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Abstract

This paper presents a novel method for semantic annotation and search of a
target corpus using several knowledge resources (KRs). This method relies on
a formal statistical framework in which KR concepts and corpus documents
are homogeneously represented using statistical language models. Under this
framework, we can perform all the necessary operations for an efficient and
effective semantic annotation of the corpus. Firstly, we propose a coarse tai-
loring of the KRs w.r.t the target corpus with the main goal of reducing the
ambiguity of the annotations and their computational overhead. Then, we
propose the generation of concept profiles, which allow measuring the seman-
tic overlap of the KRs as well as performing a finer tailoring of them. Finally,
we propose how to semantically represent documents and queries in terms of
the KRs concepts and the statistical framework to perform semantic search.
Experiments have been carried out with a corpus about web resources which
includes several Life Sciences catalogues and Wikipedia pages related to web
resources in general (e.g., databases, tools, services, etc). Results demon-
strate that the proposed method is more effective and efficient than state-of-
the-art methods relying on either context-free annotation or keyword-based
search.
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1. Introduction

Semantic annotation is the process of linking the meaning of unstruc-
tured data to concepts that are unambiguously described in a knowledge
resource (KR). Automatic semantic annotation is playing a crucial role in
a great variety of applications of the Semantic Web such as linked data
generation, open information extraction, ontology alignment, and semantic
search. Specifically, semantic search allows users to express their information
needs in terms of concepts taken from one or several KRs. Unlike traditional
keyword-based searches, semantic search can make use of the KR semantic
relationships to perform new tasks such as to refine the user queries with
broader or more specific concepts of the KR, to browse the whole content of
the collection through the taxonomies provided by the KRs, and to provide
friendlier visualizations to explore the retrieved documents [6]. Successful ap-
plications like PubMed/Medline [1], the most popular search engine for the
biomedical community, have demonstrated the enormous potential that se-
mantic annotations have for end-users and third-party information consumer
applications. Unfortunately, PubMed/Medline relies on manual semantic in-
dexing performed by experts, which cannot be extrapolated to other domains
and other scenarios that require massive annotation of texts such as opin-
ion analysis. As a consequence, there is currently a great demand of fully
automatic annotation methods.

Automatic semantic annotation has been widely applied to Life Sciences.
For example, the biomedical community is interested in finding out new rela-
tionships between biological systems and clinical research. Many text mining
approaches rely on the semantic annotation of the scientific literature in or-
der to identify relevant biomedical entities such as proteins, genes, diseases,
etc. and their relationships [41]. Outside the Life Sciences area, semantic
annotation has been mainly focused on Named Entities such as people, orga-
nizations, places, etc.1. Most of these methods rely on the dictionary look-up
approach, which consists in identifying the entities mentioned in a text by
looking for slightly variants of them in the KR lexicon. It is well known
that for open target collections and large KRs, a text chunk can match sev-
eral concepts of the KR, leading this way to the ambiguity issue. Even in
specialized scenarios like Biomedicine, ambiguity can produce noise enough
to hamper the effectiveness of the semantic searches (this will be further

1Text Analysis Conference: http://www.nist.gov/tac/2013/KBP/
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discussed in Section 4).
Several decades of research on word sense disambiguation (WSD) have

demonstrated how hard it is to deal with ambiguity in natural language pro-
cessing. Traditionally, WSD has been defined in terms of an inventory of
word senses (e.g., WordNet). A WSD method aims at selecting the right
senses for the words present in a text. Two main trends have been ex-
plored in the literature [39] namely, supervised approaches, which learn how
to disambiguate a word given a series of examples about its senses, and
knowledge-based approaches, which use the KR information to select the
right sense without supervision. Nowadays the application of existing WSD
methods to automatic semantic annotation is an open challenge due to three
main issues: (1) semantic annotation must deal with arbitrary and usually
large KRs, (2) the WSD method must be highly scalable in order to annotate
very large collections, and (3) they should deal with the incompleteness of a
KR, which usually does not contain all the possible senses of a term. Cur-
rently, the first issue makes supervised methods impractical, as we cannot
gather examples of use for all the concepts in the KRs. The second issue
makes current knowledge-based methods very time consuming as they need
either to compare very large profiles of terms (e.g., [2, 22, 4]) or to compute
large graphs with all senses involved at each sentence (e.g., [40, 16]). As for
the third issue, most WSD methods will consider unambiguous many strings
since only one sense is covered in the KR.

In this paper we propose a novel method to perform context-based seman-
tic annotation. The goal of this method is not only to find the concepts that
best lexically fit in with the target text but also that their latent meanings fit
in as well with those of the corpus to be annotated. We evaluate our semantic
annotation method for semantic search tasks, in particular, for web resource
discovery, where user queries are heterogeneous and usually expressed in a
high level of abstraction.

The outline of the paper is as follows: in Section 2 we state the main con-
tributions and novelties of the proposed method. Section 3 introduces some
notation and background about the underlying foundations and Section 4
discusses the main semantic annotation issues overcome by our method. In
Section 5 we present the proposed method and then explain each of the com-
ponents. Section 6 is devoted to the experimental evaluation. In Section 7 we
review current related work and in Section 8 we discuss the main conclusions
and future work.
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2. Contribution

The main contribution of the paper is a novel method for performing
context-based semantic annotation and search based on a statistical formal
background, more specifically, on statistical language models. The main
novelties of this method are:

• It is able to deal with several arbitrary and large KRs.

• Unlike current Wikipedia and UMLSR©-based annotators, our method
is independent of the specific characteristics of each KR. For example,
it does not make use of disambiguation pages, internal links and other
Wikipedia specific features.

• It is able to deal with both global and local contexts in order to validate
the generated annotations.

• It uses a statistical framework for performing all the required operations
for semantic indexing and search.

As far as we know, this is the first time language models are used to
define a formal framework for semantic annotation and search. Statistical
language models have provided in the last decades a sound background to
perform most of text processing tasks, such as information retrieval, text
categorization and automatic text translation. Language models define a
theoretical framework to represent and operate over text semantics in terms
of word distributions. The main advantage of these models is that they
do not require any kind of natural language processing, making them quite
attractive to define scalable methods for automatic semantic annotation and
semantic search. Moreover, in this paper we show how language models can
be naturally used to tailor KRs to target corpus in order to reduce ambiguity
and increase efficiency.

3. Background

In this section we introduce the concepts and foundations that underlie
the developed method. First, we define the concept of KR. Then, we define
the notion of semantic annotation. Finally, we introduce statistical language
models as the main foundation of our approach.
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3.1. Knowledge Resource

In the following, we formalize the concept of KR and the minimal elements
it must provide in order to be useful for semantic annotation and search.

Definition 3.1. A knowledge resource is a formalization of the semantics of
a domain by means of a set of concepts C = {c1, ..., cn}. A concept c ∈ C
represents the semantic definition of a meaningful entity in a specific domain.

In order to find out candidate concepts for a text chunk, the KR must
provide a lexicon describing its concepts. We assume that there exists a
function lex(c) that returns the set of strings describing the concept c (e.g.,
labels, synonyms, etc). This set of strings can contain different lexical vari-
ants of c and synonyms of these variants. Moreover, we also assume that
the KR provides a function def(c) that provides a short description of the
concept.

The concepts in a KR can be taxonomically related by their subsump-
tion (is-a) or by “broader-than” relationships. The taxonomic relationship
between two concepts c and c′ is represented as c � c′. A KR can provide
other concept relationships but they are not considered in our approach.

In this work, we make use of the largest and most popular KRs currently
used for semantic search: UMLSR© and Wikipedia. For the latter, we adopt
Wikinet [38] since it fits to our definition of KR.

For illustration purposes, we show an example of the information that
Wikinet provides for the concept with identifier “W11258494”:

lex(c)= { residue, chemical residue }

def(c)= ‘‘In chemistry, residue is the material remaining after a distillation or an

evaporation of a methyl group. It may also refer to the undesired byproducts of a reaction’’

3.2. Semantic Annotation

Performing the semantic annotation of a document d consists in finding
mappings between text chunks t of d (i.e., sequences of adjacent terms), and
the concepts that best semantically describe the contents of d. As concepts
of a KR are usually expressed as noun phrases, text chunks are usually asso-
ciated to these syntactic structures. We formally define semantic annotation
as follows:

Definition 3.2. Given a knowledge resource KR, and d = (w1, ..., wn) a
document (i.e., input set of sequences over terms from the vocabulary V), a
semantic annotation is a pair < c, t > where c ∈ KR and t is a subsequence
of d such that there exists a mapping from lex(c) to a subset t’, t′ ⊆ t.
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Next, we show an example of semantic annotation of the sentence: BriX
is a database containing some protein fragments from 4 to 14 residue from
protein homology, which is a description of a database. Each annotation in-
cludes the KR name (i.e., src), the concept identifier (i.e., cui), the semantic
type and semantic group (i.e., type and grp resp.), the offset and length of
the annotation in the text (i.e., offset and len).

<e id="doc1.e1" src="WIKINET" cui="W001369226" offset="0" len="4">Brix</e>

<e id="doc1.e2" src="UMLS" cui="C1335533" type="T116" grp="CHEM" offset="40"

len="17">protein fragments</e>

<e id="doc1.e3" src="WIKINET" cui="W014134516" offset="40">protein</e>

<e id="doc1.e4" src="UMLS" cui="C1709915" type="T077" grp="CONC" offset="71"

len="7">residue</e>

<e id="doc1.e5" src="UMLS" cui="C1334043" type="T028" grp="GENE" offset="92"

len="8">homology</e>

<e id="doc1.e6" src="UMLS" cui="C2697616" type="T080" grp="CONC" offset="92"

len="8">homology</e>

<e id="doc1.e7" src="UMLS" cui="C0162775" type="T081" grp="CONC" offset="92"

len="8">homology</e>

<e id="doc1.e8" src="WIKINET" cui="W010746546" offset="84" len="16">protein homology</e>

Definition 3.3. Given a KR, a document d and its set of semantic annota-
tions Ed, a semantic annotation < c, t > is ambiguous if there exists another
semantic annotation < c′, t′ > ∈ Ed where c �= c′ and t = t′.

A semantic annotation is ambiguous if more than one concept has been
assigned the exact same subset of tokens. In the previous example, the string
homology has been annotated with three different concepts from UMLSR© that
belong to different semantic types (i.e., Quantitative concept, Qualitative
concept and Gene or Genome).

Current automatic annotation is performed independently from the con-
text in which concepts are identified, assuming that the lexicons are well
suited to the corpus to be annotated. However, the semantics of a concept
may not fit in with the context in which it occurs. Additionally, we have the
problem of erroneously assigning a unique concept to a text chunk because
the correct concept is not present in the KR. To detect these cases we also
need to take into account the context of the generated annotations. Next,
we present the main foundation used to validate semantic annotations, which
uses statistical language models to characterize both the KR concepts and
the context where the annotations take place.

6



3.3. Statistical Language Models

In order to characterize the KRs and the corpora to be annotated, as well
as to capture the main contexts they can generate, we adopt a statistical
framework based on language models. A statistical language model assigns a
probability to a sequence of n words p(w1, . . . , wn) by means of a probability
distribution.

Let V = {w1, · · · , wN} be the vocabulary used in the KRs as well as the
corpora to be annotated. We consider that any text description d consists
of an observed sequence of terms (w1, · · · , wk) with wi ∈ V for which a
language model θd can be associated. This language model represents the
word distribution {p(w|θd)}w∈V . When this distribution is estimated via

Maximum Likelihood Expectation (MLE), we denote the model as θ̂d. MLE
only uses the relative frequency of the terms in d (i.e., p(w|d) ∝ tf(w, d)).

Due to the sparsity of θ̂d, several smoothing approaches have been proposed
to estimate more appropriate models for d (e.g., Dirichlet prior and Jelinek-
Mercer). Basically, the goal with these techniques is to build an approximate
model θ̃d by using the global information provided by a background corpus
over the same vocabulary V. As our aim is to validate the annotations by
characterizing the KR concepts assigned (i.e., building richer concept profiles)
and capturing the context where the annotation occurs, we will focus on
smoothing techniques based on statistical translation [28].

A translation model estimates the translation probabilities between the
words of a given corpus G. We represent this translation model as TG =
{p(w|w′)}w,w′∈V where p(w|w′) indicates the probability of observing w if we
have observed w′ in a given context. Statistical translation has been used
in information retrieval (IR) for query expansion [21] and recommendation
systems [45]. In our paper, translation models are mainly used to get richer
profiles for the KR concepts.

The MLE estimation of a translation model TG , denoted T̂G , can be per-
formed by applying the following formulas:

p(w|w′) =
p(w, w′)

p(w′)
(1)

p(w|w′) ∝
∑

s∈W
p(w|s)p(w′|s)p(s) (2)

p(w) =
∑

w′∈V
p(w, w′) (3)
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This estimation requires a set of local contexts W taken from the target
corpus G, in which word co-occurrence is estimated. In this work, we define
these local contexts by moving a window of fixed size across the whole col-
lection [18]. In this case, p(s) = 1/|s| and p(w|s) is estimated by counting
the occurrences of w in the context s.

The computation of translation models can be efficiently performed when
the size of local contexts are relatively small (around 4-6 words). Moreover,
the implementation of this computation can be massively distributed and
parallelized[31].

Several techniques have been proposed to smooth translation models, all
of them relying on random walks techniques. Thus, a k-step random walk of
T̂G with diffusion factor α can be calculated as follows:

T̃C = (1 − α) · αk · T̂ k
G (4)

When k → ∞ we obtain the eigen-based smoothing of T̂G , which has
been widely adopted for document classification and spectral clustering [45].
In this paper, we will use these kernels only for smoothing semantic query
models across concept taxonomies. For computational reasons, translation
models of the corpora and the KRs will be smoothed with a 1-step random
walk (i.e., k=1).

There exist alternative ways to refine the language models associated
to documents and queries. In this paper we will use an adaptation of the
parsimonious methods used in IR [21]. Basically, these methods assume

that the observed model for documents θ̂d (res. queries) is a mixture of a
document-specific model (θs

d) and a background model (θB). To determine
the specific model, an Expectation Maximization algorithm [14] is applied in
order to maximize the likelihood w.r.t. the observed model, that is:

−
n∑

i=1

P (wi|θ̂d) · log(λP (wi|θ̃d) + (1 − λ) · P (wi|θB) (5)

E-step:

Zwi
=

λk−1 · Pk−1(wi|θs
d)

λk−1 · Pk−1(wi|θs
d) + (1 − λk−1) · P (wi|θB))

(6)

M-step:

λk =

n∑

i=1

P (wi|θ̂d) · Zwi
(7)
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(a)(b)

Figure 1: Ambiguity w.r.t. the length of the matched text.

Pk(wi|θs
d) = P (wi|θ̂d) · Zwi

· λ−1
k (8)

Language models obtained with parsimonious smoothing play a similar
role to the application of the inverse document frequency (IDF) in vector
space models: meaningless terms will present higher probabilities in B and
lower probabilities in θs

d.
All the language models defined over the vocabulary V fall in a (|V|− 1)-

simplex space, which can be used to measure the distance between them.
Thus, we can measure the distance between the models of KR concepts,
corpus documents and queries. For this purpose, in this paper we adopt the
Fisher geodesic distance [27], which is defined as follows:

D(θA, θB) = 2 · arcos(
√

θA · θB) (9)

4. Semantic annotation issues

The main issue to be addressed when performing the semantic annotation
of a document is the treatment of ambiguous, spurious and wrong annota-
tions, especially when performing context-free semantic annotation.

An ambiguous annotation arises when a sequence of words in a text is
assigned to more than one concept from the KR. There are two main factors
that characterize ambiguous annotations: the size of the matched text, and
the specificity of the terms involved in the annotation. The latter factor can
be measured with the inverse document frequency (IDF). Figure 1 shows
the percentage of ambiguous annotations w.r.t. the number of words they
comprise for the two evaluated KRs (UMLS R© and Wikinet). Figure 2 shows
the percentage of ambiguous annotations of one word w.r.t the word IDF
also for UMLSR© and Wikinet. As expected, most ambiguous annotations fall
in the short-size and low-IDF regions. This fact has a great impact in the
semantic annotation process as ambiguous annotations occur very frequently,
producing considerable noise in the resulting annotated collection. Moreover,
any WSD method will considerably overload the annotation process.
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(a)(b)

Figure 2: Ambiguity w.r.t. the IDF

Wrong annotations are those that involve a concept whose meaning does
not fit in at all with the context in which it is identified. These annota-
tions are very frequent in acronyms and named entities such as programs,
databases, algorithms, tools, and so on. Notice that WSD methods cannot
reject wrong annotations since they are devised to choose at least one of the
possible senses assigned to a word. However, the right sense of the word could
be not included in the KR, and consequently it could be non-ambiguous for
the KR.

Finally, spurious annotations are those that do not provide any value
for performing semantic searches. Notice that the KRs have not been de-
vised for semantic annotation but for representing knowledge. The KR can
contain concepts that have only sense within the KR, as they are used to
organize and classify concept descriptions. These annotations also overload
the semantic annotation process apart from introducing more noise to the
annotated collection.

The method for semantic annotation and search that we present in the
following section is aimed at reducing as much as possible the number of
ambiguous, spurious and wrong annotations.

5. Method

In this section we present our method for semantic annotation and search,
which is based on a fine tailoring of the KR based on the target corpus statis-
tics. Moreover, we also propose to validate the generated annotations with
the tailored KR by taking into account the contexts where they occur. As
mentioned in the introduction, our hypothesis is that the better the tailoring
process is, the less overhead and the more effectiveness we obtain in the se-
mantic annotation process, thus reducing the number of ambiguous, spurious
and wrong annotations.

Figure 3 sketches the proposed method. Starting from the original KRs
and the corpus to be annotated, the first step consists in tailoring the KRs
according to the corpus contents (step 1). This step is optional and aims to
get coarse refinements of very large and heterogeneous KRs like Wikipedia.
From the tailored (or original) KRs we estimate the language models for
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Figure 3: Summary of the proposed method for semantic annotation and search. The
phases are: 1) tailoring of the KRs, 2) concept profile construction, 3) tailoring
of concept profiles, 4) semantic overlap of the KRs, 5) context-based semantic
annotation and 6) semantic search

their concepts, that is, the concept profiles (step 2). These profiles can be
similarly tailored using the corpus (step 3). The profiles can also be used to
align concepts with similar lexica by assessing their contents overlap (step
4). Alignments can give us information about how much complementary they
are as well as to reduce their redundancies. Once the concept profiles and
their alignments are calculated, the semantic annotation of the corpus can be
performed (step 5). The annotated corpus is then used to build the semantic
document models (i.e., expressed in terms of the KRs concepts) which will
be the basis for performing semantic searches. Queries are built by users by
picking up concepts of interest from the tailored KRs (step 6). From these
sets of concepts, an expanded query model is generated. Finally, document
models are ranked according to their distance to the expanded query model,
and presented to the user (step 6). In the following sections, we explain each
of the main components in detail.

5.1. Tailoring of a KR

We aim at selecting those concepts in the KR that are semantically related
to the target corpus G. For this purpose, we first calculate the unigram
model of the KR lexicon (θ̂KR), which considers the texts returned by the
functions lex(c) and def(c). This model is then refined by applying the EM

procedure of Section 3.3 taking as background the corpus model θ̂G . Let
θs

KR be the resulting refined model. Then, each concept c ∈ CKR is selected
if its definition is more likely to be generated from θG than θs

KR, that is
if p(def(c)|θG) > p(def(c)|θs

KR). Assuming the independence of the terms,
p(def(c)|θ.) can be estimated as:

p(def(c)|θ.) =
∏

w∈def(c)

p(w|θ.) (10)

This test is aimed at filtering out those KR concepts that are completely
out of context w.r.t. the target corpus. In very large and heterogeneous
KRs like Wikinet this coarse tailoring allows the system to manage a much
smaller KR to efficiently perform semantic annotation.
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5.2. Concept profile construction

For each concept in a KR, we build a concept profile based on language
models as follows:

p(w|θc) = α · p(w|θ′lex(c)) + (1 − α) · p(w|θ′def(c)) (11)

The model of the concept profile is based on a mixture of the models
θ
′
lex(c) and θ

′
def(c) obtained from the lexical variants of the concept and the

concept definition, respectively. They are calculated as follows:

p(w|θ′f)f∈{lex(c),def(c)} = β · p(w|θ̂f) + (1 − β) · p(w|θ∗f) (12)

p(w|θ∗f) =
∑

w′∈V
TKR(w′|w)P (w′|θ̂c) (13)

These models are at the same time a mixture of the MLE model and a
smoothed model obtained by applying the translation model generated from
the KR concept definitions (i.e., TKR) to the MLE model. In this case, we
apply a 1-step random walk as shown in formula 4.

The parameter α weights the contribution of the lexical variants vs. the
definition of the concept and the parameter β weights the contribution of
smoothed model generated by applying the translation model.

Moreover, we have also devised an extended version for the context’s
profiles based on the direct parents and children of the concept:

p(w|θext
c ) = γ · p(w|θc) + (1 − γ) ·

∑

c′�c,c�c′

p(w|θc′)p(θc′) (14)

The parameter γ serves to calibrate the contributions of the models of the
parents and children. The prior p(θc′) is assumed to be uniform. Parameters
α, β and γ will be empirically set.

For example, the term “residue” has several concepts associated in Wikinet,
and for each of them we generate a profile that differentiates their seman-
tics. As a result, the concept that refers to the statistical residue contains as
profile words such as error, statistics or deviation, the biochemistry residue
profile contains chemical, enzyme or protein, and the residue referring to the
taker of the residuary estate contains wills, property or estate. Next, we show
an excerpt of the concept profiles for these three different concepts:

12



W000461509: error:0.0864 sample:0.0562 statistics:0.0353 residual:0.0283 function:0.0263

deviation:0.0240 classical:0.0179 analysis:0.0124 optimization:0.0123 model:0.0121

measures:0.0120 square:0.0115 mean:0.0114 theoretical:0.0113 random:0.0111

W011258494: residue:0.1775 chemical:0.0942 reaction:0.0425 group:0.0242 enzyme:0.0240

evaporation:0.0217 distillation:0.0211 chemistry:0.0207 material:0.0191 molecule:0.0189

catalysis:0.0189 protein:0.0089

W002266690: residuary:0.1555 estate:0.0871 clause:0.0621 residue:0.0292 residual:0.0255

bequest:0.0255 legatee:0.0255 taker:0.0178 real:0.0167 property:0.0126 wills:0.0107

testator:0.01 male:0.0096 part:0.0090

5.3. Tailoring concept profiles

Given a concept c and its profile θc , we can measure the distance of
the concept’s profile w.r.t. the corpus as D(θc, θc,G), where θc,G is the joint
distribution of θc and the translation model of the corpus:

p(w|θc,G) =
∑

w′∈V
TG(w′|w) · P (w′|θc) (15)

where TG is the translation model generated from the target corpus G.
Finally, to obtain the tailored profiles, we filter out all the concepts whose

profile produces a distance above a given threshold. We show an excerpt of
the tailored biochemistry residue profile, where the word protein dominates.

W011258494: protein:0.883 method:0.030 sequence:0.0253 ...

5.4. Measuring the semantic overlap of the KRs

Modeling the concepts in a KR as concept profiles gives us several ad-
vantages. For example, for each pair of KRs, we can estimate the level of re-
dundancy between them by checking their associated concept profiles. Thus,
to obtain the alignments, for each pair of concepts (c, c′) such that c ∈ KR
and c′ ∈ KR′ and lex(c) ≈ lex(c′) we can estimate their semantic overlap
with D(θc, θ

′
c) and a predefined threshold over it. Those pairs of concepts

with similar lexica having a high overlap in their profiles are candidates to
represent the same meaning.

5.5. Context-based semantic annotation

In this paper, we adopt the IR-based approach described in [7], which
maps text chunks t to the KR lexicon strings of each concept c according to
the following information-theoretical measure:

sim(t, c) = maxs∈lex(c)
info(s ∩ t) − info(t − s)

info(s)
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The function info(s) =
∑

w∈s −log(p(w|B)) estimates the information of
a string s in terms of its probability in a background corpus (e.g., Wikipedia).

Notice that highly frequent words in the KR contribute little to the final
score of the strings containing them. As a result, sim(t, c) returns a list
of candidate concepts for t with a normalized score between 0 and 1. This
approach is similar to dictionary look-up approaches but it is flexible enough
as it allows to select candidate concepts c whose lex(c) better discriminates
it and partially matches t.

To deal with the problem of ambiguous and wrong annotations we re-
sort to the context-based validation of the candidate concepts. For this, we
measure the distance between the local context of the annotation θann and
the tailored profile for the candidate concept θc,G , resulting in the final score
D(θann, θc,G). To validate the annotation, we filter out all the concepts pro-
ducing a distance above some threshold. In case of an ambiguous annotation,
the selected concepts are:

argminc′∈ann D(θann, θc,G)

The local context θann for the annotation is obtained by taking a window
of fixed size around the annotation and building its corresponding language
model estimated via MLE.

5.6. Semantic search

The semantic search proposed in this paper relies on the distributions
space where concepts, documents and query language models are placed.
Basically, a semantic search consists of picking up a set of concepts from
the KRs, building the corresponding query model, and selecting the nearest
document models. Next subsections describe in detail this process.

5.6.1. Semantic representation of documents

Once the documents have been semantically annotated, they can be rep-
resented with the corresponding distribution of concepts involved in the an-
notations. In this way, each d ∈ G has associated a semantic model θ̂d, which
is estimated as follows:

p(c|θ̂d) =
tf(c, d)∑

ci∈d tf(ci, d)
(16)

This model clearly benefits the most frequent concepts, which are usu-
ally those with broader meanings. In order to capture the topicality of the
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concepts, we apply the parsimonious method previously described (Section
3.3), taking as background model the distribution of concepts in the target
corpus G. The resulting model θs

d is then used for indexing the document d.

5.6.2. Semantic query models

A semantic search (query) consists of the set of concepts q = {c1, ..., ck}
that best fit the user’s information need. Without any prior knowledge about
the relevance of these concepts w.r.t. the user requirements, we assume that
the basic query model follows the uniform distribution, that is p(c|θ̂q) = 1/|q|.
However, as the target corpus is biased towards very frequent concepts, we
need to capture somehow the topicality of the query’s concepts. Again, we
apply the parsimonious smoothing to the query model to favor more specific
concepts. In this case, we also use the concept distribution of the target
corpus as background model. The resulting model is denoted as θs

q .
As mentioned in the introduction, semantic search can take advantage

from the KRs by expanding queries with their concept taxonomic relation-
ships (�). For any query, we can consider the downwards expansion of a
query q as:

q↓ = q ∪ {ci ∈ CKR/ci � c}

We can also consider the upwards expansion of a query q as:

q↑ = q ∪ {ci ∈ CKR/c � ci}

and a combination of both expansions, represented with q	.
Now the problem is how to smooth the original query model in order to

take into account the new expanded concepts. For this purpose, we use a
smoothing operator based on random walks [42] following the regularization
framework presented in [47]. Firstly, we define the affinity matrix M to
embed the taxonomic relations involved in the query as follows:

Mi,j =

⎧
⎪⎪⎨
⎪⎪⎩

1 if i = j and ci has no parents
1

|parents(ci)| if cj ∈ parents(ci)
1

|children(ci)| if cj ∈ children(ci)

0 otherwise

(17)

From this matrix, we obtain the translation model T� as follows:

T� = (1 − δ) · (I − δ · M)−1 (18)
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where δ is the diffusion factor (i.e., how much mass from the original
query is diffused to the expanded concepts), and I is the identity matrix.

In this way, the model for the expanded query q′ is generated by applying
this translation model as follows:

p(c|θ̃q′) =
∑

c′∈q′

T�(c|c′)P (c′|θ̂q) (19)

Finally, the semantic search is just performed by computing the distance
D(θ̃q′, θ

s
d) over all the indexed documents d, ranking them from lower to

higher values. The implementation details of this method are given in Section
6.7.

6. Experiments

We have performed several experiments in order to evaluate each of the
phases of the proposed method. First, we describe the general setup in
which the experiments take place. Then, for each experiment, we describe
its objective and the specific datasets and resources used.

6.1. Datasets and characteristics of the KRs

For the experiments, we have considered a dataset, two large KRs, a
pool of queries and four gold standards (GS) that involve several domains.
The dataset used for annotation and semantic search, WebRes, is com-
posed by metadata from 10,692 web resources for Life Sciences. As for the
KRs, we have selected two well-known knowledge resources: UMLS R©[10] and
Wikinet[38]. We evaluate our semantic annotation method and compare it
against others using the GS MSH-WSD[25], which is used by state-of-the-
art disambiguation approaches and has been specifically designed to evaluate
hard disambiguation cases over UMLSR©. We have built the GSs, GSUMLS

and GSWikinet, to evaluate the performance of the semantic annotation over
WebRes. For the semantic search evaluation, we have created a query pool
that consists of descriptions of bioinformatics tasks and a GS, GSquery, to
evaluate the retrieval results. All the datasets used are freely available2.

Regarding the KRs, Table 1 shows the number of concepts of each KR,
the size of their lexicon, the number of concept definitions and the number

2http://krono.act.uji.es/TSASS
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of “is-a” relationships. The characteristics of the annotation dataset and the
three GSs will be explained in more detail in the experiments that make use
of them.

KR |C| lex def �
UMLS R© 2012AB [10] 2,356,241 3,142,828 185,287 4,280,030
Wikinet* [38] 4,072,845 6,888,664 4,120,340 14,280,261

Table 1: Features of the KRs. *Only English lexicon.

In the previous resources, we distinguish two main domains that overlap:
Biomedicine, which combines vocabularies from Biology and Medicine, and
Bioinformatics, which combines vocabularies from Biology and Computer
Science. UMLSR© and MSH-WSD are both located in the Biomedicine do-
main, whereas Wikinet does not have a specific location because it covers
several domains but with low specificity. The WebRes dataset overlaps only
partially with the Biomedicine and Bioinformatics domain, and GSUMLS,
GSWikinet and GSquery are located inside the WebRes and overlapping with
the two main domains. This heterogeneous setup makes semantic annotation
w.r.t. the KRs especially hard because the WebRes dataset overlaps only
partially with the reference KRs. The aim of the following experiments is to
show that the context-validated semantic annotations using profiles based on
statistical language models and the tailoring (both of the KR and the pro-
files) in such an heterogeneous scenario improves semantic annotation and
therefore, semantic search.

6.2. Tailoring of the KRs

The tailoring of a KR (Section 5.1) consists in selecting those concepts
from the KR that are semantically related to the target corpus. This filtering
process can reduce the overhead of the semantic annotation process, specially
when the KR is very large. We have applied the tailoring to both UMLS R© and
Wikinet. As a result, we obtain 171,274 concepts for UMLSR© and 510,390
for Wikinet. Recall that this process selects only concepts whose definition
is more likely to be generated from the corpus than the KR. Therefore, the
tailoring depends on the number of definitions of the KR. The proportion
of the concepts selected w.r.t. to the definitions for UMLSR© is 92%, which
indicates that UMLSR© is well-suited to the corpus and the tailoring process
discards few concepts. However, for Wikinet this proportion is only 12.3%,
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which means it contains a lot of noise (i.e., concepts not related to the target
corpus) that has been removed through the tailoring process. Therefore,
from now on we use the tailored version of Wikinet, WikinetT , and UMLSR©

without tailoring.

6.3. Concept profile evaluation

The KR concept profiles play a crucial role in the semantic annotation
process, as they serve to disambiguate ambiguous semantic annotations (see
Definition 3.3). In this section we evaluate the quality of the concept profiles
by means of two experiments.

In the first experiment, we compare our approach for context-validated se-
mantic annotation with state-of-the art WSD methods. Recall that knowledge-
based WSD methods deal with the problem of selecting one of the senses of
a word from an inventory of words and their senses, whereas our method is
thought to perform an unsupervised, full-fledged semantic annotation. The
phase that resembles WSD is the context validation phase, where we have a
profile based on translation models for each candidate concept and compare
it with the context around the annotation to select valid concepts for such
annotation.

We use the MSH-WSD dataset [25] for evaluating this phase. This corpus
contains 203 strings that are associated with more than one possible MeSH
code in the UMLSR© Metathesaurus (106 of these are ambiguous abbrevia-
tions, 88 ambiguous terms and 9 a combination of both). The corpus contains
up to 100 examples for each possible sense, and a total of 37,888 examples
of ambiguous strings taken from Medline.

We evaluate the context validation phase with both the concept profiles
(TrM) and the extended concept profiles (TrMExt) described in Section 5.2.
The parameters α, β and γ have been empirically set to 0.45, 0.50, 0.40, re-
spectively. Performance is compared against various alternative approaches.
Accuracy results of the experiments are shown in Table 2. Both MRD[33]
and 2-MRD[34] are unsupervised approaches based on building concept vec-
tor profiles normalized by IDF and comparing them with the context vector
using cosine similarity. PPR [3] is also unsupervised and relies on a graph-
based algorithm similar to the page rank that converts UMLSR© into a graph
where the possible meanings of ambiguous words are nodes and relations
between them are edges. AEC [23] and UB [11] are supervised learning
algorithms that alleviate the problem of requiring manually annotated train-
ing data by querying Medline documents. Our methods present very good
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MRD 2-MRD PPR AEC UB TrM TrMExt
0.8070 0.7799 0.7860 0.8383 0.8319 0.8010 0.8212

Table 2: WSD evaluation results in terms of accuracy on MSH-WSD dataset. MRD
stands for Machine Readable dictionary, 2-MRD stands for 2nd Order Co-
occurrence MRD, PPR stands for Personalised Page Rank, AEC stands for Auto-
matic Extracted Corpus, UB stands for Uniform Bias, TrM stands for Translation
Model and TrMExt stands for Translation Model Extended.

scores against unsupervised approaches of the literature and near to semi-
supervised ones. Moreover, the extended version improves results over the
original one, that is, including information about the concept hierarchy in
the profiles helps disambiguation.

The aim of the second experiment is to evaluate our method for context-
validated semantic annotation in the web resource discovery domain, which
is hampered by the heterogeneity of data and where the use of general words
introduces a lot of ambiguity. Thus, we have built up a dataset of 2,260
web resources from BioCatalogue [8], which is a popular registry in the Life
Sciences domain. The web resources metadata registered in this repository
consists of well-defined fields, such as categories and tags, and textual de-
scriptions.

To evaluate the semantic annotation over the previous dataset, we have
manually created two GSs for the two KRs, GSUMLS and GSWikinet, with
those annotations matching a single word, as single word concepts are much
prone to ambiguity and errors. GSUMLS contains 11,041 single-word semantic
annotations and GSWikinet contains 5,386.

We have evaluated five configurations of our semantic annotation method:
context-free, context-validated using the TrM method for the concept pro-
files, context-validated using the TrMExt method, and the tailored versions
of the last two methods, that is, where the concept profiles have been filtered
as indicated in Section 5.3. The threshold used to filter concept profiles is
0. First, we present Table 3, which shows the average number of concept
profiles in the original and tailored versions. As observed, the reduction of
the number of concept profiles in the tailored versions is very significant, all
of them reaching a reduction around 90% or more.

Table 4 shows the results of the semantic annotation evaluation for the
previous five configurations using both UMLSR© and WikinetT . We use the
standard measures precision, recall, F measure and accuracy to evaluate the
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KRs TrM TrMT TrMExt TrMExtT

UMLS R© 1416.5 95 (93.3%) 3109.7 164 (94.7%)
WikinetT 2303 244 (89.4%) 3141.8 276 (91.2%)

Table 3: Average size of the concept profiles used for the validation of semantic annotations
in each method.

KRs Meas. Ctxt-free TrM TrMExt TrMT TrMExtT

UMLS R© P 0.721 0.893 0.875 0.850 0.842
R 0.939 0.799 0.799 0.701 0.711
F 0.778 0.815 0.805 0.725 0.727

Acc 0.744 0.838 0.813 0.768 0.758
WikinetT P 0.637 0.843 0.840 0.822 0.819

R 0.994 0.899 0.892 0.880 0.880
F 0.714 0.847 0.843 0.823 0.821

Acc 0.639 0.869 0.867 0.847 0.847

Table 4: Macro average Precision (P), recall (R), F-measure (F) and accuracy (Acc) of
semantic annotations with different configurations of context validation.

resulting annotations.
The results show that all the proposed methods improve the results of the

context-free annotation method. In general, we observe that the extended
versions of the methods do not improve results in any of the cases, which
means that the information provided by the concept hierarchy is not decisive
for validation in this dataset. This may be due to the mismatch of domains
between the annotation dataset WebRes w.r.t. both UMLSR© and Wikinet.
In this case, including information about the hierarchy in the concept profiles
seems to introduce noise that does not help disambiguation, as opposed to
the performance of the extended version in MSH-WSD (see Table 2), where
the domains of the GS and the annotation dataset are the same.

The tailored versions suffer a decrease in all the measures but results are
still comparable to state-of-the-art WSD approaches. The lower performance
is more noticeable in UMLSR©, specially w.r.t. the recall. This indicates that
the concept tailoring in UMLSR© may be too aggressive, and potentially good
concepts are being filtered, whereas the concept tailoring in WikinetT seems
to work better, as it is able to keep performance while reducing the number
of concept profiles. Notice that in this dataset, resource descriptions focus
on software aspects and, therefore, the contexts are not related to biological
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terms. Still, the reduction in the number of concept profiles of the tailored
versions (see Table 3) make them an ideal choice when dealing with huge
amounts of concept profiles.

From now on, when we refer to the semantic annotation process or the
concept profiles, we mean the context-validated semantic annotation using
the concept profiles generated by the method TrMT , which is the method
that offers the best trade-off between all the measures.

6.4. Alignments between KRs

In this experiment, we measure the overlap between WikinetT and UMLSR©

by obtaining a set of concept alignments. For each pair of concepts (c, c′)
such that c ∈ CUMLS and c′ ∈ CWikinetT and lex(c) ≈ lex(c′), we estimate
their semantic overlap by comparing their profiles D(θc, θc′) and filtering out
those below a predefined threshold. As a result, we obtain a set of 6,058
alignments. Notice that the resulting set of alignments is rather small, which
indicates both KRs are complementary. From this set, we distinguish the
alignments between concepts of only one word, Sone, (91 alignments), and
concepts with more than one word, Sn, (5,967 alignments). The set Sone

was manually assessed and has a precision of 54%, whereas for the set Sn

we manually assessed a hundred random samples, resulting in a precision of
87%. This confirms the hypothesis that short-lengthed concepts are more
difficult to disambiguate and, in this case, to correctly align.

6.5. Semantic annotation evaluation

In this experiment we evaluate the impact of the context-free vs. context-
validated annotations. The dataset that will be annotated is composed by
metadata from 10,692 web resources, of which 6,226 are related to the Life
Sciences domain and 4,466 are of general domains registered in Wikipedia.
We have downloaded the metadata of the Life Sciences web resources from
BioCatalogue (more than 2,200 web resources), myExperiment [20] (more
than 2,000 workflows), and SSWAP [19] (more than 2,700 web resources).
With respect to the web resources registered in Wikipedia, we have consid-
ered those entries that describe web resources, independently of their domain.
In order to select those entries, we have applied category filters and lexical
patterns to identify expressions related to web resources, e.g., “is a web ser-
vice”, “is a database”, etc.
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Table 5 shows the number of different concepts in the annotations of the
dataset, the total number of annotations, and their ambiguity3 in context-
free versus context-validated annotations. The experiments are reproduced
for two configurations of the KRs, with and without tailoring of Wikinet. We
observe that the number of context-validated annotations has been reduced
to roughly a third w.r.t the number of context-free annotations. However,
the most remarkable fact is that the ambiguity of annotations is much higher
in context-free annotations, and this affects the semantic search as will be
demonstrated in the next section. In the context-validated annotations, with
the TrMT method we reduce the ambiguity and also fewer annotations are
produced. Similarly, regarding the semantic annotation using the tailored
version of Wikinet, we observe that the ambiguity is reduced and also fewer
annotations are produced, which may affect recall. However, as shown in the
previous Table 4, the trade-off between precision and recall when using tai-
loring over the KR (i.e., WikinetT ) and over the method for profile generation
(i.e., TrMT ) is good.

Context-free Context-validated

TrM/TrMT

KRs Conc. Ann. Amb. Conc. Ann. Amb.

WikinetT 24,612 374,623 41.67% 14,678/14,334 111,085/105,094 12.62%/11.72%
UMLSR©

Wikinet 39,623 399,687 41.59% 25,777/25,448 130,541/124,484 14.24%/13.51%
UMLSR©

Table 5: Results of the semantic annotation process using different configurations of the
KRs for context-free vs. context validated annotations. T means tailored version.

6.6. Time performance evaluation

The proposed context-validated semantic annotation process does not im-
ply a computational overhead as many WSD methods do. Table 6 shows the
time performance of each of the components for the semantic annotation of
the 10,692 web resources dataset. The first three phases are done only once
off-line. In the profile generation phase, we distinguish between the nor-
mal and the extended version because in the extended version all the direct
parents and children of the concept are considered for generating the pro-
file, thus incurring in extra time. We also distinguish between UMLS R© and

3Ambiguity is calculated as the percentage of annotations that have been assigned more
than one sense.
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Wikinet because the performance is significantly different. While the profile
generation is faster in Wikinet, probably because of shorter concept labels
and definitions, it happens the opposite for the extended version. This is
due to the fact that the average number of direct parents and children in
Wikinet is three times more than for UMLSR©, making the extended version
in Wikinet slower. In the profile tailoring phase we also make the distinction
because extended profiles are considerably larger, thus affecting the tailor-
ing performance. Finally, it is worth mentioning that both the context-free
and the context-validated annotations have a similar performance, which we
measure in annotated documents per second.

Phase UMLS R© Wikinet
KR tailoring - 0,001 c/sec

Profile generation
TrM 1,7 c/sec 5,7 c/sec
TrMExt 0,83 c/sec 0,38 c/sec

Profile tailoring
TrM 0.052 c/sec
TrMExt 0.082 c/sec

Context-free annotation 0.48 d/sec
Context-validated annotation 0.51 d/sec

Table 6: Performance in concepts per second (c/sec) and documents per second (d/sec)
of each of the phases of the semantic annotation for the web resources dataset (1 CPU).

6.7. Semantic search evaluation

The experiments carried out to perform the evaluation of the semantic
search consist in the execution of a set of heterogeneous queries (i.e., task de-
scription examples) over the dataset of 10,692 web resources. These queries
capture different ways to describe bioinformatics tasks (see Table 7), thus
reflecting the variability in the users’ information needs. The query pool was
created by selecting more than 250 short descriptions extracted from other
Life Sciences resource catalogues such as OBRC4 (Online Bioinformatics Re-
source Collection) and ExPaSy5 (SIB Bioinformatics Resource Portal). Thus,
we have selected as queries the short descriptions of the resources registered
on these catalogues. All the queries have been semantically annotated and
expanded with related concepts in the KR, as described in Section 5.6.2. As

4http://www.hsls.pitt.edu/obrc/
5http://expasy.org
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Task Description N. of queries
T1 Search proteins with a functional domain 14
T2 Search similar sequences 16
T3 Analyze phylogeny 14
T4 Align sequences 24
T5 Analyze transgenic model organism 31
T6 Predict structure 30
T7 Protein identification and characterization 12
T8 Find genes with functional relationships 42

Table 7: Bioinformatics base tasks considered for evaluation.

a result, each query has associated a semantic query model. To evaluate the
retrieval results, we have built an assessment dataset, GSquery, with relevant
descriptions associated to each task. This dataset was set-up by selecting
predefined categories and tags from the target catalogues which are relevant
to each task.

In these experiments, we implemented a search engine based on language
models, indexed under a traditional inverted file [32]. Thus, indexed descrip-
tions are retrieved and ranked according to their similarity to the query, in
this case calculated with the distance between models (Section 5.6.2). On
top of this basic search engine, we implemented both a keyword-based and a
semantic-based search method. The former defines language models directly
from words, whereas the latter uses the semantic models defined in Section
3.3. The keyword-based method is used as baseline to demonstrate that se-
mantic annotations improve the retrieval effectiveness. Table 8 shows the
precision at 5, 10 and 20, and the Mean Average Precision (MAP) for the
query results using the keyword-based method evaluated against GSquery.

We have evaluated the semantic-based search using different configura-
tions in order to evaluate the impact of using tailored KRs and contexts on
the retrieval results. Table 9 shows the precision at 5, 10 and 20, and the
MAP measure of the query results using the different configurations. As it
can be noticed, in general the semantic search presents higher precision scores
at the first top-ranked positions than the keyword-based search using smaller
models (39,253 terms against 14,678 concepts in the best performance con-
figuration, tailoring with TrM concepts profiles). Next, we analyze in detail
the different configurations evaluated in these experiments.

With respect to the consideration of the context during the semantic
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Topic P@5 P@10 P@20 MAP
T1 0.63 0.59 0.59 0.21
T2 0.59 0.61 0.62 0.33
T3 0.8 0.74 0.68 0.18
T4 0.79 0.81 0.75 0.45
T5 0.77 0.78 0.81 0.21
T6 0.83 0.78 0.79 0.22
T7 0.53 0.45 0.37 0.22
T8 0.6 0.6 0.58 0.13

Average 0.69 0.67 0.65 0.24

Table 8: Precision at n (P@n) for the top-5, top-10, and top-20 results, and MAP measure
for the keyword-based search.

annotation, we have executed the queries without validation, and validating
annotations with the two best configurations of concepts profiles, the TrM
concept profiles model and its tailored version TrMT . The results show that
the precision scores are better when validating the annotations contexts.
In contrast, the MAP measure is better when not considering the context
because the recall is higher when all senses are included. Regarding the
results for the two different context models, there is not much difference
between them, although the tailored version obtains slightly worse precision
at the first positions.

Regarding the tailoring of KRs, the use of a tailored KR reduces con-
siderably the semantic index and also the ambiguity of the annotations (see
Table 5), while the results are not affected by the reduction of annotations.
Moreover, the precision at the top-ranked positions is slightly higher when
using the tailored version of Wikinet.

Finally, we have also analyzed the impact of the query expansion on the
retrieval results. We have executed the queries for the best configuration in
Table 9 but without expanding the query. The resulting precision scores are
slightly lower (P@5=0.74, P@10=0.7, P@20=0.66, MAP=0.19).

In conclusion, semantic search obtains better results than the keyword-
based search using considerably much smaller indexes. We have demon-
strated that using tailored KRs in the semantic search reduces the size of
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Context-free Context-validated

TrM/TrMT

KRs Task P@5 P@10 P@20 MAP P@5 P@10 P@20 MAP

WikinetT T1 0.73 0.73 0.65 0.16 0.69/0.66 0.6/0.62 0.53/0.55 0.15/0.15
UMLSR© T2 0.77 0.74 0.71 0.29 0.78/0.74 0.68/0.69 0.69/0.69 0.25/0.24

T3 0.73 0.71 0.66 0.43 0.86/0.84 0.84/0.8 0.75/0.68 0.36/0.33
T4 0.85 0.87 0.85 0.35 0.76/0.82 0.8/0.71 0.78/0.66 0.36/0.33
T5 0.87 0.85 0.81 0.22 0.83/0.85 0.87/0.85 0.85/0.84 0.2/0.19
T6 0.85 0.82 0.77 0.15 0.87/0.89 0.82/0.83 0.78/0.8 0.1/0.1
T7 0.35 0.27 0.23 0.09 0.55/0.48 0.46/0.44 0.35/0.35 0.16/0.15
T8 0.6 0.63 0.6 0.13 0.74/0.73 0.71/0.71 0.66/0.66 0.11/0.12

Avg. 0.72 0.7 0.66 0.23 0.76/0.75 0.73/0.73 0.68/0.68 0.2/0.19

Wikinet T1 0.63 0.6 0.57 0.15 0.6/0.6 0.55/0.55 0.53/0.55 0.14/0.14
UMLSR© T2 0.79 0.7 0.68 0.23 0.67/0.67 0.59/0.58 0.58/0.59 0.22/0.22

T3 0.71 0.61 0.59 0.42 0.86/0.67 0.82/0.71 0.69/0.67 0.25/0.22
T4 0.93 0.9 0.88 0.35 0.82/0.86 0.82/0.86 0.79/0.8 0.24/0.24
T5 0.83 0.85 0.82 0.22 0.81/0.83 0.82/0.84 0.83/0.85 0.2/0.2
T6 0.89 0.84 0.83 0.18 0.83/0.85 0.8/0.81 0.82/0.83 0.12/0.12
T7 0.35 0.27 0.23 0.08 0.53/0.48 0.36/0.37 0.28/0.29 0.14/0.14
T8 0.64 0.64 0.63 0.14 0.8/0.79 0.78/0.75 0.74/0.72 0.11/0.12

Avg. 0.72 0.68 0.65 0.22 0.74/0.72 0.69/0.68 0.66/0.66 0.18/0.17

Table 9: Precision at n (P@n) for the top-5, top-10, and top-20 results, and Mean Average
Precision (MAP) of search results with different annotation configurations.

indexes without losing accuracy in the retrieval results. Moreover, the con-
sideration of contexts in the semantic annotation process reduces the ambigu-
ity of the resulting annotations, providing in this way more accurate results.
Therefore, we have demonstrated that the tailored context-based semantic
annotation obtains good results in the semantic search with higher efficiency
and lower overhead.

7. Related Work

7.1. Semantic search

Semantic search aims to identify the user’s intent and to retrieve the
documents that best fit this intent, independently of the terms provided by
the user in the specification of her information needs. The basis of the se-
mantic search are the conceptual representation of the information, however
most approaches only use this representation to expand the user’s query.
There are approaches that assume that the documents are semantically in-
dexed, either manually or automatically, with concepts from a known KR.
For example, PubMed expands the query using MeSH terms and performs
a boolean search based on these terms. [36] uses pseudo-relevance feedback
to include the MeSH terms of the top-k relevant documents, retrieved by
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an initial search, to the user’s query, and then performs a keywords-based
retrieval. Other approaches do not consider the conceptual representation of
documents, and only use the knowledge in KRs to expand the query. For
example, [24] uses the concepts representing the user’s intent to expand the
query with the terms associated to those concepts in the KR, then the re-
trieval is based on keyword matching. Currently, few approaches consider the
conceptual representation of both the user’s requirements and the documents.
There are approaches in which the documents are semantically represented
as entity-relationship graphs and make use of graph-based query languages
to perform semantic search [26, 15]. In the Life Sciences domain, SADI [46]
performs semantic search via SPARQL queries of web services that have been
previously semantically represented in RDF. These approaches require the
documents to be in RDF format, which is not very frequent in general, even
through there is current research towards this direction [17].

7.2. Semantic annotation

With the proliferation of the Web of Data and initiatives such as the
Linked Data project, which promotes a series of best practices to publish
and link entities across the Web in a machine understandable way, many KRs
ranging from lexicons, terminologies and thesauri to expressive ontologies, are
publicly accessible and ready to be used for annotation purposes such as db-
pedia6, yago7, freebase8 and schema.org9. Specially in the biomedical domain
we can find several lexical/ontological specialized resources such as MeSH,
SNOMED, UMLSR© and BioPortal among others. The use of knowledge-
based semantic annotation can have a great impact on semantic search, as
both the user query and the documents are represented in a conceptual space.

For semantic annotation, the available tools range from simple dictionary-
based approaches, to more sophisticated NLP approaches that use NER tools,
POS tagging, dependency parsing, etc. Some examples include DBpedia
Spotlight [37], The Wiki Machine10, AlchemyAPI 11 and Open Calais12, for

6http://es.dbpedia.org/
7http://www.mpi-inf.mpg.de/yago-naga/yago/
8http://www.freebase.com/
9http://schema.org

10http://thewikimachine.fbk.eu
11http://www.alchemyapi.com/
12http://www.opencalais.com/
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annotating general-purpose entities, or MetaMap[5] and Whatizit [44] for an-
notating biomedical entities.

Most of the unsupervised semantic annotation methods rely on a dictio-
nary look-up strategy. Basically, it consists of finding occurrences of concept
strings in a text chunk by applying strict string matching. To allow some
small variations in the matching (e.g., plural forms), concept strings can be
translated into regular expressions, which are applied to the text chunks to
obtain the mappings [44, 13]

Other approaches adopt an information retrieval (IR) strategy [5, 7]. Ba-
sically, it consists of viewing the text chunk T as a query, and the concept
strings as documents to be retrieved. This strategy notably increases the
recall since it disregards the order and continuity of the matched words.
To allow more flexibility in the matching, the query generated by T can
be expanded with the variants of each word wi (e.g., plurals, hyphenation,
abbreviations, etc.) to perform the retrieval.

The majority of these approaches still perform poorly with ambiguous
annotations. Some of them make use of contextual information (e.g., words
around the annotation) to improve disambiguation. Still, results are not
satisfactory mainly because of two reasons: 1) the KR does not have the
appropriate sense and 2) the method for comparing the contexts is too triv-
ial. This issue has been thoroughly studied by WSD methods, which are
explained in the following section.

7.3. Word sense disambiguation

WSD is one of the key tasks in natural language processing (NLP) appli-
cations. Although WSD is focused on choosing the right sense for each word
in a sentence, it can be somehow extrapolated to the problem of disambiguat-
ing semantic annotations. More specifically, knowledge-based WSD methods
[39] can be adapted to choose the concepts that best fit to the text where they
are identified. Most knowledge-based WSD methods are almost unsupervised
as they mainly rely on the information provided by the lexical knowledge re-
source (mainly WordNet and its variants). Some additional heuristics such
as the most frequent sense (MFS) are often included to help in the final
decisions, hence the almost. Former approaches to knowledge-based WSD
consisted of variations of the Lesk algorithm [29], which basically compares
the glosses of the senses provided by the KR with the words surrounding the
word to be disambiguated. In this way, the disambiguation problem consists
of measuring the overlap between the term-vectors associated to each concept
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(also called topic signatures [2]) in the KR and the term-vector of the target
word context, and then to select the concept that gives the highest score.
These approaches assume that the richer the topic signatures are the better
is the chance to choose the right one. Thus, in [2] term-vectors are built by
querying Google with monosemous synonyms or hyponyms of each concept,
and then weighting them with a tf-idf scheme. In [22] a similar approach is
proposed to build term-vectors for UMLSR© concepts by querying PubMed
with MeSH terms. In [4] term-vectors are built with the words of the glosses
of the hyperonyms and hyponyms of each word sense, also weighted with a
tf-idf scheme. More recent approaches attempt to extract the knowledge en-
capsulated in the KR to get more evidence for decision making. For example,
in [4] implicit relations are found by comparing the topic signatures of all the
senses involved in a sentence. In [12] topic signatures are used to discover
relations between word senses. Such discovered relations have shown useful
for WSD when applying random walks techniques over the resulting word
sense graphs [40, 16]. In the context of semantic annotations with arbitrary
KRs, knowledge-based methods are difficult to apply mainly because they
have been developed taking advantage from the particular characteristics of
the lexical KR they are aimed at, such as the rich WordNet relations, or the
link structure of Wikipedia [35]. Moreover, they are not aimed at validating
the generated annotations but at choosing one of the existing senses, which
can lead to wrong annotations if the right sense is not covered by the KR.
Our approach for validation is inspired in the Lesk principle combined with
topic signatures. However, we rely on a statistical framework to generate
the concept language models and to compare them with the corpus contexts,
also represented as language models.

8. Conclusions

In this paper we have proposed a novel method for semantic annotation
and search based on statistical language models. Our main hypothesis is that
reconciling the vocabulary in the KRs and the target corpus can lead to more
precise and useful annotations. We achieved such reconciliation by means of
statistical translation models, which enable to define rich language models
for both the KR concepts and the corpus contexts. From the experiments
we can draw several conclusions:

• Coarse tailoring is useful for very large and heterogeneous KRs like
Wikinet, since we can easily reject those parts of the KR that have
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nothing to do with the target corpus. However, more specialist KRs
like UMLSR© are much more homogeneous and take little advantage
from the coarse tailoring.

• In some scenarios it is necessary to combine more than one KR in or-
der to get a proper coverage of the target corpus. Otherwise, semantic
search will be less effective than keyword-based search. In our experi-
ments, web resource catalogues combine computer science and biomed-
ical terminologies, which cannot be properly covered with a unique KR.
We have shown that UMLSR© and Wikinet complement each other quite
well for this domain.

• Language models generated with translation models have proved very
useful in tailoring and validating semantic annotations.

• Results show a dramatic reduction in the number of obtained annota-
tions (and therefore the size of the semantic search structures) at the
same time that precision increases with little lost in recall.

As future work, there are several interesting research lines derived from
this work. First, we plan to study new approaches for concept profile con-
struction that combine topic-based models like Latent Diritchlet Allocation
(LDA) [9] with the translation models proposed in this paper. LDA has been
shown very useful in WSD tasks [30] and provides a statistical framework
that captures word co-occurrence patterns at collection level. We also plan
to apply topic-based models for performing semantic searches. This idea has
been previously explored in [43] by using context-free annotations with good
results. The main limitation of this approach is that topics must be defined
a priori and they are dependent on the application domain. We will investi-
gate how to automatically generate topics of interest from the profiles of the
KRs and the corpus at hand. Finally, we will study how to take more profit
from the KR taxonomic relationships in order to enhance the KRs translation
models and the generated concept profiles. Moreover, we will consider the
construction of the graph of concepts induced by their contexts relationships
similarly to some knowledge-based graph WSD approaches [40].
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[18] L. Garćıa-Moya, H. Anaya-Sánchez, and R. Berlanga. Combining Prob-
abilistic Language Models for Aspect-Based Sentiment Retrieval. In
R. A. Baeza-Yates, A. P. de Vries, H. Zaragoza, B. B. Cambazoglu,
V. Murdock, R. Lempel, and F. Silvestri, editors, Proceedings of the
34th European Conference on IR Research, ECIR 2012, volume 7224 of
Lecture Notes in Computer Science, pages 561–564. Springer, 2012.

[19] D. D. Gessler, G. S. Schiltz, G. D. May, S. Avraham, C. D. Town,
D. Grant, and R. T. Nelson. SSWAP: A Simple Semantic Web Archi-
tecture and Protocol for semantic web services. BMC Bioinformatics,
10:309, 2009.

32



[20] C. A. Goble, J. Bhagat, S. Aleksejevs, D. Cruickshank, D. Michaelides,
D. Newman, M. Borkum, S. Bechhofer, M. Roos, P. Li, and D. De Roure.
myExperiment: a repository and social network for the sharing of bioin-
formatics workflows. Nucleic Acids Research, 38(suppl 2):W677–W682,
2010.

[21] D. Hiemstra, S. Robertson, and H. Zaragoza. Parsimonious language
models for information retrieval. In Proceedings of the 27th annual in-
ternational ACM SIGIR conference on Research and development in
information retrieval, SIGIR ’04, pages 178–185, New York, NY, USA,
2004. ACM.

[22] A. Jimeno-Yepes and A. R. Aronson. Knowledge-based biomedical word
sense disambiguation: comparison of approaches. BMC Bioinformatics,
11:569, 2010.

[23] A. Jimeno-Yepes and A. R. Aronson. Knowledge-based biomedical word
sense disambiguation: comparison of approaches. BMC Bioinformatics,
11:569, 2010.

[24] A. Jimeno-Yepes, R. Berlanga, and D. Rebholz-Schuhmann. Ontology
refinement for improved information retrieval. Information Processing
& Management, 46(4):426 – 435, 2010. Semantic Annotations in Infor-
mation Retrieval.

[25] A. J. Jimeno-Yepes, B. T. McInnes, and A. R. Aronson. Exploiting mesh
indexing in medline to generate a data set for word sense disambiguation.
BMC Bioinformatics, 12:223, 2011.

[26] G. Kasneci, F. M. Suchanek, G. Ifrim, M. Ramanath, and G. Weikum.
Naga: Searching and ranking knowledge. In G. Alonso, J. A. Blakeley,
and A. L. P. Chen, editors, ICDE, pages 953–962. IEEE, 2008.

[27] J. Lafferty and G. Lebanon. Diffusion Kernels on Statistical Manifolds.
J. Mach. Learn. Res., 6:129–163, Dec. 2005.

[28] J. Lafferty and C. Zhai. Document language models, query models, and
risk minimization for information retrieval. In Proceedings of the 24th
annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, SIGIR ’01, pages 111–119, New York,
NY, USA, 2001. ACM.

33



[29] M. Lesk. Automatic sense disambiguation using machine readable dic-
tionaries: how to tell a pine cone from an ice cream cone. In Proceedings
of the 5th annual international conference on Systems documentation,
SIGDOC ’86, pages 24–26, New York, NY, USA, 1986. ACM.

[30] L. Li, B. Roth, and C. Sporleder. Topic models for word sense disam-
biguation and token-based idiom detection. In Proceedings of the 48th
Annual Meeting of the Association for Computational Linguistics (ACL
’10), pages 1138–1147, Stroudsburg, PA, USA, 2010. Association for
Computational Linguistics.

[31] J. Lin and C. Dyer. Data-Intensive Text Processing with MapReduce.
Synthesis Lectures on Human Language Technologies. Morgan & Clay-
pool Publishers, 2010.

[32] C. D. Manning, P. Raghavan, and H. Schütze. Introduction to Infor-
mation Retrieval. Cambridge University Press, New York, NY, USA,
2008.

[33] B. T. McInnes. An unsupervised vector approach to biomedical term
disambiguation: Integrating umls and medline. In E. Arisoy, K. Inoue,
and W. Maier, editors, ACL (Student Research Workshop), pages 49–54.
The Association for Computer Linguistics, 2008.

[34] B. T. McInnes. Supervised and Knowledge-based Methods for Disam-
biguating Terms in Biomedical Text using the UMLS and MetaMap.
PhD thesis, University of Minnesota, Minneapolis, MN, USA, 2009.

[35] O. Medelyan, D. Milne, C. Legg, and I. H. Witten. Mining meaning from
Wikipedia. Int. J. Hum.-Comput. Stud., 67(9):716–754, Sept. 2009.

[36] E. Meij, D. Trieschnigg, M. de Rijke, and W. Kraaij. Conceptual
language models for domain-specific retrieval. Inf. Process. Manage.,
46(4):448–469, July 2010.
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