified data points dropped. The highest classification 

accuracy decreased from 33% in Test Case 1 (Figure 6.4) to 24% in Test Case 3 (Figure 

6.8) and from 48% in Test Case 2 (Figure 6.6) to 32% in Test Case 4 (Figure 6.10). The 
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low MSE values could be explained by the fact that the mean of a population is easily 

biased by outliers: “Regardless of how many observations we might have, it takes only 1 

outlier to make the sample mean arbitrarily large or small.” [53].

Overall, while the network was more successfully trained with the data when the 

quantitative attributes were not separated into sets, the classification accuracy dropped. 

This shows that the main problem was not due to the set boundaries determined in the 

second step of the NFEM preparation process, as assumed in the first hypothesis.

The second hypothesis was that the poor results were caused by the low amount of data. 

As stated before, originally, the Industrial Partner believed to have 2000 historical data 

points, but due to several reasons, the data set available to conduct the experiments 

contained just over 300 data points. This posed a much unexpected problem because in 

general, large amounts of data are required to train neural networks successfully. Since 

there were no more data points available however, as all networks were trained with all 

313 data points, there was no practical way of determining if more data would yield 

better results. But theoretically, the findings of [6], which were summarized in Section 

4.1.2, could be used to test this second hypothesis. Assuming a fraction of error of 0.125 

within the training data, for every weighted connection of a multilayer neural network, 

there need to be approximately ten training data points. In the best case scenario, in Test 

Cases 1 through 4, the networks with the lowest amount of weighed connection weights 

consisted of three nodes in the first layer, corresponding to the sets of the one profiling 

attribute used as an input, fifteen hidden nodes in the middle layer, and six output nodes 

in the third layer. Therefore there were forty-five weighted connections from the first 

layer to the middle one (obtained by multiplying the number of nodes in the first and 

second layer) and ninety weighted connections in the second layer (obtained by 

multiplying the number of nodes in the middle and third layer), totaling 135 weighted 

connections in the neural network. As a result, theoretically, a minimum of 1350 data 

points would be required to train the neural network. This proves that insufficient data 

was the cause of the poor network classification results.
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The third hypothesis, which stated that the quality of the training data may be low, 

leading to poor classification results cannot be proved true or false, due to the lack of 

data: If sufficient data was available to train the neural networks, and the classification 

accuracy continued to be low, then the quality of data could be further investigated.

Overall, there was insufficient data to successfully complete the third step of the Neuro- 

Fuzzy Estimation Model. However, given that only 313 data points were available, when 

at minimum, 1350 data points were needed, the results turned out to be promising. When 

only a fifth of the required data points were used to train the neural networks, 48% 

classification accuracy was achieved. Thus, although the Industrial Partner’s data was 

insufficient to fully implement the third step of the NFEM preparation process, the results 

are promising.

6.4 Step 4: Rule Extraction and ANFIS Implementation

Step 4 of the NFEM preparation process could not be implemented due to the long term 

process involved in collecting sufficient data. Therefore, time constraints did not allow 

for the full validation of the Neuro-Fuzzy Process. Nevertheless, Chapter 4 describes in 

detail how the full implementation of the NFEM would be completed once sufficient data 

was available.
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CHAPTER VII
Conclusion

7.1 Summary of Contributions

The ability to produce accurate software development effort estimates is essential to the 

software industry. Based on them project scope is determined, quality standards are set 

in place, and cost and schedule constraints are defined. Yet, software development effort 

estimates are often plagued by omissions, uncertainty, and bias [50]. Existing estimation 

models continue to frequently produce inaccurate estimates, instigating research studies 

that attempt to determine the properties they lack. After decades of such studies and 

practical experience, a number of deficiencies have been found that hinder existing 

estimation models from producing accurate estimates. This thesis focused on developing 

a new effort estimation model that amends those deficiencies by incorporating within it 

the following characteristics:

1. The ability to handle diverse process and product variables.

2. The ability to incorporate empirical evidence and expert judgment.

3. The ability to determine genuine cause and effect relationships.

4. The ability to handle uncertainty.

5. The ability to handle incomplete information.

The Neuro-Fuzzy Estimation Model presented in this thesis was designed with all of 

these characteristics in mind. This section discusses how the NFEM accomplishes each 

of the above characteristics as well as other characteristics that greatly benefit the process 

of estimation.
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7.1.1 Input Customizability

As a universal software estimation model, the NFEM offers full customizability of the 

inputs it uses. Each organization or team within an organization implementing the 

NFEM is able to choose the attributes that are believed to most influence the 

development effort. This is very important because depending on the development 

environment and type of system being built, the factors that affect development effort can 

greatly vary. In addition, the definitions of the scale values for each attribute are 

determined independently by each organization. This is an advantage that no existing 

effort estimation model has as it significantly expands the flexibility of the NFEM. After 

all, what is considered “High Reliability” by a team that develops safety critical systems 

is different from what a team that develops video games considers it to be. And while the 

NFEM does not require that Expert Effort Estimate be a mandatory profiling attribute, the 

inclusion of it is strongly recommended and its implementation is facilitated by the 

NFEM’s ability to integrate quantitative attributes. Finally, the output of the NFEM is 

effort, but how effort is measured is left to the discretion of each organization 

implementing the NFEM. This NFEM characteristic offers additional freedom of 

customizability.

7.1.2 Incorporating Neural Networks

The use of multilayer feedforward neural networks in the preparation process of the 

NFEM accomplishes several feats. First and foremost, feedforward multilayer neural 

networks have been proven to have the ability to model any input-output relationship 

[19]. Therefore, training a neural network with the effort estimation data of a given 

environment, allows the relationships between the profiling attributes and the 

classification attribute to be modeled. In addition, it automatically calibrates the model 

with the given environment’s data. Studies have shown that calibrating an effort 

estimation model with a given environment’s data significantly increases the model’s 

estimation accuracy [23], [27], [34]. Furthermore, using neural networks to model input

output relationships automatically filters out profiling attributes that do not have a
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significant effect on effort. By extracting rules from the most successfully trained neural 

network, those attributes that were not used as inputs to that particular network are 

eliminated. Finally, multilayer neural networks are robust to incomplete information, 

rendering the NFEM to be robust to incomplete information as well, specifically because 

the NFEM is implemented as a neuro-fuzzy system.

7.1.3 Incorporating Fuzzy Logic

The fuzzy logic side of the NFEM also delivers several benefits. Estimations, by their 

very nature contain a degree of uncertainty within them. Therefore, applying a 

mathematical algorithm such as fuzzy inference, that is intended to take into account the 

inherent uncertainty of the data allows for more accurate estimations. In addition to 

dealing with uncertainty, the incorporation of fuzzy logic within the NFEM allows the 

integration of qualitative and quantitative attributes. The nature of fuzzy logic also 

allows the NFEM to be able to deal with imprecise information due to the subjectivity 

present in the values of the profiling attributes. By nature, most factors that strongly 

affect software development effort are subjective. Therefore, instead of developing 

another model that tries to avoid subjectivity of the metrics (an impossible task), the 

NFEM uses fuzzy logic to take into account the imprecision present in the data. Finally, 

the extraction and implementation of rules into the ANFIS system allows for the Neuro- 

Fuzzy Estimation Model to be transparent and allows for the rules to be validated by 

experts. This avoids the negative aspects of using neural networks to model the input

output relationships, a structure that is often considered to be a “black-box” [44].

7.1.4 Implementing the NFEM as an ANFIS

The implementation of the NFEM as an adaptive neuro-fuzzy inference system allows for 

the fuzzy membership functions to be further fine-tuned to a given organization’s 

environment. Furthermore, it facilitates a continuous process of improvement. For 

example, a large number of profiling attributes can be selected to be measured, but 

initially the NFEM can be implemented with only a fraction of those, so that a very large 
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amount of data is not necessary. Over time however, as more data is collected, the 

NFEM can be re-implemented to include more profiling attributes. Also, even if new 

attributes are not introduced into the NFEM, as the volume of historical data increases, 

the NFEM can be retrained with the new available data for some improvement, or the 

preparation process steps can be repeated, starting from Step 2, for a more extensive 

improvement of the system.

7.1.5 Estimating Effort at the Task Level

The final advantage that the NFEM has over existing estimation models is that it 

facilitates automatic data collection at a lower level. While theoretically, the NFEM can 

be used as a model to estimate high-level software development effort, in practice this is 

not feasible due to the long period of time that it would take to collect the required 

training data. Therefore, the NFEM was developed as an estimation model for 

collecting data at the software development task level. One advantage to this is that it 

makes the collection of calibration data mandatory, and as discussed previously in this 

section, model calibration is necessary if the estimation model is to be expected to 

perform with some accuracy. In addition, the smaller the task size, the easier it is to 

accurately profile it and estimate it using expert estimation. Generally speaking, the 

larger a software development task is, the more difficult it is to estimate it [15], [28], 

[45], [50] because as the size of the task increases, so does the interdependency among 

various elements of the software [45]. As a result, estimating becomes harder because 

there is more uncertainty in the estimate. Therefore, the Neuro-Fuzzy Estimation System 

is able to avoid a degree of data uncertainty and imprecision, simply by dealing with 

more granular software development tasks.

7.2 Future Work

The Neuro-Fuzzy Estimation Model presented in this thesis provides a great foundation 

and much potential for producing accurate estimates. However, due to time constraints, 

the scope of the thesis had to be limited, hindering further research into some of the areas 
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that could be perceived as weaknesses within the NFEM. These potential weaknesses 

provide future directions for this research.

First and foremost, Section 3.7 discussed the great effect the task implementer’s 

capability has on effort, regardless of the development environment or product being 

developed. Yet, in the real world, evaluating individuals and making such evaluations 

usable in a public tool presents several major problems, from confidentiality breach to 

workplace morale decrease. Further research must be conducted in how to overcome 

these obstacles and allow the inclusion of the profiling attribute implementer capability.

In step 2 of the NFEM preparation process, the boundaries of quantitative attributes were 

determined based on the equal-amount of data criterion. Perhaps a better approach would 

be to determine the boundaries by using self-organized maps [30] or clustering 

algorithms [5]. These algorithms would be able to find the natural boundaries that occur 

within the dataset.

In step 3 of the Neuro-Fuzzy Estimation Model, different neural network architectures 

had to be tested to reveal the most suitable number of hidden nodes in the middle layer. 

A better alternative would be to use algorithms such as those proposed in [17], [35], or 

[36] to determine the number of hidden nodes in the middle layer. Additionally, the 

dataset used in the neural network training step should be separated into a training set and 

a testing set. This would ensure that the neural network is not too closely modeled to the 

training set resulting in poor performance when new inputs are entered.

For the fourth and final step of the NFEM preparation process, further research could be 

conducted in a couple of areas. Firstly, only decompositional rule-extraction algorithms 

were considered during the development of this thesis. Consequently, pedagogical and 

eclectic rule extraction algorithms could be explored in the future to see if they yield 

better results. The second area that could be explored in the future is to allow certain 

profiling attributes to have a greater effect on the effort estimate than others, in hopes that 

more accurate estimates are produced. This could be accomplished by assigning greater 
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weights to rules whose antecedents include attributes that are believed to have a more 

significant effect on effort.

Finally, the Neuro-Fuzzy Estimation Model is designed to estimate software development 

effort estimation at a stage when some details are known about the project. This is 

beneficial for the later stages of estimation, when the requirement specifications or design 

phases have been completed. But in the early phases of project conception, many of the 

development tasks that the project will consist of are not known. Thus, a formal process 

of associating the task-level estimates generated by the NFEM with high-level project 

estimates produced at the commencement of a project would yield many benefits. 

Further research must be conducted to bridge these two different levels of estimation.

In conclusion, the Neuro-Fuzzy Estimation Model proposed in this thesis provides a 

successful foundation for overcoming many of the obstacles faced by existing software 

development effort estimation models.
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Appendix A

Attribute Skill Level of Implementer

Name Skill Level of Implementer
Definition The degree to which the skill level of the task implementer 

influences the effort estimate.
Rationale A particularly complex feature may require someone with a lot 

of skill and ∕or experience. The person who is assigned with 
implementing the task should influence the size of the 
estimate.

Implementation Each of the sub-attributes of this attribute will be rated on a 
scale of Low, Medium-Low, Medium, Medium-High, and 
High, which will correspond to a scale of 1 to 5. Then, all the 
sub-attributes will be averaged to obtain a single value for the 
Skill Level of Implementer attribute. To avoid inaccurate data 
due to personal bias, it would be best if each team member is 
rated by his/her technical lead and the values be saved in a 
separate table and updated periodically by the technical leads. 
In addition, a generic profile should be available for cases 
when the task implementer is not known but a task estimate is 
needed.

Sub-Attributes for Attribute Skill Level of Implementer

Analyst Capability
Definition The ability to investigate new strategies or defects, as well as the 

overall quality, reliability, and robustness of work items previously 
completed by the task implementer.

Scale
Values’ 
Definitions

Low The implementer produces low quality work.
Medium In general, the quality of the work produced by 

the implementer is adequate.
High The implementer produces high quality work.

Learning Ability
Definition The task implementer’s ability to learn new concepts and acquire new 

skills quickly.
Scale
Values’ 
Definitions

Low The implementer takes much more time than what 
is considered reasonable before being able to 
apply new concepts/skills.

Medium In general, the implementer takes, what is 
considered, a reasonable amount of time before 
being able to apply new concepts/skills.
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High The implementer takes a minimal amount of time 
before being able to apply new concepts/skills.

Efficiency
Definition The ability to complete a task accurately and on time (i.e. without 

over-analyzing the problem and the possible solutions).
Scale
Values’ 
Definitions

Low The implementer takes much longer than what 
is considered reasonable to complete most tasks.

Medium The implementer completes most tasks, in what 
is considered a reasonable amount of time.

High The implementer completes most tasks ahead of 
time.

Teamwork
Definition The ability to communicate in a timely manner with other team 

members and management and the ability to co-operate in terms of 
choosing the best possible solution for the task, while still adhering to 
time and quality constraints.

Scale
Values’ 
Definitions

Low The implementer needs improvement in his/her 
communication and cooperation skills and does 
not adhere to team decisions.

Medium The implementer has sufficient communication 
and cooperation skills and usually adheres to 
team decisions.

High The implementer has excellent communication 
and cooperation skills and always adheres to 
team decisions.

Attribute Familiarity with Technology

Name Familiarity with Technology, Technology
Definition The degree to which the implementer’s familiarity with the 

technology, used to complete the task, influences the estimate.
Rationale Uncertainties in employing new technology (e.g. .NET 

framework.) or integration with a 3rd party tool (e.g. Crystal 
Reports) could require the implementer to spend time 
installing and/or becoming familiar with them. Any tasks 
using new technology should be increased in effort to account 
for this overhead.

Implementation Each of the sub-attributes of this attribute will be rated on a 
scale of Low, Medium-Low, Medium, Medium-High, and 
High, which will correspond to a scale of 1 to 5. The sub
attributes will then be averaged to obtain a single value for the 
Familiarity with Technology attribute.
Note: At the time of estimation, the implementer may not be 
identified. Since this attribute is implementer dependent and
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the implementer’s familiarity will not be known, the estimator 
must use his/her best judgement with respect to the overall 
team’s familiarity with the technology.

Sub-Attributes for Attribute Familiarity with Technology

Familiarity with Documentation
Definition The degree of the task implementer’s knowledge /understanding of 

the technology’s documentation: Has the implementer skimmed the 
documentation or thoroughly read it. Documentation includes: help 
files, user guides, online tutorials, and books dedicated to the 
technology.

Scale
Values’ 
Definitions

Low The implementer has never looked at any of the 
documentation before.

Medium The implementer has read and understands about 
half of the help files, user guides and other 
resources concerning the technology.

High The implementer has read and understands almost 
all the content of the help files, user guides and 
other resources concerning the technology.

Usage of Technology
Definition How well the task implementer feels that he/she knows how to 

implement solutions using the technology. This is a measure of the 
level of comfort he/she has in using the technology.

Scale
Values’ 
Definitions

Low The implementer is not comfortable with using 
the technology.

Medium The implementer is sufficiently comfortable with 
using the technology.

High The implementer is very comfortable with using 
the technology.

Attribute Familiarity with Programming Language

Name Familiarity with Programming Language, Familiarity with 
Language, Language

Definition The degree to which the implementer’s familiarity with the 
software language, to be employed when completing the task, 
influences the estimate.

Rationale Some learning time may be included in using a new 
programming language.

Implementation Each of the sub-attributes of this attribute will be rated on a 
scale of Low, Medium-Low, Medium, Medium-High, and 
High, which will correspond to a scale of 1 to 5. The sub-
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attributes will then be averaged to obtain a single value for the 
Familiarity with Language attribute.
Note: At the time of estimation, the implementer may not be 
identified. Since this attribute is implementer dependent and 
the implementer’s familiarity will not be known, the estimator 
must use his/her best judgement with respect to the overall 
team’s familiarity with the language.

Sub-Attributes for Attribute Familiarity with Language

Familiarity with Documentation
Definition The degree of the task implementer’s knowledge/understanding of the 

language’s support documentation. The documentation includes: help 
files, user guides, online knowledge databases, and books dedicated 
to the use of the language.

Scale
Values’ 
Definitions

Low The implementer has never read any of the help 
files or user guides.

Medium The implementer has read and understands about 
half of the topics in the help files and user guides.

High The implementer has read and understands almost 
all of the content of the help files and user guides.

Usage of Language
Definition How well the task implementer feels that he/she knows how to 

implement solutions using the chosen language. This is a measure of 
the level of comfort he/she has in developing solutions with the 
language.

Scale
Values’ 
Definitions

Low The implementer is not comfortable developing 
with the language.

Medium The implementer is sufficiently comfortable 
developing with the language.

High The implementer is very comfortable developing 
with the language.

Attribute User Interface

Name User Interface, UI
Definition The degree to which the level of complexity of the user 

interface influences the estimate.
Rationale As the level of UI complexity increases, the amount of time 

required to incorporate input validation and to manage 
resource/error strings increases.

Implementation Each of the sub-attributes of this attribute will be rated on a 
scale of Low, Medium-Low, Medium, Medium-High, and 
High, which will correspond to a scale of 1 to 5. The sub-
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attributes will then be averaged to obtain a single value for the 
User Interface attribute. If all sub-attributes are set to NA, 
then User Interface attribute will not affect the effort 
estimation at all. However if any one of the sub-attributes is 
set anything other than NA, then the rest of the sub-attributes 
should also be set to something other than NA.

Sub-Attributes for Attribute User Interface

Amount of UI Controls
Definition A linguistic approximation of the amount of user interface controls 

needed by the functionality. User interface controls include: text 
boxes, list boxes, radio buttons, command buttons, menus, combo 
boxes, etc.

Scale
Values’ 
Definitions

Low Up to 5
Medium 5 to 15
High More than 15
NA Not applicable

Required Level of Validation
Definition A qualitative measure of the amount of input validation required by 

the user interface of the task’s functionality.
Scale
Values’ 
Definitions

Low The UI controls are self-validating in nature 
such as radio buttons and combo boxes or the 
user input is just for commenting purposes and 
will not cause program errors.

Medium Some validation is required as invalid input can 
cause program failures.

High The user input data is critical to the application 
and invalid input will definitely cause program 
failures.

NA Not applicable.

Underlying Architecture Complexity
Definition The overall complexity of the underlying architecture. For example, 

a simple registry access function will likely have a low architectural 
complexity whereas functionality providing the ability to insert 3rd 
party ActiveX controls would likely have a high architectural 
complexity.

Scale
Values’ 
Definitions

Low The underlying functionality is very simple.
Medium The underlying functionality is of average 

complexity.
High The underlying architecture is very complex.
NA Not applicable.
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Attribute Complexity

Name Complexity
Definition The degree to which the complexity of the task influences the 

estimate.
Rationale Adding a piece of data (e.g. a new attribute to an existing 

object class) would require more effort in a complex system 
than in a simple one.

Implementation Each of the sub-attributes of this attribute will be rated on a 
scale of Low, Medium-Low, Medium, Medium-High, and 
High, which will correspond to a scale of 1 to 5. The sub
attributes will then be averaged to obtain a single value for the 
Complexity attribute.

Sub-Attributes for Attribute Complexity

Difficulty of Definition
Definition The degree of difficulty involved in defining the solution such as the 

algorithmic complexity of the solution in terms of computational 
complexity (e.g. nested loops, analysis of differential equations), time 
computational complexity (e.g. real-time systems), space 
computational complexity (e.g. distributed database coordination), 
and information-based complexity (e.g. simple arrays in main 
memory vs. highly coupled dynamic relational and object structures).

Scale 
Values’ 
Definitions

Low The solution is very easy to define. The 
implementation of its functionality and constraints 
is straightforward and easy to express.

Medium The solution is somewhat easy to define. The 
implementation of its functionality and constraints 
is of average difficulty.

High The solution is very difficult to define. The 
implementation of its functionality and constraints 
is not straightforward.

Interdependence with other Features
Definition The amount of other functions/features the current task impacts 

and/or the amount of functions/features the current task is impacted 
by.

Scale
Values’ 
Definitions

Low The task is mostly independent of other 
functionality.

Medium Some of the other functionality is dependent on 
how this task is implemented and/or the 
implementation of this task is dependent on how 
some of the other functionality is implemented.

High A lot of other functionality is dependent on this 
task and/or this task is dependent on a lot of other 
functionality.
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Attribute Familiarity with Functionality

Name Familiarity with Functionality, Functionality
Definition The degree to which the implementer’s familiarity with the 

functionality influences the estimate.
Rationale If the task is different from anything that has been 

implemented by the development team in the past, then some 
extra effort will be required for research and learning.

Implementation Each of the sub-attributes of this attribute will be rated on a 
scale of Low, Medium-Low, Medium, Medium-High, and 
High, which will correspond to a scale of 1 to 5. The sub
attributes will then be averaged to obtain a single value for the 
Familiarity with Functionality attribute.
Note: At the time of estimation, the implementer may not be 
identified. Since this attribute is implementer dependent and 
the implementer’s familiarity will not be known, the estimator 
must use his/her best judgement with respect to the overall 
team’s familiarity with the functionality.

Sub-Attributes for Attribute Familiarity with Functionality

Similarity
Definition The degree to which the current task resembles something that the 

implementer has previously implemented.
Scale 
Values’ 
Definitions

Low The implementer has never before implemented 
similar functionality.

Medium The implementer has previously implemented 
functionality that is somewhat similar.

High The implementer has implemented very similar 
functionality.

Product Knowledge
Definition How famil 

developed, 
understand 
component

iar the implementer is with the application/product being 
This will give a measure of how well the implementer

s how the ComponentZfunctionality will affect the existing 
s/functionality.

Scale 
Values’ 
Definitions

Low The implementer has never before worked on the 
product and knows very little about it.

Medium The implementer knows some of the key things 
about how the product is built but not all of the 
details.

High The implementer is very familiar with the product 
and how it is implemented.

Component Knowledge
Definition How familiar the implementer is with the component the current task 

involves.
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Scale
Values’ 
Definitions

Low The implementer has very little knowledge 
about the component involved in the current 
task. Û

Medium The implementer has implemented some parts 
of the component involved in the current task.

High The implementer is very familiar with the 
component involved in the current task, and has 
been one of the main people involved in 
implementing it.

Attribute Familiarity with Domain

Name Familiarity with Domain
Definition The degree to which familiarity with the application domain 

influences the estimate.
Rationale If the task implementer has no understanding of the product 

objectives or the customer’s/domain’s goals, more effort 
would be required for the task, because some research and 
learning will be necessary before the implementation of the 
task can begin.
If the task implementer has recently switched from the data 
domain (i.e. working with databases) to the HMI (Human 
Machine Interaction) domain (i.e. working with user 
interfaces), more effort will be required for the task 
implementer to complete UI tasks due to the lack of 
experience with the domain.

Implementation Each of the sub-attributes of this attribute will be rated on a 
scale of Low, Medium-Low, Medium, Medium-High, and 
High, which will correspond to a scale of 1 to 5. The sub
attributes will then be averaged to obtain a single value for the 
Familiarity with Domain attribute.
Note: At the time of estimation, the implementer may not be 
identified. Since this attribute is implementer dependent and 
the implementer’s familiarity will not be known, the estimator 
must use his/her best judgement with respect to the overall 
team’s familiarity with the domain.

Sub-Attributes for Attribute Familiarity with Domain

Product Domain Familiarity
Definition The level of familiarity the implementer has with the application 

domain (i.e. functions within the industry that the product will be 
used).
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Scale
Values’ 
Definitions

Low The implementer has very little knowledge about 
the product’s domain.

Medium The implementer has general knowledge about the 
product’s domain (e.g. key goals, key problems, 
organizational structure, etc.) but does not know 
details.

High The implementer knows a lot of details about the 
product’s domain.

Software Domain Familiarity
Definition The level of familiarity the implementer has with the task’s related 

software domain (e.g. database, GUI, server, web, etc.).
Scale 
Values’ 
Definitions

Low This is one of the first times the implementer is 
completing tasks in this particular software 
domain and does not feel comfortable with it.

Medium The implementer has previously worked on the 
task’s software domain and feels somewhat 
comfortable with it.

High The implementer is very comfortable with the 
task’s software domain.

Attribute Estimated Size

Name Estimated Size
Definition The degree to which the size of the task influences the 

estimate.
Rationale The task implementer generally has an idea of the amount of 

time the task should take. This is based on past experience 
and is generally somewhat accurate.

Implementation Size is equivalent to the number of hours estimated to 
complete the task. By selecting one of the PERT, Function 
Point or Expert techniques a value previously estimated will 
be used.
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