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Performance trade-offs for networked jump
observer-based fault diagnosis

Daniel Dolz, Ignacio Peñarrocha, Roberto Sanchis

Abstract—In this paper, we address the fault diagnosis prob-
lem for discrete-time multi-sensor systems over communication
networks with measurement dropouts. We use the measurement
outcomes to model the measurement reception scenarios. Based
on this, we propose the use of a jump observer to diagnose
multiple faults. We model the faults as slow time-varying signals
and introduce this dynamic in the observer to estimate the faults
and to generate a residual. The fault detection is assured by
comparing the residual signal with a prescribed threshold.We
design the jump observer, the residual and the threshold to attain
disturbance attenuation, fault tracking and detection conditions
and a given false alarm rate. The false alarm rate is upper
bounded by means of Markov’s inequality. We explore the trade-
offs between the minimum detectable faults, the false alarmrate
and the response time to faults of the fault diagnoser. By imposing
the disturbances and measurement noises to be Gaussian, we
tighten the false alarm rate bound which improves the time
needed to detect a fault. A numerical example is provided to
illustrate the effectiveness of the theory developed in thepaper.

Index Terms—Fault diagnosis, false alarm rate, time to detect
faults, jump linear system, dropouts.

I. I NTRODUCTION

Networked control systems have been extended to many
industrial applications due to the diverse offered advantages,
as the reduction on the installation cost or the increase on
the flexibility, provided by the communication network [1].In
these kinds of systems, the controller unit, the sensors andthe
actuator are not collocated and the exchange of information
is done through a shared network, leading to some network-
induced issues as time delays and dropouts [2], [3]. Owing to
the need for reliability, safety and efficient operation of these
networked systems, model-based fault diagnosis methods [4]
have been recently introduced to operate over networks [5].

Fault detection over communication networks when using
an observer-based fault detection scheme is addressed by
the comparison between a residual signal generated with the
estimated system outputs and a threshold. The residual is
conceived to balance the robustness against network effects
and disturbances, and the fault sensitivity [6]–[9].

Assuring a predefined false alarm rate (FAR) is a key
problem. In the majority of the networked fault detection
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proposals, the threshold is chosen to reduce the FAR to the
minimum [10], [11], but without quantifying it. Some works
as [7], [8], [12] characterize the mean and variance of the
residual and use Markov’s inequality to impose a desired
FAR bound. However, Markov’s inequality is known to be
conservative [13]. The main problem to get a proper FAR
bound is to obtain the probability distribution of the residual
signal. In [14] the residual was computed as a quadratic form
of the outputs estimation error by means of the inverse of the
outputs estimation error matrix covariance given by a Kalman
filter. With that, their residual signal follows a chi-squared
distribution and an exact FAR can be fixed. But, to the best
of the authors’ knowledge, the extension to observers with
predefined gains (which have less implementation cost) for
networked systems with dropouts has not been addressed.

Regarding the fault estimation problem, the most common
approach is to make the residual track the fault or a weighted
fault signal by guaranteeing some performances of the faultes-
timation error under disturbances and the network issues [15]–
[19]. Recently, to improve the fault estimation performances,
the authors in [20] introduced a dynamic of the fault signal
on the fault estimator. Fault detection and estimation can be
combined to attain fault diagnosis.

According to [21], the performance of a fault detection
algorithm is defined by means of the trade-offs between the
time to detect a fault and the FAR. This definition can be
extended to the fault diagnosis case by considering also the
convergence speed of a norm of the fault estimation error. The
authors in [22] show that there exists a trade-off between the
fault detection rate and the FAR. More recently, the existence
of a compromise between the time to detect a fault and the
fault sensitivity has been demonstrated in [23]. Nevertheless,
none of them explores the compromises between the minimum
detectable faults, the FAR and the fault diagnosis (detection
and estimation) speed.

The dropouts in the fault diagnosis problem over commu-
nication networks have been mainly studied in the packetized
case [7], [8], [15]. The multi-sensor case was studied in [24]
with an invariant observer gain approach, however the use of
jump observers that adapt their gains to the network scenario
has been proved to enhance the estimation performances [25],
[26]. Networked jump observer-based fault estimators have
recently started to receive attention [6], [8].

Motivated by the previous analysis, in this paper we face the
fault diagnosis problem for multi-sensor systems with dropouts
through the combination of fault detection and fault estimation.
The faults are characterized as slow-time varying signals and
the network dropouts are modeled with the combination of
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available measurements at the fault diagnoser. We introduce
a jump observer to estimate the faults and define the residual
signal as a quadratic form of the estimated fault vector. The
design of the jump observer and residual is addressed through
an iterative linear matrix inequalities (LMIs) procedure that
allows obtaining the predefined set of observer gains and
the fault detector parameters. The design is carried out to
achieve disturbance and measurement noise attenuation, and
fault diagnosis performances under a prescribed FAR. We
propose two design strategies: the first one consists of fixing
the response speed to faults and minimizing the minimum
detectable fault, and the second one consists of fixing the
minimum detectable fault and minimizing the response time.
The trade-offs between the minimum detectable faults, the
FAR and the delay between fault occurrence and detection
(response time of the fault estimator) are highlighted. Further-
more, we derive two ways of bounding the FAR depending
on whether the residual signal probability distribution isun-
known (Markov’s inequality approach) or known as a result
of assuming Gaussian disturbances and measurement noises
(chi-squared approach).

Notation : Let A andB be some matrices.A(i, i) defines
the i-th diagonal element ofA. The maximum and minimum
eigenvalues ofA are denoted byλ(A) andλ(A) respectively.
A � B means that matrixA − B is negative semidefinite.
Similar applies to�. The direct sum is represented by

⊕
,

whereA
⊕
B is a block diagonal matrix withA andB on

its diagonal. Operatorvec(A) generates a vector by stacking
the columns of matrixA. Let x[t] ∈ R

n be a stochastic
process. Expected value and probability are denoted asE{·}
andPr{·}. We write ‖x[t]‖22 , x[t]

T
x[t] for the ℓ2 norm of

x[t], ‖x‖∞ , maxt maxi |xi[t]| for the ℓ∞ norm of x and
‖x‖2RMS , limK→∞

∑K−1
t=0

1
K
‖x[t]‖22 for its RMS norm.

II. PROBLEM FORMULATION

Let us consider linear time invariant discrete-time systems
defined by equations

x[t+ 1] = Ax[t] +Bu u[t] +Bw w[t] +Bf f [t], (1)

where x ∈ R
n is the state,u ∈ R

nu is the vector of
known inputs,w ∈ R

nw is the state disturbance assumed as
a random signal, uncorrelated in time, with zero mean and
known covariance matrixE{w[t]Tw[t]} = W for all t, and
f ∈ R

nf is the fault vector. Throughout this work we assume
that the known inputu is causally available at all times, see
Fig. 1. This general model includes as a particular case a
system without known inputs, by simply takingBu = 0.

The measurable outputs of the system are modeled by
equation

y[t] = C x[t] (2)

wherey ∈ R
ny is the output vector.

Different sensors with different characteristics on sampling
rate or noise, that may have faults, can be connected to one
single measurable output, but at least each measurable output
is measured by one sensor, havingnm ≥ ny sensors. We
define the measurement value as

mj [t] = cj x[t] + hj f [t] + vj [t], j = 1, . . . , nm (3)
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Fig. 1. Networked fault diagnosis problem for two sensors with possible
faults in the plant (fp for actuators and other faulty components) and in the
sensors (fs1, fs2).

wheremj [t] ∈ R represents thet-th measurement of thej-th
sensor andvj [t] ∈ R the j-th sensor noise assumed as a zero
mean random signal with known varianceE{vj [t]2} = σ2

j for
all t, that is uncorrelated with respect to the time indext. We
also consider thatvi is mutually uncorrelated withvj 6=i. cj
denotes one row of matrixC (severalcj could be equal and
correspond to the same row ofC) and hj denotes each one
of the rows of matrixH .

In the current work, we model the fault signal as a slow
time-varying one (cf. [20], [27]), i.e.,

f [t+ 1] = f [t] + ∆f [t] (4)

where∆f [t] is the variation of the fault from instantt to t+1.
Equation (4) allows modeling, for instance, step signals (∆f [t]
only takes a nonzero value at the time the fault appears) or
ramp signals (∆f [t] takes a constant value), that have been
widely used in the literature to analyze the behavior of fault
detection algorithms [4]. Along this paper, we consider that
w[t], vj [t] for all j = 1, . . . , nm and ∆f [t] are mutually
uncorrelated for allt.

We introduce an extended order model to include the fault
dynamic as

z[t+ 1]= Āz[t]+B̄uu[t]+ B̄ww[t] + B̄f∆f [t] (5)

with z[t] =
[
x[t]T f [t]T

]T
and

Ā =

[
A Bf

0 I

]

, B̄u =

[
Bu

0

]

, B̄w =

[
Bw

0

]

, B̄f =

[
0
I

]

wherez ∈ R
n̄ with n̄ = n+ nf .

In this work we intend to detect and estimate (diagnose)
the possible system faults (represented by vectorf [t]) when
the measurements are transmitted through a communication
network that may induce dropouts. In this case, the system
output measurements are not available at every discrete time
instant. When the dropout rate is high, the fault estimation
problem becomes more difficult and the importance of a fast
response to faults and a low FAR becomes more evident.
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The measured and transmitted value from sensorj at instant
t is

me
j [t] = c̄jz[t] + vj [t], (6)

with c̄j = [cj hj] andj = 1, . . . , nm. We assume that the pair
(Ā, C̄) is detectable (beinḡC the matrix whose rows arēcj).

Remark 1. If the pair (Ā, C̄) is not detectable (i.e.,
nf > nm), only a combination of the faults can be detected.
Then, a previous transformation of the system, as proposed
in [28], must be done (leading to new̄nf faults such that
n̄f ≤ nm) before the proposed technique becomes applicable.

A. Network transmissions characterization

Each sensor samples its output synchronously with the
known input update and sends independently a time-tagged
packet with the measurementme

j [t] to the fault diagnoser
station, through an unreliable communication network with
packet dropouts.

We define the binary variableαj [t] that indicates the avail-
ability of thej-th sensor measurement (j = 1, . . . , nm) at each
instantt, as.

αj [t] =

{
0 if me

j [t] is not received att,
1 if me

j [t] is received att.
(7)

Then, the availability matrixα[t] =
⊕nm

j=1 αj [t] is a binary
diagonal matrix that can only have ones in its diagonal. Thus,
using α[t] we can redefine the available measurements at
instantt as

ma[t] = α[t]
(
C̄z[t] + v[t]

)
. (8)

Note that a component of vectorma[t] is null when
the corresponding measurement is not available.v[t] =
[v1[t] · · · vnm

[t]]T is the measurement noise vector with co-
varianceE{v[t]v[t]T } = V =

⊕nm

j=1 σ
2
j (for all t).

The possible values ofα[t] at each instantt belong to a
known finite set

α[t] ∈ Ξ = {η0, η1, . . . , ηq}, q = 2nm − 1, (9)

whereηi denotes each possible combination of the available
measurements at the fault diagnoser station (measurement
reception scenario). Matrixη0 denotes the scenario in which
there is no measurement available, i.e.,η0 = 0. We char-
acterize the network behavior using the total probability of
each scenario inΞ. We denote bypi = Pr{α[t] = ηi}
the probability of having the measurement reception scenario
ηi at instant t. p0 denotes the probability of having no
measurements.

In the current paper, we assume that the arrival probability
from each sensor is governed by an independent and identi-
cally distributed process [29]. We denote byβj the probability
of having available the measurement from sensorj at instant
t, i.e.,βj = Pr{αj[t] = 1}. Then, the probability of having a
given combination of available measurementsηi ∈ Ξ is

pi = Pr{α[t] = ηi} =
∏

j∈I(ηi)

(1 − βj)
∏

j 6∈I(ηi)

βj (10)

for all i = 0, . . . , q whereI(ηi) , {j|ηi(j, j) = 0}.

B. Fault diagnosis method

We propose the following fault estimation algorithm for
system (5)-(6). At each instantt, the model is run in open
loop leading to

ẑ[t−] = Ā ẑ[t− 1] + B̄uu[t− 1]. (11)

If no measurement is received, we keep the open loop esti-
mation, i.e.,ẑ[t] = ẑ[t−]. If a measurement arrives at instant
t = tk, the state is updated as

ẑ[tk] = ẑ[t−k ] + L[tk] (m
a[tk]− α[tk] C̄ ẑ[t

−
k ]), (12)

whereL[tk] is the updating gain matrix andma[tk] is defined
in (8).

Remark 2. While t ∈ N refers to each time instant,tk
(with k ∈ N) enumerates only the instants where some
measurements are received. For instance, if we receive some
measurements only at instantstk = 8 and tk+1 = 10, but not
at t = 9, then instanttk + 1 = 9 (or tk+1 − 1 = 9) refers to
instant9, when no measurement is received.

Let us denotez[tk] by zk. Defining the extended state
estimation error at updating instants asz̃k = zk − ẑk, the
estimation error dynamics is given by

z̃k =(I − LkαkC̄)Ā
Nk z̃k−1 − Lkαkvk

+

Nk∑

l=1

(I − LkαkC̄)Āl−1BWW[tk−1 + l − 1] (13)

beingBW = [B̄w B̄f ] andW[tk−1 + l − 1] = [w[tk−1 + l−
1]T ∆f [tk−1+ l−1]T ]T . Nk denotes the number of consecu-
tive instants without measurements (which is unbounded), i.e.,
Nk = tk − tk−1.

The fault detection algorithm uses the estimated faults to
compute a residual signal at instantst = tk as

rk = f̂T
k F

−1f̂k, (14)

where the common fault detection decision is given by
{

if rk ≤ rth No fault
if rk > rth Fault

beingrth > 0 a threshold to be defined. Then, fault isolation
is achieved by means of the combination of fault detection and
fault estimation, allowing us to identify which is the origin of
the fault.

Remark 3. According to [4], the minimum detectable fault is
a fault that drives the residual to its threshold, provided no
other faults, disturbances and measurement noises are present.
Then, assuming a zero fault estimation error (i.e.f̂ = f ),
each diagonal element ofF in (14) multiplied byrth defines
the minimum detectable fault asfmin,l = rthF (l, l) for the
corresponding channel (l = 1, . . . , nf ).

Considering the fault detection logic, the FAR is defined as
the average probability of rising false alarms over an infinite-
time window, i.e.

Ψ = lim
K→∞

K−1∑

k=0

Pr{rk > rth | fk = 0}. (15)
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The aim of this work is to compute the gain matricesLk, the
matrix F , and the thresholdrth such that the fault diagnoser
attains disturbance and measurement noise attenuation, and
fault diagnosis performances for a given FAR. These objectives
can be reached with an invariant observer gain (as in the
majority of reviewed works), or with a jump one (e.g. [6], [8]).
In this work, we relate the gainLk to the sampling scenario
αk, asLk = L(αk), with the lawLk = Li whenαk = ηi
for αk = η1, . . . , ηq. Then, the matrices are computed off-line
leading to the finite set

Lk ∈ L = {L1, . . . , Lq}. (16)

III. FAULT DIAGNOSER DESIGN: DROPOUT-FREE

Let us first consider the case without measurement dropouts,
i.e., βj = 1 for all j = 1, . . . , nm. In this case,α[t] is always
the identity, which implies that each instantt is a measurement
instant (tk = t) leading toLk = L andNk = 1, for all k. The
following theorem presents how to design the observer gainL
and the matrixF that defines the residual (14) based on the
H2 norm of system (13).

Theorem 1. Consider the estimation algorithm(11)-(12)
applied to system(1)-(4) with standard sampling. If there exist
symmetric matricesP , F , Γw, Γv, Γf , and full matrix X
fulfilling





P Ā 0
ĀT P B̄f

0 B̄T
f F



 � 0, (17a)

[
P B̄µ

B̄T
µ Γµ

]

� 0, µ = {w, v, f} (17b)

with

Ā = (P −XC̄)Ā, B̄w = (P −XC̄)B̄w,

B̄v = −X, B̄f = (P −XC̄)B̄f

then, defining the observer gain matrices asL = P−1X , the
following statements hold:

i) In the absence of disturbances, faults, and measurement
noises the extended state estimation error(13) converges
to zero.

ii) Under zero initial conditions (i.e.,̃z0 = 0), the fault
estimation error is bounded by

E{‖f̃‖2RMS} ≤ λ(F )
(
tr(Γ̄) + nfλ(Γf )∆f

2
max

)
, (18)

whereΓ̄ = ΓwW + ΓvV and ‖∆f‖∞ ≤ ∆fmax.

Proof. See Appendix A.

The above theorem states thatF is related to the expected
value of the squared RMS norm of the fault estimation
error. We can extract from (18) that the fault estimation (and
therefore the residual signal) is more sensitive to disturbances
and measurement noises when the maximum of the minimum
detectable faults (by means ofλ(F )) is higher. Furthermore,
the lower the valueλ(Γf ), the lower the effect of the faults
on the estimation error. The next theorem extends the results
of the previous one to bound the FAR.

Theorem 2. For a given thresholdrth > 0 and 0 ≤ φ ≤ 1,
and under the premisses of Theorem 1, if

tr(ΓwW ) + tr(ΓvV ) = φ rth, (19)

and constraints(17)are fulfilled, then, the following additional
statement holds:

iii) In the absence of faults and under zero initial conditions,
the fault detection algorithm assures a FAR(15) bounded
by φ.

Proof. See Appendix B.

The next theorem extends the previous one showing how
the fault estimation error decays at each measurement instant.

Theorem 3. For a given thresholdrth > 0 and 0 ≤ φ ≤ 1,
and under the premisses of Theorem 2, if

Γf − B̄T
f PB̄f � 0, (20)

and constraints(17), (19) are fulfilled, then, the following
additional statement holds:

iv) The fault estimation error given byE{‖f̃k‖22} decays with

ρ = 1− 1

λ(ΓfF )
. (21)

Proof. See Appendix C.

The above theorem shows thatE{‖f̃k‖22} decays withρ,
from the initial conditions to the steady state region (see (41)).
ρ depends on the maximum eigenvalue of the productΓfF .
If F is fixed to assure the detection of some given minimum
faults,Γf determines the response time of the fault estimator
(by means ofρ) and therefore the time to detect a fault (as
the residual is defined with the estimated faults).

Remark 4. Under a step-like fault, the number of instants
with measurement reception, denoted byK, until the initial
value of the fault estimation error is decreased belowξ(%),
characterizes the settling time of the fault estimation vector
(time to achieve the100 − ξ of the final value).K can be
obtained approximately by solving equationρk+1 = ξ/100,
(see(41)) leading to

K =

⌈
log(ξ/100)

log(ρ)
− 1

⌉

(22)

where ⌈·⌉ is the operator that rounds its argument to the
nearest integer towards infinity. One of the most used values
for ξ in system theory isξ = 2%. Thus,ξ = 2% refers to the
number of time instants until reaching the 98% of the fault
estimation final value.

Remark 5. For a fixed value ofF , increasing the FAR by
means ofφ leads to an increase in the values ofΓw and
Γv, see(19). Higher values on these variables alleviate the
constraints overP in (17b), increasing the solution space
in the search for a feasible matrixP . This would allow,
for instance, structure constraints over matrixP . Matrix
Γf in (20) constrains the last diagonal block onP . Then,
increasingφ can enlarge the solution space to find lower
values onΓf , which, in turn, lead to lower values ofρ (faster
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fault diagnosers). These ideas are analyzed in the examples
section.

We used Markov’s inequality in Theorem 2 to bound the
FAR. However, it is well known that the bound yielded
by Markov’s inequality may be very conservative (see [13])
because it does not consider the probability distribution of the
residualrk. This may result in a real FAR that is some orders
of magnitude lower than the desired one, which, as shown
in the examples, may lead to a very slow response of the
fault diagnoser (characterized byρ in Theorem 3). Most of
the works in the literature share this important drawback. In
order to overcome this, a more accurate bound on the FAR
would be desirable. Assuming that the disturbanceswk and
the measurement noisesvk are Gaussian, we show in the next
theorem how to impose an appropriate value to matrix F to
force the residualrk follow a chi-squared distribution, which
allows us to tighten the FAR bound.

Theorem 4. For the fixed thresholdrth = nf and for a given
0 ≤ φ ≤ 1, under the premisses of Theorem 3, if

F = φ−1Σf (23)

and constraints(17), (19), (20) are fulfilled, with1

vec(Σf ) =
(
I −GĀ⊗GĀ

)−1
vec (Y1) , (24)

Y1 = GB̄wWB̄T
wG

T + P−1X V (P−1X)T ,

G = (I − P−1XC̄),

then, in the absence of faults, under zero initial conditions
and Gaussian disturbances and measurement noises, if the
fault diagnoser gain is defined asL = P−1X , then the FAR
is given by

Ψ = 1− CDFX 2
nf

(
rth
φ

)

(25)

whereCDFX 2
nf
( rth

φ
) = Pr{ rk

φ
≤ rth

φ
} denotes the cumulative

distribution function (CDF) of a chi-squared random variable
with nf degrees of freedom,X 2

nf
.

Proof. See Appendix D.

Remark 6. Following the definition of the CDF of a chi-
squared random variable, the value ofφ needed to obtain
a desired FARψ with the chi-squared approach is always
higher (for any value ofnf ) that the one required with
the Markov’s inequality approach. For instance, ifnf = 2
and ψ = 10−3 using Theorem 2 requiresφ = 10−3 while
Theorem 4 requiresφ = 0.145. Following Remark 5, this
implies that using the chi-squared approach could lead to fault
diagnosers with a faster response to faults than employing the
result on Theorem 2. However, Markov’s inequality approach
(from Theorem 2) has wider applications because it does not
require Gaussian disturbances and noises, as the chi-square
approach (from Theorem 4) does.

1The Kronecker product betweenA ∈ R
n×m andB ∈ R

p×q is a block

matrix such asA⊗B







a11A · · · a1mB
...

. . .
...

an1B · · · anmB






∈ R

np×mq . The vectoriza-

tion of matrixA is vec(A) =
[

a11 · · · an1 a12 · · · anm

]T .

Theorem 4 has shown how to reduce the conservatism of
the approach when assuming Gaussian disturbances, but at the
cost of including new nonlinear equality constraints that are
hard to handle. We will show in the design strategies section
how to overcome this issue.

IV. A PPLICATION TO NETWORKED TRANSMISSION

In the previous section we presented how to design the
fault diagnoser and to characterize the obtained FAR and
response time to faults for measurement transmission without
dropouts. In this section we extend the previous results to a
more interesting case where measurement information is not
always available due to network dropouts. This will stress the
need of fast fault detection with a low FAR. The following
theorem extends Theorem 3 and shows how to find the set
of observer gain matrices (16) and the matrix that defines the
residual (14).

Theorem 5. For a given thresholdrth > 0 and 0 ≤ φ ≤ 1,
consider the estimation algorithm(11)-(12) applied to sys-
tem(1)-(4). Assume that there can beq different measurement
reception scenariosηi (i = 0, . . . , q) with a probabilitypi. If
there exist symmetric matricesP , Q, F , Γv, Γw, Γf,, and full
matricesXi fulfilling

[
P −M1 B̄f

B̄T
f F

]

� 0, (26a)

Γw − B̄T
wM2B̄w � 0, (26b)

[⊕q

l=1 P M3

MT
3 Γv

]

� 0, (26c)

Γf − B̄T
f (M5 +M6)B̄f � 0, (26d)

[⊕q

l=1 P M4

MT
4 Q

]

� 0, (26e)

tr(ΓwW ) + tr(ΓvV ) = φ rth, (26f)

Γf − B̄T
f PB̄f � 0, (26g)

with

vec(M1) = ϕ(Ā)
−1

vec(ĀTQĀ),

M2 = (1 − p0)M5 +
p0

1− p0
M1, M5 =

1

(1 − p0)2
Q,

M3 =








√
1

1−p0
p1X1η1
...

√
1

1−p0
pqXqηq







, M4 =






√
p1(P −X1η1C̄)

...√
pq(P −XqηqC̄)




 ,

vec(M6) = ϕ(Ā)
−1
(

vec(ĀTM5Ā) +
p0

1− p0
vec(M1)

)

,

andϕ(Ā) = I−p0ĀT ⊗ ĀT , then, defining the observer gain
matrices asLi = P−1Xi, the following statements hold:

i) In the absence of disturbances, faults and measurement
noises,(13) converges to zero in average.

ii) Under zero initial conditions, the fault estimation error is
bounded by

E{‖f̃‖2RMS} ≤ λ(F ) ·
(

φ rth + nfλ(Γf )∆f
2

max

)

, (27)
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where ∆fmax is a constant that depends on the fault
magnitude that bounds vector∆fk ∈ R

nf as ‖∆f‖∞ ≤
∆fmax, being∆fk a vector that fulfills for allk that

∞∑

N=1

NpN−1
0

N−1∑

l=0

(⋆)TQ
(
ĀlB̄f∆f [tk + l]

)

︸ ︷︷ ︸

⋆

= ∆fk

T

(
∞∑

N=1

NpN−1
0

N−1∑

l=0

B̄T
f (Ā

l)TQĀlB̄f

)

∆fk.

(28)

iii) Under zero initial conditions and in the absence of faults,
the residual evaluation assures a FAR(15) bounded byφ.

iv) The fault estimation error given byE{‖f̃k‖22} decays with

ρ = 1− 1

λ(ΓfF )
. (29)

Proof. See Appendix E.

Remark 7. The existence of vector∆fk defined in(28) is
assured because it represents an equality constrained problem
with one equation andnf degrees of freedom. For instance, un-
der ramp-like faults (∆f [tk+l] is constant),∆f [tk+l] = ∆fk
(for all l = 0, 1, . . .) and∆fmax = ‖∆f‖∞. Furthermore, the
exact value of∆fmax is not relevant for the analysis.

In the aim of reducing the conservativeness introduced by
Markov’s inequality to bound the FAR, the next theorem
extends Theorem 4 by forcingrk to follow a chi-squared
distribution when measurements are subject to dropouts.

Theorem 6. If the threshold is set asrth = nf and for a
given0 ≤ φ ≤ 1, under the premisses of Theorem 5, if

F = φ−1Σf (30)

and constraints(26) are fulfilled for i = 1, . . . , q, with

Σf = B̄T
f (R− p0ĀRĀ

T )B̄f , vec(R) = Y −1
1 vec(Y2),

Y1 = ϕ(Ā)− (

q
∑

i=1

pi(GiĀ)⊗ (GiĀ)),

ϕ(Ā) = I − p0Ā
T ⊗ ĀT ,

Y2 =
1

1− p0

q
∑

i=1

piLi ηiV η
T
i L

T
i +

q
∑

i=1

piGi(SW )GT
i ,

SW =
1

1− p0

(
B̄wWB̄T

w + p0ĀSW,∞Ā
T
)
,

vec(SW,∞) = ϕ(Ā)−1vec(B̄wWB̄T
w),

Li = P−1Xi, Gi = I − LiηiC̄

then, in the absence of faults, under zero initial conditions
and Gaussian disturbances and measurement noises, the FAR
is given by(25).

Proof. See Appendix F.

V. FAULT DIAGNOSIS STRATEGIES

Based on the derived results on Theorem 5, we propose
the following two strategies to address the design of a fault
diagnoser depending on the needs of the application.

First, let us consider that we desire to detect faults over a
certain value, i.e to fix the minimum detectable fault on each
channelfmin,l (for l = 1, . . . , nf ), with a guaranteed FAR,
and to detect as fast as possible the appearance of faults (i.e.,
with the lowestρ). The next optimization problem deals with
this design problem.

Strategy 1. For a given thresholdrth > 0, letψ be the desired
FAR, fixφ to beφ = ψ, and letF be a diagonal matrix such
that F =

⊕nf

l=1 f
2
min,l/rth. Then, the minimization problem

minimize γ

subject to X1 = {(26), F � F , ΓfF � γI} (31)

along variablesγ, P , Q, F , Γv, Γw, Γf, and Xi (with
i = 1, . . . , q), leads to the fault diagnoser with the fastest
response under faults, able to detect faults overfmin,l (with
l = 1, . . . , nf ) with a FAR belowψ.

Remark 8. The computational complexity of Strategy 1 can
be described as follows. The size of the full involved LMI
constraint is

(2nm + 1)(n+ nf ) + 5nf + nw + nm + 1.

Symmetric matrices asP ∈ R
(n+nf )×(n+nf ) have (n +

nf )(1 + n+ nf )/2 decision variables, while full matrices as
Xi ∈ R

(n+nf )×nm have(n+nf )nm. Furthermore, Strategy 1
is based on semidefinite programming and therefore does not
require a high computing capacity. This kind of problems can
be solved using MATLAB toolboxes as Yalmip [30] (which can
handle large scale problems).

Second, let us assume that we desire to impose the response
speed under the appearance of faults (by means ofρ) with a
guaranteed FAR. Then, the minimum detectable faults can be
minimized through the next optimization problem.

Strategy 2. For a given thresholdrth > 0, letψ be the desired
FAR, fixφ to beφ = ψ, and let ρ̄ be the given upper bound
on how the fault estimation error decays, i.e.,ρ ≤ ρ̄. Then,
the minimization problem

minimize γ

subject to X2 =

{
(26), tr(F ) ≤ γ,

ΓfF ≤ (1− ρ̄)−1I

}
(32)

along variablesγ, P , Q, F , Γv, Γw, Γf and Xi (with i =
1, . . . , q), leads to the fault diagnoser with the minimum value
of the sum of the squared minimum detectable faults (defined
by matrixF ) with ρ ≤ ρ̄ and a FAR belowψ.

Remark 9. Optimization problem(32) is nonlinear because
of the bilinear matrix inequality (BMI) that affects the product
ΓfF . This can be solved with the following rank constrained
problem

[
(1− ρ̄)−1F F

F Λ

]

� 0, rank

([
Γf I
I Λ

])

≤ nf

where a new symmetric decision matrixΛ has been added.
This problem can be iteratively handled with the well known
cone complementarity linearization (CCL) algorithm [31]



7

(which only addresses feasibility by relaxing the rank con-
straint with a positive semidefinite constraint on the involved
matrix) over a bisection algorithm. Solving Strategy 2 is more
time consuming than Strategy 1 because of the iterations
introduced by the CCL and the bisection algorithm. Nev-
ertheless, it only introducesnf(1 + nf ) decision variables
(due toΛ) and only increases the full LMI size in2nf + 1
over a semidefinite programming problem, and therefore, the
computational complexity is not really an issue.

Both design strategies are still valid when including non-
linear equality constraints (30) but need more computational
effort. The next strategy extends the previous ones to consider
the chi-squared approach presented in Theorem 6.

Strategy 3. The minimization problem

minimize γ

subject to Xj , (30),

ψ = 1− CDFX 2
nf

(
rth
φ

) (33)

along variablesγ, P , Q, F , Γv, Γw, Γf, and Xi (with i =
1, . . . , q) with rth = nf , extends the design made in Strategy 1,
if j = 1, or in Strategy 2, ifj = 2, to tighten the FAR bound
with the chi-squared approach.

Remark 10. Optimization problem(33) is nonlinear due
to constraint(30). This optimization problem can be solved
iteratively with LMI constraints by forcing matrixF at each
stepk to be asF � φ−1Σf (Lk−1), until Σf (Lk−1) converges
to a constant value, whereΣf (Lk−1) is the covariance matrix
in (30) evaluated with the observer gains at stepk − 1. The
computational burden of each of the iterations is nearly the
same as in Strategy 1 (or Strategy 2), but the total computing
time is multiplied at most by the number of iterations. How-
ever, we are again dealing with a semidefinite programming
problem, therefore the computational load is not a problem.

Remark 11. Strategy 3 will lead, in general, to minimum
detectable faults underfmin,l (for l = 1, . . . , nf ). If we do
not intend to detect faults underfmin,l, we can first solve the
optimization problem involved in Strategy 3 and then userk =
f̂T
k F−1f̂k in the real-time implementation (whereF includes

the original prescribed minimum detectable faults,fmin,l). In
this case, as we impose in the design thatφ−1Σf � F , the
obtained FAR will be upper-bounded by(43).

VI. EXAMPLE

Let us consider an industrial continuous-stirred tank reactor
process (borrowed from [32]) where the discretized state-space
model is

A =

[
0.972 −0.001
−0.034 0.863

]

, Bu =

[
−0.084 0.023
0.076 0.414

]

,

Bw = Bu, C =

[
1 0
0 1

]

.

We desire to detect faults from the second actuator and the
first sensor, i.e.

Bf =

[
0.023 0
0.414 0

]

, H =

[
0 1
0 0

]

.

The state disturbances and measurement noises are Gaussian
with covariance matrices

W =

[
0.11 0.03
0.03 0.13

]

, V =

[
0.01 0
0 0.01

]

.

We consider that the measurements are independently ac-
quired through a communication network where the probabil-
ities of having available the measurements from each sensor
areβ = [0.58 0.46].

For ease of analysis, in this example we will only explore
the case when we impose that the minimum detectable faults
are below some given values and we try to obtain the fastest
response to faults of the fault diagnoser, i.e. we will only
analyze Strategies 1 and 3. For ease of notation, let us assume
that the requirement over the minimum detectable faults is
such thatF � fminI. In the next, we impose the threshold to
be rth = nf .

First, let us study the compromises between the minimum
detectable faultsfmin, the desired FARψ and the speed of
the fault diagnoser by means ofρ in the design procedure.
Fig. 2 illustrates these trade-offs for five different desired
FARs with ψ = [10−1 10−2 10−3 10−4 10−5] and for the
two presented approaches to assure them: through Markov’s
inequality (left hand side figure, Strategy 1) and through
characterizing the probability distribution of the residual signal
(right hand side figure, Strategy 3). We note that imposing
smaller minimum detectable faults or lower FARs results in a
slower response time to faults (ρ higher). We also find that
forcing F to be as defined in (30) (chi-squared approach)
results in a faster response under faults (ρ smaller) for the same
minimum detectable faults than using Markov’s inequality
approach. Furthermore, Fig. 2 shows an asymptotic behavior
of ρ with respect tofmin, leading to a minimum achievable
value.

Second, let us study the behaviour of some fault diagnosers
in simulation, whereu[t] = 0 for all t. Table I compares
the fault diagnosis performances for the case whenF is
unconstrained, case C1 (where Markov’s inequality approach
is used, Strategy 1) and whenF is constrained to be as in (30),
case C2 (where the chi-squared approach is used, Strategy 3).
For both cases we imposeψ = 10−3 andfmin = 0.6. We also
include in Table I a case C3 where we reduced thefmin from
case C2 to the half. The matricesF obtained for the three
cases are:

FC1 =

[
0.18 0
0 0.18

]

, FC2 =

[
0.161 −0.025
−0.025 0.107

]

,

FC3 =

[
0.022 −0.008
−0.008 0.041

]

.

As illustrated in Table I, for case C3, we can detect smaller
faults than in case C2 at the expense of being slower than in
case C2. However, we still are much faster than in case C1
where the guaranteed detectable faults were higher. Moreover,
as stated in Remark 11 cases C2 and C3 can detect faults
below the imposedfmin (fmin,1 for the actuator fault and
fmin,2 for the sensor fault). Concerning the computational
burden, obtaining C1 takes0.4sec (using Yalmip with SeDuMi
solver [33] in a i7-3770 processor at 3.40 GHz) while C2
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ρ
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Fig. 2. Trade-offs on the observer-based fault diagnoser design.

requires2.5sec (with 10 iterations). Note that as previously
stated in Remark 8 and 10, the computational cost is not an
issue.

After a simulation of106 instants with no faults, we verify
that the FAR obtained in simulation (by dividing the number of
risen alarms by the total number of simulation time instants)
for case C2 and case C3 is the same as forecasted in the
design, but for case C1 is much lower (several orders of
magnitude) than the imposed bound. This conservativeness of
the Markov’s approach results in an extremely slow residual
dynamics (as seen in Fig. 3), and a huge time to detect the
fault (characterized by 6101 measurement instants, see (22)),
that is useless in practice. To alleviate this conservativeness,
we add to the analysis a fourth case C4 (withFC4 = FC1)
where, as a difference from case C1, we imposeφ = 0.1
(ψ ≤ 0.1). Then, we obtain a fault diagnoser similar to C2 with
a FAR in simulation of10−4 (see Table I), which is under the
desired one of10−3. This shows that we can compensate the
conservativeness of the Markov’s approach by increasing the
value ofφ and then verifying in simulation if the prescribed
bound is fulfilled, but we cannot guarantee a priori a given
tight false alarm rate or minimum detectable faults.

Fig. 3 and Fig. 4 show the fault estimation and fault
detection performances resulting from simulating the fault
diagnosers from Table I under the appearance of two step
faults, one for each channel, of an amplitude of0.7 at time
t = 100 (disappearing att = 400) for f1, and att = 200
(disappearing att = 500) for f2.

The fault diagnosers for case C2 and C4 are the fastest
ones to detect the faults and their estimation of the faults have
the lowest settling time. However they are the most sensitive
under state disturbances and measurement noises (as they have
the highestφλ(F ) product, see (27)). For case C1, the fault
detector cannot detect the faults on time because it has a too
slow dynamic due to the conservativeness introduced by the
Markov’s inequality. Case C3, is an intermediate case between
C1 and C2. Even if for case C3 the estimated faults converge
slower to the faults than for cases C2 and C4, the detection

mechanism only takes 6 more instants to detect the fault. This
is due to the fact that C3 can detect lower faults than C2 and
C4 (note that the diagonal ofF−1

C3 are higher than the ones of
F−1
C2 andF−1

C4 ). Finally, note that the settling time at the 98%
(ξ = 2%) for the fault estimation, measured in terms of the
number of measurement instants, is in the order ofK (defined
in (22)). For example, for case C3, the settling time is of 60
measurement instants for̂f1 and of 130 forf̂2, while it was
characterized byK = 167 from (22).

VII. C ONCLUSION

In the current work, we designed a jump observer-based
fault diagnoser to detect and estimate faults under measure-
ments dropouts. We constructed the residual signal using a
quadratic form of the estimated faults. A finite set of observer
gains is used to estimate the faults and each gain is applied
depending on the measurement outcomes. We employed the
measurement successful reception probabilities from eachsen-
sor to describe the possible measurement reception scenarios.

The proposed design method allows finding a trade off
between the achievable minimum detectable faults and the
response time to faults, while guaranteeing a prescribed false
alarm rate. Two design strategies can be used: fixing the
minimum detectable faults and then minimizing the response
time, or fixing the response time and then minimizing the
minumum detectable faults.

We developed two ways of imposing a desired false alarm
rate depending on the assumed knowledge about the proba-
bility distribution of the residual signal. If no information is
assumed to be known, the Markov’s inequality leads to a very
conservative bound on the false alarm rate. If the disturbances
and noise are assumed to be Gaussian, a certain condition
imposed on matrixF leads to a chi-squared residual distribu-
tion. In this case a very precise bound on the false alarm rate
is attained, improving the fault diagnosis performance.

Further research may include extensions to delayed mea-
surements with Markovian models for the missing measure-
ments and analytical characterization of the missing faultrate.
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TABLE I
FAULT DIAGNOSERS COMPARISON.

Case
Design Simulation

fmin fmin,1 fmin,2 φ ψ ρ K FAR
C1 0.6 0.6 0.6 10−3 10−3 0.999 6101 0
C2 0.56 0.46 0.52 0.145 10−3 0.808 18 10−3

C3 0.21 0.29 0.29 0.145 10−3 0.977 167 10−3

C4 0.6 0.6 0.6 0.1 0.1 0.798 17 10−4
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Fig. 3. Fault estimation performances for the analyzed cases on Table I.
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Fig. 4. Fault detection performances for the analyzed cases on Table I.

Fig. 4. Fault detection performances for the analyzed caseson Table I.

APPENDIX

Let us first introduce the following lemmas.

Lemma 1 ( [34]). Let ω be a stochastic vector with meanµ
and a covariance matrixW , andP a symmetric matrix. Then

E{ωTPω} = µTPµ+ tr(PW ).

Lemma 2 ( [35]). Let P be a positive semidefinite matrix,
xi a vector with appropriate dimensions andµi ≥ 0 scalar
constants (withi = 1, 2, . . .). If the series concerned is

convergent, then we have
(

∞∑

i=1

µixi

)T

P

(
∞∑

i=1

µixi

)

≤
(

∞∑

i=1

µi

)
∞∑

i=1

µix
T
i Pxi.

A. Proof of Theorem 1

Let us define the Lyapunov function at instantt = tk as
Vk = z̃Tk P z̃k.

i) In the absence of disturbances, faults and measurement
noises, after taking Schur’s complements on (17a) and premul-
tiplying the result bỹzTk and postmultipliying by its transpose,
we obtain thatVk+1 − Vk ≤ 0 that assures that the extended
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state estimation error (13) converges to zero under standard
sampling.

ii) Performing similar steps on (17b) (Schur’s complements
and operations withwT

k , vTk and∆fk ), taking expected value
on the results and adding the obtained constraints with the one
from (17a) we get

E{Vk+1} −E{Vk}+E{f̃T
k F

−1f̃k} −E{wT
k Γwwk}

−E{vTk+1Γvvk+1} −∆fk
TΓf∆fk ≤ 0 (34)

where we have considered the uncorrelation betweenz̃k,
wk, vk+1 and ∆fk. Applying Lemma 1 overwT

k and vTk ,
considering zero initial conditions (V (0) = 0) and adding the
result fromk = 0 to K − 1 we get

K−1∑

k=0

E{f̃T
k F

−1f̃k} ≤ K tr(Γ̄) +
K−1∑

k=0

∆fT
k Γf∆f

T
k (35)

where we have taken into account thatP � 0 and that
Γ̄ = ΓwW + ΓvV . Dividing the above expressions byK,
taking the limit whenK → ∞ and considering that

E{f̃T
k F

−1f̃k} ≥ λ(F−1)E{f̃T
k f̃k},

∆fk
TΓf∆fk ≤ nfλ(Γf )‖∆f‖2∞ ≤ nfλ(Γf )∆f

2
max,

and thatλ(F−1) = 1/λ(F ) (asF is a positive definite matrix),
it leads to (18), which concludes this proof.

B. Proof of Theorem 2

If there is no fault on the system (i.e.̃fk = −f̂k and∆fk =
0 for all k), we have thatE{f̃T

k F
−1f̃k} = E{f̂T

k F
−1f̂k} =

E{rk}. Then, following the proof of Theorem 1, dividing
expression (35) byK, taking the limit whenK tends to infinity
and considering constraint (19), we obtain

lim
K→∞

1

K

K−1∑

k=0

E{rk} ≤ φ rth. (36)

Considering the above result and the FAR definition given
in (15), we can employ Markov’s inequality2 to obtain

Ψ ≤ lim
K→∞

1

K

K−1∑

k=0

E{rk}
rth

≤ φ,

proving thatφ bounds the FAR.

C. Proof of Theorem 3

Let us define vector̃f ′
k by f̃ ′

k = F− 1
2 f̃k. With that, (34)

can be rewritten as

E{Vk+1} −E{Vk} ≤ −E{‖f̃ ′
k‖22}+ rth + nfλ(Γf )∆f

2
max.
(37)

Inequality (20) implies thatΓf minus the diagonal block
of P corresponding to the fault estimation error is positive
semidefinite. Then, there exists a finite real constantd1 ≥ 0
that fulfills

E{Vk} ≤ E{f̃T
k Γf f̃k}+ d1 = E{f̃ ′T

k F
1
2

T
ΓfF

1
2 f̃ ′

k}+ d1

≤ λ(ΓfF )E{‖f̃ ′
k‖22}+ d1 (38)

2If x is a positive random variable anda > 0, thenPr{x > a} ≤
E{x}

a
.

for all k, considering the fact thatΓfF andF
1
2

T
ΓfF

1
2 are

similar matrices3. From this expression we can upper bound
−E{‖f̃ ′

k‖22} allowing us to rewrite expression (37) as

E{Vk+1} ≤ρE{Vk}+ ε+ (1− ρ)d1, (39)

for all k with ρ as defined in (21) and

ε = rth + nfλ(Γf )∆f
2
max.

Expressions (17a) imposes thatB̄T
f PB̄f � F−1 which com-

bined with (20) leads toΓfF � I guaranteing that0 ≤ ρ ≤ 1.
Going backwards fromk to k = 0, expression (39) becomes

E{Vk+1} ≤ ρk+1
E{V0}+

k∑

l=0

ρl (ε+ (1 − ρ)d1) .

Taking into account that
∑k

l=0 ρ
l = 1−ρk+1

1−ρ
≤ 1

1−ρ
, then

E{Vk+1} ≤ ρk+1
E{V0}+

1

1− ρ
ε+ d1. (40)

Constraint (17a) implies also thatE{Vk} ≥ E{‖f̃ ′
k‖22}.

Considering this, inequality (38) and the fact that

λ(F−1)‖f̃k‖22 ≤ ‖f̃ ′
k‖22 ≤ λ(F−1)‖f̃k‖22,

expression (40) leads to

E{‖f̃k+1‖22} ≤ ρk+1 κ(F )

(1− ρ)
E{‖f̃0‖22}+

λ(F )

(1− ρ)
ε+ λ(F )d1,

(41)

whereκ(F ) = λ(F )/λ(F ) is the condition number of matrix
F and where we have considered thatλ(F−1) = 1/λ(F )
becauseF is positive definite. Expression (41) proves that
E{‖f̃k‖22} decays withρ.

D. Proof of Theorem 4

First, in the absence of faults and under zero initial condi-
tions,f̃k is normally distributed and has zero mean because the
disturbances and measurement noises are normally distributed
with zero mean. Second, letZk−1 = E{z̃k−1z̃

T
k−1} be the

covariance matrix for the state estimation error updated at
instantstk−1 (which is also the covariance at instantst, since
we are dealing with standard sampling). Then, its expected
value at instanttk is given by

E{Zk} =G(ĀZk−1Ā
T + B̄wWB̄T

w)G
T + LV LT . (42)

As the observer gainL assures the stability of (13) (by
Theorem 1), the series in (42) converges to a symmetric
positive definite matrixΣf = E{Zk} = Zk−1 whenk → ∞
(see [26]) given in (24). Then we have that̃fT

k Σ−1
f f̃k is

distributed asX 2
nf

(see [36]). Considering (23), the signal
rk/φ = f̃T

k F
−1f̃k is then distributed asX 2

nf
. From Theorem 2

we know thatE{rk}/φ ≤ rth, see (36). As the expected value
of random variable that follows aX 2

nf
is nf , if we fix the

threshold to berth = nf , then we have that the FAR is

Ψ = Pr

{
rk
φ
>
rth
φ

∣
∣
∣
∣
fk = 0

}

, (43)

and using the definition of the CDF, we obtain (25).

3Matrices A and B are similar ifB = C−1AC. Similar matrices share the
same eigenvalues.
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E. Proof of Theorem 5

Let us define the Lyapunov function at instantt = tk as
Vk = z̃Tk P z̃k. Let us first study the evolution of the Lyapunov
function. The expected value of the Lyapunov function at the
next update instantt = tk+1 given that a measurement was
obtained attk, denoted byE{Vk+1}, is

∞∑

N=1

pN−1
0

q
∑

i=1

piE{z̃Tk+1P z̃k+1|Nk+1 = N,αk+1 = ηi}

= E

{

z̃Tk

(
∞∑

N=1

pN−1
0 (ĀN )TQĀN

)

z̃k

}

+E

{

wT
k

(
∞∑

N=1

pN−1
0

(
N−1∑

l=0

B̄T
w

(
Āl
)T QĀlB̄w

))

wk

}

+E

{

vTk

(
∞∑

N=1

pN−1
0

r∑

i=1

ηTi L
T
i PLiηi

)

vk

}

+

∞∑

N=1

pN−1
0 (⋆)

T Q
(

N−1∑

l=0

ĀlB̄f∆f [tk + l]

)

︸ ︷︷ ︸

⋆

(44)

considering the uncorrelation betweenz̃[tk], w[tk + l − 1],
v[tk+1] and ∆f [tk + l − 1] for l = 1, . . . , Nk − 1 and the
uncorrelation in time ofw[t]. Matrix Q is defined byQ =
∑q

i=1 piG
T
i PGi, whereGi = I − LiηiC̄ andLi = P−1Xi.

Le us denote byVk+1 the result of replacing in (44)Q by
Q whereQ � Q. We rewriteVk+1 as

Vk+1 = Vz
k+1 + Vw

k+1 + Vv
k+1 + Vf

k+1.

SinceQ � Q, we have thatE{Vk+1} ≤ Vk+1. If p0λ(Ā)2 <
1, the series involve in (44), and therefore inVk+1, are
convergent. Then, the summatory inVf

k+1, which implies
dealing with cross products between the different∆f [tk + l],
can be bounded with Lemma 2 asVf

k+1 ≤ Vf

k+1 with Vf

k+1

given by (28). Therefore, definingVk+1 as

Vk+1 = Vz
k+1 + Vw

k+1 + Vv
k+1 + Vf

k+1, (45)

we have thatE{Vk+1} ≤ Vk+1 ≤ Vk+1. Let us now analyze
constraints (26a)-(26e). If (26e) holds, then matrixQ is such
asQ � Q. MatricesM1, M2, M5, M6 can be rewritten as

M1 =

∞∑

N=1

pN−1
0 (ĀN )TQĀN ,

M2 =

∞∑

N=1

pN−1
0

(
N−1∑

l=0

B̄T
w

(
Āl
)T
QĀlB̄w

)

,

M5 +M6 =

∞∑

N=1

NpN−1
0

N−1∑

j=0

(Āj)TQĀj .

Then taking Schur’s complement from (26a) to (26d); premul-
tiplying the result bỹzTk ,wT

k , vTk and∆fk

T
and postmultipliy-

ing by its transpose respectively; and taking expected values
in both sides, we obtain

E
{
z̃TkM1z̃k

}
≤ E {Vk} −E

{

f̃T
k F

−1f̃k

}

,

E
{
wT

kM2wk

}
≤ E

{
wT

k Γwwk

}
,

E

{

vTk

(
∞∑

N=1

pN−1
0

r∑

i=1

ηTi L
T
i PLiηi

)

vk

}

≤ E
{
vTk Γvvk

}
,

∆fk

T (
B̄T

f (M5 +M6)B̄f

)
∆fk ≤ ∆fk

T
Γf∆fk,

Adding all the above expressions leads to

Υ = Vk+1 −E{Vk}+E{f̃T
k F

−1f̃k}
−E{wT

k Γwwk} −E{vTk Γvvk} −∆fk
T
Γf∆fk ≤ 0 (46)

whereVk+1 is as defined in (45). Let us defineΘ as

Θ = Υ− Vk+1 +E{Vk+1} ≤ 0.

Therefore, asE{Vk+1} ≤ Vk+1, if (46) holds, then we have
thatΘ ≤ 0 (analogous to (34)), sinceΘ ≤ Υ ≤ 0.

Using the fact thatΘ ≤ 0 and following similar steps than
in the proofs of Theorems 1, 2 and 3 we can prove with not
much effort that the statements of Theorem 5 hold.

F. Proof of Theorem 6

Let Zk−1 = E{z̃k−1z̃
T
k−1} be the covariance matrix for the

state estimation error updated at the measurement instanttk−1.
Then, its expected value at instanttk is given by

E{Zk} =

q
∑

i=1

piGi(ĀRk−1Ā
T + SW )GT

i

+
1

1− p0

q
∑

i=1

piLi ηiV η
T
i L

T
i (47)

where
∑∞

N=1 p
N−1
0 = 1/(1 − p0) and Rk−1 =

∑∞
i=0 p

i
0Ā

iZk−1(Ā
i)T expressed as

vec(Rk−1) = (I − p0Ā⊗ Ā)−1vec(Zk−1).

Following similar arguments than in the proof of Theorem 4,
the series in (47) converges to a symmetric positive definite
matrixΣf andrk/φ = f̃T

k Σ−1
f f̃k is distributed asX 2

nf
, leading

to a FAR given by (25).
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[30] J. Löfberg, “Yalmip: A toolbox for modeling and optimization in
matlab,” in IEEE International Symposium on Computer Aided Control
Systems Design, 2004, pp. 284–289.

[31] L. El Ghaoui, F. Oustry, and M. AitRami, “A cone complementarity
linearization algorithm for static output-feedback and related problems,”
IEEE Trans. Autom. Control, vol. 42, no. 8, pp. 1171–1176, 1997.

[32] H. Gao, T. Chen, and L. Wang, “Robust fault detection with missing
measurements,”Int. J. Control, vol. 81, no. 5, pp. 804–819, 2008.

[33] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for optimization
over symmetric cones,”Optimization methods and software, vol. 11, no.
1-4, pp. 625–653, 1999.

[34] T. Söderström, “Discrete-time stochastic systems.estimation and con-
trol,” 1994.

[35] Y. Liu, Z. Wang, J. Liang, and X. Liu, “Synchronization and state
estimation for discrete-time complex networks with distributed delays,”
IEEE Trans. Syst., Man, Cybern., Part B: Cybern., vol. 38, no. 5, pp.
1314–1325, 2008.

[36] R. A. Johnson and D. W. Wichern,Applied Multivariate Statistical
Analysis (6th Edition). Pearson, 2007.

Daniel Dolz was born in Castellón, Spain in 1988.
He received his M. Sc. Degree in Industrial Engi-
neering in 2011 and his Ph.D. in Industrial Tech-
nologies in 2014 from the Universitat Jaume I of
Castellón, Spain. He also holds from 2011 a M.
Sc. Degree in Automatic and Electronic Engineer-
ing from INSA Toulose, France. Currently he is a
postdoctoral fellow at the Department of Industrial
Systems Engineering and Design at the Universitat
Jaume I of Castellón, Spain. His research interests
include estimation, fault diagnosis and control over

networks, and wireless sensor networks.
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