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Research problems that require a non-parametric analysis of multifactor designs with

repeatedmeasures arise in the behavioural sciences. There is, however, a lack of available

procedures in commonly used statistical packages. In the present study, a generalization of

the aligned rank test for the two-way interaction is proposed for the analysis of the typical

sources of variation in a three-way analysis of variance (ANOVA) with repeated

measures. It can be implemented in the usual statistical packages. Its statistical properties

are tested by using simulation methods with two sample sizes (n = 30 and n = 10) and

three distributions (normal, exponential and double exponential). Results indicate

substantial increases in power for non-normal distributions in comparison with the usual

parametric tests. Similar levels of Type I error for both parametric and aligned rank

ANOVA were obtained with non-normal distributions and large sample sizes.

Degrees-of-freedom adjustments for Type I error control in small samples are proposed.

The procedure is applied to a case study with 30 participants per group where it detects

gender differences in linguistic abilities in blind children not shown previously by other

methods.

1. Introduction

Problems in need of non-parametric tests of variable interactions in the analysis of variance

(ANOVA) for research designs arise frequently in basic and applied behaviour research. In

an extensive review of several hundred data distributions from both research articles and

educational evaluation agencies the normality assumptionwas violated in a large majority

of cases (Micceri, 1989). Fifty per cent of the distributions showed higher tail densities

than those found in the normal model. Thirty per cent of the distributions had extreme
asymmetries which approached the exponential distribution. In many situations of these

kinds, non-parametric tests have better properties than classical parametric tests in terms

of power, efficiency, or Type I error biases (Wilcox & Keselman, 2003). However,

procedures for the non-parametric testing of variable interactions are not included in the

ANOVA modules of standard statistical packages.

One proposed method consists of performing an F parametric contrast on the ranked

observations (Conover & Iman, 1981). In one-way designs, this procedure is equivalent to

Mann–Whitney and Wilcoxon tests for between- or within-subject comparisons. In
two-way designs, however, the presence of main effects has been shown to confound

interaction effects, leading to increased Type I errors (Blair, Sawilowsky, &Higgins, 1987;
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Thompson, 1991a,b). Aproposed solution is to treatmain effects as confounding variables

and to subtract their influence from the observations before ranking and calculating the F

statistics. This procedure has been termed the aligned rank test (Hodges & Lehmann,

1962) and has been shown to be robust in terms of Type I error rates and statistical power
in non-normal distributions (Beasley, 2002; Salter & Fawcett, 1993; Toothaker &

Newman, 1994). It can also be implemented in standard statistical packages.

The present study proposes a generalization of this method for the analysis of the

sources of variation typically obtained in a three-way ANOVAwith repeated measures. Its

statistical properties are tested by simulationmethods. It is then applied to a case study on

gender differences in children with sensory disabilities.

2. Aligned rank tests

2.1. Linear model

The sources of variation for a mixed design with two between-subject fixed effect factors

(A and B) and one within-subject fixed effect factor (M) can be specified as follows:

yijkl ¼ l:::: þ ai þ bj þ ðabÞij þ sl:ðijÞ

þ ck þ ðacÞik þ ðbcÞjk þ ðabcÞijk
þ eklðijÞ ð1Þ

for i ¼ 1; 2; . . .;a levels of factor A;

j ¼ 1; 2; . . .; b levels of factor B;

k ¼ 1; 2; . . .;m levels of factor M;

and l ¼ 1; 2; . . .;n participants per experimental condition

:

Thefirst line ofmodel (1) contains all between-subject effects: themain effects of factors A

(ai) and B (bj), their interaction (abij), plus the between-subject error term due to

individual differences (sl.(ij)). The second and third lines of the model contain all
within-subject effects: the main effect of factor M (kk), the two-way interactions (acik),
(bcjk), the three-way interaction (abcijk) and the within-subject error term (ɛkl(ij)).

The usual assumptions are that random error effects sl.(ij) and ɛkl(ij) are independently

and identically distributed (i.i.d.). The covariance matrices for the within-subject factor

are assumed to be equal between groups and have the property of sphericity, it being the

case that:

sl:ðijÞ � iidð0;r2
s Þ

eklðijÞ � iidð0;r2
eÞ
�

and both random effects are independent: ð2Þ

2.2. Aligned rank transformations

Type I error rates for the rank transform method (Conover & Iman, 1981) in a three-way

ANOVA design have been shown to increase as a function of the number of other non-null

effects in the model (Sawilowsky, Blair, & Higgins, 1989). When all of the remaining
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effects were present, maximum values near 1 have been observed, meaning that the null

hypothesis in these cases will almost always be rejected when it is true. The aligned rank

procedure used here is analogous to the one used for testing the interaction in two-way

designs. Here it is generalized by creating a new aligned rank variable for each
experimental effect. Each variable is obtained by ranking the observations after removing

the confounding sources of variability not contained in the expected mean squares for

that effect (Table 1). Transformations for between- and within-subject effects are

described in Table 2.

Table 1. Expected mean squares for sources of variation in an analysis of variance of a three-way

design with one within-subject factor. A, B, and M are fixed effects

Effect E[MS]

Between subjects 

A 2 2 2
( )

1
1

a

e s ab i
i

m nbm aσ σ α
=

+ + −

B 2 2 2
( )

1
1

b

e s ab j
j

m nam bσ σ β
=

+ + −

A × B ( )22 2
( )

1 1
( 1)( 1)

a b

jibase
i j

m nm a bσ σ αβ
= =

+ + − −

S / A × B 2 2
( )e s abmσ σ+

Within subjects 

M 2 2 2
( )

1
1

m

e ms ab k
k

nab mσ σ γ
=

+ + −

A × M ( )22 2
( )

1 1
( 1)( 1)

a m

kibasme
i k

nb a mσ σ αγ
= =

+ + − −

B × M ( )22 2
( )

1 1
( 1)( 1)

b m

kjbasme
j k

na b mσ σ βγ
= =

+ + − −

A × B × M ( )22 2
( )

1 1 1
( 1)( 1)( 1)

a b m

kjibasme
i j k
n a b mσ σ αβγ

= = =

+ + − − −

M × S / A × B 2 2
( )e ms abσ σ+

∑

∑

∑∑

∑

∑∑

∑∑

∑∑∑

Note. S/A 9 B and M 9 S/A 9 B are the between-subject and within-subject error terms,

respectively.
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2.3. Hypotheses

In the usual analysis of factorial designs with normal distributions, main and interaction

location hypotheses are expressed in terms of equality of means. These are summary row

or column averages for the levels or level combinations of a specific source of variation. In

a non-parametric context, however, null location hypotheses aremost clearly and flexibly

expressed as equalities of cumulative distribution functions. These are summary sets of

row or column averages for each of the ordered values obtained at the different levels or

level combinations of a source of variation (Shah &Madden, 2004). Hypotheses are listed
in Table 3. Equality of complete distributions is therefore being tested rather than single

numerical parameters.

2.4. Test statistics

In normal distribution analyses for mixed models and balanced data, F statistics are

built by dividing a particular effect mean square (MSeffect) by its error mean square

(MSe). The same expected error variance term (either between or within subjects) is
contained in both of these, but the term for each experimental effect being tested

appears only in the numerator (Hocking, 1996). An analogous procedure will be used

here, but the standard F test will be applied to each aligned rank variable rather than

to the original raw variable. The corresponding test statistic for each effect will be

called an aligned rank F (FAR; Table 3). Only when the assumption of identical

Table 2. Aligned rank variable transformations for experimental effects in the ANOVA table

EstimatesParametersEffect

Between  

subjects 

A ( ) .... .( )( )A
jililkjiR y Rank sμ α= + + ( ) ... .( )ˆ ˆ( )A

ijkl i l ij= +

B ( ) ( ).... .( )
B

jiljlkji μ β= + + ( ) . . .( )ˆ ˆ( )B
ijkl j l ij= +

A × B ( ) .... .( )( )AB
jiljilkji μ αβ= + + ( ) . .. . . ... .( )ˆˆ ( )AB

ijkl ij i j l ij= − − + +

Within  

subjects 

M ( ) ( ).... ( )
M

jilkklkji μ γ ε= + + ( ) .. ( )ˆˆ ( )M
ijkl k kl ijε= +

A × M ( ) ( ).... ( )
AM

jilkkilkji μ αγ ε= + + ( ) . .. .. ... ( )ˆˆ )(AM
ijkl i k i k kl ijε= − − + +

B × M ( ) ( ).... ( )
BM

jilkkjlkji μ βγ ε= + + ( ) . . . .. ... ( )ˆˆ )(BM
ijkl jk j k kl ijε= − − + +

A × B × M ( ) ( ).... ( )
ABM

jilkkjilkji μ αβγ ε= + +
( ) . . .

.. . . .. ...

( )

ˆ (

ˆ )

ABM
ijkl ijk ij i k jk

i j k

kl ij

R

R y Rank y s

R y Rank s R y Rank y s

R y Rank s R y Rank y y y y s

R y Rank R y Rank y

R y Rank R y Rank y y y y

R y Rank R y Rank y y y y

R y Rank

y Rank y y y y

y y y y
ε

= − − −

+ + + −

+
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distributions above holds with equal shapes and dispersion matrices can rejection of a

null hypothesis be interpreted as a mean increase or decrease in the variable of

interest between experimental conditions (Fay & Proschan, 2010; Vargha & Delaney,

1998).

Violation of the sphericity assumption in normal distribution analyses generates a

positive bias in the F statistic (Box, 1954; Huynh & Feldt, 1976). As a consequence an

increase in Type I error rate occurs and the proportion of incorrect rejections of the

null hypothesis will be larger than a. The bias correction commonly used is
adjustment of the numerator and denominator of the F test degrees of freedom by

multiplying them by an estimate of an epsilon (e) parameter, which is a function of the

degree to which the real covariance matrix departs from sphericity. It is routinely

Table 3. Null hypotheses and aligned rank test statistics for experimental effects in the ANOVA

table

Effect Hypotheses Test statistic

Between subjects

.... ´

for all y and any i, i´ levels of factor A

( ) ( ) 0i iF y F y− =

( )

AyA
ar

s ab

MS
F

MS
=

. . . .́

for all y and any j, j´ levels of factor B

( ) ( ) 0j jF y F y− =

( )

ByB
ar

s ab

MS
F

MS
=

. .. . . ...

for all y and any i, j levels of factors A and B

( ) ( ) ( ) ( ) 0ij i jF y F y F y F y− − + =

( )

AByAB
ar

s ab

MS
F

MS
=

.. .. ´

for all y and any k, k´   of factor M

( ) ( ) 0k k

levels

F y F y− = MyM
ar

e

MS
F

MS
=

. .. .. ...

for all y and any i,  levels of factors A and M

( ) ( ) ( ) ( ) 0i k i k

k

F y F y F y F y− − + = AMyAM
ar

e

MS
F

MS
=

. . . .. ...

for all y and any j, k levels of factors B and M

( ) ( ) ( ) ( ) 0jk j kF y F y F y F y− − + = BMyBM
ar

e

MS
F

MS
=

A

B

A × B

Within subjects

M

A × M

B × M

A × B × M

.. . . ..

. . .

...

for all y and any i, j, k levels of factors A and B and M

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) 0

ijk i j k

ij i k jk

F y F y F y F y
F y F y F y
F y

− − −

+ + +

− =

ABMyABM
ar

e

MS
F

MS
=
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performed in repeated measures procedures of standard statistical packages such as

SAS or SPSS. However, Lecoutre (1991) detected an error for mixed models that has

still not been corrected in these packages and proposed a new estimate ð~eÞ that

produces in normal distributions an additional reduction of bias (Beasley, 2002; Chen
& Dunlap, 1994):

~e ¼ ðN � gþ 1Þðm� 1Þê� 2

ðm� 1Þ½N � g� ðm� 1Þê� ð3Þ

where N is the total number of participants, g is the number of groups (or a 9 b in the

linear model (1)), m is the number of levels of the within-subject factor and ê is the

estimated parameter from the pooled within-group covariance matrix (Winer, Brown,
& Michels, 1991, p. 257). This Lecoutre adjusted F test will be denoted L and its

aligned rank version LAR. In a two-factor mixed model design this correction has been

shown to produce satisfactory results when applied to aligned rank variables in

exponential (asymmetric) and double exponential (heavy-tailed symmetric) distribu-

tions (Beasley, 2002). For this reason its generalization to the three-factor case will also

be assessed.

Another alternative under violation of the sphericity assumption is to use a

multivariate ANOVA, which is also customarily included in SPSS or SAS output
(Vallejo & Lozano, 2006). In comparison with the univariate ɛ adjusted procedure its

statistical power depends on N, m, and ɛ. The multivariate alternative is

recommended when N ≥ m + 30, ê� :85 and m ≤ 8 (Algina & Keselman, 1997).

For large samples the Hotelling test has also been shown to have statistical power

advantages over the univariate adjusted degrees-of-freedom test when it is applied to

aligned rank variables in two-way mixed models with exponential or double

exponential distributions (Beasley, 2002). The Hotelling test will be denoted H and

its aligned rank version HAR. Its generalizability to the three-factor situation will also
be assessed.

3. Method

3.1. Simulation procedures
A simulated experiment was conducted for each of the 96 conditions defined by all

possible combinations of presence or absence of main effects, two- and three-way

interactions, two covariance matrices which either met or violated the sphericity

condition, two sample sizes (10 and 30 participants per group) and three distributions

(normal, exponential and double exponential). Two levels of each between-subject factor

and four levels of the within-subject factors were used. A thousand replications per

condition were run.

The presence or absence of effects was respectively defined by adding or
subtracting a constant c = 0.125 or c = 0 to or from two or more different levels of

each experimental effect. They were therefore specified in the following manner: for

the main effects,
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a1 ¼ b1 ¼ c1 ¼ c;

a2 ¼ b2 ¼ c2 ¼ �c;

c3 ¼ c4 ¼ 0; ð4Þ

for the two-way interactions,

ab11 ¼ ab22 ¼ ac11 ¼ ac24 ¼ bc11 ¼ bc24 ¼ c;

ab12 ¼ ab21 ¼ ac14 ¼ ac21 ¼ bc14 ¼ bc21 ¼ �c;

ac12 ¼ ac13 ¼ ac22 ¼ ac23 ¼ 0;

bc12 ¼ bc13 ¼ bc22 ¼ bc23 ¼ 0; ð5Þ

and for the three-way interaction,

abc111 ¼ abc124 ¼ abc214 ¼ abc221 ¼ c;

abc114 ¼ abc121 ¼ abc211 ¼ abc214 ¼ �c;

abc112 ¼ abc113 ¼ abc122 ¼ abc123 ¼ 0;

abc212 ¼ abc213 ¼ abc222 ¼ abc223 ¼ 0: ð6Þ

Random variability from the normal, exponential or double exponential distributions was

generated with a mean of 0, a standard deviation of 1, and the following two covariance

matrices with Greenhouse–Geisser correction either ɛ = 1,

X
¼

1 :6 :6 :6
1 :6 :6

1 :6
1

2
664

3
775;

or ɛ = 0.69,

X
¼

1 :3 :7 :3
1 :3 :7

1 :3
1

2
664

3
775:

The algorithm usedwas an extension of the Fleishman powermethod running on SAS IML

software (Headrick & Sawilowsky, 1999).

3.2. Computation of aligned rank tests

At each one of the thousand replications per simulation condition, the data table was put
in a univariate format with five columns: one for each factor in the ANOVA model (A, B,

and M), one for the subject number and one for the dependent variable. There were as

many rows as there were data points. The aligned rank transformations were then

calculated as follows:

Non-parametric three-way ANOVA 7



(1) Eight additional columns were obtained in the data table containing the marginal

means for the levels and level combinations of each source of variation: �yi::, �y:j:, �yij:,
�y::k, �yi:k, �y:jk, �yijk, plus the average value for all within-subject measures of each

simulated participant, �sl:ðijÞ.
(2) The error terms were obtained on two additional columns. The between-subject

error termwas calculated by using the formula sl:ðijÞ ¼ �sl:ðijÞ � �yij: Thewithin-subject

error termwas obtained as residuals of a three-waymixedANOVA runon the original

data by the SAS general linear models (GLM) procedure.

(3) The linear combinations of marginal means and error terms for the experimental

effects in Table 2 were calculated in seven new columns: ŷAijkl , ŷ
B
ijkl , ŷ

AB
ijkl , ŷ

M
ijkl , ŷ

AM
ijkl ,

ŷBMijkl , ŷ
ABM
ijkl .

(4) A rank transformation procedure was applied to the above linear combinations to
obtain the seven new aligned rank variables for the experimental effects in Table 2:

RðŷAijklÞ, RðŷBijklÞ, RðŷABijklÞ, RðŷMijklÞ, RðŷAMijklÞ, RðŷBMijklÞ, RðŷABMijkl Þ.
In obtaining the test statistics, the new aligned rank variables were transposed to a

multivariate format so that theGLM repeatedmeasures procedure could be applied. Thus,

sphericity diagnostics and remedial statistics could be obtained. The resulting table had

one variable for each between-subject experimental effect (A and B), and a set of four (m)

within-subject variables for eachoneof the aligned rank transformations above. A separate

repeated measures analysis was then conducted on each set and only results for the
experimental effect that corresponded to each aligned rank variablewere in turn recorded

from the output table.

Lecoutre’s ~e was calculated from the Greenhouse–Geisser ê statistic (equation (3)).

The adjusted numerator and denominator degrees of freedom for LAR were then

computed by multiplying the standard degrees of freedom by ~e. The observed LAR
probability values were then obtained from the empirical FAR value and the adjusted

degrees of freedom by using the SAS F probability function. FAR and HAR statistics were

directly recorded from the output tables.

3.3. Data analysis procedure

Performance comparisons were made between F and FAR for between-subject tests and

for within-subject tests when the sphericity assumption held. Comparisons were made

between L and LAR, H and HAR for within-subject tests when the sphericity assumption

was violated. A decision criterion of a = .05 was used. Results of the adjusted Huynh–
Feldt F procedure were also described for the raw and aligned rank scales (HF andHFAR).
Comparative results of F and FAR statistics were also included under lack of sphericity for

replication purposes.

Null hypothesis rejection rates were tabulated for each of the sources of variation

(A, B, M, A 9 B, A 9 M, B 9 M, A 9 B 9 M) and experimental condition, yielding a

table with 7 9 98 rows and a column for each of the above statistics. In conditions

where an experimental effect was absent a two-tailed binomial test was used to

detect Type I error deviations from the nominal a = .05 rate. For a thousand

replications, rates that were either larger than .0635 or smaller than .0366 were
detected as deviant, and were respectively considered as liberal or conservative. In

conditions where an experimental effect was present a two-tailed McNemar test was

used to test differences in power rates between raw and aligned rank statistics since

the data fed to both were the same and their corresponding results were therefore
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correlated. Sphericity and non-sphericity conditions for between-subject effects were

pooled.

Frequencies of deviance from the nominal a = .05 Type I error rate in either the liberal

or conservative directions were then summarized for each effect category (main effects,
two-way interaction and three-way interaction), comparison type (between or within

subject), distribution, sample size, and within-subject sphericity condition. Frequencies

of detection of power differences between the raw and aligned rank tests were also

summarized for each effect category under the same above conditions. Each particular

detection frequency was obtained from results of the sources of variation contained in an

effect category over the four conditions defined by presence or absence of effects in the

two remaining categories. As an example, the detection frequencies for the between-sub-

ject main effect category were obtained, for each distribution and sample size, from the
number of detections observed on binomial or McNemar tests for the two between-sub-

ject main effects (A and B) over the four conditions defined by presence and absence of

two-way and three-way interactions. Tables were made containing both the inferential

detection frequencies and descriptive statistics of Type I error and power rates for their

corresponding results. Graphical representations of mean Type I error and mean power

rates were also displayed.

4. Results

4.1. Large sample (n = 30)

We begin with the comparison between F and FAR. When the sphericity assumption

held, Type I error rates were similar with normal distributions (Table 4). For

exponential or double exponential distributions, performance of the FAR test was

similar or slightly closer to the nominal a = .05 rate in terms of the number of times
deviance was detected by the binomial test (Tables 5 and 6). The F test had a slight

power advantage with normal distributions (Table 4). When the data followed the

other two distributions the power advantage favoured the FAR test (Tables 5 and 6) and

was especially large for the exponential with an overall average increase of .19 across

effect categories (Figure 1).

Turning now to the comparison between L and LAR, when the sphericity assumption

did not hold and the distributionwas normal the L statistic showed similar performance or

was closer to the nominal Type I error rate in terms of liberal detections (Table 4). No
detectable differences were observed for exponential and double exponential distribu-

tions (Tables 5 and 6). In terms of power, the L test had a slight advantage for normal

distributions (Table 4). When the data followed the other two distributions the LAR test

was at an advantage (Tables 5 and 6), especially so for the exponential with an overall

average increase of .22 across effect categories (Figures 2 and 3).

Finally, we compareH andHAR. When the sphericity assumption was violated and the

distribution was normal theHAR test showed similar performance in terms of Type I error

(Table 4). A similar or less conservative and closer performance to the nominal a = .05
rate was observed for the HAR test with the exponential distribution (Table 5). No

detectable differences were obtained for the double exponential (Table 6). In terms of

power, theH test had a slight advantage for normal distributions (Table 4).When the data

followed the other twodistributions theHAR testwas favoured (Tables 5 and6), especially

so for the exponential with an overall average increase of .185 across effect categories

(Figures 2 and 3).

Non-parametric three-way ANOVA 9
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Figure 1. Type I error and power rates for the F tests run on the raw and aligned rank scales when

assumptions hold and n = 30.
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Figure 2. Type I error rates for the uncorrected F, the univariate adjusted Huynh–Feldt (HF),

Lecoutre (L), and the multivariate Hotelling (H) tests run on the raw and aligned rank scales under

conditions of no covariance sphericity and n = 30.
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4.2. Small sample (n = 10)

We begin again with the comparison between F and FAR. When the sphericity

assumption held, the FAR statistic showed slightly more liberal Type I error rates with
all three distributions (Tables 4–6). In terms of power, the F test had a small advantage

for normal distributions (Table 4). When the data followed the other two distributions

the FAR test held the advantage (Tables 5 and 6), especially so for the exponential with

an overall average increase of .10 across effect categories (Figure S1 as a web

supplement).

Turning now to the comparison between L and LAR, when the sphericity assumption

did not hold, the LAR statistic showed detectably more liberal levels of Type I error only

with exponential and double exponential distributions (Tables 4–6). In terms of power,
the LAR test had similar levels for normal distributions (Table 4) and an advantage for the

other two distributions (Tables 5 and 6). This was larger when the data followed the

exponential with an overall average power increase of .07 across effect categories

(Figures S2 and S3 as a web supplement).

It was also interesting to observe less deviant Type I error rates with normal

distributions and small samples for both L versus HF statistics (3 vs. 4 liberal deviation

detections) and for their aligned rank versions LAR versus HFAR (1 vs. 4 liberal deviation

detections). The LAR test also showed less deviant Type I error rates in comparison with
the HFAR test with the exponential distribution (2 vs. 4 liberal deviation detections)

(Figure S2 as a web supplement).

Finally, we compareH andHAR.When the sphericity assumptionwas violated, theHAR

statistic showed slightly more detections of liberal deviations in Type I error levels with
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Figure 3. Power rates for the uncorrected F, the univariate adjusted Huynh–Feldt (HF), Lecoutre

(L), and themultivariate Hotelling (H) tests run on the raw and aligned rank scales under conditions

of no covariance sphericity and n = 30.
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normal and double exponential distributions (Tables 4 and 6). When the data followed

the exponential and double exponential distributions HAR showed fewer detections of

conservative deviations from the nominal a rate (Tables 5 and 6). In terms of power, the

HAR test performed similarly to the H test with normal distributions (Table 4). HAR had a
power advantage with the other two distributions (Tables 5 and 6), which was larger for

the exponentialwith an overall average increase of .09 across effect categories (Figures S2

and S3 as a web supplement).

5. Discussion

For normal distributions the classical ANOVA statistics performed better than the

non-parametric ones in most cases. The Lecoutre correction reduced Type I error rates in

small samples in comparison with the Huynh–Feldt adjusted F test reported in standard

analysis packages, supporting previous analytical work (Lecoutre, 1991). Its use by

researchersmay benefit accuracy of results in the analysis of three-way repeatedmeasures

designs. Twenty years after becoming aware of the mistake, it would be advisable for

statistical companies to take steps to correct it.

When the assumption of normality did not hold, aligned rank statistics showed
improved performance over the classical ANOVA tests when sample sizeswere large. The

advantage occurred for both the exponential (asymmetric) and double exponential

(symmetric heavy-tailed) distributions with similar levels of Type I error and increases in

power that were especially large with the exponential. Like commonly used rank-sum

tests such as Kruskal–Wallis, large-sample aligned rank analyses for three-way mixed

model ANOVA sources of variation can be implemented by widely used statistical

packages.

For non-normal distributions and small sample sizes aligned rank statistics showed
smaller increases in power but also some inflation of Type I error. Liberal decision rates in

small samples have also been observed in previous studies on the aligned rank test of the

two-way interaction (Beasley, 2002; Richter & Payton, 2005). A proposed solution has

been to apply amodified Box-type small-sample degrees-of-freedom adjustment to aligned

rank statistics (Box, 1954; Brunner, Dette, & Munk, 1997; Richter & Payton, 2005). In the

analysis of the two-way interaction for independent samples and at least seven

observations per group, this adjusted aligned rank procedure has allowed for controlling

Type I error at nominal levels while maintaining a power advantage over the F test. It has
also shown improved performance over alternative non-parametric statistics such as rank

versions of the Wald test using the same small-sample adjustments (Akritas & Arnold,

1994; Brunner et al., 1997; Richter & Payton, 2005). It would therefore be of interest to

compare the performance of adjusted aligned rank tests on the analysis of three-way

mixed models with adjusted rank-based Wald tests or with alternative rank methods

requiring specialized statistical software (Crimin, Abebe, & McKean, 2008; Erceg-Hurn &

Mirosevich, 2008). Results could be valuable in helping to clarify and simplify the use of

non-parametric tools by behavioural researchers.

6. A case study

In a study on the use of visual language four samples of 30 children were obtained,

stratified by visual ability (blind and sighted) and gender (boys and girls) (Rosel, 1982;

Rosel, Caballer, & Jara, 2005). Two linguisticmeasureswere recorded for each boy or girl:
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the ability to narrate a story invented by the child, based on cue words such as family,

parents and friendship; and the ability to describe one of the story characters. The study

therefore follows a mixed design with two between-subject factors and one within-sub-

ject factor, all of them with two levels each. The statistical linear model specified in
equation (1) can therefore be applied.

A standard analysis showed statistical significance only on thewithin-subject linguistic

measuremain effect, F(1, 116) = 32.76, p = .0001. However, diagnostic residual analyses

revealed amarked skewness of 2.24 on the adjusted Fisher–Pearson standardizedmoment

coefficient. The normality assumption was rejected according to the Shapiro–Wilk test,

W = 0.85, p < .0001.

Results from the previous simulation reveal an increase in statistical power for the

aligned rank test in comparison with the F statistic in cases of pronounced asymmetry, as
well as similar Type I error levels. The FAR statistic was for that reason applied to this set of

data. The same main effect for linguistic ability was also obtained, FAR (1, 116) = 38.61,

p = .0001, but also an effect of gender 9 visual ability, FAR (1,116) = 5.51, p = .0206,

and a three-way interaction of gender 9 visual 9 linguistic ability, FAR (1,116) = 5.14,

p = .0252 (Figure 4). For comparison, the corresponding F test results for gen-

der 9 visual ability were F(1, 116) = 0.77, p = .3814, and for gender 9 visual abil-

ity 9 linguistic ability, F(1, 116) = 0.92, p = .3392. The three-way interaction with the

aligned rank test indicates that in narrationmeasures positive differences between sighted
and blind children were observed in both boys and girls. However, in description

measures these positive differences were only observed in boys, since sighted girls

performed worse than blind girls.

The alternative analysis allowed for detection of gender differences not observedwith

other statisticalmethods (Rosel et al., 2005).Whereas sighted boys scored higher on both
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Figure 4. Mean rank score of linguistic abilities as a function of gender and visual skill.
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linguistic measures than blind boys, sighted girls only scored higher on the narration task

but lower on the character description task in comparison to blind girls. This may be due

to compensatory mechanisms of visual impairment that are specific to gender and verbal

skill. Gender differences in language are not general but ability-specific (Hyde & Linn,
1988). In blind children they have not been found in tasks such as word definitions

(Kemter, 1999). The alternative analysis therefore provides new answers and allows new

questions to be raised on the processes and adaptive function of gender-dependent

communication skills of children with sensory disabilities.

This example illustrates the usefulness of diagnostic procedures in the selection of test

statistics. One recurrent problem in behavioural studies is low statistical power (Maxwell,

2004). One consequence is the generation of inconclusive results in the literature.

Analysis strategies that are tailored to the characteristics of the datamay provide increased
sensitivity to detect phenomena of applied or theoretical interest.
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The following supporting informationmay be found in the online edition of the article:

Figure S1. Type I error and power rates for the F tests run on the raw and aligned rank

scales when assumptions hold and n = 10.

Figure S2. Type I error rates for the uncorrected F, the univariate adjusted Huyhn
Feldt (HF), Lecoutre (L), and the multivariate Hotelling (H) tests run on the raw and

aligned rank scales under conditions of no covariance sphericity and n = 10.

Figure S3. Power rates for the uncorrected F, the univariate adjusted Huyhn Feldt

(HF), Lecoutre (L), and the multivariate Hotelling (H) tests run on the raw and aligned

rank scales under conditions of no covariance sphericity and n = 10.

20 Juan C. Oliver-Rodr�ıguez and X. T. Wang


