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Abstract

Biomedical knowledge resources (KRs) are mainly expressed in English, and
many applications using them suffer from the scarcity of knowledge in non-
English languages. The goal of the present work is to take maximum profit
from existing multilingual biomedical KRs lexicons to enrich their non-English
counterparts. We propose to combine different automatic methods to gener-
ate pair-wise language alignments. More specifically, we use two well-known
translation methods (GIZA++ and Moses), and we propose a new ad-hoc
method specially devised for multilingual KRs. Then, resulting alignments
are used to transfer semantics between KRs across their languages. Transfer-
ence quality is ensured by checking the semantic coherence of the generated
alignments. Experiments have been carried out over the Spanish, French and
German UMLS Metathesaurus counterparts. As a result, the enriched Span-
ish KR can grow up to 1,514,217 concepts (originally 286,659), the French
KR up to 1,104,968 concepts (originally 83,119), and the German KR up to
1,136,020 concepts (originally 86,842).

Keywords: Semantic transference, multilingual biomedical knowledge
resources, term alignment.

1. Introduction

Large-scale processing of textual data (e.g., scientific literature) has ben-
efited from the extensive use of semantics described in biomedical knowl-
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Berlanga)

Preprint submitted to Elsevier August 26, 2015

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositori Institucional de la Universitat Jaume I

https://core.ac.uk/display/61470847?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


edge resources (KRs) [1]. Semantics has been used for coding, indexing and
retrieving domain-specific corpora. In the biomedical domain, most KRs
are mainly expressed in English, like the Unified Medical Language System1

(UMLS R©) [2] and the NCBO BioPortal2 [3]. In the case of UMLS, despite
being multilingual, most information is expressed only in English. For ex-
ample, the French projection of UMLS only covers the 7.5% of UMLS in
English [4]. Therefore, applications that deal with information written in a
non-English language suffer from this scarcity of knowledge. For example,
hospital information systems usually require to align patients reports content
with other biomedical data resources, but this implies to deal with different
languages [5]. Another example is the need of multilingual annotated biomed-
ical corpora to process knowledge as stated in [6] and [7]. Recently, many
initiatives have aimed to provide non-English versions of these KRs. How-
ever, the translation gaps between English and other languages still remain
large.

Automatic language translation has been largely used in the literature
with the aim of translating English resources into other languages. However,
as stated in [8], there are several issues that are hard to be considered by auto-
matic approaches, e.g., the knowledge about the domain or linguistic issues
such as regularities, genres, etc. Therefore, current automatic translation
approaches suffer from ambiguity and lack of adequacy to specific domains.

The enrichment of KRs, in contrast to translation tasks, does not require
exact lexical translations between languages, but word alignments between
lexicons through which semantics are transferred. Word alignment has been
used in many applications of natural language processing (NLP), namely: as
a starting point of statistical translation (e.g., [9]), in cross-lingual informa-
tion retrieval (e.g., [10]), in cross-lingual syntactic learning (e.g., [11, 12]), in
word sense disambiguation (e.g., [13, 14]), and ontology matching (e.g., [15]).

In this paper we propose an automatic method to semantically enrich
multilingual biomedical KRs through the use of implicit alignments present
at these KRs. Here, we propose a new term alignment method that, in
contrast to other approaches in the literature, considers statistic, lexical and
semantic information. Our approach relies on the fact that biomedical terms
are highly coordinated, i.e., most clinical terms are combinations of other

1http://www.nlm.nih.gov/research/umls
2http://bioportal.bioontology.org
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elements described in the same thesaurus. This property is independent
of the language, therefore we aim at identifying the implicit multilingual
alignments that can be derived from these coordinated terms.

The outline of the paper is as follows. In Section 2, we review some
approaches that aim to transfer data between resources expressed in different
languages. Then, in Section 3, we describe general concepts that are used
later in the description of the method. Section 4 describes the proposed
approach. In Section 5, we evaluate the proposed approach and we show the
results. Finally, Section 6 presents the main conclusions and future work.
Results concerning aligned terms are publicly available at http://krono.

act.uji.es/STEM-KR.

2. Related work

In the biomedical domain, there are several approaches that have ad-
dressed the need of transferring data between existing resources. Most of
them aim to translate existing biomedical terminologies in English to non-
English languages. These approaches can be classified depending on the tech-
nique used to make the translation, namely: morphological, corpus-based,
and knowledge-based methods.

Morphological-based methods are focused on applying morphological in-
formation to derive word translation of medical terms. For example, [16,
17] build multilingual dictionaries using morphological relations. These ap-
proaches are language-dependent and they do not consider information about
the domain.

Corpus-based methods perform word alignment using parallel corpora.
Among them, there are methods that rely on existing parallel corpora. For
example, [18, 19] used several parallel terminologies to build an English-
Swedish dictionary. Other methods build their own parallel corpora to per-
form the alignment. For example, [20, 21] build a parallel corpora using web
documents to find English-French translations of medical terms, [22] also
searches English-French translations but in comparable corpora (i.e., text
corpora addressing the same general topic in two different languages), and
[23] uses a statistical vector model to match English UMLS terms with their
German translations in a corpus aligned at document level. [24] uses parallel
and comparable corpora to create an English-German bilingual lexicon and to
enrich multilingual thesauri. The proposed method uses morphological and
statistical information to get the terms alignments, but its coverage is quite
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poor. Recently, the CLEF-ER challenge [25] has concerned with the mul-
tilingual alignment of biomedical document corpora. More specifically, this
challenge proposed to recognize biomedical entities in three parallel corpora
(MedLine, EMEA and Patents), as well as to report term correspondences
between language pairs. Evaluation was performed against a silver standard
corpus (SSC), which was built from the annotation agreements of the par-
ticipants. Our work differs from this challenge in that we aim at enriching
non-English KRs by identifying the implicit alignments present at the parallel
KRs, instead of looking for them in parallel document corpora. Dealing with
the KR lexical information allows us to get higher quality term alignments
as well as a better coverage of the different semantic types of the KRs. The
resulting enriched KRs could be indeed used to perform the tasks proposed
in CLEF-ER.

Knowledge-based methods use the data stored in the KRs to perform the
alignments rather than a parallel corpus. For example, [21] uses the UMLS
Concept Unique Identifiers (CUIs) to integrate information from various ter-
minologies, considering in this way, synonyms and translations in other lan-
guages (whenever the CUI is available in the non-English terminologies). At
the end, corpus-based alignments are combined with the alignments retrieved
through the CUIs. [26] combines the knowledge stored in UMLS with lexical
information in order to translate the Foundational Model of Anatomy (FMA)
ontology into French.

Most of these approaches first apply an alignment algorithm and, later,
filter the results to get only translations of terms valid in the domain. For
example, [27] selects only the terms relevant to the domain by checking their
occurrence in biomedical corpora, and [21] selects the biomedical terms by
checking if they appear in biomedical terminologies.

In this paper, we propose a corpus and knowledge-based automatic ap-
proach that combines statistical, lexical and semantic information to perform
term alignment. At the end, a semantic filtering is performed to select align-
ments that are semantically coherent within the domain. In contrast to other
approaches in the literature, we use semantics to select the relevant biomed-
ical alignments.

3. Background

In this section we introduce the concepts and foundations that underlie
the proposed method. First, we define the concept of semantics used in this
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work, and how semantics are expressed in current KRs. Then, we define the
process of transference of semantics and, finally, we introduce the notion of
term alignment as the main foundation of our approach.

3.1. Knowledge resources

From a broad perspective, the concept semantics refers to the study of the
meaning. It relates words, phrases and symbols with their meaning, which
implies relations between concepts and categorization, among other issues.

A knowledge resource (KR) is a formalization of the semantics of a domain
by means of a set of concepts which represents meaningful entities of the
domain, and a set of relations between them.

A concept is usually characterized by: (i) a concept identifier, (ii) a set
of labels that includes synonyms and short descriptions, which can be terms
or even sentences, and (iii) a definition or gloss. The set of labels contains
the strings describing the concept, and also lexical variants of these strings.

Moreover, concepts can be taxonomically related by subsumption (is-
a) or “broader-than” relationships. More formal KRs also define logical
axioms between concepts, e.g., OWL ontologies, such as the National Cancer
Institute Thesaurus (NCI) and FMA.

Usually, the domain covered by a KR is divided into a set of subdomains
(or categories) that have specific characteristics. These subdomains can be
partially ordered by the subsumption relationships. In this paper, we adopt
the semantic groups of UMLS [28] to define these subdomains.

3.2. Semantic transference

Semantic transference refers to the assignment of semantics to terms that
are not yet described in a target KR, by considering the information available
of these terms in a source KR. In this work, we deal with the transference of
semantics across languages within multilingual KRs.

More specifically, a multilingual KR is a KR in which the labels describing
a concept are expressed in different languages. KRlang is the projection of
the KR to the language lang.

Unfortunately, there is usually a large difference between the coverage of
languages in existing multilingual KRs. For example, in UMLS, as stated
in [4], non-English counterparts lack between 65% to 94% of the coverage of
the English UMLS. Particularly, the Spanish projection only covers the 35%
of the English UMLS vocabulary, whereas French only achieves the 7.5%.
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3.3. Term alignment

In this paper we propose a language alignment method to perform the
transference of semantics between languages. Language alignment can be
done at different levels, from document alignment to term alignment, with
paragraph and sentence alignment in between.

The most popular word alignment techniques are the Hidden Markov
Models (HMMs) [29] and the IBM models [30, 31]. However, the most so-
phisticated IBM models only achieve to get many-to-one mappings, while
real word alignments have many-to-many mappings (i.e., one token in the
source language can correspond to multiple tokens in the target language,
and the opposite). Some approaches propose combinations or modifications
of the IBM models in order to achieve many-to-many mappings, e.g., [32] per-
forms the intersection of IBM models bidirectional alignments, and [34, 35]
combine symmetrization with a maximum entropy approach.

In this work, we perform term alignment to transfer the semantics of the
terms described in a source KRl1 to a target KRl2, where l1 is usually English
and l2 is another language.

Given a source text and a target text consisting of word sequences, a term
alignment is a correspondence between subsequences of words in the source
text and subsequences of words in the target text.

We consider terms (sequences of words) instead of single words, because
there are sequences of words that have a different meaning from the meaning
of its individual words [36], for example, cauda equina and cáscara sagrada.

In this work, we evaluate the correctness of term alignments by analyz-
ing their semantic coherence. Two aligned terms must have similar semantics
since they are supposed to be equivalent in their respective languages. There-
fore, we assume that an alignment is semantically coherent if the source term
and the target term have similar semantics in their respective KR projections.

4. Materials and methods

In this section, we describe the proposed approach to automatically enrich
multilingual KRs. First, it finds out pair-wise language alignments and, then,
these alignments are used to transfer semantics between KRs. Figure 1 shows
the overview of the approach.

To obtain the language alignments, we propose an alignment method
based on statistical, lexical, and semantic information in order to get the
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Figure 1: Overview of the semantics transference approach.

maximum coverage of alignments. Thus, the method requires a parallel cor-
pus where to learn these alignments. In our approach, this parallel corpus is
directly derived from the KR lexicons.

The most remarkable features of the proposed alignment method are sum-
marized here:

• It finds out not only one-to-one word alignments, but also many-to-
many words alignments. From now on, we refer to these alignments as
term alignments.

• It combines statistical and lexical information to find out the most
likely alignment, and semantic information to find out synonyms.

• It finds out alignments of words that may not be described in the KRs.
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• It tailors the alignments to best fit the domain by using the semantics
covered by the KRs.

The last step is the transference of semantics, which consists in translat-
ing labels from the source KR into the target KR by using the generated
alignments.

In this paper, we deal with English, Spanish, French, and German lan-
guages, but the approach is language-independent as it does not rely on any
linguistic tool such as POS-tagging, or syntactic analysis.

In next sections, the term alignment and the semantic transference meth-
ods are further described. Previously, we describe how the parallel corpora
required by the method is built from the lexicons of the multilingual KRs.

4.1. Creation of the parallel corpora

The first task consists in creating the parallel corpora that contain align-
ments of sentences in the languages of interest. In this paper, we build these
parallel corpora with the lexicons and knowledge provided by the KRs. More
specifically, for UMLS we have used the MRCONSO file3, which accounts for
all labels associated to the KR concepts. To build a parallel corpus, we select
the labels of the concepts that are described in both languages in the KR. It
is important to remark that the resulting alignments are not sentence to sen-
tence alignments, since a concept can have several labels in a same language.
In consequence, a KR alignment derived from concept c has the following
structure:

d1, d2, ..., dn
c↔ d′1, d

′
2, ..., d

′
m

where each di is a label formed by a sequence of words (w1w2...wk). Notice
that KR alignments are derived from the labels associated to a same concept
expressed in several languages. Thus, labels di are expressed in the source
language, and d′j in the target language.

An example of an entry with multiple labels in the EN-ES parallel corpus
is the following:
“Amnioscopy”,“obstetrics endoscopy”↔“amnioscopia”,“endoscopia obstétrica”

3http://www.ncbi.nlm.nih.gov/books/NBK9685/
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4.2. Term alignment

The goal of this step is to find out correspondences of a term of the source
language in the target language. These correspondences can be identified
through the analysis of the alignments of the labels in the parallel corpus.

Unfortunately, the correspondence between labels is not direct, and we
need to identify which labels are equivalent or similar to properly identify
the term alignments. Therefore, the alignment of languages is divided into
two steps: (i) alignments of labels, and (ii) alignments of terms.

4.2.1. Alignment of labels

An entry in the parallel corpus describes a many-to-many correspondence
between labels. In case there is only one label in each language, the cor-
respondence is direct. Otherwise, to determine the best correspondences
between labels, we calculate the following probability that uses a word en-
tailment model built on the parallel corpus:

P (d′|d) =
∏

w∈d,w′∈d′
P (w′|w) (1)

With this model, we obtain pairs (d, d′), where d′ is the label in the target
language that maximizes the probability for d. P (w′|w) is the probability of
seeing w′ in the target language when we have seen w in the source language.
This probability can be easily estimated with maximum likelihood estimation
(MLE) from the parallel corpora and smoothed with some simple method
(e.g., Laplace) to avoid zero probabilities.

In the example shown above, the labels alignments are:

amnioscopy - amnioscopia

obstetrics endoscopy- endoscopia obstétrica

4.2.2. Alignment of terms

Given a pair of aligned labels (d, d′), the next step is to find out alignments
between the terms in those labels. First, we look for alignments of terms
considering the statistics and lexical characteristics of the labels in which
they appear. Then, we refine the alignment set by using the KR semantics
(i.e., semantic groups). In next sections, both techniques are explained.
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Step 1: Statistical and lexical alignments

The first step of the term alignment takes into account statistical infor-
mation and the characteristics of the context in which the terms appear,
that is, the labels. We use an iterative algorithm, described in Algorithm
1, that identifies terms alignments by searching subsumed alignments within
the terms. This algorithm iterates on the number of unigrams, n, that com-
pose the terms. First, it checks whether the source term can be translated or
not into the target term by applying the available alignments. If it cannot be
translated and it has n-grams, d − d′ is considered a new alignment. Then,
it searches for implicit alignments within the terms, removing those words
that have been already aligned. For each non-aligned word, it searches for
the most likely target word, which is selected if the score of the alignment is
higher than zero. The score of an alignment is given by the function:

score(w,w′) = α · P (w′|w) + (1− α) · similarity(w,w′) (2)

P (w′|w) is the probability of seeing w′ in the target language when we have
seen w in the source language, and the function similarity(w,w′) measures
the lexical similarity between the aligned terms (Levenshtein’s distance). We
introduce lexical similarity as a means to favour the mapping of similar tokens
when their probabilities are too low. In the experiments, the weight of the
lexical component plays a minor role, being set to 0.2 independently of the
language pair.

The result of this algorithm is a set of alignments in which words or
sequences of words in the source language are aligned to words or sequences
of words in the target language. Multiple alignments are possible since the
algorithm can identify different valid alignments in different aligned labels.

Step 2: Semantic alignments

The purpose of this step is to refine the resulting alignments by consid-
ering the KR semantics. Given an alignment (t, t′), we perform a dictionary
look-up to match t to concepts from the KR. For each concept c matching
the term t, we store t′ in order to relate also the translations of synonyms of
t (terms also annotated with the concept c). Therefore, when two different
terms t1 and t2 are annotated with the same concept, they will share the
translations [t′1, t

′
2]. Then, to tailor the set of alignments in order to best

fit the domain, we select only those alignments that are semantically repre-
sented in the target KR. Algorithm 2 describes the semantic alignment of
terms.
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Algorithm 1 Alignment of terms.

procedure Align Terms(d,d′,alignments,n)
if d can be translated to d′ by the available alignments then return

alignments
end if
if |d| = n then

append (d, d′) to alignments
end if
d∗ ← remove from d those terms t ∈ d that appear in alignments as

(t, t′) with t′ ∈ d′
d′∗ ← remove from d′ those terms t′ ∈ d′ that appear in alignments as

(t, t′) with t ∈ d
for w in d∗ do

for w′ in d′∗ do
score[w′] = α · P (w′|w) + (1− α) · similarity(w,w′)

end for
w′max ← argmax(score)
if score[w′max] > 0 then

append (w,w′max) to alignments
end if

end for
return Align terms(d, d′, alignments, n+ 1)
end procedure

11



Algorithm 2 Semantic alignment of terms.

procedure Semantic Alignment(alignments,KR2)
new alignments = {}
conceptual alignment = {}
for (t, t′) in alignments do . Step1. Synonyms

c← semantic annotation(t)
append t′ to conceptual alignment[c]

end for
for (t, t′) in alignments do . Step2. Domainfiltering

append t′ ∩KR2[c] to new alignments[t]
if new alignment[t] = [] then

append conceptual alignment[c]∩KR2[c] to new alignments[t]
end if
if new alignment[t] = [] then

append t′ to new alignments[t]
end if

end for
return new alignments
end procedure

In the previous example, the obtained alignments are:

amnioscopy -amnioscopia

obstetrics -obstétrica

endoscopy-endoscopia

Analyzing the results of each step of the alignment method, the use of
semantics includes new alignments by synonymy and rejects out-of-domain
alignments. For example, amenia is aligned to falta de menstruación with
statistical and lexical information. By the use of semantics it is also aligned
to amenia and amenorrhoea. An example of rejected alignment is junk-
chatarra, which is not specific of the domain, whereas junk-heróına and junk-
diamorfina remain in the alignment set.

4.3. Transference of semantics

Once the set of alignments is generated, the last step consists in transfer-
ring semantics between KRs. In this paper, we transfer semantics by applying
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a simple translation of source labels along with their CUIs to the target KR,
whenever these CUIs are not present in the latter.

More specifically, given a source label l, we look for the longest sub-
sequences of words in l that appear as source terms in at least one alignment
(we take the top ranked alignment considering the score in Equation 2).

If all words of the label of a CUI can be translated, then the CUI is
transferred and a new entry with the CUI and the translated label is added
to the target KR. Finally, target language constraints expressed as word
entailment distributions (P (w|w′)) are applied in order to select the most
appropriate variants as well as word ordering for the translated label.

5. Results

In this section, we show the results of the experiments carried out to eval-
uate the proposed semantic transference approach. We have performed the
experiments over UMLS (version 2012AB) in order to enrich their Spanish,
French and German counterparts. For this purpose, we have executed our
alignment method to the pairs of languages shown in Figure 2. To evaluate
the correctness of the resulting alignments, we have performed two exper-
iments, one based on semantic information and another one based on the
validation through an external reference dataset:

• Semantic coherence evaluation. We assume that in a correct align-
ment, the source term and the target term must have similar semantics.
As earlier mentioned, we describe the semantics of a word with the se-
mantic groups of UMLS Semantic Network4.

More formally, given a multilingual alignment a = {t1, t2}, its semantic
coherence is the semantic overlap of its terms, namely:

semantic coherence({t1, t2}) = |sem group(t1) ∩ sem group(t2)| (3)

where sem group(t) returns the set of UMLS semantic groups of the
CUIs having t as label. We consider an alignment semantically coherent
when the semantic overlap of its terms is greater than zero.

The evaluation of the semantic coherence is automatically performed
over the system-generated alignments by applying the previous formula.

4http://semanticnetwork.nlm.nih.gov/SemGroups/SemGroups.txt
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Figure 2: Number of concepts and transference between multilingual parallel KRs.

Quality of alignments are then evaluated by counting the number of
semantically coherent alignments each method generates.

• External reference validation. Alignments can also be validated by
using an external resource as reference. In this experiment, we have
used BabelNet 5 (version 2.0), a multilingual dictionary plus a semantic
network over it. Notice that we use explicit BabelNet alignments as
an indirect indicator of the quality of the alignments found by each
method.

Finally, we evaluate the semantic transference by analyzing the number
of concepts successfully translated, and by estimating their precision over a
small subset of translated labels.

In next sections, we describe the different experiments we have carried
out to evaluate and validate our approach. First, in Section 5.1, we describe
the main characteristics of the parallel corpora used in the term alignment.
Section 5.2 shows the results of the execution of the alignment method and
the evaluation of the resulting alignments by comparing them with two well-
known statistical-based alignments methods, GIZA++ [31] and Moses [9],
two of the most popular alignment algorithms. While GIZA++ only per-
forms unigram alignments, Moses performs multiwords alignments. Finally,

5http://babelnet.org
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EN-ES EN-FR ES-FR EN-DE ES-DE
CUIs in common 260,961 78,127 69,930 78,458 72,578
Avg. labels in L1 2.5 3.74 2.38 3.71 2.36
Avg. labels in L2 1.89 1.98 1.98 1.92 1.92

1 label - 1 label 87,566 21,115 26,429 21,629 28,773
Unigram - Unigram 5,951 2,071 4,992 2,431 5,737
Unigram - Ngram 692 188 150 108 90

Table 1: Characteristics of the parallel corpora (ENglish, FRench, ES-Spanish and DE-
German.)

in Section 5.3, we present the results of the transference of semantics between
KRs.

5.1. Preparation of the parallel corpora

For each pair of languages shown in Figure 2, we have created a parallel
corpus by selecting those concepts in UMLS that have labels in both lan-
guages. Table 1 shows the main characteristics of each corpus. For example,
in EN-ES parallel corpus, there are 260,961 concepts in common, with an
average of 2.5 labels per concept in EN and 1.98 labels per concept in ES.
Therefore, the EN-ES parallel corpus has 260,961 entries, in which 87,566
are one label - one label, of which 6,633 are explicit word alignments (5,951
unigram-unigram and 682 unigram-multiword).

5.2. Term alignment results

The results of the term alignment method for the different language pairs
are shown in Figure 3. The alignments are classified by the number of words
that compose the source term. In all cases, the number of unigrams is high,
and if we compare these numbers with the explicit unigram alignments (those
in the parallel corpus), we can conclude that our method is able to find a
considerable amount of implicit alignments, whose correctness is evaluated
in the following sections.

5.2.1. Unigram alignments evaluation

In this section, we compare the unigram alignments obtained with our
approach against the results of executing GIZA++ with the parallel corpora
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Figure 3: Alignments of our approach, GIZA++ and Moses with the parallel corpora.

described above. Figure 3 shows the results of executing GIZA++ with each
one of the parallel corpora.

GIZA++ provides an average of six alignments per source term, and to
select the most relevant alignments for a source term, we have defined a
filtering strategy. First, we select the top-k alignments whose probability
is higher than a threshold λprob, and the difference between the probability
and the maximum probability for the source term is lower than a threshold
β. Then, we evaluate the selected alignments with the function defined in
Equation 2. If the returned value is higher than a threshold λf(a), the align-
ment is selected. For example, the word ileoscopy is originally aligned by
GIZA++ to {endoscopia, examen, endoscópica, operación, ı́leon, ileoscopia,
ileoscopy, fibroileoscopia,...}. After filtering, only the alignment to ileoscopia
is selected, which is the correct one.

To compare the results of GIZA++ and those of our approach, we ana-
lyze the semantic coherence of the alignments. We have parameterized the
filtering to get similar sets of alignments (in size) to the ones of our approach
in order to compare them. We select only the unigrams of our approach since
GIZA++ aligns only uniwords. Figure 4 shows the evaluation of the seman-
tic coherence of the alignments of GIZA++ and the unigram alignments of
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Figure 4: Semantic coherence evaluation of GIZA++ filtered alignments and the unigram
alignments of our approach in which the source terms are annotated.

our approach. It shows the total number of alignments, the number of align-
ments whose source term has a CUI associated, and the number of semanti-
cally coherent alignments. Examples of GIZA++ incoherent alignments are:
abstractingACTI − resumenCONC and aerationPROC−ventilaciónDISO.

In all cases, the number of analyzed alignments is similar, but the se-
mantic coherence is slightly better in our approach. However, as GIZA++
does not consider multiword terms, it often generates wrong one-to-one align-
ments when they are actually one-to-many. For example, the word achromic
is aligned by GIZA++ to pigmentado, but the correct alignment is no pig-
mentado.

5.2.2. Term alignments evaluation

In this section we evaluate the complete set of alignments by comparing
them to the results obtained by Moses. In contrast to GIZA++, Moses
considers also multiword terms in its language models. Examples of Moses
multiwords alignments (together with their conditional probability) are the
following ones:

fluid granulocyte count - recuento de granulocitos en ĺıquido (0.5)

fluid granulocyte count - cuenta granulocitaria en (0.5)
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EN-ES EN-FR ES-FR EN-DE ES-DE
Moses Original set 406,708 130,092 152,929 157,496 45,990

(27.61%) (22.17%) (29.92%) (16.92%) (16.25%)
Moses Filtered 35,188 15,226 18,272 10,807 7,748

(12.59%) (13.67%) (18.09%) (4.13%) (8.59%)

Table 2: Number of redundant alignments and the percentage w.r.t. the original and
filtered sets (1,2,3-grams).

performance at - desempeño en el (1.0)

hand application of - colocación de un (0.5)

hand application of - colocación de (0.5)

These examples show that some alignments only differ in one meaningless
word. For example, the two alignments of the source term hand application
of are indeed equivalent. This is due to the fact that Moses considers all
words in the same way independently of their nature.

Figure 3 shows the number of alignments found out by Moses for each
parallel corpus. As it can be seen, most alignments are unigrams, bigrams
and trigrams. Since biomedical terminologies are highly coordinated, longer
terms can be usually decomposed into smaller terms. As a consequence, most
long terms are indeed redundant for performing semantics transference.

We have carried out an experiment to measure the redundancy of Moses
alignments. Table 2 shows the number of alignments that are redundant
in the original set of Moses alignments and in a filtered set comparable to
our set of alignments. This filtered set is the result of applying the filtering
strategy described in Section 5.2.1 to 1,2,3-grams. As it can be seen, orig-
inal sets exhibit a high level of redundancy, which is notably reduced when
only 1,2,3-grams are selected. An example of redundant alignment is blood
selenium-selenio en sangre, which can be decomposed and translated by its
individual terms blood-sangre and selenium-selenio. Another example is in-
duction of labour-inducción del trabajo de parto, which can be decomposed
into induction-inducción and labour-trabajo de parto

Figure 5 compares the Moses filtered alignments sets with those gener-
ated by our proposal. Although the number of filtered Moses alignments is
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Figure 5: Semantic coherence evaluation of Moses filtered alignments and the alignments
of our approach in which the source terms are annotated.

higher than ours, the number of annotated source words is higher in our ap-
proach. That is, Moses alignments contains more source words that are not
semantically described in the KR. Our approach obtains more semantically
coherent alignments than Moses in all language pairs.

5.2.3. Validation of the alignments using an external resource

In this section we present the results of the validation of the correctness
of the alignments using BabelNet 2.0 as external reference. BabelNet defines
the entries with unique identifiers which allow us to align concepts in different
languages. The English version of BabelNet 2.0 has 932,596 concepts (ex-
cluding named entities), while the Spanish has 425,914 concepts, the French
version has 256,813 concepts, and the German version has 220,136 concepts.
We want to remark that BabelNet is a general domain KR and we cannot
consider it as a GS, since it scarcely covers the bioinformatics domain. Nev-
ertheless, we consider relevant the use of BabelNet to identify alignments of
some entities not so well covered by UMLS (e.g., geographical terms).

In this experiment, we have validated the alignments of our approach,
GIZA++ and Moses. Table 3 shows the number of alignments of the three
approaches that are explicitly set in BabelNet, and the coverage of these
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EN-ES EN-FR ES-FR EN-DE EN-DE
Our Proposal 32,696 23,225 14,603 22,695 13,709

(1.12%) (0.93%) (1.13%) (0.65%) (0.84%)
GIZA++ Filtered 21,909 16,821 9,419 11,882 6894

(0.7%) (0.7%) (0.73%) (0.34%) (0.4%)
Moses Filtered 21,407 13,396 10,007 22,480 8,266

(0.73%) (0.54%) (0.77%) (0.65%) (0.5%)

Table 3: Number of alignments that appear in BabelNet and the coverage of these align-
ments with respect to BabelNet alignments.

UMLS-derived alignments. As expected, the low overlapping is due to the
difference in the domains BabelNet and UMLS are focused on. Comparing
the alignments of our approach and the filtered sets of GIZA++ and Moses,
our proposal obtains the highest number of shared alignments with BabelNet
in all the languages pairs.

5.3. Semantic transference evaluation

The last step of our method is the transference of semantics between
KRs through the selected alignments. In this experiment, we transfer se-
mantics from richer to poorer covered KRs (see Figure 2). We only consider
semantically coherent alignments in order to ensure the correctness of the
translation. Figure 6 shows the size of the enriched KRs by the alignments
of our approach, and the filtered alignments of GIZA++ and Moses. It shows
the number of concepts whose labels have been translated, and the number of
invariant concepts which do not need translation. These invariant concepts
correspond to named entities and latin expressions (e.g., species scientific
names).

We have also joined the alignments of the three approaches (Combina-
tion), which increases the number of translated concepts with respect to our
method. This shows that the three approaches complement each other and,
therefore, the coverage of the alignments is higher. As result of this com-
bination, in the enriched Spanish KR, the 41% of the concepts have been
transferred by translation, the 40.8% are invariant concepts, and 18.2% ap-
pear in the original Spanish KR. However, as expected, in the French and
German counterparts, the transference of concepts by translation is poorer
than in Spanish due to the size of their KR lexicons. In fact, the percent-
ages of the translated concepts are 36.9% and 37.7% in French and German
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Lang. ANAT DISO CHEM PROC PHYS OBSV Total
ES 0.9 0.9 0.9 0.9 0.7 0.8 0.85
FR 0.9 1.0 0.8 0.8 0.9 0.8 0.87
DE 0.8 0.7 0.9 1.0 0.7 0.7 0.8

Table 4: Precision of the translations of the concepts of the most frequent semantic groups.

respectively, and the percentages of invariant concepts are 55.9% and 54.9%,
respectively.

Moreover, we have also included BabelNet alignments in order to see if
BabelNet covers the vocabulary that is not aligned by the three approaches.
However, as Figure 6 shows, the improvement in the semantics transference is
low. Most of the words that are not translated correspond to chemical prod-
ucts e.g., profollipsin, aminopolypeptidase, chloroestradien, acronyms e.g.,
URP, CSRP, SMF, and protein names, e.g., chordin, RHCE, among others.

It is also worth mentioning that transferred concepts in French and Ger-
man KRs, 90% come from English and 10% from the Spanish KR.

Finally, to evaluate the quality of the transference, we have performed
a manual validation on a subset of translated labels. We have randomly
selected 50 translations per language from concepts of the most frequent se-
mantic groups, and we have evaluated the precision of these translations (i.e.,
number of correct translations w.r.t. the evaluated translations). The trans-
lations and their evaluation are publicly available at http://krono.act.

uji.es/STEM-KR. It is worth mentioning that we consider the translations
as bag of terms. A translation is considered correct if all the component
terms are correct translations of the original label in the context they are
expressed.

Table 4 shows the precision of the translations in each language grouped
by semantic group. As it can be shown, the German translations subset
has a poorer precision than the subsets of the other two languages. The
main reason is the intrinsic lexical characteristics of the German language,
in which terms are compound words instead of coordinate expressions. As
future work, we aim to decompose German words in order to obtain more
accurate alignments.

5.4. Comparison with other approaches

With respect to other approaches that also aim to enrich multilingual
biomedical KRs, our proposal clearly outperforms them in scale. For exam-
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Figure 6: Size of the enriched KRs after semantic transference.
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ple, [24], which aims to enrich a multilingual thesaurus (specifically German)
and to create a bilingual lexicon, only adds 1400 new German terms to the
German KR. [26] addresses the translation of FMA using knowledge-based
and lexical methods. Using UMLS as KR, they translate 7,469 concepts into
French, and using the lexical approach they get 6,246 correspondences be-
tween English and French. Therefore, our approach performs a considerable
larger transference than these approaches.

6. Conclusions

In this paper we have dealt with the problem of the scarcity of seman-
tic knowledge in non-English languages in the biomedical domain. We have
proposed an automatic term alignment method to transfer semantics in mul-
tilingual knowledge resources.

The results of the experiments show that the proposed method is able
to find out implicit alignments in a multilingual KR, with which the seman-
tic transference between English and other languages can be automatically
performed. We have compared our approach with two of the most used align-
ments methods, GIZA++ and Moses, and our method gets more semantically
coherent alignments. However, we have seen that the three approaches com-
plement each other, and their combination increases considerably the trans-
ference of semantics. As a result of this combination, the Spanish UMLS
counterpart grows up to 1,514,217 concepts, the French counterpart up to
1,104,968 concepts, and the German counterpart up to 1,136,020 concepts.

As future work, there are several interesting research lines derived from
this work. First, we are going to address the decomposition of German terms
in order to get more accurate alignments. Moreover, we will study how to
translate the non-covered entities by taking into account external corpora
specific to this domain. We also plan to use the semantic relationships de-
fined in the KR to further enrich and improve the coherence in the different
language KR counterparts.
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