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Research problems that require a non-parametric analysis of multifactor designs with
repeated measures arise in the behavioural sciences. There is, however, a lack of available
procedures in commonly used statistical packages. In the present study, a generalization of
the aligned rank test for the two-way interaction is proposed for the analysis of the typical
sources of variation in a three-way analysis of variance (ANOVA) with repeated
measures. |t can be implemented in the usual statistical packages. Its statistical properties
are tested by using simulation methods with two sample sizes (n = 30 and n = 10) and
three distributions (normal, exponential and double exponential). Results indicate
substantial increases in power for non-normal distributions in comparison with the usual
parametric tests. Similar levels of Type | error for both parametric and aligned rank
ANOVA were obtained with non-normal distributions and large sample sizes.
Degrees-of-freedom adjustments for Type | error control in small samples are proposed.
The procedure is applied to a case study with 30 participants per group where it detects
gender differences in linguistic abilities in blind children not shown previously by other
methods.

I. Introduction

Problems in need of non-parametric tests of variable interactions in the analysis of variance
(ANOVA) for research designs arise frequently in basic and applied behaviour research. In
an extensive review of several hundred data distributions from both research articles and
educational evaluation agencies the normality assumption was violated in a large majority
of cases (Micceri, 1989). Fifty per cent of the distributions showed higher tail densities
than those found in the normal model. Thirty per cent of the distributions had extreme
asymmetries which approached the exponential distribution. In many situations of these
kinds, non-parametric tests have better properties than classical parametric tests in terms
of power, efficiency, or Type I error biases (Wilcox & Keselman, 2003). However,
procedures for the non-parametric testing of variable interactions are not included in the
ANOVA modules of standard statistical packages.

One proposed method consists of performing an F parametric contrast on the ranked
observations (Conover & Iman, 1981). In one-way designs, this procedure is equivalent to
Mann—-Whitney and Wilcoxon tests for between- or within-subject comparisons. In
two-way designs, however, the presence of main effects has been shown to confound
interaction effects, leading to increased Type I errors (Blair, Sawilowsky, & Higgins, 1987;
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Thompson, 1991a,b). A proposed solution is to treat main effects as confounding variables
and to subtract their influence from the observations before ranking and calculating the F
statistics. This procedure has been termed the aligned rank test (Hodges & Lehmann,
1962) and has been shown to be robust in terms of Type I error rates and statistical power
in non-normal distributions (Beasley, 2002; Salter & Fawcett, 1993; Toothaker &
Newman, 1994). It can also be implemented in standard statistical packages.

The present study proposes a generalization of this method for the analysis of the
sources of variation typically obtained in a three-way ANOVA with repeated measures. Its
statistical properties are tested by simulation methods. It is then applied to a case study on
gender differences in children with sensory disabilities.

2. Aligned rank tests

2.1. Linear model
The sources of variation for a mixed design with two between-subject fixed effect factors
(A and B) and one within-subject fixed effect factor (M) can be specified as follows:

Vit = K.+ o+ B+ (aB); + s1.35)
+ ¥ + () + (BY)je + (2BY) e
+ (g (1)

for i =1,2,...,a levels of factor A,
j=1,2,...,b levels of factor B,
k=1,2,...,m levels of factor M,

and / = 1,2,...,n participants per experimental condition

The first line of model (1) contains all between-subject effects: the main effects of factors A
(o) and B (ﬁj), their interaction (chij), plus the between-subject error term due to
individual differences (s; ;). The second and third lines of the model contain all
within-subject effects: the main effect of factor M (1), the two-way interactions (oY),
(Byjk), the three-way interaction (ocByl-jk) and the within-subject error term (€g¢;).

The usual assumptions are that random error effects s; ;;, and €, are independently
and identically distributed (i.i.d.). The covariance matrices for the within-subject factor
are assumed to be equal between groups and have the property of sphericity, it being the
case that:

o)

Sty) ~ 1460, 52) } and both random effects are independent. (2)

Epu(y) ~ 11d (0,

2.2. Aligned rank transformations

Type I error rates for the rank transform method (Conover & Iman, 1981) in a three-way
ANOVA design have been shown to increase as a function of the number of other non-null
effects in the model (Sawilowsky, Blair, & Higgins, 1989). When all of the remaining
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effects were present, maximum values near 1 have been observed, meaning that the null
hypothesis in these cases will almost always be rejected when it is true. The aligned rank
procedure used here is analogous to the one used for testing the interaction in two-way
designs. Here it is generalized by creating a new aligned rank variable for each
experimental effect. Each variable is obtained by ranking the observations after removing
the confounding sources of variability not contained in the expected mean squares for
that effect (Table 1). Transformations for between- and within-subject effects are
described in Table 2

Table 1. Expected mean squares for sources of variation in an analysis of variance of a three-way
design with one within-subject factor. A, B, and M are fixed effects

Effect E[MS]

Between subjects

A ol + mof(ab) +nbm2 o /a -1
i=1
b
B o) +mo,, + namz ,BIZ b—1
=
A xB o’ +mol,, +nmzz of; /(a—l)(b 1)
i=l j=1
S/AxB O' +mo’

s(ab)

Within subjects

M of+ofu(ab)+nabgy,f m—1

AxM 02 +0% ) +nbgg(0{%k ) /(a—l)(m—l)

BxM O, + 0 +na§§( B )2 /(b—l)(m—l)

A XBxM 0.+ 00 +nla1 gg(aﬂ%,k )2 /(a—l)(b—l)(m—l)
MxS/AxB o’ +0mv(a,,)

Note. S/A x B and M x S/A x B are the between-subject and within-subject error terms,
respectively.
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Table 2. Aligned rank variable transformations for experimental effects in the ANOVA table

Effect Parameters Estimates
Between
subjects
A R (y;k[) =Rank(u_+o;+s,,) R ()A’;u) =Rank(y, + §1.(ij))
B R(yj)=Rank(u_+ B, +s,,) R(j,)=Rank(¥, +5,,)
A xB R (y;:) =Rank(x_+ aﬂij +58,7)) R (j};lg ) =Rank(y, -y, -y, +y + 5/.(:‘/))
Within
subjects
M R(y,h)=Rank(u_+7, +&,,) R($y1,)=Rank (¥, + &)
AxM R (yifk‘y ) = Rank(ﬂ.... oy, + gkl(i/‘)) R (JA’:/:}/I ) =Rank(y,, =¥, =V, + V. +& )
BxM R (yfkjlw ) = Rank(,uk_u + BV + gk/(i/')) R (y,f,y ) =Rank(y,, -V, =V, +¥. +&)
R(ﬁ;ﬁM ) = Rank(y’y‘k _j}y _yi.k _jj./k
AxBxM R(y;sM): Rank(ﬂ.v.v"'aﬂ%ﬂ +€k1(y)) Y.ty Y, -V,
+&4)

2.3. Hypotheses

In the usual analysis of factorial designs with normal distributions, main and interaction
location hypotheses are expressed in terms of equality of means. These are summary row
or column averages for the levels or level combinations of a specific source of variation. In
anon-parametric context, however, null location hypotheses are most clearly and flexibly
expressed as equalities of cumulative distribution functions. These are summary sets of
row or column averages for each of the ordered values obtained at the different levels or
level combinations of a source of variation (Shah & Madden, 2004). Hypotheses are listed
in Table 3. Equality of complete distributions is therefore being tested rather than single
numerical parameters.

2.4. Test statistics

In normal distribution analyses for mixed models and balanced data, F statistics are
built by dividing a particular effect mean square (MSegec) Dy its error mean square
(MS.). The same expected error variance term (either between or within subjects) is
contained in both of these, but the term for each experimental effect being tested
appears only in the numerator (Hocking, 1996). An analogous procedure will be used
here, but the standard F test will be applied to each aligned rank variable rather than
to the original raw variable. The corresponding test statistic for each effect will be
called an aligned rank F (F,g; Table 3). Only when the assumption of identical
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Table 3. Null hypotheses and aligned rank test statistics for experimental effects in the ANOVA
table

Effect Hypotheses Test statistic

Between subjects

F(y. ) )-F(y,)=0 MS
A W)-F:) Fi= v
for all y and any 7, i levels of factor A MSs(ab)
s F(y,)=F(y,;)=0 o My
for all y and any j, ;" levels of factor B “ MSY(H;,)
A xEB F)=FO)=FO)+Fi)=0  , MS.
for all y and any i, j levels of factors A and B “ MS.\'(ab)

Within subjects

M F(r)=F(y)=0 g B
for all y and any k, k" levels of factor M “ MSQ

A xM Fy)-F,)-Fy)+F(.)=0 F™ :MS}*”’
for all y and any 7, k levels of factors A and M MS@

B x M F(y)-F,)-F(y,)+F(y)=0 v MS 5.
for all y and any J, k levels of factors B and M “ MSL,
F(y;/k) _F(yi._) _F(y_/.) _F(y_.k)

A XB xM FF)+F )+ F( ) o _ MS_VW

—F(y )=0 “ MS,

for all y and any i, j, k levels of factors A and B and M

distributions above holds with equal shapes and dispersion matrices can rejection of a
null hypothesis be interpreted as a mean increase or decrease in the variable of
interest between experimental conditions (Fay & Proschan, 2010; Vargha & Delaney,
1998).

Violation of the sphericity assumption in normal distribution analyses generates a
positive bias in the F statistic (Box, 1954; Huynh & Feldt, 1976). As a consequence an
increase in Type I error rate occurs and the proportion of incorrect rejections of the
null hypothesis will be larger than o. The bias correction commonly used is
adjustment of the numerator and denominator of the F test degrees of freedom by
multiplying them by an estimate of an epsilon (¢) parameter, which is a function of the
degree to which the real covariance matrix departs from sphericity. It is routinely
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performed in repeated measures procedures of standard statistical packages such as
SAS or SPSS. However, Lecoutre (1991) detected an error for mixed models that has
still not been corrected in these packages and proposed a new estimate (&) that
produces in normal distributions an additional reduction of bias (Beasley, 2002; Chen
& Dunlap, 1994):

. (N—g+1)(m—-1)g—-2
SN g (m - 1f 3)

where N is the total number of participants, g is the number of groups (or @ x b in the
linear model (1)), m is the number of levels of the within-subject factor and £ is the
estimated parameter from the pooled within-group covariance matrix (Winer, Brown,
& Michels, 1991, p. 257). This Lecoutre adjusted F test will be denoted L and its
aligned rank version L,g. In a two-factor mixed model design this correction has been
shown to produce satisfactory results when applied to aligned rank variables in
exponential (asymmetric) and double exponential (heavy-tailed symmetric) distribu-
tions (Beasley, 2002). For this reason its generalization to the three-factor case will also
be assessed.

Another alternative under violation of the sphericity assumption is to use a
multivariate ANOVA, which is also customarily included in SPSS or SAS output
(Vallejo & Lozano, 20006). In comparison with the univariate € adjusted procedure its
statistical power depends on N, m, and €. The multivariate alternative is
recommended when N >m + 30, £€<.85 and m < 8 (Algina & Keselman, 1997).
For large samples the Hotelling test has also been shown to have statistical power
advantages over the univariate adjusted degrees-of-freedom test when it is applied to
aligned rank variables in two-way mixed models with exponential or double
exponential distributions (Beasley, 2002). The Hotelling test will be denoted H and
its aligned rank version H,g. Its generalizability to the three-factor situation will also
be assessed.

3. Method

3.1. Simulation procedures

A simulated experiment was conducted for each of the 96 conditions defined by all
possible combinations of presence or absence of main effects, two- and three-way
interactions, two covariance matrices which either met or violated the sphericity
condition, two sample sizes (10 and 30 participants per group) and three distributions
(normal, exponential and double exponential). Two levels of each between-subject factor
and four levels of the within-subject factors were used. A thousand replications per
condition were run.

The presence or absence of effects was respectively defined by adding or
subtracting a constant ¢ = 0.125 or ¢ = 0 to or from two or more different levels of
each experimental effect. They were therefore specified in the following manner: for
the main effects,
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=B =7 =c
w0 =B =7, =—c,
Y3 =74=0; (4)

for the two-way interactions,

afy; = 0Py = oy = oy = By = Pras =,

afiy = ofy = oy = 0y = Bris = Py = —¢,

OY1p = Y13 = OYap = AYp3 = 0,

BYi2 = Briz = Braz = Bras = 0; (5)

and for the three-way interaction,

afvi = oBvi2s = 0By21s = WPy =,

afByi1s = aPviar = aPva = aPray = —c,

afyii2 = aPyiiz = aPviz = aPyiny =0,

aPva12 = 0BY213 = UPvazn = aByas = 0. (6)

Random variability from the normal, exponential or double exponential distributions was
generated with a mean of 0, a standard deviation of 1, and the following two covariance
matrices with Greenhouse—Geisser correction either € = 1,

1 6 6 6
Z . 1 6 6
a 1 6|
1
ore = 0.69,
1 3 7 3
Y- 13 7
o 1 3
1

The algorithm used was an extension of the Fleishman power method running on SAS IML
software (Headrick & Sawilowsky, 1999).

3.2. Computation of aligned rank tests

At each one of the thousand replications per simulation condition, the data table was put
in a univariate format with five columns: one for each factor in the ANOVA model (A, B,
and M), one for the subject number and one for the dependent variable. There were as
many rows as there were data points. The aligned rank transformations were then
calculated as follows:
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(1) Eight additional columns were obtained in the data table containing the marginal
means for the levels and level combinations of each source of variation: y; , y ., V.,
V. Vik> Vje> Vi, plus the average value for all within-subject measures of each
simulated participant, s ;).

(2) The error terms were obtained on two additional columns. The between-subject
error term was calculated by using the formula s ;) = §;.(; — V. The within-subject
error term was obtained as residuals of a three-way mixed ANOVA run on the original
data by the SAS general linear models (GLM) procedure.

(3) The linear combinations of marginal means and error terms for the experimental
effects in Table 2 were calculated in seven new columns: ﬁg.kl, f/gk,, ﬁ;}gl, )?2.4,6[, ﬁ;}};‘,,
it Vit -

(4) A rank transformation procedure was applied to the above linear combinations to
obtain the seven new aligned rank variables for the experimental effects in Table 2:

RWijer)> ROijer)s RWijer)s ROijer), RWjja), RDia), R5jn’)-

In obtaining the test statistics, the new aligned rank variables were transposed to a
multivariate format so that the GLM repeated measures procedure could be applied. Thus,
sphericity diagnostics and remedial statistics could be obtained. The resulting table had
one variable for each between-subject experimental effect (A and B), and a set of four (#2)
within-subject variables for each one of the aligned rank transformations above. A separate
repeated measures analysis was then conducted on each set and only results for the
experimental effect that corresponded to each aligned rank variable were in turn recorded
from the output table.

Lecoutre’s € was calculated from the Greenhouse—Geisser € statistic (equation (3)).
The adjusted numerator and denominator degrees of freedom for L,z were then
computed by multiplying the standard degrees of freedom by €. The observed L,g
probability values were then obtained from the empirical F,g value and the adjusted
degrees of freedom by using the SAS F probability function. Fyg and H,y statistics were
directly recorded from the output tables.

3.3. Data analysis procedure

Performance comparisons were made between F and F,y for between-subject tests and
for within-subject tests when the sphericity assumption held. Comparisons were made
between L and Ly, H and H,y for within-subject tests when the sphericity assumption
was violated. A decision criterion of o = .05 was used. Results of the adjusted Huynh—
Feldt F procedure were also described for the raw and aligned rank scales (HF and HF \p).
Comparative results of F and F,y statistics were also included under lack of sphericity for
replication purposes.

Null hypothesis rejection rates were tabulated for each of the sources of variation
(A, B,M, A x B,Ax M B x M, A x B x M) and experimental condition, yielding a
table with 7 x 98 rows and a column for each of the above statistics. In conditions
where an experimental effect was absent a two-tailed binomial test was used to
detect Type I error deviations from the nominal o = .05 rate. For a thousand
replications, rates that were either larger than .0635 or smaller than .0366 were
detected as deviant, and were respectively considered as liberal or conservative. In
conditions where an experimental effect was present a two-tailed McNemar test was
used to test differences in power rates between raw and aligned rank statistics since
the data fed to both were the same and their corresponding results were therefore



Non-parametric three-way ANOVA 9

correlated. Sphericity and non-sphericity conditions for between-subject effects were
pooled.

Frequencies of deviance from the nominal o = .05 Type I error rate in either the liberal
or conservative directions were then summarized for each effect category (main effects,
two-way interaction and three-way interaction), comparison type (between or within
subject), distribution, sample size, and within-subject sphericity condition. Frequencies
of detection of power differences between the raw and aligned rank tests were also
summarized for each effect category under the same above conditions. Each particular
detection frequency was obtained from results of the sources of variation contained in an
effect category over the four conditions defined by presence or absence of effects in the
two remaining categories. As an example, the detection frequencies for the between-sub-
ject main effect category were obtained, for each distribution and sample size, from the
number of detections observed on binomial or McNemar tests for the two between-sub-
ject main effects (A and B) over the four conditions defined by presence and absence of
two-way and three-way interactions. Tables were made containing both the inferential
detection frequencies and descriptive statistics of Type I error and power rates for their
corresponding results. Graphical representations of mean Type I error and mean power
rates were also displayed.

4. Results

4.1. Large sample (n = 30)

We begin with the comparison between F and F,z. When the sphericity assumption
held, Type I error rates were similar with normal distributions (Table 4). For
exponential or double exponential distributions, performance of the F,p test was
similar or slightly closer to the nominal o = .05 rate in terms of the number of times
deviance was detected by the binomial test (Tables 5 and 6). The F test had a slight
power advantage with normal distributions (Table 4). When the data followed the
other two distributions the power advantage favoured the Fuy test (Tables 5 and 6) and
was especially large for the exponential with an overall average increase of .19 across
effect categories (Figure 1).

Turning now to the comparison between L and L,g, when the sphericity assumption
did not hold and the distribution was normal the L statistic showed similar performance or
was closer to the nominal Type I error rate in terms of liberal detections (Table 4). No
detectable differences were observed for exponential and double exponential distribu-
tions (Tables 5 and 6). In terms of power, the L test had a slight advantage for normal
distributions (Table 4). When the data followed the other two distributions the L,y test
was at an advantage (Tables 5 and 6), especially so for the exponential with an overall
average increase of .22 across effect categories (Figures 2 and 3).

Finally, we compare H and H,g. When the sphericity assumption was violated and the
distribution was normal the H g test showed similar performance in terms of Type I error
(Table 4). A similar or less conservative and closer performance to the nominal o = .05
rate was observed for the H,y test with the exponential distribution (Table 5). No
detectable differences were obtained for the double exponential (Table 6). In terms of
power, the H test had a slight advantage for normal distributions (Table 4). When the data
followed the other two distributions the H, test was favoured (Tables 5 and 6), especially
so for the exponential with an overall average increase of .185 across effect categories
(Figures 2 and 3).
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Figure 1. Type I error and power rates for the F tests run on the raw and aligned rank scales when
assumptions hold and n = 30.
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Figure 2. Type I error rates for the uncorrected F, the univariate adjusted Huynh—Feldt (HF),
Lecoutre (L), and the multivariate Hotelling (H) tests run on the raw and aligned rank scales under
conditions of no covariance sphericity and n = 30.
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Figure 3. Power rates for the uncorrected F, the univariate adjusted Huynh-Feldt (H{F), Lecoutre
(L), and the multivariate Hotelling (H) tests run on the raw and aligned rank scales under conditions
of no covariance sphericity and n = 30.

4.2. Small sample (n = 10)

We begin again with the comparison between F and F,gz. When the sphericity
assumption held, the F,y statistic showed slightly more liberal Type I error rates with
all three distributions (Tables 4-6). In terms of power, the F test had a small advantage
for normal distributions (Table 4). When the data followed the other two distributions
the Fur test held the advantage (Tables 5 and 6), especially so for the exponential with
an overall average increase of .10 across effect categories (Figure S1 as a web
supplement).

Turning now to the comparison between L and L,g, when the sphericity assumption
did not hold, the L,y statistic showed detectably more liberal levels of Type I error only
with exponential and double exponential distributions (Tables 4-6). In terms of power,
the L,y test had similar levels for normal distributions (Table 4) and an advantage for the
other two distributions (Tables 5 and 6). This was larger when the data followed the
exponential with an overall average power increase of .07 across effect categories
(Figures S2 and S3 as a web supplement).

It was also interesting to observe less deviant Type I error rates with normal
distributions and small samples for both L versus HF statistics (3 vs. 4 liberal deviation
detections) and for their aligned rank versions L, versus HFar (1 vs. 4 liberal deviation
detections). The Ly test also showed less deviant Type I error rates in comparison with
the HF,y test with the exponential distribution (2 vs. 4 liberal deviation detections)
(Figure S2 as a web supplement).

Finally, we compare H and H,z When the sphericity assumption was violated, the H,r
statistic showed slightly more detections of liberal deviations in Type I error levels with
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normal and double exponential distributions (Tables 4 and 6). When the data followed
the exponential and double exponential distributions H,z showed fewer detections of
conservative deviations from the nominal o rate (Tables 5 and 6). In terms of power, the
H g test performed similarly to the H test with normal distributions (Table 4). Har had a
power advantage with the other two distributions (Tables 5 and 6), which was larger for
the exponential with an overall average increase of .09 across effect categories (Figures S2
and S3 as a web supplement).

5. Discussion

For normal distributions the classical ANOVA statistics performed better than the
non-parametric ones in most cases. The Lecoutre correction reduced Type I error rates in
small samples in comparison with the Huynh—Feldt adjusted F test reported in standard
analysis packages, supporting previous analytical work (Lecoutre, 1991). Its use by
researchers may benefit accuracy of results in the analysis of three-way repeated measures
designs. Twenty years after becoming aware of the mistake, it would be advisable for
statistical companies to take steps to correct it.

When the assumption of normality did not hold, aligned rank statistics showed
improved performance over the classical ANOVA tests when sample sizes were large. The
advantage occurred for both the exponential (asymmetric) and double exponential
(symmetric heavy-tailed) distributions with similar levels of Type I error and increases in
power that were especially large with the exponential. Like commonly used rank-sum
tests such as Kruskal-Wallis, large-sample aligned rank analyses for three-way mixed
model ANOVA sources of variation can be implemented by widely used statistical
packages.

For non-normal distributions and small sample sizes aligned rank statistics showed
smaller increases in power but also some inflation of Type I error. Liberal decision rates in
small samples have also been observed in previous studies on the aligned rank test of the
two-way interaction (Beasley, 2002; Richter & Payton, 2005). A proposed solution has
been to apply a modified Box-type small-sample degrees-of-freedom adjustment to aligned
rank statistics (Box, 1954; Brunner, Dette, & Munk, 1997; Richter & Payton, 2005). In the
analysis of the two-way interaction for independent samples and at least seven
observations per group, this adjusted aligned rank procedure has allowed for controlling
Type I error at nominal levels while maintaining a power advantage over the F test. It has
also shown improved performance over alternative non-parametric statistics such as rank
versions of the Wald test using the same small-sample adjustments (Akritas & Arnold,
1994; Brunner et al., 1997; Richter & Payton, 2005). It would therefore be of interest to
compare the performance of adjusted aligned rank tests on the analysis of three-way
mixed models with adjusted rank-based Wald tests or with alternative rank methods
requiring specialized statistical software (Crimin, Abebe, & McKean, 2008; Erceg-Hurn &
Mirosevich, 2008). Results could be valuable in helping to clarify and simplify the use of
non-parametric tools by behavioural researchers.

6. A case study

In a study on the use of visual language four samples of 30 children were obtained,
stratified by visual ability (blind and sighted) and gender (boys and girls) (Rosel, 1982;
Rosel, Caballer, & Jara, 2005). Two linguistic measures were recorded for each boy or girl:
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the ability to narrate a story invented by the child, based on cue words such as family,
parents and friendship; and the ability to describe one of the story characters. The study
therefore follows a mixed design with two between-subject factors and one within-sub-
ject factor, all of them with two levels each. The statistical linear model specified in
equation (1) can therefore be applied.

A standard analysis showed statistical significance only on the within-subject linguistic
measure main effect, F(1, 116) = 32.76,p = .0001. However, diagnostic residual analyses
revealed a marked skewness of 2.24 on the adjusted Fisher—Pearson standardized moment
coefficient. The normality assumption was rejected according to the Shapiro-Wilk test,
W = 0.85, p < .0001.

Results from the previous simulation reveal an increase in statistical power for the
aligned rank test in comparison with the F statistic in cases of pronounced asymmetry, as
well as similar Type I error levels. The F,y statistic was for that reason applied to this set of
data. The same main effect for linguistic ability was also obtained, Fag (1, 116) = 38.61,
p = .0001, but also an effect of gender x visual ability, Fyg (1,116) = 5.51, p = .0200,
and a three-way interaction of gender x visual x linguistic ability, Fyg (1,116) = 5.14,
p = .0252 (Figure 4). For comparison, the corresponding F test results for gen-
der x visual ability were F(1, 116) = 0.77, p = .3814, and for gender x visual abil-
ity x linguistic ability, F(1, 116) = 0.92, p = .3392. The three-way interaction with the
aligned rank test indicates that in narration measures positive differences between sighted
and blind children were observed in both boys and girls. However, in description
measures these positive differences were only observed in boys, since sighted girls
performed worse than blind girls.

The alternative analysis allowed for detection of gender differences not observed with
other statistical methods (Rosel et al., 2005). Whereas sighted boys scored higher on both

Task
Description Narration
200,0
150,04
4
c
©
S
f=
S 100,0
=
50,0
0,0-
Female Male Female Male
Gender
Visual ability

[ Biind [JSighted

Figure 4. Mean rank score of linguistic abilities as a function of gender and visual skill.
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linguistic measures than blind boys, sighted girls only scored higher on the narration task
but lower on the character description task in comparison to blind girls. This may be due
to compensatory mechanisms of visual impairment that are specific to gender and verbal
skill. Gender differences in language are not general but ability-specific (Hyde & Linn,
1988). In blind children they have not been found in tasks such as word definitions
(Kemter, 1999). The alternative analysis therefore provides new answers and allows new
questions to be raised on the processes and adaptive function of gender-dependent
communication skills of children with sensory disabilities.

This example illustrates the usefulness of diagnostic procedures in the selection of test
statistics. One recurrent problem in behavioural studies is low statistical power (Maxwell,
2004). One consequence is the generation of inconclusive results in the literature.
Analysis strategies that are tailored to the characteristics of the data may provide increased
sensitivity to detect phenomena of applied or theoretical interest.
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Figure S1. Type I error and power rates for the Ftests run on the raw and aligned rank
scales when assumptions hold and n = 10.

Figure S2. Type I error rates for the uncorrected F, the univariate adjusted Huyhn
Feldt (HF), Lecoutre (L), and the multivariate Hotelling () tests run on the raw and
aligned rank scales under conditions of no covariance sphericity and n = 10.

Figure S3. Power rates for the uncorrected F, the univariate adjusted Huyhn Feldt
(HF), Lecoutre (L), and the multivariate Hotelling (H) tests run on the raw and aligned
rank scales under conditions of no covariance sphericity and n = 10.




